blob: fb4e56eb58f4d4a1ebda4f96a5e2a3d48ed7ce70 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
Stephane Eranian38331f62010-02-08 17:17:01 +0200101void __weak hw_perf_event_setup_offline(int cpu) { barrier(); }
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200102
103int __weak
104hw_perf_group_sched_in(struct perf_event *group_leader,
105 struct perf_cpu_context *cpuctx,
106 struct perf_event_context *ctx, int cpu)
107{
108 return 0;
109}
110
111void __weak perf_event_print_debug(void) { }
112
113static DEFINE_PER_CPU(int, perf_disable_count);
114
115void __perf_disable(void)
116{
117 __get_cpu_var(perf_disable_count)++;
118}
119
120bool __perf_enable(void)
121{
122 return !--__get_cpu_var(perf_disable_count);
123}
124
125void perf_disable(void)
126{
127 __perf_disable();
128 hw_perf_disable();
129}
130
131void perf_enable(void)
132{
133 if (__perf_enable())
134 hw_perf_enable();
135}
136
137static void get_ctx(struct perf_event_context *ctx)
138{
139 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
140}
141
142static void free_ctx(struct rcu_head *head)
143{
144 struct perf_event_context *ctx;
145
146 ctx = container_of(head, struct perf_event_context, rcu_head);
147 kfree(ctx);
148}
149
150static void put_ctx(struct perf_event_context *ctx)
151{
152 if (atomic_dec_and_test(&ctx->refcount)) {
153 if (ctx->parent_ctx)
154 put_ctx(ctx->parent_ctx);
155 if (ctx->task)
156 put_task_struct(ctx->task);
157 call_rcu(&ctx->rcu_head, free_ctx);
158 }
159}
160
161static void unclone_ctx(struct perf_event_context *ctx)
162{
163 if (ctx->parent_ctx) {
164 put_ctx(ctx->parent_ctx);
165 ctx->parent_ctx = NULL;
166 }
167}
168
169/*
170 * If we inherit events we want to return the parent event id
171 * to userspace.
172 */
173static u64 primary_event_id(struct perf_event *event)
174{
175 u64 id = event->id;
176
177 if (event->parent)
178 id = event->parent->id;
179
180 return id;
181}
182
183/*
184 * Get the perf_event_context for a task and lock it.
185 * This has to cope with with the fact that until it is locked,
186 * the context could get moved to another task.
187 */
188static struct perf_event_context *
189perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190{
191 struct perf_event_context *ctx;
192
193 rcu_read_lock();
194 retry:
195 ctx = rcu_dereference(task->perf_event_ctxp);
196 if (ctx) {
197 /*
198 * If this context is a clone of another, it might
199 * get swapped for another underneath us by
200 * perf_event_task_sched_out, though the
201 * rcu_read_lock() protects us from any context
202 * getting freed. Lock the context and check if it
203 * got swapped before we could get the lock, and retry
204 * if so. If we locked the right context, then it
205 * can't get swapped on us any more.
206 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100207 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200208 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100209 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200210 goto retry;
211 }
212
213 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100214 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200215 ctx = NULL;
216 }
217 }
218 rcu_read_unlock();
219 return ctx;
220}
221
222/*
223 * Get the context for a task and increment its pin_count so it
224 * can't get swapped to another task. This also increments its
225 * reference count so that the context can't get freed.
226 */
227static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228{
229 struct perf_event_context *ctx;
230 unsigned long flags;
231
232 ctx = perf_lock_task_context(task, &flags);
233 if (ctx) {
234 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100235 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200236 }
237 return ctx;
238}
239
240static void perf_unpin_context(struct perf_event_context *ctx)
241{
242 unsigned long flags;
243
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100244 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200245 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100246 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200247 put_ctx(ctx);
248}
249
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100250static inline u64 perf_clock(void)
251{
252 return cpu_clock(smp_processor_id());
253}
254
255/*
256 * Update the record of the current time in a context.
257 */
258static void update_context_time(struct perf_event_context *ctx)
259{
260 u64 now = perf_clock();
261
262 ctx->time += now - ctx->timestamp;
263 ctx->timestamp = now;
264}
265
266/*
267 * Update the total_time_enabled and total_time_running fields for a event.
268 */
269static void update_event_times(struct perf_event *event)
270{
271 struct perf_event_context *ctx = event->ctx;
272 u64 run_end;
273
274 if (event->state < PERF_EVENT_STATE_INACTIVE ||
275 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
276 return;
277
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100278 if (ctx->is_active)
279 run_end = ctx->time;
280 else
281 run_end = event->tstamp_stopped;
282
283 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100284
285 if (event->state == PERF_EVENT_STATE_INACTIVE)
286 run_end = event->tstamp_stopped;
287 else
288 run_end = ctx->time;
289
290 event->total_time_running = run_end - event->tstamp_running;
291}
292
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293static struct list_head *
294ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
295{
296 if (event->attr.pinned)
297 return &ctx->pinned_groups;
298 else
299 return &ctx->flexible_groups;
300}
301
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200302/*
303 * Add a event from the lists for its context.
304 * Must be called with ctx->mutex and ctx->lock held.
305 */
306static void
307list_add_event(struct perf_event *event, struct perf_event_context *ctx)
308{
309 struct perf_event *group_leader = event->group_leader;
310
311 /*
312 * Depending on whether it is a standalone or sibling event,
313 * add it straight to the context's event list, or to the group
314 * leader's sibling list:
315 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100316 if (group_leader == event) {
317 struct list_head *list;
318
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100319 if (is_software_event(event))
320 event->group_flags |= PERF_GROUP_SOFTWARE;
321
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100322 list = ctx_group_list(event, ctx);
323 list_add_tail(&event->group_entry, list);
324 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100325 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
326 !is_software_event(event))
327 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
328
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200329 list_add_tail(&event->group_entry, &group_leader->sibling_list);
330 group_leader->nr_siblings++;
331 }
332
333 list_add_rcu(&event->event_entry, &ctx->event_list);
334 ctx->nr_events++;
335 if (event->attr.inherit_stat)
336 ctx->nr_stat++;
337}
338
339/*
340 * Remove a event from the lists for its context.
341 * Must be called with ctx->mutex and ctx->lock held.
342 */
343static void
344list_del_event(struct perf_event *event, struct perf_event_context *ctx)
345{
346 struct perf_event *sibling, *tmp;
347
348 if (list_empty(&event->group_entry))
349 return;
350 ctx->nr_events--;
351 if (event->attr.inherit_stat)
352 ctx->nr_stat--;
353
354 list_del_init(&event->group_entry);
355 list_del_rcu(&event->event_entry);
356
357 if (event->group_leader != event)
358 event->group_leader->nr_siblings--;
359
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100360 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800361
362 /*
363 * If event was in error state, then keep it
364 * that way, otherwise bogus counts will be
365 * returned on read(). The only way to get out
366 * of error state is by explicit re-enabling
367 * of the event
368 */
369 if (event->state > PERF_EVENT_STATE_OFF)
370 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100371
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200372 /*
373 * If this was a group event with sibling events then
374 * upgrade the siblings to singleton events by adding them
375 * to the context list directly:
376 */
377 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100378 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200379
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100380 list = ctx_group_list(event, ctx);
381 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200382 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100383
384 /* Inherit group flags from the previous leader */
385 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200386 }
387}
388
389static void
390event_sched_out(struct perf_event *event,
391 struct perf_cpu_context *cpuctx,
392 struct perf_event_context *ctx)
393{
394 if (event->state != PERF_EVENT_STATE_ACTIVE)
395 return;
396
397 event->state = PERF_EVENT_STATE_INACTIVE;
398 if (event->pending_disable) {
399 event->pending_disable = 0;
400 event->state = PERF_EVENT_STATE_OFF;
401 }
402 event->tstamp_stopped = ctx->time;
403 event->pmu->disable(event);
404 event->oncpu = -1;
405
406 if (!is_software_event(event))
407 cpuctx->active_oncpu--;
408 ctx->nr_active--;
409 if (event->attr.exclusive || !cpuctx->active_oncpu)
410 cpuctx->exclusive = 0;
411}
412
413static void
414group_sched_out(struct perf_event *group_event,
415 struct perf_cpu_context *cpuctx,
416 struct perf_event_context *ctx)
417{
418 struct perf_event *event;
419
420 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
421 return;
422
423 event_sched_out(group_event, cpuctx, ctx);
424
425 /*
426 * Schedule out siblings (if any):
427 */
428 list_for_each_entry(event, &group_event->sibling_list, group_entry)
429 event_sched_out(event, cpuctx, ctx);
430
431 if (group_event->attr.exclusive)
432 cpuctx->exclusive = 0;
433}
434
435/*
436 * Cross CPU call to remove a performance event
437 *
438 * We disable the event on the hardware level first. After that we
439 * remove it from the context list.
440 */
441static void __perf_event_remove_from_context(void *info)
442{
443 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
444 struct perf_event *event = info;
445 struct perf_event_context *ctx = event->ctx;
446
447 /*
448 * If this is a task context, we need to check whether it is
449 * the current task context of this cpu. If not it has been
450 * scheduled out before the smp call arrived.
451 */
452 if (ctx->task && cpuctx->task_ctx != ctx)
453 return;
454
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100455 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200456 /*
457 * Protect the list operation against NMI by disabling the
458 * events on a global level.
459 */
460 perf_disable();
461
462 event_sched_out(event, cpuctx, ctx);
463
464 list_del_event(event, ctx);
465
466 if (!ctx->task) {
467 /*
468 * Allow more per task events with respect to the
469 * reservation:
470 */
471 cpuctx->max_pertask =
472 min(perf_max_events - ctx->nr_events,
473 perf_max_events - perf_reserved_percpu);
474 }
475
476 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100477 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200478}
479
480
481/*
482 * Remove the event from a task's (or a CPU's) list of events.
483 *
484 * Must be called with ctx->mutex held.
485 *
486 * CPU events are removed with a smp call. For task events we only
487 * call when the task is on a CPU.
488 *
489 * If event->ctx is a cloned context, callers must make sure that
490 * every task struct that event->ctx->task could possibly point to
491 * remains valid. This is OK when called from perf_release since
492 * that only calls us on the top-level context, which can't be a clone.
493 * When called from perf_event_exit_task, it's OK because the
494 * context has been detached from its task.
495 */
496static void perf_event_remove_from_context(struct perf_event *event)
497{
498 struct perf_event_context *ctx = event->ctx;
499 struct task_struct *task = ctx->task;
500
501 if (!task) {
502 /*
503 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200504 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200505 */
506 smp_call_function_single(event->cpu,
507 __perf_event_remove_from_context,
508 event, 1);
509 return;
510 }
511
512retry:
513 task_oncpu_function_call(task, __perf_event_remove_from_context,
514 event);
515
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100516 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200517 /*
518 * If the context is active we need to retry the smp call.
519 */
520 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100521 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200522 goto retry;
523 }
524
525 /*
526 * The lock prevents that this context is scheduled in so we
527 * can remove the event safely, if the call above did not
528 * succeed.
529 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100530 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200531 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100532 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200533}
534
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200535/*
536 * Update total_time_enabled and total_time_running for all events in a group.
537 */
538static void update_group_times(struct perf_event *leader)
539{
540 struct perf_event *event;
541
542 update_event_times(leader);
543 list_for_each_entry(event, &leader->sibling_list, group_entry)
544 update_event_times(event);
545}
546
547/*
548 * Cross CPU call to disable a performance event
549 */
550static void __perf_event_disable(void *info)
551{
552 struct perf_event *event = info;
553 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
554 struct perf_event_context *ctx = event->ctx;
555
556 /*
557 * If this is a per-task event, need to check whether this
558 * event's task is the current task on this cpu.
559 */
560 if (ctx->task && cpuctx->task_ctx != ctx)
561 return;
562
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100563 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200564
565 /*
566 * If the event is on, turn it off.
567 * If it is in error state, leave it in error state.
568 */
569 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
570 update_context_time(ctx);
571 update_group_times(event);
572 if (event == event->group_leader)
573 group_sched_out(event, cpuctx, ctx);
574 else
575 event_sched_out(event, cpuctx, ctx);
576 event->state = PERF_EVENT_STATE_OFF;
577 }
578
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100579 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200580}
581
582/*
583 * Disable a event.
584 *
585 * If event->ctx is a cloned context, callers must make sure that
586 * every task struct that event->ctx->task could possibly point to
587 * remains valid. This condition is satisifed when called through
588 * perf_event_for_each_child or perf_event_for_each because they
589 * hold the top-level event's child_mutex, so any descendant that
590 * goes to exit will block in sync_child_event.
591 * When called from perf_pending_event it's OK because event->ctx
592 * is the current context on this CPU and preemption is disabled,
593 * hence we can't get into perf_event_task_sched_out for this context.
594 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100595void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200596{
597 struct perf_event_context *ctx = event->ctx;
598 struct task_struct *task = ctx->task;
599
600 if (!task) {
601 /*
602 * Disable the event on the cpu that it's on
603 */
604 smp_call_function_single(event->cpu, __perf_event_disable,
605 event, 1);
606 return;
607 }
608
609 retry:
610 task_oncpu_function_call(task, __perf_event_disable, event);
611
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100612 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200613 /*
614 * If the event is still active, we need to retry the cross-call.
615 */
616 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100617 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200618 goto retry;
619 }
620
621 /*
622 * Since we have the lock this context can't be scheduled
623 * in, so we can change the state safely.
624 */
625 if (event->state == PERF_EVENT_STATE_INACTIVE) {
626 update_group_times(event);
627 event->state = PERF_EVENT_STATE_OFF;
628 }
629
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100630 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200631}
632
633static int
634event_sched_in(struct perf_event *event,
635 struct perf_cpu_context *cpuctx,
636 struct perf_event_context *ctx,
637 int cpu)
638{
639 if (event->state <= PERF_EVENT_STATE_OFF)
640 return 0;
641
642 event->state = PERF_EVENT_STATE_ACTIVE;
643 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
644 /*
645 * The new state must be visible before we turn it on in the hardware:
646 */
647 smp_wmb();
648
649 if (event->pmu->enable(event)) {
650 event->state = PERF_EVENT_STATE_INACTIVE;
651 event->oncpu = -1;
652 return -EAGAIN;
653 }
654
655 event->tstamp_running += ctx->time - event->tstamp_stopped;
656
657 if (!is_software_event(event))
658 cpuctx->active_oncpu++;
659 ctx->nr_active++;
660
661 if (event->attr.exclusive)
662 cpuctx->exclusive = 1;
663
664 return 0;
665}
666
667static int
668group_sched_in(struct perf_event *group_event,
669 struct perf_cpu_context *cpuctx,
670 struct perf_event_context *ctx,
671 int cpu)
672{
673 struct perf_event *event, *partial_group;
674 int ret;
675
676 if (group_event->state == PERF_EVENT_STATE_OFF)
677 return 0;
678
679 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
680 if (ret)
681 return ret < 0 ? ret : 0;
682
683 if (event_sched_in(group_event, cpuctx, ctx, cpu))
684 return -EAGAIN;
685
686 /*
687 * Schedule in siblings as one group (if any):
688 */
689 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
690 if (event_sched_in(event, cpuctx, ctx, cpu)) {
691 partial_group = event;
692 goto group_error;
693 }
694 }
695
696 return 0;
697
698group_error:
699 /*
700 * Groups can be scheduled in as one unit only, so undo any
701 * partial group before returning:
702 */
703 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
704 if (event == partial_group)
705 break;
706 event_sched_out(event, cpuctx, ctx);
707 }
708 event_sched_out(group_event, cpuctx, ctx);
709
710 return -EAGAIN;
711}
712
713/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200714 * Work out whether we can put this event group on the CPU now.
715 */
716static int group_can_go_on(struct perf_event *event,
717 struct perf_cpu_context *cpuctx,
718 int can_add_hw)
719{
720 /*
721 * Groups consisting entirely of software events can always go on.
722 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100723 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200724 return 1;
725 /*
726 * If an exclusive group is already on, no other hardware
727 * events can go on.
728 */
729 if (cpuctx->exclusive)
730 return 0;
731 /*
732 * If this group is exclusive and there are already
733 * events on the CPU, it can't go on.
734 */
735 if (event->attr.exclusive && cpuctx->active_oncpu)
736 return 0;
737 /*
738 * Otherwise, try to add it if all previous groups were able
739 * to go on.
740 */
741 return can_add_hw;
742}
743
744static void add_event_to_ctx(struct perf_event *event,
745 struct perf_event_context *ctx)
746{
747 list_add_event(event, ctx);
748 event->tstamp_enabled = ctx->time;
749 event->tstamp_running = ctx->time;
750 event->tstamp_stopped = ctx->time;
751}
752
753/*
754 * Cross CPU call to install and enable a performance event
755 *
756 * Must be called with ctx->mutex held
757 */
758static void __perf_install_in_context(void *info)
759{
760 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
761 struct perf_event *event = info;
762 struct perf_event_context *ctx = event->ctx;
763 struct perf_event *leader = event->group_leader;
764 int cpu = smp_processor_id();
765 int err;
766
767 /*
768 * If this is a task context, we need to check whether it is
769 * the current task context of this cpu. If not it has been
770 * scheduled out before the smp call arrived.
771 * Or possibly this is the right context but it isn't
772 * on this cpu because it had no events.
773 */
774 if (ctx->task && cpuctx->task_ctx != ctx) {
775 if (cpuctx->task_ctx || ctx->task != current)
776 return;
777 cpuctx->task_ctx = ctx;
778 }
779
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100780 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200781 ctx->is_active = 1;
782 update_context_time(ctx);
783
784 /*
785 * Protect the list operation against NMI by disabling the
786 * events on a global level. NOP for non NMI based events.
787 */
788 perf_disable();
789
790 add_event_to_ctx(event, ctx);
791
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100792 if (event->cpu != -1 && event->cpu != smp_processor_id())
793 goto unlock;
794
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200795 /*
796 * Don't put the event on if it is disabled or if
797 * it is in a group and the group isn't on.
798 */
799 if (event->state != PERF_EVENT_STATE_INACTIVE ||
800 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
801 goto unlock;
802
803 /*
804 * An exclusive event can't go on if there are already active
805 * hardware events, and no hardware event can go on if there
806 * is already an exclusive event on.
807 */
808 if (!group_can_go_on(event, cpuctx, 1))
809 err = -EEXIST;
810 else
811 err = event_sched_in(event, cpuctx, ctx, cpu);
812
813 if (err) {
814 /*
815 * This event couldn't go on. If it is in a group
816 * then we have to pull the whole group off.
817 * If the event group is pinned then put it in error state.
818 */
819 if (leader != event)
820 group_sched_out(leader, cpuctx, ctx);
821 if (leader->attr.pinned) {
822 update_group_times(leader);
823 leader->state = PERF_EVENT_STATE_ERROR;
824 }
825 }
826
827 if (!err && !ctx->task && cpuctx->max_pertask)
828 cpuctx->max_pertask--;
829
830 unlock:
831 perf_enable();
832
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100833 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200834}
835
836/*
837 * Attach a performance event to a context
838 *
839 * First we add the event to the list with the hardware enable bit
840 * in event->hw_config cleared.
841 *
842 * If the event is attached to a task which is on a CPU we use a smp
843 * call to enable it in the task context. The task might have been
844 * scheduled away, but we check this in the smp call again.
845 *
846 * Must be called with ctx->mutex held.
847 */
848static void
849perf_install_in_context(struct perf_event_context *ctx,
850 struct perf_event *event,
851 int cpu)
852{
853 struct task_struct *task = ctx->task;
854
855 if (!task) {
856 /*
857 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200858 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200859 */
860 smp_call_function_single(cpu, __perf_install_in_context,
861 event, 1);
862 return;
863 }
864
865retry:
866 task_oncpu_function_call(task, __perf_install_in_context,
867 event);
868
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100869 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200870 /*
871 * we need to retry the smp call.
872 */
873 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100874 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200875 goto retry;
876 }
877
878 /*
879 * The lock prevents that this context is scheduled in so we
880 * can add the event safely, if it the call above did not
881 * succeed.
882 */
883 if (list_empty(&event->group_entry))
884 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100885 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200886}
887
888/*
889 * Put a event into inactive state and update time fields.
890 * Enabling the leader of a group effectively enables all
891 * the group members that aren't explicitly disabled, so we
892 * have to update their ->tstamp_enabled also.
893 * Note: this works for group members as well as group leaders
894 * since the non-leader members' sibling_lists will be empty.
895 */
896static void __perf_event_mark_enabled(struct perf_event *event,
897 struct perf_event_context *ctx)
898{
899 struct perf_event *sub;
900
901 event->state = PERF_EVENT_STATE_INACTIVE;
902 event->tstamp_enabled = ctx->time - event->total_time_enabled;
903 list_for_each_entry(sub, &event->sibling_list, group_entry)
904 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
905 sub->tstamp_enabled =
906 ctx->time - sub->total_time_enabled;
907}
908
909/*
910 * Cross CPU call to enable a performance event
911 */
912static void __perf_event_enable(void *info)
913{
914 struct perf_event *event = info;
915 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
916 struct perf_event_context *ctx = event->ctx;
917 struct perf_event *leader = event->group_leader;
918 int err;
919
920 /*
921 * If this is a per-task event, need to check whether this
922 * event's task is the current task on this cpu.
923 */
924 if (ctx->task && cpuctx->task_ctx != ctx) {
925 if (cpuctx->task_ctx || ctx->task != current)
926 return;
927 cpuctx->task_ctx = ctx;
928 }
929
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100930 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200931 ctx->is_active = 1;
932 update_context_time(ctx);
933
934 if (event->state >= PERF_EVENT_STATE_INACTIVE)
935 goto unlock;
936 __perf_event_mark_enabled(event, ctx);
937
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100938 if (event->cpu != -1 && event->cpu != smp_processor_id())
939 goto unlock;
940
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200941 /*
942 * If the event is in a group and isn't the group leader,
943 * then don't put it on unless the group is on.
944 */
945 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
946 goto unlock;
947
948 if (!group_can_go_on(event, cpuctx, 1)) {
949 err = -EEXIST;
950 } else {
951 perf_disable();
952 if (event == leader)
953 err = group_sched_in(event, cpuctx, ctx,
954 smp_processor_id());
955 else
956 err = event_sched_in(event, cpuctx, ctx,
957 smp_processor_id());
958 perf_enable();
959 }
960
961 if (err) {
962 /*
963 * If this event can't go on and it's part of a
964 * group, then the whole group has to come off.
965 */
966 if (leader != event)
967 group_sched_out(leader, cpuctx, ctx);
968 if (leader->attr.pinned) {
969 update_group_times(leader);
970 leader->state = PERF_EVENT_STATE_ERROR;
971 }
972 }
973
974 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100975 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200976}
977
978/*
979 * Enable a event.
980 *
981 * If event->ctx is a cloned context, callers must make sure that
982 * every task struct that event->ctx->task could possibly point to
983 * remains valid. This condition is satisfied when called through
984 * perf_event_for_each_child or perf_event_for_each as described
985 * for perf_event_disable.
986 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100987void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200988{
989 struct perf_event_context *ctx = event->ctx;
990 struct task_struct *task = ctx->task;
991
992 if (!task) {
993 /*
994 * Enable the event on the cpu that it's on
995 */
996 smp_call_function_single(event->cpu, __perf_event_enable,
997 event, 1);
998 return;
999 }
1000
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001001 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001002 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1003 goto out;
1004
1005 /*
1006 * If the event is in error state, clear that first.
1007 * That way, if we see the event in error state below, we
1008 * know that it has gone back into error state, as distinct
1009 * from the task having been scheduled away before the
1010 * cross-call arrived.
1011 */
1012 if (event->state == PERF_EVENT_STATE_ERROR)
1013 event->state = PERF_EVENT_STATE_OFF;
1014
1015 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001016 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001017 task_oncpu_function_call(task, __perf_event_enable, event);
1018
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001019 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001020
1021 /*
1022 * If the context is active and the event is still off,
1023 * we need to retry the cross-call.
1024 */
1025 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1026 goto retry;
1027
1028 /*
1029 * Since we have the lock this context can't be scheduled
1030 * in, so we can change the state safely.
1031 */
1032 if (event->state == PERF_EVENT_STATE_OFF)
1033 __perf_event_mark_enabled(event, ctx);
1034
1035 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001036 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001037}
1038
1039static int perf_event_refresh(struct perf_event *event, int refresh)
1040{
1041 /*
1042 * not supported on inherited events
1043 */
1044 if (event->attr.inherit)
1045 return -EINVAL;
1046
1047 atomic_add(refresh, &event->event_limit);
1048 perf_event_enable(event);
1049
1050 return 0;
1051}
1052
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001053enum event_type_t {
1054 EVENT_FLEXIBLE = 0x1,
1055 EVENT_PINNED = 0x2,
1056 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1057};
1058
1059static void ctx_sched_out(struct perf_event_context *ctx,
1060 struct perf_cpu_context *cpuctx,
1061 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001062{
1063 struct perf_event *event;
1064
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001065 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066 ctx->is_active = 0;
1067 if (likely(!ctx->nr_events))
1068 goto out;
1069 update_context_time(ctx);
1070
1071 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001072 if (!ctx->nr_active)
1073 goto out_enable;
1074
1075 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001076 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1077 group_sched_out(event, cpuctx, ctx);
1078
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001079 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001080 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001081 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001082
1083 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001084 perf_enable();
1085 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001086 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001087}
1088
1089/*
1090 * Test whether two contexts are equivalent, i.e. whether they
1091 * have both been cloned from the same version of the same context
1092 * and they both have the same number of enabled events.
1093 * If the number of enabled events is the same, then the set
1094 * of enabled events should be the same, because these are both
1095 * inherited contexts, therefore we can't access individual events
1096 * in them directly with an fd; we can only enable/disable all
1097 * events via prctl, or enable/disable all events in a family
1098 * via ioctl, which will have the same effect on both contexts.
1099 */
1100static int context_equiv(struct perf_event_context *ctx1,
1101 struct perf_event_context *ctx2)
1102{
1103 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1104 && ctx1->parent_gen == ctx2->parent_gen
1105 && !ctx1->pin_count && !ctx2->pin_count;
1106}
1107
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001108static void __perf_event_sync_stat(struct perf_event *event,
1109 struct perf_event *next_event)
1110{
1111 u64 value;
1112
1113 if (!event->attr.inherit_stat)
1114 return;
1115
1116 /*
1117 * Update the event value, we cannot use perf_event_read()
1118 * because we're in the middle of a context switch and have IRQs
1119 * disabled, which upsets smp_call_function_single(), however
1120 * we know the event must be on the current CPU, therefore we
1121 * don't need to use it.
1122 */
1123 switch (event->state) {
1124 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001125 event->pmu->read(event);
1126 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001127
1128 case PERF_EVENT_STATE_INACTIVE:
1129 update_event_times(event);
1130 break;
1131
1132 default:
1133 break;
1134 }
1135
1136 /*
1137 * In order to keep per-task stats reliable we need to flip the event
1138 * values when we flip the contexts.
1139 */
1140 value = atomic64_read(&next_event->count);
1141 value = atomic64_xchg(&event->count, value);
1142 atomic64_set(&next_event->count, value);
1143
1144 swap(event->total_time_enabled, next_event->total_time_enabled);
1145 swap(event->total_time_running, next_event->total_time_running);
1146
1147 /*
1148 * Since we swizzled the values, update the user visible data too.
1149 */
1150 perf_event_update_userpage(event);
1151 perf_event_update_userpage(next_event);
1152}
1153
1154#define list_next_entry(pos, member) \
1155 list_entry(pos->member.next, typeof(*pos), member)
1156
1157static void perf_event_sync_stat(struct perf_event_context *ctx,
1158 struct perf_event_context *next_ctx)
1159{
1160 struct perf_event *event, *next_event;
1161
1162 if (!ctx->nr_stat)
1163 return;
1164
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001165 update_context_time(ctx);
1166
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001167 event = list_first_entry(&ctx->event_list,
1168 struct perf_event, event_entry);
1169
1170 next_event = list_first_entry(&next_ctx->event_list,
1171 struct perf_event, event_entry);
1172
1173 while (&event->event_entry != &ctx->event_list &&
1174 &next_event->event_entry != &next_ctx->event_list) {
1175
1176 __perf_event_sync_stat(event, next_event);
1177
1178 event = list_next_entry(event, event_entry);
1179 next_event = list_next_entry(next_event, event_entry);
1180 }
1181}
1182
1183/*
1184 * Called from scheduler to remove the events of the current task,
1185 * with interrupts disabled.
1186 *
1187 * We stop each event and update the event value in event->count.
1188 *
1189 * This does not protect us against NMI, but disable()
1190 * sets the disabled bit in the control field of event _before_
1191 * accessing the event control register. If a NMI hits, then it will
1192 * not restart the event.
1193 */
1194void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001195 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001196{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001197 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001198 struct perf_event_context *ctx = task->perf_event_ctxp;
1199 struct perf_event_context *next_ctx;
1200 struct perf_event_context *parent;
1201 struct pt_regs *regs;
1202 int do_switch = 1;
1203
1204 regs = task_pt_regs(task);
1205 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1206
1207 if (likely(!ctx || !cpuctx->task_ctx))
1208 return;
1209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001210 rcu_read_lock();
1211 parent = rcu_dereference(ctx->parent_ctx);
1212 next_ctx = next->perf_event_ctxp;
1213 if (parent && next_ctx &&
1214 rcu_dereference(next_ctx->parent_ctx) == parent) {
1215 /*
1216 * Looks like the two contexts are clones, so we might be
1217 * able to optimize the context switch. We lock both
1218 * contexts and check that they are clones under the
1219 * lock (including re-checking that neither has been
1220 * uncloned in the meantime). It doesn't matter which
1221 * order we take the locks because no other cpu could
1222 * be trying to lock both of these tasks.
1223 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001224 raw_spin_lock(&ctx->lock);
1225 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001226 if (context_equiv(ctx, next_ctx)) {
1227 /*
1228 * XXX do we need a memory barrier of sorts
1229 * wrt to rcu_dereference() of perf_event_ctxp
1230 */
1231 task->perf_event_ctxp = next_ctx;
1232 next->perf_event_ctxp = ctx;
1233 ctx->task = next;
1234 next_ctx->task = task;
1235 do_switch = 0;
1236
1237 perf_event_sync_stat(ctx, next_ctx);
1238 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001239 raw_spin_unlock(&next_ctx->lock);
1240 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001241 }
1242 rcu_read_unlock();
1243
1244 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001245 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246 cpuctx->task_ctx = NULL;
1247 }
1248}
1249
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001250static void task_ctx_sched_out(struct perf_event_context *ctx,
1251 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001252{
1253 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1254
1255 if (!cpuctx->task_ctx)
1256 return;
1257
1258 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1259 return;
1260
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001261 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262 cpuctx->task_ctx = NULL;
1263}
1264
1265/*
1266 * Called with IRQs disabled
1267 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001268static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001269{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001270 task_ctx_sched_out(ctx, EVENT_ALL);
1271}
1272
1273/*
1274 * Called with IRQs disabled
1275 */
1276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1277 enum event_type_t event_type)
1278{
1279 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001280}
1281
1282static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001283ctx_pinned_sched_in(struct perf_event_context *ctx,
1284 struct perf_cpu_context *cpuctx,
1285 int cpu)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001286{
1287 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001288
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001289 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1290 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291 continue;
1292 if (event->cpu != -1 && event->cpu != cpu)
1293 continue;
1294
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001295 if (group_can_go_on(event, cpuctx, 1))
1296 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001297
1298 /*
1299 * If this pinned group hasn't been scheduled,
1300 * put it in error state.
1301 */
1302 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1303 update_group_times(event);
1304 event->state = PERF_EVENT_STATE_ERROR;
1305 }
1306 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001307}
1308
1309static void
1310ctx_flexible_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 int cpu)
1313{
1314 struct perf_event *event;
1315 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001316
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001317 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1318 /* Ignore events in OFF or ERROR state */
1319 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001320 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001321 /*
1322 * Listen to the 'cpu' scheduling filter constraint
1323 * of events:
1324 */
1325 if (event->cpu != -1 && event->cpu != cpu)
1326 continue;
1327
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001328 if (group_can_go_on(event, cpuctx, can_add_hw))
1329 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001330 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001331 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001332}
1333
1334static void
1335ctx_sched_in(struct perf_event_context *ctx,
1336 struct perf_cpu_context *cpuctx,
1337 enum event_type_t event_type)
1338{
1339 int cpu = smp_processor_id();
1340
1341 raw_spin_lock(&ctx->lock);
1342 ctx->is_active = 1;
1343 if (likely(!ctx->nr_events))
1344 goto out;
1345
1346 ctx->timestamp = perf_clock();
1347
1348 perf_disable();
1349
1350 /*
1351 * First go through the list and put on any pinned groups
1352 * in order to give them the best chance of going on.
1353 */
1354 if (event_type & EVENT_PINNED)
1355 ctx_pinned_sched_in(ctx, cpuctx, cpu);
1356
1357 /* Then walk through the lower prio flexible groups */
1358 if (event_type & EVENT_FLEXIBLE)
1359 ctx_flexible_sched_in(ctx, cpuctx, cpu);
1360
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361 perf_enable();
1362 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001363 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001364}
1365
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001366static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1367 enum event_type_t event_type)
1368{
1369 struct perf_event_context *ctx = &cpuctx->ctx;
1370
1371 ctx_sched_in(ctx, cpuctx, event_type);
1372}
1373
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001374static void task_ctx_sched_in(struct task_struct *task,
1375 enum event_type_t event_type)
1376{
1377 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1378 struct perf_event_context *ctx = task->perf_event_ctxp;
1379
1380 if (likely(!ctx))
1381 return;
1382 if (cpuctx->task_ctx == ctx)
1383 return;
1384 ctx_sched_in(ctx, cpuctx, event_type);
1385 cpuctx->task_ctx = ctx;
1386}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001387/*
1388 * Called from scheduler to add the events of the current task
1389 * with interrupts disabled.
1390 *
1391 * We restore the event value and then enable it.
1392 *
1393 * This does not protect us against NMI, but enable()
1394 * sets the enabled bit in the control field of event _before_
1395 * accessing the event control register. If a NMI hits, then it will
1396 * keep the event running.
1397 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001398void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001399{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001400 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001402
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001403 if (likely(!ctx))
1404 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001405
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001406 if (cpuctx->task_ctx == ctx)
1407 return;
1408
1409 /*
1410 * We want to keep the following priority order:
1411 * cpu pinned (that don't need to move), task pinned,
1412 * cpu flexible, task flexible.
1413 */
1414 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1415
1416 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1417 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1418 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1419
1420 cpuctx->task_ctx = ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001421}
1422
1423#define MAX_INTERRUPTS (~0ULL)
1424
1425static void perf_log_throttle(struct perf_event *event, int enable);
1426
Peter Zijlstraabd50712010-01-26 18:50:16 +01001427static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1428{
1429 u64 frequency = event->attr.sample_freq;
1430 u64 sec = NSEC_PER_SEC;
1431 u64 divisor, dividend;
1432
1433 int count_fls, nsec_fls, frequency_fls, sec_fls;
1434
1435 count_fls = fls64(count);
1436 nsec_fls = fls64(nsec);
1437 frequency_fls = fls64(frequency);
1438 sec_fls = 30;
1439
1440 /*
1441 * We got @count in @nsec, with a target of sample_freq HZ
1442 * the target period becomes:
1443 *
1444 * @count * 10^9
1445 * period = -------------------
1446 * @nsec * sample_freq
1447 *
1448 */
1449
1450 /*
1451 * Reduce accuracy by one bit such that @a and @b converge
1452 * to a similar magnitude.
1453 */
1454#define REDUCE_FLS(a, b) \
1455do { \
1456 if (a##_fls > b##_fls) { \
1457 a >>= 1; \
1458 a##_fls--; \
1459 } else { \
1460 b >>= 1; \
1461 b##_fls--; \
1462 } \
1463} while (0)
1464
1465 /*
1466 * Reduce accuracy until either term fits in a u64, then proceed with
1467 * the other, so that finally we can do a u64/u64 division.
1468 */
1469 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1470 REDUCE_FLS(nsec, frequency);
1471 REDUCE_FLS(sec, count);
1472 }
1473
1474 if (count_fls + sec_fls > 64) {
1475 divisor = nsec * frequency;
1476
1477 while (count_fls + sec_fls > 64) {
1478 REDUCE_FLS(count, sec);
1479 divisor >>= 1;
1480 }
1481
1482 dividend = count * sec;
1483 } else {
1484 dividend = count * sec;
1485
1486 while (nsec_fls + frequency_fls > 64) {
1487 REDUCE_FLS(nsec, frequency);
1488 dividend >>= 1;
1489 }
1490
1491 divisor = nsec * frequency;
1492 }
1493
1494 return div64_u64(dividend, divisor);
1495}
1496
Stephane Eraniand76a0812010-02-08 17:06:01 +02001497static void perf_event_stop(struct perf_event *event)
1498{
1499 if (!event->pmu->stop)
1500 return event->pmu->disable(event);
1501
1502 return event->pmu->stop(event);
1503}
1504
1505static int perf_event_start(struct perf_event *event)
1506{
1507 if (!event->pmu->start)
1508 return event->pmu->enable(event);
1509
1510 return event->pmu->start(event);
1511}
1512
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001514{
1515 struct hw_perf_event *hwc = &event->hw;
1516 u64 period, sample_period;
1517 s64 delta;
1518
Peter Zijlstraabd50712010-01-26 18:50:16 +01001519 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001520
1521 delta = (s64)(period - hwc->sample_period);
1522 delta = (delta + 7) / 8; /* low pass filter */
1523
1524 sample_period = hwc->sample_period + delta;
1525
1526 if (!sample_period)
1527 sample_period = 1;
1528
1529 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001530
1531 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1532 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001533 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001534 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001535 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001536 perf_enable();
1537 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001538}
1539
1540static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1541{
1542 struct perf_event *event;
1543 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001544 u64 interrupts, now;
1545 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001546
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001547 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001548 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001549 if (event->state != PERF_EVENT_STATE_ACTIVE)
1550 continue;
1551
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001552 if (event->cpu != -1 && event->cpu != smp_processor_id())
1553 continue;
1554
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555 hwc = &event->hw;
1556
1557 interrupts = hwc->interrupts;
1558 hwc->interrupts = 0;
1559
1560 /*
1561 * unthrottle events on the tick
1562 */
1563 if (interrupts == MAX_INTERRUPTS) {
1564 perf_log_throttle(event, 1);
1565 event->pmu->unthrottle(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001566 }
1567
1568 if (!event->attr.freq || !event->attr.sample_freq)
1569 continue;
1570
Peter Zijlstraabd50712010-01-26 18:50:16 +01001571 event->pmu->read(event);
1572 now = atomic64_read(&event->count);
1573 delta = now - hwc->freq_count_stamp;
1574 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001575
Peter Zijlstraabd50712010-01-26 18:50:16 +01001576 if (delta > 0)
1577 perf_adjust_period(event, TICK_NSEC, delta);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001578 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001579 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001580}
1581
1582/*
1583 * Round-robin a context's events:
1584 */
1585static void rotate_ctx(struct perf_event_context *ctx)
1586{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001587 if (!ctx->nr_events)
1588 return;
1589
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001590 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001591
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001592 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001593 list_rotate_left(&ctx->flexible_groups);
1594
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001595 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001596}
1597
Peter Zijlstra49f47432009-12-27 11:51:52 +01001598void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001599{
1600 struct perf_cpu_context *cpuctx;
1601 struct perf_event_context *ctx;
1602
1603 if (!atomic_read(&nr_events))
1604 return;
1605
Peter Zijlstra49f47432009-12-27 11:51:52 +01001606 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001607 ctx = curr->perf_event_ctxp;
1608
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001609 perf_disable();
1610
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611 perf_ctx_adjust_freq(&cpuctx->ctx);
1612 if (ctx)
1613 perf_ctx_adjust_freq(ctx);
1614
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001615 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001616 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001617 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001618
1619 rotate_ctx(&cpuctx->ctx);
1620 if (ctx)
1621 rotate_ctx(ctx);
1622
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001623 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001624 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001625 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001626
1627 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001628}
1629
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001630static int event_enable_on_exec(struct perf_event *event,
1631 struct perf_event_context *ctx)
1632{
1633 if (!event->attr.enable_on_exec)
1634 return 0;
1635
1636 event->attr.enable_on_exec = 0;
1637 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1638 return 0;
1639
1640 __perf_event_mark_enabled(event, ctx);
1641
1642 return 1;
1643}
1644
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001645/*
1646 * Enable all of a task's events that have been marked enable-on-exec.
1647 * This expects task == current.
1648 */
1649static void perf_event_enable_on_exec(struct task_struct *task)
1650{
1651 struct perf_event_context *ctx;
1652 struct perf_event *event;
1653 unsigned long flags;
1654 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001655 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001656
1657 local_irq_save(flags);
1658 ctx = task->perf_event_ctxp;
1659 if (!ctx || !ctx->nr_events)
1660 goto out;
1661
1662 __perf_event_task_sched_out(ctx);
1663
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001664 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001665
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001666 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1667 ret = event_enable_on_exec(event, ctx);
1668 if (ret)
1669 enabled = 1;
1670 }
1671
1672 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1673 ret = event_enable_on_exec(event, ctx);
1674 if (ret)
1675 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001676 }
1677
1678 /*
1679 * Unclone this context if we enabled any event.
1680 */
1681 if (enabled)
1682 unclone_ctx(ctx);
1683
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001684 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685
Peter Zijlstra49f47432009-12-27 11:51:52 +01001686 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001687 out:
1688 local_irq_restore(flags);
1689}
1690
1691/*
1692 * Cross CPU call to read the hardware event
1693 */
1694static void __perf_event_read(void *info)
1695{
1696 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1697 struct perf_event *event = info;
1698 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001699
1700 /*
1701 * If this is a task context, we need to check whether it is
1702 * the current task context of this cpu. If not it has been
1703 * scheduled out before the smp call arrived. In that case
1704 * event->count would have been updated to a recent sample
1705 * when the event was scheduled out.
1706 */
1707 if (ctx->task && cpuctx->task_ctx != ctx)
1708 return;
1709
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001710 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001711 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001712 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001713 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001714
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001715 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001716}
1717
1718static u64 perf_event_read(struct perf_event *event)
1719{
1720 /*
1721 * If event is enabled and currently active on a CPU, update the
1722 * value in the event structure:
1723 */
1724 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1725 smp_call_function_single(event->oncpu,
1726 __perf_event_read, event, 1);
1727 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001728 struct perf_event_context *ctx = event->ctx;
1729 unsigned long flags;
1730
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001731 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001732 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001733 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001734 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001735 }
1736
1737 return atomic64_read(&event->count);
1738}
1739
1740/*
1741 * Initialize the perf_event context in a task_struct:
1742 */
1743static void
1744__perf_event_init_context(struct perf_event_context *ctx,
1745 struct task_struct *task)
1746{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001747 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001748 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001749 INIT_LIST_HEAD(&ctx->pinned_groups);
1750 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 INIT_LIST_HEAD(&ctx->event_list);
1752 atomic_set(&ctx->refcount, 1);
1753 ctx->task = task;
1754}
1755
1756static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1757{
1758 struct perf_event_context *ctx;
1759 struct perf_cpu_context *cpuctx;
1760 struct task_struct *task;
1761 unsigned long flags;
1762 int err;
1763
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001764 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001765 /* Must be root to operate on a CPU event: */
1766 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1767 return ERR_PTR(-EACCES);
1768
Paul Mackerras0f624e72009-12-15 19:40:32 +11001769 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001770 return ERR_PTR(-EINVAL);
1771
1772 /*
1773 * We could be clever and allow to attach a event to an
1774 * offline CPU and activate it when the CPU comes up, but
1775 * that's for later.
1776 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001777 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001778 return ERR_PTR(-ENODEV);
1779
1780 cpuctx = &per_cpu(perf_cpu_context, cpu);
1781 ctx = &cpuctx->ctx;
1782 get_ctx(ctx);
1783
1784 return ctx;
1785 }
1786
1787 rcu_read_lock();
1788 if (!pid)
1789 task = current;
1790 else
1791 task = find_task_by_vpid(pid);
1792 if (task)
1793 get_task_struct(task);
1794 rcu_read_unlock();
1795
1796 if (!task)
1797 return ERR_PTR(-ESRCH);
1798
1799 /*
1800 * Can't attach events to a dying task.
1801 */
1802 err = -ESRCH;
1803 if (task->flags & PF_EXITING)
1804 goto errout;
1805
1806 /* Reuse ptrace permission checks for now. */
1807 err = -EACCES;
1808 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1809 goto errout;
1810
1811 retry:
1812 ctx = perf_lock_task_context(task, &flags);
1813 if (ctx) {
1814 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001815 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001816 }
1817
1818 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001819 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001820 err = -ENOMEM;
1821 if (!ctx)
1822 goto errout;
1823 __perf_event_init_context(ctx, task);
1824 get_ctx(ctx);
1825 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1826 /*
1827 * We raced with some other task; use
1828 * the context they set.
1829 */
1830 kfree(ctx);
1831 goto retry;
1832 }
1833 get_task_struct(task);
1834 }
1835
1836 put_task_struct(task);
1837 return ctx;
1838
1839 errout:
1840 put_task_struct(task);
1841 return ERR_PTR(err);
1842}
1843
Li Zefan6fb29152009-10-15 11:21:42 +08001844static void perf_event_free_filter(struct perf_event *event);
1845
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001846static void free_event_rcu(struct rcu_head *head)
1847{
1848 struct perf_event *event;
1849
1850 event = container_of(head, struct perf_event, rcu_head);
1851 if (event->ns)
1852 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001853 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001854 kfree(event);
1855}
1856
1857static void perf_pending_sync(struct perf_event *event);
1858
1859static void free_event(struct perf_event *event)
1860{
1861 perf_pending_sync(event);
1862
1863 if (!event->parent) {
1864 atomic_dec(&nr_events);
1865 if (event->attr.mmap)
1866 atomic_dec(&nr_mmap_events);
1867 if (event->attr.comm)
1868 atomic_dec(&nr_comm_events);
1869 if (event->attr.task)
1870 atomic_dec(&nr_task_events);
1871 }
1872
1873 if (event->output) {
1874 fput(event->output->filp);
1875 event->output = NULL;
1876 }
1877
1878 if (event->destroy)
1879 event->destroy(event);
1880
1881 put_ctx(event->ctx);
1882 call_rcu(&event->rcu_head, free_event_rcu);
1883}
1884
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001885int perf_event_release_kernel(struct perf_event *event)
1886{
1887 struct perf_event_context *ctx = event->ctx;
1888
1889 WARN_ON_ONCE(ctx->parent_ctx);
1890 mutex_lock(&ctx->mutex);
1891 perf_event_remove_from_context(event);
1892 mutex_unlock(&ctx->mutex);
1893
1894 mutex_lock(&event->owner->perf_event_mutex);
1895 list_del_init(&event->owner_entry);
1896 mutex_unlock(&event->owner->perf_event_mutex);
1897 put_task_struct(event->owner);
1898
1899 free_event(event);
1900
1901 return 0;
1902}
1903EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1904
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001905/*
1906 * Called when the last reference to the file is gone.
1907 */
1908static int perf_release(struct inode *inode, struct file *file)
1909{
1910 struct perf_event *event = file->private_data;
1911
1912 file->private_data = NULL;
1913
1914 return perf_event_release_kernel(event);
1915}
1916
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001917static int perf_event_read_size(struct perf_event *event)
1918{
1919 int entry = sizeof(u64); /* value */
1920 int size = 0;
1921 int nr = 1;
1922
1923 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1924 size += sizeof(u64);
1925
1926 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1927 size += sizeof(u64);
1928
1929 if (event->attr.read_format & PERF_FORMAT_ID)
1930 entry += sizeof(u64);
1931
1932 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1933 nr += event->group_leader->nr_siblings;
1934 size += sizeof(u64);
1935 }
1936
1937 size += entry * nr;
1938
1939 return size;
1940}
1941
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001942u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001943{
1944 struct perf_event *child;
1945 u64 total = 0;
1946
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001947 *enabled = 0;
1948 *running = 0;
1949
Peter Zijlstra6f105812009-11-20 22:19:56 +01001950 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001951 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001952 *enabled += event->total_time_enabled +
1953 atomic64_read(&event->child_total_time_enabled);
1954 *running += event->total_time_running +
1955 atomic64_read(&event->child_total_time_running);
1956
1957 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001958 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001959 *enabled += child->total_time_enabled;
1960 *running += child->total_time_running;
1961 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001962 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001963
1964 return total;
1965}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001966EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001967
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001968static int perf_event_read_group(struct perf_event *event,
1969 u64 read_format, char __user *buf)
1970{
1971 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001972 int n = 0, size = 0, ret = -EFAULT;
1973 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001974 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001975 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001976
Peter Zijlstra6f105812009-11-20 22:19:56 +01001977 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001978 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001979
1980 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001981 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1982 values[n++] = enabled;
1983 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1984 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001985 values[n++] = count;
1986 if (read_format & PERF_FORMAT_ID)
1987 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001988
1989 size = n * sizeof(u64);
1990
1991 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001992 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001993
Peter Zijlstra6f105812009-11-20 22:19:56 +01001994 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001997 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001998
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001999 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01002000 if (read_format & PERF_FORMAT_ID)
2001 values[n++] = primary_event_id(sub);
2002
2003 size = n * sizeof(u64);
2004
Stephane Eranian184d3da2009-11-23 21:40:49 -08002005 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002006 ret = -EFAULT;
2007 goto unlock;
2008 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002009
2010 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002011 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002012unlock:
2013 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002014
Peter Zijlstraabf48682009-11-20 22:19:49 +01002015 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002016}
2017
2018static int perf_event_read_one(struct perf_event *event,
2019 u64 read_format, char __user *buf)
2020{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002021 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002022 u64 values[4];
2023 int n = 0;
2024
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002025 values[n++] = perf_event_read_value(event, &enabled, &running);
2026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2027 values[n++] = enabled;
2028 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2029 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002030 if (read_format & PERF_FORMAT_ID)
2031 values[n++] = primary_event_id(event);
2032
2033 if (copy_to_user(buf, values, n * sizeof(u64)))
2034 return -EFAULT;
2035
2036 return n * sizeof(u64);
2037}
2038
2039/*
2040 * Read the performance event - simple non blocking version for now
2041 */
2042static ssize_t
2043perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2044{
2045 u64 read_format = event->attr.read_format;
2046 int ret;
2047
2048 /*
2049 * Return end-of-file for a read on a event that is in
2050 * error state (i.e. because it was pinned but it couldn't be
2051 * scheduled on to the CPU at some point).
2052 */
2053 if (event->state == PERF_EVENT_STATE_ERROR)
2054 return 0;
2055
2056 if (count < perf_event_read_size(event))
2057 return -ENOSPC;
2058
2059 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002060 if (read_format & PERF_FORMAT_GROUP)
2061 ret = perf_event_read_group(event, read_format, buf);
2062 else
2063 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002064
2065 return ret;
2066}
2067
2068static ssize_t
2069perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2070{
2071 struct perf_event *event = file->private_data;
2072
2073 return perf_read_hw(event, buf, count);
2074}
2075
2076static unsigned int perf_poll(struct file *file, poll_table *wait)
2077{
2078 struct perf_event *event = file->private_data;
2079 struct perf_mmap_data *data;
2080 unsigned int events = POLL_HUP;
2081
2082 rcu_read_lock();
2083 data = rcu_dereference(event->data);
2084 if (data)
2085 events = atomic_xchg(&data->poll, 0);
2086 rcu_read_unlock();
2087
2088 poll_wait(file, &event->waitq, wait);
2089
2090 return events;
2091}
2092
2093static void perf_event_reset(struct perf_event *event)
2094{
2095 (void)perf_event_read(event);
2096 atomic64_set(&event->count, 0);
2097 perf_event_update_userpage(event);
2098}
2099
2100/*
2101 * Holding the top-level event's child_mutex means that any
2102 * descendant process that has inherited this event will block
2103 * in sync_child_event if it goes to exit, thus satisfying the
2104 * task existence requirements of perf_event_enable/disable.
2105 */
2106static void perf_event_for_each_child(struct perf_event *event,
2107 void (*func)(struct perf_event *))
2108{
2109 struct perf_event *child;
2110
2111 WARN_ON_ONCE(event->ctx->parent_ctx);
2112 mutex_lock(&event->child_mutex);
2113 func(event);
2114 list_for_each_entry(child, &event->child_list, child_list)
2115 func(child);
2116 mutex_unlock(&event->child_mutex);
2117}
2118
2119static void perf_event_for_each(struct perf_event *event,
2120 void (*func)(struct perf_event *))
2121{
2122 struct perf_event_context *ctx = event->ctx;
2123 struct perf_event *sibling;
2124
2125 WARN_ON_ONCE(ctx->parent_ctx);
2126 mutex_lock(&ctx->mutex);
2127 event = event->group_leader;
2128
2129 perf_event_for_each_child(event, func);
2130 func(event);
2131 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2132 perf_event_for_each_child(event, func);
2133 mutex_unlock(&ctx->mutex);
2134}
2135
2136static int perf_event_period(struct perf_event *event, u64 __user *arg)
2137{
2138 struct perf_event_context *ctx = event->ctx;
2139 unsigned long size;
2140 int ret = 0;
2141 u64 value;
2142
2143 if (!event->attr.sample_period)
2144 return -EINVAL;
2145
2146 size = copy_from_user(&value, arg, sizeof(value));
2147 if (size != sizeof(value))
2148 return -EFAULT;
2149
2150 if (!value)
2151 return -EINVAL;
2152
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002153 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002154 if (event->attr.freq) {
2155 if (value > sysctl_perf_event_sample_rate) {
2156 ret = -EINVAL;
2157 goto unlock;
2158 }
2159
2160 event->attr.sample_freq = value;
2161 } else {
2162 event->attr.sample_period = value;
2163 event->hw.sample_period = value;
2164 }
2165unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002166 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002167
2168 return ret;
2169}
2170
Li Zefan6fb29152009-10-15 11:21:42 +08002171static int perf_event_set_output(struct perf_event *event, int output_fd);
2172static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002173
2174static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2175{
2176 struct perf_event *event = file->private_data;
2177 void (*func)(struct perf_event *);
2178 u32 flags = arg;
2179
2180 switch (cmd) {
2181 case PERF_EVENT_IOC_ENABLE:
2182 func = perf_event_enable;
2183 break;
2184 case PERF_EVENT_IOC_DISABLE:
2185 func = perf_event_disable;
2186 break;
2187 case PERF_EVENT_IOC_RESET:
2188 func = perf_event_reset;
2189 break;
2190
2191 case PERF_EVENT_IOC_REFRESH:
2192 return perf_event_refresh(event, arg);
2193
2194 case PERF_EVENT_IOC_PERIOD:
2195 return perf_event_period(event, (u64 __user *)arg);
2196
2197 case PERF_EVENT_IOC_SET_OUTPUT:
2198 return perf_event_set_output(event, arg);
2199
Li Zefan6fb29152009-10-15 11:21:42 +08002200 case PERF_EVENT_IOC_SET_FILTER:
2201 return perf_event_set_filter(event, (void __user *)arg);
2202
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002203 default:
2204 return -ENOTTY;
2205 }
2206
2207 if (flags & PERF_IOC_FLAG_GROUP)
2208 perf_event_for_each(event, func);
2209 else
2210 perf_event_for_each_child(event, func);
2211
2212 return 0;
2213}
2214
2215int perf_event_task_enable(void)
2216{
2217 struct perf_event *event;
2218
2219 mutex_lock(&current->perf_event_mutex);
2220 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2221 perf_event_for_each_child(event, perf_event_enable);
2222 mutex_unlock(&current->perf_event_mutex);
2223
2224 return 0;
2225}
2226
2227int perf_event_task_disable(void)
2228{
2229 struct perf_event *event;
2230
2231 mutex_lock(&current->perf_event_mutex);
2232 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2233 perf_event_for_each_child(event, perf_event_disable);
2234 mutex_unlock(&current->perf_event_mutex);
2235
2236 return 0;
2237}
2238
2239#ifndef PERF_EVENT_INDEX_OFFSET
2240# define PERF_EVENT_INDEX_OFFSET 0
2241#endif
2242
2243static int perf_event_index(struct perf_event *event)
2244{
2245 if (event->state != PERF_EVENT_STATE_ACTIVE)
2246 return 0;
2247
2248 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2249}
2250
2251/*
2252 * Callers need to ensure there can be no nesting of this function, otherwise
2253 * the seqlock logic goes bad. We can not serialize this because the arch
2254 * code calls this from NMI context.
2255 */
2256void perf_event_update_userpage(struct perf_event *event)
2257{
2258 struct perf_event_mmap_page *userpg;
2259 struct perf_mmap_data *data;
2260
2261 rcu_read_lock();
2262 data = rcu_dereference(event->data);
2263 if (!data)
2264 goto unlock;
2265
2266 userpg = data->user_page;
2267
2268 /*
2269 * Disable preemption so as to not let the corresponding user-space
2270 * spin too long if we get preempted.
2271 */
2272 preempt_disable();
2273 ++userpg->lock;
2274 barrier();
2275 userpg->index = perf_event_index(event);
2276 userpg->offset = atomic64_read(&event->count);
2277 if (event->state == PERF_EVENT_STATE_ACTIVE)
2278 userpg->offset -= atomic64_read(&event->hw.prev_count);
2279
2280 userpg->time_enabled = event->total_time_enabled +
2281 atomic64_read(&event->child_total_time_enabled);
2282
2283 userpg->time_running = event->total_time_running +
2284 atomic64_read(&event->child_total_time_running);
2285
2286 barrier();
2287 ++userpg->lock;
2288 preempt_enable();
2289unlock:
2290 rcu_read_unlock();
2291}
2292
Peter Zijlstra906010b2009-09-21 16:08:49 +02002293static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002294{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002295 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002296}
2297
Peter Zijlstra906010b2009-09-21 16:08:49 +02002298#ifndef CONFIG_PERF_USE_VMALLOC
2299
2300/*
2301 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2302 */
2303
2304static struct page *
2305perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2306{
2307 if (pgoff > data->nr_pages)
2308 return NULL;
2309
2310 if (pgoff == 0)
2311 return virt_to_page(data->user_page);
2312
2313 return virt_to_page(data->data_pages[pgoff - 1]);
2314}
2315
2316static struct perf_mmap_data *
2317perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002318{
2319 struct perf_mmap_data *data;
2320 unsigned long size;
2321 int i;
2322
2323 WARN_ON(atomic_read(&event->mmap_count));
2324
2325 size = sizeof(struct perf_mmap_data);
2326 size += nr_pages * sizeof(void *);
2327
2328 data = kzalloc(size, GFP_KERNEL);
2329 if (!data)
2330 goto fail;
2331
2332 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2333 if (!data->user_page)
2334 goto fail_user_page;
2335
2336 for (i = 0; i < nr_pages; i++) {
2337 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2338 if (!data->data_pages[i])
2339 goto fail_data_pages;
2340 }
2341
Peter Zijlstra906010b2009-09-21 16:08:49 +02002342 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002343 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002344
Peter Zijlstra906010b2009-09-21 16:08:49 +02002345 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002346
2347fail_data_pages:
2348 for (i--; i >= 0; i--)
2349 free_page((unsigned long)data->data_pages[i]);
2350
2351 free_page((unsigned long)data->user_page);
2352
2353fail_user_page:
2354 kfree(data);
2355
2356fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002357 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002358}
2359
2360static void perf_mmap_free_page(unsigned long addr)
2361{
2362 struct page *page = virt_to_page((void *)addr);
2363
2364 page->mapping = NULL;
2365 __free_page(page);
2366}
2367
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002370 int i;
2371
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002372 perf_mmap_free_page((unsigned long)data->user_page);
2373 for (i = 0; i < data->nr_pages; i++)
2374 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002375 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002376}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002377
Peter Zijlstra906010b2009-09-21 16:08:49 +02002378#else
2379
2380/*
2381 * Back perf_mmap() with vmalloc memory.
2382 *
2383 * Required for architectures that have d-cache aliasing issues.
2384 */
2385
2386static struct page *
2387perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2388{
2389 if (pgoff > (1UL << data->data_order))
2390 return NULL;
2391
2392 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2393}
2394
2395static void perf_mmap_unmark_page(void *addr)
2396{
2397 struct page *page = vmalloc_to_page(addr);
2398
2399 page->mapping = NULL;
2400}
2401
2402static void perf_mmap_data_free_work(struct work_struct *work)
2403{
2404 struct perf_mmap_data *data;
2405 void *base;
2406 int i, nr;
2407
2408 data = container_of(work, struct perf_mmap_data, work);
2409 nr = 1 << data->data_order;
2410
2411 base = data->user_page;
2412 for (i = 0; i < nr + 1; i++)
2413 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2414
2415 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002416 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002417}
2418
2419static void perf_mmap_data_free(struct perf_mmap_data *data)
2420{
2421 schedule_work(&data->work);
2422}
2423
2424static struct perf_mmap_data *
2425perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2426{
2427 struct perf_mmap_data *data;
2428 unsigned long size;
2429 void *all_buf;
2430
2431 WARN_ON(atomic_read(&event->mmap_count));
2432
2433 size = sizeof(struct perf_mmap_data);
2434 size += sizeof(void *);
2435
2436 data = kzalloc(size, GFP_KERNEL);
2437 if (!data)
2438 goto fail;
2439
2440 INIT_WORK(&data->work, perf_mmap_data_free_work);
2441
2442 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2443 if (!all_buf)
2444 goto fail_all_buf;
2445
2446 data->user_page = all_buf;
2447 data->data_pages[0] = all_buf + PAGE_SIZE;
2448 data->data_order = ilog2(nr_pages);
2449 data->nr_pages = 1;
2450
2451 return data;
2452
2453fail_all_buf:
2454 kfree(data);
2455
2456fail:
2457 return NULL;
2458}
2459
2460#endif
2461
2462static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2463{
2464 struct perf_event *event = vma->vm_file->private_data;
2465 struct perf_mmap_data *data;
2466 int ret = VM_FAULT_SIGBUS;
2467
2468 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2469 if (vmf->pgoff == 0)
2470 ret = 0;
2471 return ret;
2472 }
2473
2474 rcu_read_lock();
2475 data = rcu_dereference(event->data);
2476 if (!data)
2477 goto unlock;
2478
2479 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2480 goto unlock;
2481
2482 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2483 if (!vmf->page)
2484 goto unlock;
2485
2486 get_page(vmf->page);
2487 vmf->page->mapping = vma->vm_file->f_mapping;
2488 vmf->page->index = vmf->pgoff;
2489
2490 ret = 0;
2491unlock:
2492 rcu_read_unlock();
2493
2494 return ret;
2495}
2496
2497static void
2498perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2499{
2500 long max_size = perf_data_size(data);
2501
2502 atomic_set(&data->lock, -1);
2503
2504 if (event->attr.watermark) {
2505 data->watermark = min_t(long, max_size,
2506 event->attr.wakeup_watermark);
2507 }
2508
2509 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002510 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002511
2512
2513 rcu_assign_pointer(event->data, data);
2514}
2515
2516static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2517{
2518 struct perf_mmap_data *data;
2519
2520 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2521 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002522}
2523
Peter Zijlstra906010b2009-09-21 16:08:49 +02002524static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002525{
2526 struct perf_mmap_data *data = event->data;
2527
2528 WARN_ON(atomic_read(&event->mmap_count));
2529
2530 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002531 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002532}
2533
2534static void perf_mmap_open(struct vm_area_struct *vma)
2535{
2536 struct perf_event *event = vma->vm_file->private_data;
2537
2538 atomic_inc(&event->mmap_count);
2539}
2540
2541static void perf_mmap_close(struct vm_area_struct *vma)
2542{
2543 struct perf_event *event = vma->vm_file->private_data;
2544
2545 WARN_ON_ONCE(event->ctx->parent_ctx);
2546 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002547 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002548 struct user_struct *user = current_user();
2549
Peter Zijlstra906010b2009-09-21 16:08:49 +02002550 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002551 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002552 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002553 mutex_unlock(&event->mmap_mutex);
2554 }
2555}
2556
Alexey Dobriyanf0f37e2f2009-09-27 22:29:37 +04002557static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002558 .open = perf_mmap_open,
2559 .close = perf_mmap_close,
2560 .fault = perf_mmap_fault,
2561 .page_mkwrite = perf_mmap_fault,
2562};
2563
2564static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2565{
2566 struct perf_event *event = file->private_data;
2567 unsigned long user_locked, user_lock_limit;
2568 struct user_struct *user = current_user();
2569 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002570 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002571 unsigned long vma_size;
2572 unsigned long nr_pages;
2573 long user_extra, extra;
2574 int ret = 0;
2575
2576 if (!(vma->vm_flags & VM_SHARED))
2577 return -EINVAL;
2578
2579 vma_size = vma->vm_end - vma->vm_start;
2580 nr_pages = (vma_size / PAGE_SIZE) - 1;
2581
2582 /*
2583 * If we have data pages ensure they're a power-of-two number, so we
2584 * can do bitmasks instead of modulo.
2585 */
2586 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2587 return -EINVAL;
2588
2589 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2590 return -EINVAL;
2591
2592 if (vma->vm_pgoff != 0)
2593 return -EINVAL;
2594
2595 WARN_ON_ONCE(event->ctx->parent_ctx);
2596 mutex_lock(&event->mmap_mutex);
2597 if (event->output) {
2598 ret = -EINVAL;
2599 goto unlock;
2600 }
2601
2602 if (atomic_inc_not_zero(&event->mmap_count)) {
2603 if (nr_pages != event->data->nr_pages)
2604 ret = -EINVAL;
2605 goto unlock;
2606 }
2607
2608 user_extra = nr_pages + 1;
2609 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2610
2611 /*
2612 * Increase the limit linearly with more CPUs:
2613 */
2614 user_lock_limit *= num_online_cpus();
2615
2616 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2617
2618 extra = 0;
2619 if (user_locked > user_lock_limit)
2620 extra = user_locked - user_lock_limit;
2621
2622 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2623 lock_limit >>= PAGE_SHIFT;
2624 locked = vma->vm_mm->locked_vm + extra;
2625
2626 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2627 !capable(CAP_IPC_LOCK)) {
2628 ret = -EPERM;
2629 goto unlock;
2630 }
2631
2632 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002633
2634 data = perf_mmap_data_alloc(event, nr_pages);
2635 ret = -ENOMEM;
2636 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002637 goto unlock;
2638
Peter Zijlstra906010b2009-09-21 16:08:49 +02002639 ret = 0;
2640 perf_mmap_data_init(event, data);
2641
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002642 atomic_set(&event->mmap_count, 1);
2643 atomic_long_add(user_extra, &user->locked_vm);
2644 vma->vm_mm->locked_vm += extra;
2645 event->data->nr_locked = extra;
2646 if (vma->vm_flags & VM_WRITE)
2647 event->data->writable = 1;
2648
2649unlock:
2650 mutex_unlock(&event->mmap_mutex);
2651
2652 vma->vm_flags |= VM_RESERVED;
2653 vma->vm_ops = &perf_mmap_vmops;
2654
2655 return ret;
2656}
2657
2658static int perf_fasync(int fd, struct file *filp, int on)
2659{
2660 struct inode *inode = filp->f_path.dentry->d_inode;
2661 struct perf_event *event = filp->private_data;
2662 int retval;
2663
2664 mutex_lock(&inode->i_mutex);
2665 retval = fasync_helper(fd, filp, on, &event->fasync);
2666 mutex_unlock(&inode->i_mutex);
2667
2668 if (retval < 0)
2669 return retval;
2670
2671 return 0;
2672}
2673
2674static const struct file_operations perf_fops = {
2675 .release = perf_release,
2676 .read = perf_read,
2677 .poll = perf_poll,
2678 .unlocked_ioctl = perf_ioctl,
2679 .compat_ioctl = perf_ioctl,
2680 .mmap = perf_mmap,
2681 .fasync = perf_fasync,
2682};
2683
2684/*
2685 * Perf event wakeup
2686 *
2687 * If there's data, ensure we set the poll() state and publish everything
2688 * to user-space before waking everybody up.
2689 */
2690
2691void perf_event_wakeup(struct perf_event *event)
2692{
2693 wake_up_all(&event->waitq);
2694
2695 if (event->pending_kill) {
2696 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2697 event->pending_kill = 0;
2698 }
2699}
2700
2701/*
2702 * Pending wakeups
2703 *
2704 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2705 *
2706 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2707 * single linked list and use cmpxchg() to add entries lockless.
2708 */
2709
2710static void perf_pending_event(struct perf_pending_entry *entry)
2711{
2712 struct perf_event *event = container_of(entry,
2713 struct perf_event, pending);
2714
2715 if (event->pending_disable) {
2716 event->pending_disable = 0;
2717 __perf_event_disable(event);
2718 }
2719
2720 if (event->pending_wakeup) {
2721 event->pending_wakeup = 0;
2722 perf_event_wakeup(event);
2723 }
2724}
2725
2726#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2727
2728static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2729 PENDING_TAIL,
2730};
2731
2732static void perf_pending_queue(struct perf_pending_entry *entry,
2733 void (*func)(struct perf_pending_entry *))
2734{
2735 struct perf_pending_entry **head;
2736
2737 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2738 return;
2739
2740 entry->func = func;
2741
2742 head = &get_cpu_var(perf_pending_head);
2743
2744 do {
2745 entry->next = *head;
2746 } while (cmpxchg(head, entry->next, entry) != entry->next);
2747
2748 set_perf_event_pending();
2749
2750 put_cpu_var(perf_pending_head);
2751}
2752
2753static int __perf_pending_run(void)
2754{
2755 struct perf_pending_entry *list;
2756 int nr = 0;
2757
2758 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2759 while (list != PENDING_TAIL) {
2760 void (*func)(struct perf_pending_entry *);
2761 struct perf_pending_entry *entry = list;
2762
2763 list = list->next;
2764
2765 func = entry->func;
2766 entry->next = NULL;
2767 /*
2768 * Ensure we observe the unqueue before we issue the wakeup,
2769 * so that we won't be waiting forever.
2770 * -- see perf_not_pending().
2771 */
2772 smp_wmb();
2773
2774 func(entry);
2775 nr++;
2776 }
2777
2778 return nr;
2779}
2780
2781static inline int perf_not_pending(struct perf_event *event)
2782{
2783 /*
2784 * If we flush on whatever cpu we run, there is a chance we don't
2785 * need to wait.
2786 */
2787 get_cpu();
2788 __perf_pending_run();
2789 put_cpu();
2790
2791 /*
2792 * Ensure we see the proper queue state before going to sleep
2793 * so that we do not miss the wakeup. -- see perf_pending_handle()
2794 */
2795 smp_rmb();
2796 return event->pending.next == NULL;
2797}
2798
2799static void perf_pending_sync(struct perf_event *event)
2800{
2801 wait_event(event->waitq, perf_not_pending(event));
2802}
2803
2804void perf_event_do_pending(void)
2805{
2806 __perf_pending_run();
2807}
2808
2809/*
2810 * Callchain support -- arch specific
2811 */
2812
2813__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2814{
2815 return NULL;
2816}
2817
2818/*
2819 * Output
2820 */
2821static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2822 unsigned long offset, unsigned long head)
2823{
2824 unsigned long mask;
2825
2826 if (!data->writable)
2827 return true;
2828
Peter Zijlstra906010b2009-09-21 16:08:49 +02002829 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002830
2831 offset = (offset - tail) & mask;
2832 head = (head - tail) & mask;
2833
2834 if ((int)(head - offset) < 0)
2835 return false;
2836
2837 return true;
2838}
2839
2840static void perf_output_wakeup(struct perf_output_handle *handle)
2841{
2842 atomic_set(&handle->data->poll, POLL_IN);
2843
2844 if (handle->nmi) {
2845 handle->event->pending_wakeup = 1;
2846 perf_pending_queue(&handle->event->pending,
2847 perf_pending_event);
2848 } else
2849 perf_event_wakeup(handle->event);
2850}
2851
2852/*
2853 * Curious locking construct.
2854 *
2855 * We need to ensure a later event_id doesn't publish a head when a former
2856 * event_id isn't done writing. However since we need to deal with NMIs we
2857 * cannot fully serialize things.
2858 *
2859 * What we do is serialize between CPUs so we only have to deal with NMI
2860 * nesting on a single CPU.
2861 *
2862 * We only publish the head (and generate a wakeup) when the outer-most
2863 * event_id completes.
2864 */
2865static void perf_output_lock(struct perf_output_handle *handle)
2866{
2867 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002868 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002869
2870 handle->locked = 0;
2871
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002872 for (;;) {
2873 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2874 if (cur == -1) {
2875 handle->locked = 1;
2876 break;
2877 }
2878 if (cur == cpu)
2879 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002880
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002881 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002882 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002883}
2884
2885static void perf_output_unlock(struct perf_output_handle *handle)
2886{
2887 struct perf_mmap_data *data = handle->data;
2888 unsigned long head;
2889 int cpu;
2890
2891 data->done_head = data->head;
2892
2893 if (!handle->locked)
2894 goto out;
2895
2896again:
2897 /*
2898 * The xchg implies a full barrier that ensures all writes are done
2899 * before we publish the new head, matched by a rmb() in userspace when
2900 * reading this position.
2901 */
2902 while ((head = atomic_long_xchg(&data->done_head, 0)))
2903 data->user_page->data_head = head;
2904
2905 /*
2906 * NMI can happen here, which means we can miss a done_head update.
2907 */
2908
2909 cpu = atomic_xchg(&data->lock, -1);
2910 WARN_ON_ONCE(cpu != smp_processor_id());
2911
2912 /*
2913 * Therefore we have to validate we did not indeed do so.
2914 */
2915 if (unlikely(atomic_long_read(&data->done_head))) {
2916 /*
2917 * Since we had it locked, we can lock it again.
2918 */
2919 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2920 cpu_relax();
2921
2922 goto again;
2923 }
2924
2925 if (atomic_xchg(&data->wakeup, 0))
2926 perf_output_wakeup(handle);
2927out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002928 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002929}
2930
2931void perf_output_copy(struct perf_output_handle *handle,
2932 const void *buf, unsigned int len)
2933{
2934 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002935 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002936 unsigned int size;
2937 void **pages;
2938
2939 offset = handle->offset;
2940 pages_mask = handle->data->nr_pages - 1;
2941 pages = handle->data->data_pages;
2942
2943 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002944 unsigned long page_offset;
2945 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002946 int nr;
2947
2948 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002949 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2950 page_offset = offset & (page_size - 1);
2951 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002952
2953 memcpy(pages[nr] + page_offset, buf, size);
2954
2955 len -= size;
2956 buf += size;
2957 offset += size;
2958 } while (len);
2959
2960 handle->offset = offset;
2961
2962 /*
2963 * Check we didn't copy past our reservation window, taking the
2964 * possible unsigned int wrap into account.
2965 */
2966 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2967}
2968
2969int perf_output_begin(struct perf_output_handle *handle,
2970 struct perf_event *event, unsigned int size,
2971 int nmi, int sample)
2972{
2973 struct perf_event *output_event;
2974 struct perf_mmap_data *data;
2975 unsigned long tail, offset, head;
2976 int have_lost;
2977 struct {
2978 struct perf_event_header header;
2979 u64 id;
2980 u64 lost;
2981 } lost_event;
2982
2983 rcu_read_lock();
2984 /*
2985 * For inherited events we send all the output towards the parent.
2986 */
2987 if (event->parent)
2988 event = event->parent;
2989
2990 output_event = rcu_dereference(event->output);
2991 if (output_event)
2992 event = output_event;
2993
2994 data = rcu_dereference(event->data);
2995 if (!data)
2996 goto out;
2997
2998 handle->data = data;
2999 handle->event = event;
3000 handle->nmi = nmi;
3001 handle->sample = sample;
3002
3003 if (!data->nr_pages)
3004 goto fail;
3005
3006 have_lost = atomic_read(&data->lost);
3007 if (have_lost)
3008 size += sizeof(lost_event);
3009
3010 perf_output_lock(handle);
3011
3012 do {
3013 /*
3014 * Userspace could choose to issue a mb() before updating the
3015 * tail pointer. So that all reads will be completed before the
3016 * write is issued.
3017 */
3018 tail = ACCESS_ONCE(data->user_page->data_tail);
3019 smp_rmb();
3020 offset = head = atomic_long_read(&data->head);
3021 head += size;
3022 if (unlikely(!perf_output_space(data, tail, offset, head)))
3023 goto fail;
3024 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3025
3026 handle->offset = offset;
3027 handle->head = head;
3028
3029 if (head - tail > data->watermark)
3030 atomic_set(&data->wakeup, 1);
3031
3032 if (have_lost) {
3033 lost_event.header.type = PERF_RECORD_LOST;
3034 lost_event.header.misc = 0;
3035 lost_event.header.size = sizeof(lost_event);
3036 lost_event.id = event->id;
3037 lost_event.lost = atomic_xchg(&data->lost, 0);
3038
3039 perf_output_put(handle, lost_event);
3040 }
3041
3042 return 0;
3043
3044fail:
3045 atomic_inc(&data->lost);
3046 perf_output_unlock(handle);
3047out:
3048 rcu_read_unlock();
3049
3050 return -ENOSPC;
3051}
3052
3053void perf_output_end(struct perf_output_handle *handle)
3054{
3055 struct perf_event *event = handle->event;
3056 struct perf_mmap_data *data = handle->data;
3057
3058 int wakeup_events = event->attr.wakeup_events;
3059
3060 if (handle->sample && wakeup_events) {
3061 int events = atomic_inc_return(&data->events);
3062 if (events >= wakeup_events) {
3063 atomic_sub(wakeup_events, &data->events);
3064 atomic_set(&data->wakeup, 1);
3065 }
3066 }
3067
3068 perf_output_unlock(handle);
3069 rcu_read_unlock();
3070}
3071
3072static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3073{
3074 /*
3075 * only top level events have the pid namespace they were created in
3076 */
3077 if (event->parent)
3078 event = event->parent;
3079
3080 return task_tgid_nr_ns(p, event->ns);
3081}
3082
3083static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3084{
3085 /*
3086 * only top level events have the pid namespace they were created in
3087 */
3088 if (event->parent)
3089 event = event->parent;
3090
3091 return task_pid_nr_ns(p, event->ns);
3092}
3093
3094static void perf_output_read_one(struct perf_output_handle *handle,
3095 struct perf_event *event)
3096{
3097 u64 read_format = event->attr.read_format;
3098 u64 values[4];
3099 int n = 0;
3100
3101 values[n++] = atomic64_read(&event->count);
3102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3103 values[n++] = event->total_time_enabled +
3104 atomic64_read(&event->child_total_time_enabled);
3105 }
3106 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3107 values[n++] = event->total_time_running +
3108 atomic64_read(&event->child_total_time_running);
3109 }
3110 if (read_format & PERF_FORMAT_ID)
3111 values[n++] = primary_event_id(event);
3112
3113 perf_output_copy(handle, values, n * sizeof(u64));
3114}
3115
3116/*
3117 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3118 */
3119static void perf_output_read_group(struct perf_output_handle *handle,
3120 struct perf_event *event)
3121{
3122 struct perf_event *leader = event->group_leader, *sub;
3123 u64 read_format = event->attr.read_format;
3124 u64 values[5];
3125 int n = 0;
3126
3127 values[n++] = 1 + leader->nr_siblings;
3128
3129 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3130 values[n++] = leader->total_time_enabled;
3131
3132 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3133 values[n++] = leader->total_time_running;
3134
3135 if (leader != event)
3136 leader->pmu->read(leader);
3137
3138 values[n++] = atomic64_read(&leader->count);
3139 if (read_format & PERF_FORMAT_ID)
3140 values[n++] = primary_event_id(leader);
3141
3142 perf_output_copy(handle, values, n * sizeof(u64));
3143
3144 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3145 n = 0;
3146
3147 if (sub != event)
3148 sub->pmu->read(sub);
3149
3150 values[n++] = atomic64_read(&sub->count);
3151 if (read_format & PERF_FORMAT_ID)
3152 values[n++] = primary_event_id(sub);
3153
3154 perf_output_copy(handle, values, n * sizeof(u64));
3155 }
3156}
3157
3158static void perf_output_read(struct perf_output_handle *handle,
3159 struct perf_event *event)
3160{
3161 if (event->attr.read_format & PERF_FORMAT_GROUP)
3162 perf_output_read_group(handle, event);
3163 else
3164 perf_output_read_one(handle, event);
3165}
3166
3167void perf_output_sample(struct perf_output_handle *handle,
3168 struct perf_event_header *header,
3169 struct perf_sample_data *data,
3170 struct perf_event *event)
3171{
3172 u64 sample_type = data->type;
3173
3174 perf_output_put(handle, *header);
3175
3176 if (sample_type & PERF_SAMPLE_IP)
3177 perf_output_put(handle, data->ip);
3178
3179 if (sample_type & PERF_SAMPLE_TID)
3180 perf_output_put(handle, data->tid_entry);
3181
3182 if (sample_type & PERF_SAMPLE_TIME)
3183 perf_output_put(handle, data->time);
3184
3185 if (sample_type & PERF_SAMPLE_ADDR)
3186 perf_output_put(handle, data->addr);
3187
3188 if (sample_type & PERF_SAMPLE_ID)
3189 perf_output_put(handle, data->id);
3190
3191 if (sample_type & PERF_SAMPLE_STREAM_ID)
3192 perf_output_put(handle, data->stream_id);
3193
3194 if (sample_type & PERF_SAMPLE_CPU)
3195 perf_output_put(handle, data->cpu_entry);
3196
3197 if (sample_type & PERF_SAMPLE_PERIOD)
3198 perf_output_put(handle, data->period);
3199
3200 if (sample_type & PERF_SAMPLE_READ)
3201 perf_output_read(handle, event);
3202
3203 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3204 if (data->callchain) {
3205 int size = 1;
3206
3207 if (data->callchain)
3208 size += data->callchain->nr;
3209
3210 size *= sizeof(u64);
3211
3212 perf_output_copy(handle, data->callchain, size);
3213 } else {
3214 u64 nr = 0;
3215 perf_output_put(handle, nr);
3216 }
3217 }
3218
3219 if (sample_type & PERF_SAMPLE_RAW) {
3220 if (data->raw) {
3221 perf_output_put(handle, data->raw->size);
3222 perf_output_copy(handle, data->raw->data,
3223 data->raw->size);
3224 } else {
3225 struct {
3226 u32 size;
3227 u32 data;
3228 } raw = {
3229 .size = sizeof(u32),
3230 .data = 0,
3231 };
3232 perf_output_put(handle, raw);
3233 }
3234 }
3235}
3236
3237void perf_prepare_sample(struct perf_event_header *header,
3238 struct perf_sample_data *data,
3239 struct perf_event *event,
3240 struct pt_regs *regs)
3241{
3242 u64 sample_type = event->attr.sample_type;
3243
3244 data->type = sample_type;
3245
3246 header->type = PERF_RECORD_SAMPLE;
3247 header->size = sizeof(*header);
3248
3249 header->misc = 0;
3250 header->misc |= perf_misc_flags(regs);
3251
3252 if (sample_type & PERF_SAMPLE_IP) {
3253 data->ip = perf_instruction_pointer(regs);
3254
3255 header->size += sizeof(data->ip);
3256 }
3257
3258 if (sample_type & PERF_SAMPLE_TID) {
3259 /* namespace issues */
3260 data->tid_entry.pid = perf_event_pid(event, current);
3261 data->tid_entry.tid = perf_event_tid(event, current);
3262
3263 header->size += sizeof(data->tid_entry);
3264 }
3265
3266 if (sample_type & PERF_SAMPLE_TIME) {
3267 data->time = perf_clock();
3268
3269 header->size += sizeof(data->time);
3270 }
3271
3272 if (sample_type & PERF_SAMPLE_ADDR)
3273 header->size += sizeof(data->addr);
3274
3275 if (sample_type & PERF_SAMPLE_ID) {
3276 data->id = primary_event_id(event);
3277
3278 header->size += sizeof(data->id);
3279 }
3280
3281 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3282 data->stream_id = event->id;
3283
3284 header->size += sizeof(data->stream_id);
3285 }
3286
3287 if (sample_type & PERF_SAMPLE_CPU) {
3288 data->cpu_entry.cpu = raw_smp_processor_id();
3289 data->cpu_entry.reserved = 0;
3290
3291 header->size += sizeof(data->cpu_entry);
3292 }
3293
3294 if (sample_type & PERF_SAMPLE_PERIOD)
3295 header->size += sizeof(data->period);
3296
3297 if (sample_type & PERF_SAMPLE_READ)
3298 header->size += perf_event_read_size(event);
3299
3300 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3301 int size = 1;
3302
3303 data->callchain = perf_callchain(regs);
3304
3305 if (data->callchain)
3306 size += data->callchain->nr;
3307
3308 header->size += size * sizeof(u64);
3309 }
3310
3311 if (sample_type & PERF_SAMPLE_RAW) {
3312 int size = sizeof(u32);
3313
3314 if (data->raw)
3315 size += data->raw->size;
3316 else
3317 size += sizeof(u32);
3318
3319 WARN_ON_ONCE(size & (sizeof(u64)-1));
3320 header->size += size;
3321 }
3322}
3323
3324static void perf_event_output(struct perf_event *event, int nmi,
3325 struct perf_sample_data *data,
3326 struct pt_regs *regs)
3327{
3328 struct perf_output_handle handle;
3329 struct perf_event_header header;
3330
3331 perf_prepare_sample(&header, data, event, regs);
3332
3333 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3334 return;
3335
3336 perf_output_sample(&handle, &header, data, event);
3337
3338 perf_output_end(&handle);
3339}
3340
3341/*
3342 * read event_id
3343 */
3344
3345struct perf_read_event {
3346 struct perf_event_header header;
3347
3348 u32 pid;
3349 u32 tid;
3350};
3351
3352static void
3353perf_event_read_event(struct perf_event *event,
3354 struct task_struct *task)
3355{
3356 struct perf_output_handle handle;
3357 struct perf_read_event read_event = {
3358 .header = {
3359 .type = PERF_RECORD_READ,
3360 .misc = 0,
3361 .size = sizeof(read_event) + perf_event_read_size(event),
3362 },
3363 .pid = perf_event_pid(event, task),
3364 .tid = perf_event_tid(event, task),
3365 };
3366 int ret;
3367
3368 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3369 if (ret)
3370 return;
3371
3372 perf_output_put(&handle, read_event);
3373 perf_output_read(&handle, event);
3374
3375 perf_output_end(&handle);
3376}
3377
3378/*
3379 * task tracking -- fork/exit
3380 *
3381 * enabled by: attr.comm | attr.mmap | attr.task
3382 */
3383
3384struct perf_task_event {
3385 struct task_struct *task;
3386 struct perf_event_context *task_ctx;
3387
3388 struct {
3389 struct perf_event_header header;
3390
3391 u32 pid;
3392 u32 ppid;
3393 u32 tid;
3394 u32 ptid;
3395 u64 time;
3396 } event_id;
3397};
3398
3399static void perf_event_task_output(struct perf_event *event,
3400 struct perf_task_event *task_event)
3401{
3402 struct perf_output_handle handle;
3403 int size;
3404 struct task_struct *task = task_event->task;
3405 int ret;
3406
3407 size = task_event->event_id.header.size;
3408 ret = perf_output_begin(&handle, event, size, 0, 0);
3409
3410 if (ret)
3411 return;
3412
3413 task_event->event_id.pid = perf_event_pid(event, task);
3414 task_event->event_id.ppid = perf_event_pid(event, current);
3415
3416 task_event->event_id.tid = perf_event_tid(event, task);
3417 task_event->event_id.ptid = perf_event_tid(event, current);
3418
3419 task_event->event_id.time = perf_clock();
3420
3421 perf_output_put(&handle, task_event->event_id);
3422
3423 perf_output_end(&handle);
3424}
3425
3426static int perf_event_task_match(struct perf_event *event)
3427{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003428 if (event->state != PERF_EVENT_STATE_ACTIVE)
3429 return 0;
3430
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003431 if (event->cpu != -1 && event->cpu != smp_processor_id())
3432 return 0;
3433
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003434 if (event->attr.comm || event->attr.mmap || event->attr.task)
3435 return 1;
3436
3437 return 0;
3438}
3439
3440static void perf_event_task_ctx(struct perf_event_context *ctx,
3441 struct perf_task_event *task_event)
3442{
3443 struct perf_event *event;
3444
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003445 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3446 if (perf_event_task_match(event))
3447 perf_event_task_output(event, task_event);
3448 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003449}
3450
3451static void perf_event_task_event(struct perf_task_event *task_event)
3452{
3453 struct perf_cpu_context *cpuctx;
3454 struct perf_event_context *ctx = task_event->task_ctx;
3455
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003456 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003457 cpuctx = &get_cpu_var(perf_cpu_context);
3458 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003459 if (!ctx)
3460 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3461 if (ctx)
3462 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003463 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003464 rcu_read_unlock();
3465}
3466
3467static void perf_event_task(struct task_struct *task,
3468 struct perf_event_context *task_ctx,
3469 int new)
3470{
3471 struct perf_task_event task_event;
3472
3473 if (!atomic_read(&nr_comm_events) &&
3474 !atomic_read(&nr_mmap_events) &&
3475 !atomic_read(&nr_task_events))
3476 return;
3477
3478 task_event = (struct perf_task_event){
3479 .task = task,
3480 .task_ctx = task_ctx,
3481 .event_id = {
3482 .header = {
3483 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3484 .misc = 0,
3485 .size = sizeof(task_event.event_id),
3486 },
3487 /* .pid */
3488 /* .ppid */
3489 /* .tid */
3490 /* .ptid */
3491 },
3492 };
3493
3494 perf_event_task_event(&task_event);
3495}
3496
3497void perf_event_fork(struct task_struct *task)
3498{
3499 perf_event_task(task, NULL, 1);
3500}
3501
3502/*
3503 * comm tracking
3504 */
3505
3506struct perf_comm_event {
3507 struct task_struct *task;
3508 char *comm;
3509 int comm_size;
3510
3511 struct {
3512 struct perf_event_header header;
3513
3514 u32 pid;
3515 u32 tid;
3516 } event_id;
3517};
3518
3519static void perf_event_comm_output(struct perf_event *event,
3520 struct perf_comm_event *comm_event)
3521{
3522 struct perf_output_handle handle;
3523 int size = comm_event->event_id.header.size;
3524 int ret = perf_output_begin(&handle, event, size, 0, 0);
3525
3526 if (ret)
3527 return;
3528
3529 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3530 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3531
3532 perf_output_put(&handle, comm_event->event_id);
3533 perf_output_copy(&handle, comm_event->comm,
3534 comm_event->comm_size);
3535 perf_output_end(&handle);
3536}
3537
3538static int perf_event_comm_match(struct perf_event *event)
3539{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003540 if (event->state != PERF_EVENT_STATE_ACTIVE)
3541 return 0;
3542
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003543 if (event->cpu != -1 && event->cpu != smp_processor_id())
3544 return 0;
3545
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003546 if (event->attr.comm)
3547 return 1;
3548
3549 return 0;
3550}
3551
3552static void perf_event_comm_ctx(struct perf_event_context *ctx,
3553 struct perf_comm_event *comm_event)
3554{
3555 struct perf_event *event;
3556
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003557 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3558 if (perf_event_comm_match(event))
3559 perf_event_comm_output(event, comm_event);
3560 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003561}
3562
3563static void perf_event_comm_event(struct perf_comm_event *comm_event)
3564{
3565 struct perf_cpu_context *cpuctx;
3566 struct perf_event_context *ctx;
3567 unsigned int size;
3568 char comm[TASK_COMM_LEN];
3569
3570 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003571 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003572 size = ALIGN(strlen(comm)+1, sizeof(u64));
3573
3574 comm_event->comm = comm;
3575 comm_event->comm_size = size;
3576
3577 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3578
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003579 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003580 cpuctx = &get_cpu_var(perf_cpu_context);
3581 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003582 ctx = rcu_dereference(current->perf_event_ctxp);
3583 if (ctx)
3584 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003585 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003586 rcu_read_unlock();
3587}
3588
3589void perf_event_comm(struct task_struct *task)
3590{
3591 struct perf_comm_event comm_event;
3592
3593 if (task->perf_event_ctxp)
3594 perf_event_enable_on_exec(task);
3595
3596 if (!atomic_read(&nr_comm_events))
3597 return;
3598
3599 comm_event = (struct perf_comm_event){
3600 .task = task,
3601 /* .comm */
3602 /* .comm_size */
3603 .event_id = {
3604 .header = {
3605 .type = PERF_RECORD_COMM,
3606 .misc = 0,
3607 /* .size */
3608 },
3609 /* .pid */
3610 /* .tid */
3611 },
3612 };
3613
3614 perf_event_comm_event(&comm_event);
3615}
3616
3617/*
3618 * mmap tracking
3619 */
3620
3621struct perf_mmap_event {
3622 struct vm_area_struct *vma;
3623
3624 const char *file_name;
3625 int file_size;
3626
3627 struct {
3628 struct perf_event_header header;
3629
3630 u32 pid;
3631 u32 tid;
3632 u64 start;
3633 u64 len;
3634 u64 pgoff;
3635 } event_id;
3636};
3637
3638static void perf_event_mmap_output(struct perf_event *event,
3639 struct perf_mmap_event *mmap_event)
3640{
3641 struct perf_output_handle handle;
3642 int size = mmap_event->event_id.header.size;
3643 int ret = perf_output_begin(&handle, event, size, 0, 0);
3644
3645 if (ret)
3646 return;
3647
3648 mmap_event->event_id.pid = perf_event_pid(event, current);
3649 mmap_event->event_id.tid = perf_event_tid(event, current);
3650
3651 perf_output_put(&handle, mmap_event->event_id);
3652 perf_output_copy(&handle, mmap_event->file_name,
3653 mmap_event->file_size);
3654 perf_output_end(&handle);
3655}
3656
3657static int perf_event_mmap_match(struct perf_event *event,
3658 struct perf_mmap_event *mmap_event)
3659{
Peter Zijlstra22e19082010-01-18 09:12:32 +01003660 if (event->state != PERF_EVENT_STATE_ACTIVE)
3661 return 0;
3662
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003663 if (event->cpu != -1 && event->cpu != smp_processor_id())
3664 return 0;
3665
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003666 if (event->attr.mmap)
3667 return 1;
3668
3669 return 0;
3670}
3671
3672static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3673 struct perf_mmap_event *mmap_event)
3674{
3675 struct perf_event *event;
3676
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003677 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3678 if (perf_event_mmap_match(event, mmap_event))
3679 perf_event_mmap_output(event, mmap_event);
3680 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003681}
3682
3683static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3684{
3685 struct perf_cpu_context *cpuctx;
3686 struct perf_event_context *ctx;
3687 struct vm_area_struct *vma = mmap_event->vma;
3688 struct file *file = vma->vm_file;
3689 unsigned int size;
3690 char tmp[16];
3691 char *buf = NULL;
3692 const char *name;
3693
3694 memset(tmp, 0, sizeof(tmp));
3695
3696 if (file) {
3697 /*
3698 * d_path works from the end of the buffer backwards, so we
3699 * need to add enough zero bytes after the string to handle
3700 * the 64bit alignment we do later.
3701 */
3702 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3703 if (!buf) {
3704 name = strncpy(tmp, "//enomem", sizeof(tmp));
3705 goto got_name;
3706 }
3707 name = d_path(&file->f_path, buf, PATH_MAX);
3708 if (IS_ERR(name)) {
3709 name = strncpy(tmp, "//toolong", sizeof(tmp));
3710 goto got_name;
3711 }
3712 } else {
3713 if (arch_vma_name(mmap_event->vma)) {
3714 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3715 sizeof(tmp));
3716 goto got_name;
3717 }
3718
3719 if (!vma->vm_mm) {
3720 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3721 goto got_name;
3722 }
3723
3724 name = strncpy(tmp, "//anon", sizeof(tmp));
3725 goto got_name;
3726 }
3727
3728got_name:
3729 size = ALIGN(strlen(name)+1, sizeof(u64));
3730
3731 mmap_event->file_name = name;
3732 mmap_event->file_size = size;
3733
3734 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3735
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003736 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003737 cpuctx = &get_cpu_var(perf_cpu_context);
3738 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003739 ctx = rcu_dereference(current->perf_event_ctxp);
3740 if (ctx)
3741 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003742 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003743 rcu_read_unlock();
3744
3745 kfree(buf);
3746}
3747
3748void __perf_event_mmap(struct vm_area_struct *vma)
3749{
3750 struct perf_mmap_event mmap_event;
3751
3752 if (!atomic_read(&nr_mmap_events))
3753 return;
3754
3755 mmap_event = (struct perf_mmap_event){
3756 .vma = vma,
3757 /* .file_name */
3758 /* .file_size */
3759 .event_id = {
3760 .header = {
3761 .type = PERF_RECORD_MMAP,
3762 .misc = 0,
3763 /* .size */
3764 },
3765 /* .pid */
3766 /* .tid */
3767 .start = vma->vm_start,
3768 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003769 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003770 },
3771 };
3772
3773 perf_event_mmap_event(&mmap_event);
3774}
3775
3776/*
3777 * IRQ throttle logging
3778 */
3779
3780static void perf_log_throttle(struct perf_event *event, int enable)
3781{
3782 struct perf_output_handle handle;
3783 int ret;
3784
3785 struct {
3786 struct perf_event_header header;
3787 u64 time;
3788 u64 id;
3789 u64 stream_id;
3790 } throttle_event = {
3791 .header = {
3792 .type = PERF_RECORD_THROTTLE,
3793 .misc = 0,
3794 .size = sizeof(throttle_event),
3795 },
3796 .time = perf_clock(),
3797 .id = primary_event_id(event),
3798 .stream_id = event->id,
3799 };
3800
3801 if (enable)
3802 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3803
3804 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3805 if (ret)
3806 return;
3807
3808 perf_output_put(&handle, throttle_event);
3809 perf_output_end(&handle);
3810}
3811
3812/*
3813 * Generic event overflow handling, sampling.
3814 */
3815
3816static int __perf_event_overflow(struct perf_event *event, int nmi,
3817 int throttle, struct perf_sample_data *data,
3818 struct pt_regs *regs)
3819{
3820 int events = atomic_read(&event->event_limit);
3821 struct hw_perf_event *hwc = &event->hw;
3822 int ret = 0;
3823
3824 throttle = (throttle && event->pmu->unthrottle != NULL);
3825
3826 if (!throttle) {
3827 hwc->interrupts++;
3828 } else {
3829 if (hwc->interrupts != MAX_INTERRUPTS) {
3830 hwc->interrupts++;
3831 if (HZ * hwc->interrupts >
3832 (u64)sysctl_perf_event_sample_rate) {
3833 hwc->interrupts = MAX_INTERRUPTS;
3834 perf_log_throttle(event, 0);
3835 ret = 1;
3836 }
3837 } else {
3838 /*
3839 * Keep re-disabling events even though on the previous
3840 * pass we disabled it - just in case we raced with a
3841 * sched-in and the event got enabled again:
3842 */
3843 ret = 1;
3844 }
3845 }
3846
3847 if (event->attr.freq) {
3848 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003849 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003850
Peter Zijlstraabd50712010-01-26 18:50:16 +01003851 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003852
Peter Zijlstraabd50712010-01-26 18:50:16 +01003853 if (delta > 0 && delta < 2*TICK_NSEC)
3854 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003855 }
3856
3857 /*
3858 * XXX event_limit might not quite work as expected on inherited
3859 * events
3860 */
3861
3862 event->pending_kill = POLL_IN;
3863 if (events && atomic_dec_and_test(&event->event_limit)) {
3864 ret = 1;
3865 event->pending_kill = POLL_HUP;
3866 if (nmi) {
3867 event->pending_disable = 1;
3868 perf_pending_queue(&event->pending,
3869 perf_pending_event);
3870 } else
3871 perf_event_disable(event);
3872 }
3873
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003874 if (event->overflow_handler)
3875 event->overflow_handler(event, nmi, data, regs);
3876 else
3877 perf_event_output(event, nmi, data, regs);
3878
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003879 return ret;
3880}
3881
3882int perf_event_overflow(struct perf_event *event, int nmi,
3883 struct perf_sample_data *data,
3884 struct pt_regs *regs)
3885{
3886 return __perf_event_overflow(event, nmi, 1, data, regs);
3887}
3888
3889/*
3890 * Generic software event infrastructure
3891 */
3892
3893/*
3894 * We directly increment event->count and keep a second value in
3895 * event->hw.period_left to count intervals. This period event
3896 * is kept in the range [-sample_period, 0] so that we can use the
3897 * sign as trigger.
3898 */
3899
3900static u64 perf_swevent_set_period(struct perf_event *event)
3901{
3902 struct hw_perf_event *hwc = &event->hw;
3903 u64 period = hwc->last_period;
3904 u64 nr, offset;
3905 s64 old, val;
3906
3907 hwc->last_period = hwc->sample_period;
3908
3909again:
3910 old = val = atomic64_read(&hwc->period_left);
3911 if (val < 0)
3912 return 0;
3913
3914 nr = div64_u64(period + val, period);
3915 offset = nr * period;
3916 val -= offset;
3917 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3918 goto again;
3919
3920 return nr;
3921}
3922
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003923static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003924 int nmi, struct perf_sample_data *data,
3925 struct pt_regs *regs)
3926{
3927 struct hw_perf_event *hwc = &event->hw;
3928 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003929
3930 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003931 if (!overflow)
3932 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003933
3934 if (hwc->interrupts == MAX_INTERRUPTS)
3935 return;
3936
3937 for (; overflow; overflow--) {
3938 if (__perf_event_overflow(event, nmi, throttle,
3939 data, regs)) {
3940 /*
3941 * We inhibit the overflow from happening when
3942 * hwc->interrupts == MAX_INTERRUPTS.
3943 */
3944 break;
3945 }
3946 throttle = 1;
3947 }
3948}
3949
3950static void perf_swevent_unthrottle(struct perf_event *event)
3951{
3952 /*
3953 * Nothing to do, we already reset hwc->interrupts.
3954 */
3955}
3956
3957static void perf_swevent_add(struct perf_event *event, u64 nr,
3958 int nmi, struct perf_sample_data *data,
3959 struct pt_regs *regs)
3960{
3961 struct hw_perf_event *hwc = &event->hw;
3962
3963 atomic64_add(nr, &event->count);
3964
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003965 if (!regs)
3966 return;
3967
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003968 if (!hwc->sample_period)
3969 return;
3970
3971 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3972 return perf_swevent_overflow(event, 1, nmi, data, regs);
3973
3974 if (atomic64_add_negative(nr, &hwc->period_left))
3975 return;
3976
3977 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003978}
3979
3980static int perf_swevent_is_counting(struct perf_event *event)
3981{
3982 /*
3983 * The event is active, we're good!
3984 */
3985 if (event->state == PERF_EVENT_STATE_ACTIVE)
3986 return 1;
3987
3988 /*
3989 * The event is off/error, not counting.
3990 */
3991 if (event->state != PERF_EVENT_STATE_INACTIVE)
3992 return 0;
3993
3994 /*
3995 * The event is inactive, if the context is active
3996 * we're part of a group that didn't make it on the 'pmu',
3997 * not counting.
3998 */
3999 if (event->ctx->is_active)
4000 return 0;
4001
4002 /*
4003 * We're inactive and the context is too, this means the
4004 * task is scheduled out, we're counting events that happen
4005 * to us, like migration events.
4006 */
4007 return 1;
4008}
4009
Li Zefan6fb29152009-10-15 11:21:42 +08004010static int perf_tp_event_match(struct perf_event *event,
4011 struct perf_sample_data *data);
4012
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004013static int perf_exclude_event(struct perf_event *event,
4014 struct pt_regs *regs)
4015{
4016 if (regs) {
4017 if (event->attr.exclude_user && user_mode(regs))
4018 return 1;
4019
4020 if (event->attr.exclude_kernel && !user_mode(regs))
4021 return 1;
4022 }
4023
4024 return 0;
4025}
4026
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004027static int perf_swevent_match(struct perf_event *event,
4028 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004029 u32 event_id,
4030 struct perf_sample_data *data,
4031 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004032{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01004033 if (event->cpu != -1 && event->cpu != smp_processor_id())
4034 return 0;
4035
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004036 if (!perf_swevent_is_counting(event))
4037 return 0;
4038
4039 if (event->attr.type != type)
4040 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004041
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004042 if (event->attr.config != event_id)
4043 return 0;
4044
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004045 if (perf_exclude_event(event, regs))
4046 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004047
Li Zefan6fb29152009-10-15 11:21:42 +08004048 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4049 !perf_tp_event_match(event, data))
4050 return 0;
4051
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004052 return 1;
4053}
4054
4055static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4056 enum perf_type_id type,
4057 u32 event_id, u64 nr, int nmi,
4058 struct perf_sample_data *data,
4059 struct pt_regs *regs)
4060{
4061 struct perf_event *event;
4062
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004063 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004064 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004065 perf_swevent_add(event, nr, nmi, data, regs);
4066 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004067}
4068
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004069int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004070{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004071 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4072 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004073
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004074 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004075 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004076 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004077 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004078 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004079 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004080 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004081 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004082
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004083 if (cpuctx->recursion[rctx]) {
4084 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004085 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004086 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004087
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004088 cpuctx->recursion[rctx]++;
4089 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004090
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004091 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004092}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004093EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004094
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004095void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004096{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004097 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4098 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004099 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004100 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004101}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004102EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004103
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004104static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4105 u64 nr, int nmi,
4106 struct perf_sample_data *data,
4107 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004108{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004109 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004110 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004111
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004112 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004113 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004114 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4115 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004116 /*
4117 * doesn't really matter which of the child contexts the
4118 * events ends up in.
4119 */
4120 ctx = rcu_dereference(current->perf_event_ctxp);
4121 if (ctx)
4122 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4123 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004124}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004125
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004126void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4127 struct pt_regs *regs, u64 addr)
4128{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004129 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004130 int rctx;
4131
4132 rctx = perf_swevent_get_recursion_context();
4133 if (rctx < 0)
4134 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004135
Ingo Molnara4234bf2009-11-23 10:57:59 +01004136 data.addr = addr;
4137 data.raw = NULL;
4138
4139 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004140
4141 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004142}
4143
4144static void perf_swevent_read(struct perf_event *event)
4145{
4146}
4147
4148static int perf_swevent_enable(struct perf_event *event)
4149{
4150 struct hw_perf_event *hwc = &event->hw;
4151
4152 if (hwc->sample_period) {
4153 hwc->last_period = hwc->sample_period;
4154 perf_swevent_set_period(event);
4155 }
4156 return 0;
4157}
4158
4159static void perf_swevent_disable(struct perf_event *event)
4160{
4161}
4162
4163static const struct pmu perf_ops_generic = {
4164 .enable = perf_swevent_enable,
4165 .disable = perf_swevent_disable,
4166 .read = perf_swevent_read,
4167 .unthrottle = perf_swevent_unthrottle,
4168};
4169
4170/*
4171 * hrtimer based swevent callback
4172 */
4173
4174static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4175{
4176 enum hrtimer_restart ret = HRTIMER_RESTART;
4177 struct perf_sample_data data;
4178 struct pt_regs *regs;
4179 struct perf_event *event;
4180 u64 period;
4181
4182 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4183 event->pmu->read(event);
4184
4185 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004186 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004187 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004188 regs = get_irq_regs();
4189 /*
4190 * In case we exclude kernel IPs or are somehow not in interrupt
4191 * context, provide the next best thing, the user IP.
4192 */
4193 if ((event->attr.exclude_kernel || !regs) &&
4194 !event->attr.exclude_user)
4195 regs = task_pt_regs(current);
4196
4197 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004198 if (!(event->attr.exclude_idle && current->pid == 0))
4199 if (perf_event_overflow(event, 0, &data, regs))
4200 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004201 }
4202
4203 period = max_t(u64, 10000, event->hw.sample_period);
4204 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4205
4206 return ret;
4207}
4208
Soeren Sandmann721a6692009-09-15 14:33:08 +02004209static void perf_swevent_start_hrtimer(struct perf_event *event)
4210{
4211 struct hw_perf_event *hwc = &event->hw;
4212
4213 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4214 hwc->hrtimer.function = perf_swevent_hrtimer;
4215 if (hwc->sample_period) {
4216 u64 period;
4217
4218 if (hwc->remaining) {
4219 if (hwc->remaining < 0)
4220 period = 10000;
4221 else
4222 period = hwc->remaining;
4223 hwc->remaining = 0;
4224 } else {
4225 period = max_t(u64, 10000, hwc->sample_period);
4226 }
4227 __hrtimer_start_range_ns(&hwc->hrtimer,
4228 ns_to_ktime(period), 0,
4229 HRTIMER_MODE_REL, 0);
4230 }
4231}
4232
4233static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4234{
4235 struct hw_perf_event *hwc = &event->hw;
4236
4237 if (hwc->sample_period) {
4238 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4239 hwc->remaining = ktime_to_ns(remaining);
4240
4241 hrtimer_cancel(&hwc->hrtimer);
4242 }
4243}
4244
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004245/*
4246 * Software event: cpu wall time clock
4247 */
4248
4249static void cpu_clock_perf_event_update(struct perf_event *event)
4250{
4251 int cpu = raw_smp_processor_id();
4252 s64 prev;
4253 u64 now;
4254
4255 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004256 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004257 atomic64_add(now - prev, &event->count);
4258}
4259
4260static int cpu_clock_perf_event_enable(struct perf_event *event)
4261{
4262 struct hw_perf_event *hwc = &event->hw;
4263 int cpu = raw_smp_processor_id();
4264
4265 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004266 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004267
4268 return 0;
4269}
4270
4271static void cpu_clock_perf_event_disable(struct perf_event *event)
4272{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004273 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004274 cpu_clock_perf_event_update(event);
4275}
4276
4277static void cpu_clock_perf_event_read(struct perf_event *event)
4278{
4279 cpu_clock_perf_event_update(event);
4280}
4281
4282static const struct pmu perf_ops_cpu_clock = {
4283 .enable = cpu_clock_perf_event_enable,
4284 .disable = cpu_clock_perf_event_disable,
4285 .read = cpu_clock_perf_event_read,
4286};
4287
4288/*
4289 * Software event: task time clock
4290 */
4291
4292static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4293{
4294 u64 prev;
4295 s64 delta;
4296
4297 prev = atomic64_xchg(&event->hw.prev_count, now);
4298 delta = now - prev;
4299 atomic64_add(delta, &event->count);
4300}
4301
4302static int task_clock_perf_event_enable(struct perf_event *event)
4303{
4304 struct hw_perf_event *hwc = &event->hw;
4305 u64 now;
4306
4307 now = event->ctx->time;
4308
4309 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004310
4311 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004312
4313 return 0;
4314}
4315
4316static void task_clock_perf_event_disable(struct perf_event *event)
4317{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004318 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004319 task_clock_perf_event_update(event, event->ctx->time);
4320
4321}
4322
4323static void task_clock_perf_event_read(struct perf_event *event)
4324{
4325 u64 time;
4326
4327 if (!in_nmi()) {
4328 update_context_time(event->ctx);
4329 time = event->ctx->time;
4330 } else {
4331 u64 now = perf_clock();
4332 u64 delta = now - event->ctx->timestamp;
4333 time = event->ctx->time + delta;
4334 }
4335
4336 task_clock_perf_event_update(event, time);
4337}
4338
4339static const struct pmu perf_ops_task_clock = {
4340 .enable = task_clock_perf_event_enable,
4341 .disable = task_clock_perf_event_disable,
4342 .read = task_clock_perf_event_read,
4343};
4344
Li Zefan07b139c2009-12-21 14:27:35 +08004345#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004346
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004347void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4348 int entry_size)
4349{
4350 struct perf_raw_record raw = {
4351 .size = entry_size,
4352 .data = record,
4353 };
4354
4355 struct perf_sample_data data = {
4356 .addr = addr,
4357 .raw = &raw,
4358 };
4359
4360 struct pt_regs *regs = get_irq_regs();
4361
4362 if (!regs)
4363 regs = task_pt_regs(current);
4364
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004365 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004366 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004367 &data, regs);
4368}
4369EXPORT_SYMBOL_GPL(perf_tp_event);
4370
Li Zefan6fb29152009-10-15 11:21:42 +08004371static int perf_tp_event_match(struct perf_event *event,
4372 struct perf_sample_data *data)
4373{
4374 void *record = data->raw->data;
4375
4376 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4377 return 1;
4378 return 0;
4379}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004380
4381static void tp_perf_event_destroy(struct perf_event *event)
4382{
4383 ftrace_profile_disable(event->attr.config);
4384}
4385
4386static const struct pmu *tp_perf_event_init(struct perf_event *event)
4387{
4388 /*
4389 * Raw tracepoint data is a severe data leak, only allow root to
4390 * have these.
4391 */
4392 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4393 perf_paranoid_tracepoint_raw() &&
4394 !capable(CAP_SYS_ADMIN))
4395 return ERR_PTR(-EPERM);
4396
4397 if (ftrace_profile_enable(event->attr.config))
4398 return NULL;
4399
4400 event->destroy = tp_perf_event_destroy;
4401
4402 return &perf_ops_generic;
4403}
Li Zefan6fb29152009-10-15 11:21:42 +08004404
4405static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4406{
4407 char *filter_str;
4408 int ret;
4409
4410 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4411 return -EINVAL;
4412
4413 filter_str = strndup_user(arg, PAGE_SIZE);
4414 if (IS_ERR(filter_str))
4415 return PTR_ERR(filter_str);
4416
4417 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4418
4419 kfree(filter_str);
4420 return ret;
4421}
4422
4423static void perf_event_free_filter(struct perf_event *event)
4424{
4425 ftrace_profile_free_filter(event);
4426}
4427
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004428#else
Li Zefan6fb29152009-10-15 11:21:42 +08004429
4430static int perf_tp_event_match(struct perf_event *event,
4431 struct perf_sample_data *data)
4432{
4433 return 1;
4434}
4435
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004436static const struct pmu *tp_perf_event_init(struct perf_event *event)
4437{
4438 return NULL;
4439}
Li Zefan6fb29152009-10-15 11:21:42 +08004440
4441static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4442{
4443 return -ENOENT;
4444}
4445
4446static void perf_event_free_filter(struct perf_event *event)
4447{
4448}
4449
Li Zefan07b139c2009-12-21 14:27:35 +08004450#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004451
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004452#ifdef CONFIG_HAVE_HW_BREAKPOINT
4453static void bp_perf_event_destroy(struct perf_event *event)
4454{
4455 release_bp_slot(event);
4456}
4457
4458static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4459{
4460 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004461
4462 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004463 if (err)
4464 return ERR_PTR(err);
4465
4466 bp->destroy = bp_perf_event_destroy;
4467
4468 return &perf_ops_bp;
4469}
4470
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004471void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004472{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004473 struct perf_sample_data sample;
4474 struct pt_regs *regs = data;
4475
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004476 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004477 sample.addr = bp->attr.bp_addr;
4478
4479 if (!perf_exclude_event(bp, regs))
4480 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004481}
4482#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004483static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4484{
4485 return NULL;
4486}
4487
4488void perf_bp_event(struct perf_event *bp, void *regs)
4489{
4490}
4491#endif
4492
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004493atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4494
4495static void sw_perf_event_destroy(struct perf_event *event)
4496{
4497 u64 event_id = event->attr.config;
4498
4499 WARN_ON(event->parent);
4500
4501 atomic_dec(&perf_swevent_enabled[event_id]);
4502}
4503
4504static const struct pmu *sw_perf_event_init(struct perf_event *event)
4505{
4506 const struct pmu *pmu = NULL;
4507 u64 event_id = event->attr.config;
4508
4509 /*
4510 * Software events (currently) can't in general distinguish
4511 * between user, kernel and hypervisor events.
4512 * However, context switches and cpu migrations are considered
4513 * to be kernel events, and page faults are never hypervisor
4514 * events.
4515 */
4516 switch (event_id) {
4517 case PERF_COUNT_SW_CPU_CLOCK:
4518 pmu = &perf_ops_cpu_clock;
4519
4520 break;
4521 case PERF_COUNT_SW_TASK_CLOCK:
4522 /*
4523 * If the user instantiates this as a per-cpu event,
4524 * use the cpu_clock event instead.
4525 */
4526 if (event->ctx->task)
4527 pmu = &perf_ops_task_clock;
4528 else
4529 pmu = &perf_ops_cpu_clock;
4530
4531 break;
4532 case PERF_COUNT_SW_PAGE_FAULTS:
4533 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4534 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4535 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4536 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004537 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4538 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004539 if (!event->parent) {
4540 atomic_inc(&perf_swevent_enabled[event_id]);
4541 event->destroy = sw_perf_event_destroy;
4542 }
4543 pmu = &perf_ops_generic;
4544 break;
4545 }
4546
4547 return pmu;
4548}
4549
4550/*
4551 * Allocate and initialize a event structure
4552 */
4553static struct perf_event *
4554perf_event_alloc(struct perf_event_attr *attr,
4555 int cpu,
4556 struct perf_event_context *ctx,
4557 struct perf_event *group_leader,
4558 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004559 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004560 gfp_t gfpflags)
4561{
4562 const struct pmu *pmu;
4563 struct perf_event *event;
4564 struct hw_perf_event *hwc;
4565 long err;
4566
4567 event = kzalloc(sizeof(*event), gfpflags);
4568 if (!event)
4569 return ERR_PTR(-ENOMEM);
4570
4571 /*
4572 * Single events are their own group leaders, with an
4573 * empty sibling list:
4574 */
4575 if (!group_leader)
4576 group_leader = event;
4577
4578 mutex_init(&event->child_mutex);
4579 INIT_LIST_HEAD(&event->child_list);
4580
4581 INIT_LIST_HEAD(&event->group_entry);
4582 INIT_LIST_HEAD(&event->event_entry);
4583 INIT_LIST_HEAD(&event->sibling_list);
4584 init_waitqueue_head(&event->waitq);
4585
4586 mutex_init(&event->mmap_mutex);
4587
4588 event->cpu = cpu;
4589 event->attr = *attr;
4590 event->group_leader = group_leader;
4591 event->pmu = NULL;
4592 event->ctx = ctx;
4593 event->oncpu = -1;
4594
4595 event->parent = parent_event;
4596
4597 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4598 event->id = atomic64_inc_return(&perf_event_id);
4599
4600 event->state = PERF_EVENT_STATE_INACTIVE;
4601
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004602 if (!overflow_handler && parent_event)
4603 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004604
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004605 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004606
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004607 if (attr->disabled)
4608 event->state = PERF_EVENT_STATE_OFF;
4609
4610 pmu = NULL;
4611
4612 hwc = &event->hw;
4613 hwc->sample_period = attr->sample_period;
4614 if (attr->freq && attr->sample_freq)
4615 hwc->sample_period = 1;
4616 hwc->last_period = hwc->sample_period;
4617
4618 atomic64_set(&hwc->period_left, hwc->sample_period);
4619
4620 /*
4621 * we currently do not support PERF_FORMAT_GROUP on inherited events
4622 */
4623 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4624 goto done;
4625
4626 switch (attr->type) {
4627 case PERF_TYPE_RAW:
4628 case PERF_TYPE_HARDWARE:
4629 case PERF_TYPE_HW_CACHE:
4630 pmu = hw_perf_event_init(event);
4631 break;
4632
4633 case PERF_TYPE_SOFTWARE:
4634 pmu = sw_perf_event_init(event);
4635 break;
4636
4637 case PERF_TYPE_TRACEPOINT:
4638 pmu = tp_perf_event_init(event);
4639 break;
4640
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004641 case PERF_TYPE_BREAKPOINT:
4642 pmu = bp_perf_event_init(event);
4643 break;
4644
4645
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004646 default:
4647 break;
4648 }
4649done:
4650 err = 0;
4651 if (!pmu)
4652 err = -EINVAL;
4653 else if (IS_ERR(pmu))
4654 err = PTR_ERR(pmu);
4655
4656 if (err) {
4657 if (event->ns)
4658 put_pid_ns(event->ns);
4659 kfree(event);
4660 return ERR_PTR(err);
4661 }
4662
4663 event->pmu = pmu;
4664
4665 if (!event->parent) {
4666 atomic_inc(&nr_events);
4667 if (event->attr.mmap)
4668 atomic_inc(&nr_mmap_events);
4669 if (event->attr.comm)
4670 atomic_inc(&nr_comm_events);
4671 if (event->attr.task)
4672 atomic_inc(&nr_task_events);
4673 }
4674
4675 return event;
4676}
4677
4678static int perf_copy_attr(struct perf_event_attr __user *uattr,
4679 struct perf_event_attr *attr)
4680{
4681 u32 size;
4682 int ret;
4683
4684 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4685 return -EFAULT;
4686
4687 /*
4688 * zero the full structure, so that a short copy will be nice.
4689 */
4690 memset(attr, 0, sizeof(*attr));
4691
4692 ret = get_user(size, &uattr->size);
4693 if (ret)
4694 return ret;
4695
4696 if (size > PAGE_SIZE) /* silly large */
4697 goto err_size;
4698
4699 if (!size) /* abi compat */
4700 size = PERF_ATTR_SIZE_VER0;
4701
4702 if (size < PERF_ATTR_SIZE_VER0)
4703 goto err_size;
4704
4705 /*
4706 * If we're handed a bigger struct than we know of,
4707 * ensure all the unknown bits are 0 - i.e. new
4708 * user-space does not rely on any kernel feature
4709 * extensions we dont know about yet.
4710 */
4711 if (size > sizeof(*attr)) {
4712 unsigned char __user *addr;
4713 unsigned char __user *end;
4714 unsigned char val;
4715
4716 addr = (void __user *)uattr + sizeof(*attr);
4717 end = (void __user *)uattr + size;
4718
4719 for (; addr < end; addr++) {
4720 ret = get_user(val, addr);
4721 if (ret)
4722 return ret;
4723 if (val)
4724 goto err_size;
4725 }
4726 size = sizeof(*attr);
4727 }
4728
4729 ret = copy_from_user(attr, uattr, size);
4730 if (ret)
4731 return -EFAULT;
4732
4733 /*
4734 * If the type exists, the corresponding creation will verify
4735 * the attr->config.
4736 */
4737 if (attr->type >= PERF_TYPE_MAX)
4738 return -EINVAL;
4739
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004740 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004741 return -EINVAL;
4742
4743 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4744 return -EINVAL;
4745
4746 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4747 return -EINVAL;
4748
4749out:
4750 return ret;
4751
4752err_size:
4753 put_user(sizeof(*attr), &uattr->size);
4754 ret = -E2BIG;
4755 goto out;
4756}
4757
Li Zefan6fb29152009-10-15 11:21:42 +08004758static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004759{
4760 struct perf_event *output_event = NULL;
4761 struct file *output_file = NULL;
4762 struct perf_event *old_output;
4763 int fput_needed = 0;
4764 int ret = -EINVAL;
4765
4766 if (!output_fd)
4767 goto set;
4768
4769 output_file = fget_light(output_fd, &fput_needed);
4770 if (!output_file)
4771 return -EBADF;
4772
4773 if (output_file->f_op != &perf_fops)
4774 goto out;
4775
4776 output_event = output_file->private_data;
4777
4778 /* Don't chain output fds */
4779 if (output_event->output)
4780 goto out;
4781
4782 /* Don't set an output fd when we already have an output channel */
4783 if (event->data)
4784 goto out;
4785
4786 atomic_long_inc(&output_file->f_count);
4787
4788set:
4789 mutex_lock(&event->mmap_mutex);
4790 old_output = event->output;
4791 rcu_assign_pointer(event->output, output_event);
4792 mutex_unlock(&event->mmap_mutex);
4793
4794 if (old_output) {
4795 /*
4796 * we need to make sure no existing perf_output_*()
4797 * is still referencing this event.
4798 */
4799 synchronize_rcu();
4800 fput(old_output->filp);
4801 }
4802
4803 ret = 0;
4804out:
4805 fput_light(output_file, fput_needed);
4806 return ret;
4807}
4808
4809/**
4810 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4811 *
4812 * @attr_uptr: event_id type attributes for monitoring/sampling
4813 * @pid: target pid
4814 * @cpu: target cpu
4815 * @group_fd: group leader event fd
4816 */
4817SYSCALL_DEFINE5(perf_event_open,
4818 struct perf_event_attr __user *, attr_uptr,
4819 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4820{
4821 struct perf_event *event, *group_leader;
4822 struct perf_event_attr attr;
4823 struct perf_event_context *ctx;
4824 struct file *event_file = NULL;
4825 struct file *group_file = NULL;
4826 int fput_needed = 0;
4827 int fput_needed2 = 0;
4828 int err;
4829
4830 /* for future expandability... */
4831 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4832 return -EINVAL;
4833
4834 err = perf_copy_attr(attr_uptr, &attr);
4835 if (err)
4836 return err;
4837
4838 if (!attr.exclude_kernel) {
4839 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4840 return -EACCES;
4841 }
4842
4843 if (attr.freq) {
4844 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4845 return -EINVAL;
4846 }
4847
4848 /*
4849 * Get the target context (task or percpu):
4850 */
4851 ctx = find_get_context(pid, cpu);
4852 if (IS_ERR(ctx))
4853 return PTR_ERR(ctx);
4854
4855 /*
4856 * Look up the group leader (we will attach this event to it):
4857 */
4858 group_leader = NULL;
4859 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4860 err = -EINVAL;
4861 group_file = fget_light(group_fd, &fput_needed);
4862 if (!group_file)
4863 goto err_put_context;
4864 if (group_file->f_op != &perf_fops)
4865 goto err_put_context;
4866
4867 group_leader = group_file->private_data;
4868 /*
4869 * Do not allow a recursive hierarchy (this new sibling
4870 * becoming part of another group-sibling):
4871 */
4872 if (group_leader->group_leader != group_leader)
4873 goto err_put_context;
4874 /*
4875 * Do not allow to attach to a group in a different
4876 * task or CPU context:
4877 */
4878 if (group_leader->ctx != ctx)
4879 goto err_put_context;
4880 /*
4881 * Only a group leader can be exclusive or pinned
4882 */
4883 if (attr.exclusive || attr.pinned)
4884 goto err_put_context;
4885 }
4886
4887 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004888 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004889 err = PTR_ERR(event);
4890 if (IS_ERR(event))
4891 goto err_put_context;
4892
Roland Dreier628ff7c2009-12-18 09:41:24 -08004893 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004894 if (err < 0)
4895 goto err_free_put_context;
4896
4897 event_file = fget_light(err, &fput_needed2);
4898 if (!event_file)
4899 goto err_free_put_context;
4900
4901 if (flags & PERF_FLAG_FD_OUTPUT) {
4902 err = perf_event_set_output(event, group_fd);
4903 if (err)
4904 goto err_fput_free_put_context;
4905 }
4906
4907 event->filp = event_file;
4908 WARN_ON_ONCE(ctx->parent_ctx);
4909 mutex_lock(&ctx->mutex);
4910 perf_install_in_context(ctx, event, cpu);
4911 ++ctx->generation;
4912 mutex_unlock(&ctx->mutex);
4913
4914 event->owner = current;
4915 get_task_struct(current);
4916 mutex_lock(&current->perf_event_mutex);
4917 list_add_tail(&event->owner_entry, &current->perf_event_list);
4918 mutex_unlock(&current->perf_event_mutex);
4919
4920err_fput_free_put_context:
4921 fput_light(event_file, fput_needed2);
4922
4923err_free_put_context:
4924 if (err < 0)
4925 kfree(event);
4926
4927err_put_context:
4928 if (err < 0)
4929 put_ctx(ctx);
4930
4931 fput_light(group_file, fput_needed);
4932
4933 return err;
4934}
4935
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004936/**
4937 * perf_event_create_kernel_counter
4938 *
4939 * @attr: attributes of the counter to create
4940 * @cpu: cpu in which the counter is bound
4941 * @pid: task to profile
4942 */
4943struct perf_event *
4944perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004945 pid_t pid,
4946 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004947{
4948 struct perf_event *event;
4949 struct perf_event_context *ctx;
4950 int err;
4951
4952 /*
4953 * Get the target context (task or percpu):
4954 */
4955
4956 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004957 if (IS_ERR(ctx)) {
4958 err = PTR_ERR(ctx);
4959 goto err_exit;
4960 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004961
4962 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004963 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004964 if (IS_ERR(event)) {
4965 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004966 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004967 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004968
4969 event->filp = NULL;
4970 WARN_ON_ONCE(ctx->parent_ctx);
4971 mutex_lock(&ctx->mutex);
4972 perf_install_in_context(ctx, event, cpu);
4973 ++ctx->generation;
4974 mutex_unlock(&ctx->mutex);
4975
4976 event->owner = current;
4977 get_task_struct(current);
4978 mutex_lock(&current->perf_event_mutex);
4979 list_add_tail(&event->owner_entry, &current->perf_event_list);
4980 mutex_unlock(&current->perf_event_mutex);
4981
4982 return event;
4983
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004984 err_put_context:
4985 put_ctx(ctx);
4986 err_exit:
4987 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004988}
4989EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4990
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004991/*
4992 * inherit a event from parent task to child task:
4993 */
4994static struct perf_event *
4995inherit_event(struct perf_event *parent_event,
4996 struct task_struct *parent,
4997 struct perf_event_context *parent_ctx,
4998 struct task_struct *child,
4999 struct perf_event *group_leader,
5000 struct perf_event_context *child_ctx)
5001{
5002 struct perf_event *child_event;
5003
5004 /*
5005 * Instead of creating recursive hierarchies of events,
5006 * we link inherited events back to the original parent,
5007 * which has a filp for sure, which we use as the reference
5008 * count:
5009 */
5010 if (parent_event->parent)
5011 parent_event = parent_event->parent;
5012
5013 child_event = perf_event_alloc(&parent_event->attr,
5014 parent_event->cpu, child_ctx,
5015 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005016 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005017 if (IS_ERR(child_event))
5018 return child_event;
5019 get_ctx(child_ctx);
5020
5021 /*
5022 * Make the child state follow the state of the parent event,
5023 * not its attr.disabled bit. We hold the parent's mutex,
5024 * so we won't race with perf_event_{en, dis}able_family.
5025 */
5026 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5027 child_event->state = PERF_EVENT_STATE_INACTIVE;
5028 else
5029 child_event->state = PERF_EVENT_STATE_OFF;
5030
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005031 if (parent_event->attr.freq) {
5032 u64 sample_period = parent_event->hw.sample_period;
5033 struct hw_perf_event *hwc = &child_event->hw;
5034
5035 hwc->sample_period = sample_period;
5036 hwc->last_period = sample_period;
5037
5038 atomic64_set(&hwc->period_left, sample_period);
5039 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005040
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005041 child_event->overflow_handler = parent_event->overflow_handler;
5042
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005043 /*
5044 * Link it up in the child's context:
5045 */
5046 add_event_to_ctx(child_event, child_ctx);
5047
5048 /*
5049 * Get a reference to the parent filp - we will fput it
5050 * when the child event exits. This is safe to do because
5051 * we are in the parent and we know that the filp still
5052 * exists and has a nonzero count:
5053 */
5054 atomic_long_inc(&parent_event->filp->f_count);
5055
5056 /*
5057 * Link this into the parent event's child list
5058 */
5059 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5060 mutex_lock(&parent_event->child_mutex);
5061 list_add_tail(&child_event->child_list, &parent_event->child_list);
5062 mutex_unlock(&parent_event->child_mutex);
5063
5064 return child_event;
5065}
5066
5067static int inherit_group(struct perf_event *parent_event,
5068 struct task_struct *parent,
5069 struct perf_event_context *parent_ctx,
5070 struct task_struct *child,
5071 struct perf_event_context *child_ctx)
5072{
5073 struct perf_event *leader;
5074 struct perf_event *sub;
5075 struct perf_event *child_ctr;
5076
5077 leader = inherit_event(parent_event, parent, parent_ctx,
5078 child, NULL, child_ctx);
5079 if (IS_ERR(leader))
5080 return PTR_ERR(leader);
5081 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5082 child_ctr = inherit_event(sub, parent, parent_ctx,
5083 child, leader, child_ctx);
5084 if (IS_ERR(child_ctr))
5085 return PTR_ERR(child_ctr);
5086 }
5087 return 0;
5088}
5089
5090static void sync_child_event(struct perf_event *child_event,
5091 struct task_struct *child)
5092{
5093 struct perf_event *parent_event = child_event->parent;
5094 u64 child_val;
5095
5096 if (child_event->attr.inherit_stat)
5097 perf_event_read_event(child_event, child);
5098
5099 child_val = atomic64_read(&child_event->count);
5100
5101 /*
5102 * Add back the child's count to the parent's count:
5103 */
5104 atomic64_add(child_val, &parent_event->count);
5105 atomic64_add(child_event->total_time_enabled,
5106 &parent_event->child_total_time_enabled);
5107 atomic64_add(child_event->total_time_running,
5108 &parent_event->child_total_time_running);
5109
5110 /*
5111 * Remove this event from the parent's list
5112 */
5113 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5114 mutex_lock(&parent_event->child_mutex);
5115 list_del_init(&child_event->child_list);
5116 mutex_unlock(&parent_event->child_mutex);
5117
5118 /*
5119 * Release the parent event, if this was the last
5120 * reference to it.
5121 */
5122 fput(parent_event->filp);
5123}
5124
5125static void
5126__perf_event_exit_task(struct perf_event *child_event,
5127 struct perf_event_context *child_ctx,
5128 struct task_struct *child)
5129{
5130 struct perf_event *parent_event;
5131
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005132 perf_event_remove_from_context(child_event);
5133
5134 parent_event = child_event->parent;
5135 /*
5136 * It can happen that parent exits first, and has events
5137 * that are still around due to the child reference. These
5138 * events need to be zapped - but otherwise linger.
5139 */
5140 if (parent_event) {
5141 sync_child_event(child_event, child);
5142 free_event(child_event);
5143 }
5144}
5145
5146/*
5147 * When a child task exits, feed back event values to parent events.
5148 */
5149void perf_event_exit_task(struct task_struct *child)
5150{
5151 struct perf_event *child_event, *tmp;
5152 struct perf_event_context *child_ctx;
5153 unsigned long flags;
5154
5155 if (likely(!child->perf_event_ctxp)) {
5156 perf_event_task(child, NULL, 0);
5157 return;
5158 }
5159
5160 local_irq_save(flags);
5161 /*
5162 * We can't reschedule here because interrupts are disabled,
5163 * and either child is current or it is a task that can't be
5164 * scheduled, so we are now safe from rescheduling changing
5165 * our context.
5166 */
5167 child_ctx = child->perf_event_ctxp;
5168 __perf_event_task_sched_out(child_ctx);
5169
5170 /*
5171 * Take the context lock here so that if find_get_context is
5172 * reading child->perf_event_ctxp, we wait until it has
5173 * incremented the context's refcount before we do put_ctx below.
5174 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005175 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005176 child->perf_event_ctxp = NULL;
5177 /*
5178 * If this context is a clone; unclone it so it can't get
5179 * swapped to another process while we're removing all
5180 * the events from it.
5181 */
5182 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005183 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005184 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005185
5186 /*
5187 * Report the task dead after unscheduling the events so that we
5188 * won't get any samples after PERF_RECORD_EXIT. We can however still
5189 * get a few PERF_RECORD_READ events.
5190 */
5191 perf_event_task(child, child_ctx, 0);
5192
5193 /*
5194 * We can recurse on the same lock type through:
5195 *
5196 * __perf_event_exit_task()
5197 * sync_child_event()
5198 * fput(parent_event->filp)
5199 * perf_release()
5200 * mutex_lock(&ctx->mutex)
5201 *
5202 * But since its the parent context it won't be the same instance.
5203 */
5204 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5205
5206again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005207 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5208 group_entry)
5209 __perf_event_exit_task(child_event, child_ctx, child);
5210
5211 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005212 group_entry)
5213 __perf_event_exit_task(child_event, child_ctx, child);
5214
5215 /*
5216 * If the last event was a group event, it will have appended all
5217 * its siblings to the list, but we obtained 'tmp' before that which
5218 * will still point to the list head terminating the iteration.
5219 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005220 if (!list_empty(&child_ctx->pinned_groups) ||
5221 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005222 goto again;
5223
5224 mutex_unlock(&child_ctx->mutex);
5225
5226 put_ctx(child_ctx);
5227}
5228
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005229static void perf_free_event(struct perf_event *event,
5230 struct perf_event_context *ctx)
5231{
5232 struct perf_event *parent = event->parent;
5233
5234 if (WARN_ON_ONCE(!parent))
5235 return;
5236
5237 mutex_lock(&parent->child_mutex);
5238 list_del_init(&event->child_list);
5239 mutex_unlock(&parent->child_mutex);
5240
5241 fput(parent->filp);
5242
5243 list_del_event(event, ctx);
5244 free_event(event);
5245}
5246
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005247/*
5248 * free an unexposed, unused context as created by inheritance by
5249 * init_task below, used by fork() in case of fail.
5250 */
5251void perf_event_free_task(struct task_struct *task)
5252{
5253 struct perf_event_context *ctx = task->perf_event_ctxp;
5254 struct perf_event *event, *tmp;
5255
5256 if (!ctx)
5257 return;
5258
5259 mutex_lock(&ctx->mutex);
5260again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005261 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5262 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005263
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005264 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5265 group_entry)
5266 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005267
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005268 if (!list_empty(&ctx->pinned_groups) ||
5269 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005270 goto again;
5271
5272 mutex_unlock(&ctx->mutex);
5273
5274 put_ctx(ctx);
5275}
5276
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005277static int
5278inherit_task_group(struct perf_event *event, struct task_struct *parent,
5279 struct perf_event_context *parent_ctx,
5280 struct task_struct *child,
5281 int *inherited_all)
5282{
5283 int ret;
5284 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5285
5286 if (!event->attr.inherit) {
5287 *inherited_all = 0;
5288 return 0;
5289 }
5290
5291 if (!child_ctx) {
5292 /*
5293 * This is executed from the parent task context, so
5294 * inherit events that have been marked for cloning.
5295 * First allocate and initialize a context for the
5296 * child.
5297 */
5298
5299 child_ctx = kzalloc(sizeof(struct perf_event_context),
5300 GFP_KERNEL);
5301 if (!child_ctx)
5302 return -ENOMEM;
5303
5304 __perf_event_init_context(child_ctx, child);
5305 child->perf_event_ctxp = child_ctx;
5306 get_task_struct(child);
5307 }
5308
5309 ret = inherit_group(event, parent, parent_ctx,
5310 child, child_ctx);
5311
5312 if (ret)
5313 *inherited_all = 0;
5314
5315 return ret;
5316}
5317
5318
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005319/*
5320 * Initialize the perf_event context in task_struct
5321 */
5322int perf_event_init_task(struct task_struct *child)
5323{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005324 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005325 struct perf_event_context *cloned_ctx;
5326 struct perf_event *event;
5327 struct task_struct *parent = current;
5328 int inherited_all = 1;
5329 int ret = 0;
5330
5331 child->perf_event_ctxp = NULL;
5332
5333 mutex_init(&child->perf_event_mutex);
5334 INIT_LIST_HEAD(&child->perf_event_list);
5335
5336 if (likely(!parent->perf_event_ctxp))
5337 return 0;
5338
5339 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005340 * If the parent's context is a clone, pin it so it won't get
5341 * swapped under us.
5342 */
5343 parent_ctx = perf_pin_task_context(parent);
5344
5345 /*
5346 * No need to check if parent_ctx != NULL here; since we saw
5347 * it non-NULL earlier, the only reason for it to become NULL
5348 * is if we exit, and since we're currently in the middle of
5349 * a fork we can't be exiting at the same time.
5350 */
5351
5352 /*
5353 * Lock the parent list. No need to lock the child - not PID
5354 * hashed yet and not running, so nobody can access it.
5355 */
5356 mutex_lock(&parent_ctx->mutex);
5357
5358 /*
5359 * We dont have to disable NMIs - we are only looking at
5360 * the list, not manipulating it:
5361 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005362 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5363 ret = inherit_task_group(event, parent, parent_ctx, child,
5364 &inherited_all);
5365 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005366 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005367 }
5368
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005369 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5370 ret = inherit_task_group(event, parent, parent_ctx, child,
5371 &inherited_all);
5372 if (ret)
5373 break;
5374 }
5375
5376 child_ctx = child->perf_event_ctxp;
5377
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005378 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005379 /*
5380 * Mark the child context as a clone of the parent
5381 * context, or of whatever the parent is a clone of.
5382 * Note that if the parent is a clone, it could get
5383 * uncloned at any point, but that doesn't matter
5384 * because the list of events and the generation
5385 * count can't have changed since we took the mutex.
5386 */
5387 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5388 if (cloned_ctx) {
5389 child_ctx->parent_ctx = cloned_ctx;
5390 child_ctx->parent_gen = parent_ctx->parent_gen;
5391 } else {
5392 child_ctx->parent_ctx = parent_ctx;
5393 child_ctx->parent_gen = parent_ctx->generation;
5394 }
5395 get_ctx(child_ctx->parent_ctx);
5396 }
5397
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005398 mutex_unlock(&parent_ctx->mutex);
5399
5400 perf_unpin_context(parent_ctx);
5401
5402 return ret;
5403}
5404
5405static void __cpuinit perf_event_init_cpu(int cpu)
5406{
5407 struct perf_cpu_context *cpuctx;
5408
5409 cpuctx = &per_cpu(perf_cpu_context, cpu);
5410 __perf_event_init_context(&cpuctx->ctx, NULL);
5411
5412 spin_lock(&perf_resource_lock);
5413 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5414 spin_unlock(&perf_resource_lock);
5415
5416 hw_perf_event_setup(cpu);
5417}
5418
5419#ifdef CONFIG_HOTPLUG_CPU
5420static void __perf_event_exit_cpu(void *info)
5421{
5422 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5423 struct perf_event_context *ctx = &cpuctx->ctx;
5424 struct perf_event *event, *tmp;
5425
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005426 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5427 __perf_event_remove_from_context(event);
5428 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005429 __perf_event_remove_from_context(event);
5430}
5431static void perf_event_exit_cpu(int cpu)
5432{
5433 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5434 struct perf_event_context *ctx = &cpuctx->ctx;
5435
5436 mutex_lock(&ctx->mutex);
5437 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5438 mutex_unlock(&ctx->mutex);
5439}
5440#else
5441static inline void perf_event_exit_cpu(int cpu) { }
5442#endif
5443
5444static int __cpuinit
5445perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5446{
5447 unsigned int cpu = (long)hcpu;
5448
5449 switch (action) {
5450
5451 case CPU_UP_PREPARE:
5452 case CPU_UP_PREPARE_FROZEN:
5453 perf_event_init_cpu(cpu);
5454 break;
5455
5456 case CPU_ONLINE:
5457 case CPU_ONLINE_FROZEN:
5458 hw_perf_event_setup_online(cpu);
5459 break;
5460
5461 case CPU_DOWN_PREPARE:
5462 case CPU_DOWN_PREPARE_FROZEN:
5463 perf_event_exit_cpu(cpu);
5464 break;
5465
Stephane Eranian38331f62010-02-08 17:17:01 +02005466 case CPU_DEAD:
5467 hw_perf_event_setup_offline(cpu);
5468 break;
5469
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005470 default:
5471 break;
5472 }
5473
5474 return NOTIFY_OK;
5475}
5476
5477/*
5478 * This has to have a higher priority than migration_notifier in sched.c.
5479 */
5480static struct notifier_block __cpuinitdata perf_cpu_nb = {
5481 .notifier_call = perf_cpu_notify,
5482 .priority = 20,
5483};
5484
5485void __init perf_event_init(void)
5486{
5487 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5488 (void *)(long)smp_processor_id());
5489 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5490 (void *)(long)smp_processor_id());
5491 register_cpu_notifier(&perf_cpu_nb);
5492}
5493
5494static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5495{
5496 return sprintf(buf, "%d\n", perf_reserved_percpu);
5497}
5498
5499static ssize_t
5500perf_set_reserve_percpu(struct sysdev_class *class,
5501 const char *buf,
5502 size_t count)
5503{
5504 struct perf_cpu_context *cpuctx;
5505 unsigned long val;
5506 int err, cpu, mpt;
5507
5508 err = strict_strtoul(buf, 10, &val);
5509 if (err)
5510 return err;
5511 if (val > perf_max_events)
5512 return -EINVAL;
5513
5514 spin_lock(&perf_resource_lock);
5515 perf_reserved_percpu = val;
5516 for_each_online_cpu(cpu) {
5517 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005518 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005519 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5520 perf_max_events - perf_reserved_percpu);
5521 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005522 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005523 }
5524 spin_unlock(&perf_resource_lock);
5525
5526 return count;
5527}
5528
5529static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5530{
5531 return sprintf(buf, "%d\n", perf_overcommit);
5532}
5533
5534static ssize_t
5535perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5536{
5537 unsigned long val;
5538 int err;
5539
5540 err = strict_strtoul(buf, 10, &val);
5541 if (err)
5542 return err;
5543 if (val > 1)
5544 return -EINVAL;
5545
5546 spin_lock(&perf_resource_lock);
5547 perf_overcommit = val;
5548 spin_unlock(&perf_resource_lock);
5549
5550 return count;
5551}
5552
5553static SYSDEV_CLASS_ATTR(
5554 reserve_percpu,
5555 0644,
5556 perf_show_reserve_percpu,
5557 perf_set_reserve_percpu
5558 );
5559
5560static SYSDEV_CLASS_ATTR(
5561 overcommit,
5562 0644,
5563 perf_show_overcommit,
5564 perf_set_overcommit
5565 );
5566
5567static struct attribute *perfclass_attrs[] = {
5568 &attr_reserve_percpu.attr,
5569 &attr_overcommit.attr,
5570 NULL
5571};
5572
5573static struct attribute_group perfclass_attr_group = {
5574 .attrs = perfclass_attrs,
5575 .name = "perf_events",
5576};
5577
5578static int __init perf_event_sysfs_init(void)
5579{
5580 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5581 &perfclass_attr_group);
5582}
5583device_initcall(perf_event_sysfs_init);