blob: 871eb4bc4efc7d100ad9eabac869f9449607ecb8 [file] [log] [blame]
Georgi Djakov11f1cec2019-01-16 18:10:56 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interconnect framework core driver
4 *
5 * Copyright (c) 2017-2019, Linaro Ltd.
6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
7 */
8
Georgi Djakov3697ff42019-01-16 18:10:59 +02009#include <linux/debugfs.h>
Georgi Djakov11f1cec2019-01-16 18:10:56 +020010#include <linux/device.h>
11#include <linux/idr.h>
12#include <linux/init.h>
13#include <linux/interconnect.h>
14#include <linux/interconnect-provider.h>
15#include <linux/list.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/slab.h>
Georgi Djakov87e30312019-01-16 18:10:58 +020019#include <linux/of.h>
Georgi Djakov11f1cec2019-01-16 18:10:56 +020020#include <linux/overflow.h>
21
22static DEFINE_IDR(icc_idr);
23static LIST_HEAD(icc_providers);
24static DEFINE_MUTEX(icc_lock);
Georgi Djakov3697ff42019-01-16 18:10:59 +020025static struct dentry *icc_debugfs_dir;
Georgi Djakov11f1cec2019-01-16 18:10:56 +020026
27/**
28 * struct icc_req - constraints that are attached to each node
29 * @req_node: entry in list of requests for the particular @node
30 * @node: the interconnect node to which this constraint applies
31 * @dev: reference to the device that sets the constraints
32 * @avg_bw: an integer describing the average bandwidth in kBps
33 * @peak_bw: an integer describing the peak bandwidth in kBps
34 */
35struct icc_req {
36 struct hlist_node req_node;
37 struct icc_node *node;
38 struct device *dev;
39 u32 avg_bw;
40 u32 peak_bw;
41};
42
43/**
44 * struct icc_path - interconnect path structure
45 * @num_nodes: number of hops (nodes)
46 * @reqs: array of the requests applicable to this path of nodes
47 */
48struct icc_path {
49 size_t num_nodes;
50 struct icc_req reqs[];
51};
52
Georgi Djakov3697ff42019-01-16 18:10:59 +020053static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
54{
55 if (!n)
56 return;
57
58 seq_printf(s, "%-30s %12u %12u\n",
59 n->name, n->avg_bw, n->peak_bw);
60}
61
62static int icc_summary_show(struct seq_file *s, void *data)
63{
64 struct icc_provider *provider;
65
66 seq_puts(s, " node avg peak\n");
67 seq_puts(s, "--------------------------------------------------------\n");
68
69 mutex_lock(&icc_lock);
70
71 list_for_each_entry(provider, &icc_providers, provider_list) {
72 struct icc_node *n;
73
74 list_for_each_entry(n, &provider->nodes, node_list) {
75 struct icc_req *r;
76
77 icc_summary_show_one(s, n);
78 hlist_for_each_entry(r, &n->req_list, req_node) {
79 if (!r->dev)
80 continue;
81
82 seq_printf(s, " %-26s %12u %12u\n",
83 dev_name(r->dev), r->avg_bw,
84 r->peak_bw);
85 }
86 }
87 }
88
89 mutex_unlock(&icc_lock);
90
91 return 0;
92}
Yangtao Li83fdb2d2019-03-27 09:31:37 -040093DEFINE_SHOW_ATTRIBUTE(icc_summary);
Georgi Djakov3697ff42019-01-16 18:10:59 +020094
Georgi Djakov11f1cec2019-01-16 18:10:56 +020095static struct icc_node *node_find(const int id)
96{
97 return idr_find(&icc_idr, id);
98}
99
100static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
101 ssize_t num_nodes)
102{
103 struct icc_node *node = dst;
104 struct icc_path *path;
105 int i;
106
107 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
108 if (!path)
109 return ERR_PTR(-ENOMEM);
110
111 path->num_nodes = num_nodes;
112
113 for (i = num_nodes - 1; i >= 0; i--) {
114 node->provider->users++;
115 hlist_add_head(&path->reqs[i].req_node, &node->req_list);
116 path->reqs[i].node = node;
117 path->reqs[i].dev = dev;
118 /* reference to previous node was saved during path traversal */
119 node = node->reverse;
120 }
121
122 return path;
123}
124
125static struct icc_path *path_find(struct device *dev, struct icc_node *src,
126 struct icc_node *dst)
127{
128 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
129 struct icc_node *n, *node = NULL;
130 struct list_head traverse_list;
131 struct list_head edge_list;
132 struct list_head visited_list;
133 size_t i, depth = 1;
134 bool found = false;
135
136 INIT_LIST_HEAD(&traverse_list);
137 INIT_LIST_HEAD(&edge_list);
138 INIT_LIST_HEAD(&visited_list);
139
140 list_add(&src->search_list, &traverse_list);
141 src->reverse = NULL;
142
143 do {
144 list_for_each_entry_safe(node, n, &traverse_list, search_list) {
145 if (node == dst) {
146 found = true;
147 list_splice_init(&edge_list, &visited_list);
148 list_splice_init(&traverse_list, &visited_list);
149 break;
150 }
151 for (i = 0; i < node->num_links; i++) {
152 struct icc_node *tmp = node->links[i];
153
154 if (!tmp) {
155 path = ERR_PTR(-ENOENT);
156 goto out;
157 }
158
159 if (tmp->is_traversed)
160 continue;
161
162 tmp->is_traversed = true;
163 tmp->reverse = node;
164 list_add_tail(&tmp->search_list, &edge_list);
165 }
166 }
167
168 if (found)
169 break;
170
171 list_splice_init(&traverse_list, &visited_list);
172 list_splice_init(&edge_list, &traverse_list);
173
174 /* count the hops including the source */
175 depth++;
176
177 } while (!list_empty(&traverse_list));
178
179out:
180
181 /* reset the traversed state */
182 list_for_each_entry_reverse(n, &visited_list, search_list)
183 n->is_traversed = false;
184
185 if (found)
186 path = path_init(dev, dst, depth);
187
188 return path;
189}
190
191/*
192 * We want the path to honor all bandwidth requests, so the average and peak
193 * bandwidth requirements from each consumer are aggregated at each node.
194 * The aggregation is platform specific, so each platform can customize it by
195 * implementing its own aggregate() function.
196 */
197
198static int aggregate_requests(struct icc_node *node)
199{
200 struct icc_provider *p = node->provider;
201 struct icc_req *r;
202
203 node->avg_bw = 0;
204 node->peak_bw = 0;
205
206 hlist_for_each_entry(r, &node->req_list, req_node)
207 p->aggregate(node, r->avg_bw, r->peak_bw,
208 &node->avg_bw, &node->peak_bw);
209
210 return 0;
211}
212
213static int apply_constraints(struct icc_path *path)
214{
215 struct icc_node *next, *prev = NULL;
216 int ret = -EINVAL;
217 int i;
218
219 for (i = 0; i < path->num_nodes; i++) {
220 next = path->reqs[i].node;
221
222 /*
223 * Both endpoints should be valid master-slave pairs of the
224 * same interconnect provider that will be configured.
225 */
226 if (!prev || next->provider != prev->provider) {
227 prev = next;
228 continue;
229 }
230
231 /* set the constraints */
232 ret = next->provider->set(prev, next);
233 if (ret)
234 goto out;
235
236 prev = next;
237 }
238out:
239 return ret;
240}
241
Georgi Djakov87e30312019-01-16 18:10:58 +0200242/* of_icc_xlate_onecell() - Translate function using a single index.
243 * @spec: OF phandle args to map into an interconnect node.
244 * @data: private data (pointer to struct icc_onecell_data)
245 *
246 * This is a generic translate function that can be used to model simple
247 * interconnect providers that have one device tree node and provide
248 * multiple interconnect nodes. A single cell is used as an index into
249 * an array of icc nodes specified in the icc_onecell_data struct when
250 * registering the provider.
251 */
252struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
253 void *data)
254{
255 struct icc_onecell_data *icc_data = data;
256 unsigned int idx = spec->args[0];
257
258 if (idx >= icc_data->num_nodes) {
259 pr_err("%s: invalid index %u\n", __func__, idx);
260 return ERR_PTR(-EINVAL);
261 }
262
263 return icc_data->nodes[idx];
264}
265EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
266
267/**
268 * of_icc_get_from_provider() - Look-up interconnect node
269 * @spec: OF phandle args to use for look-up
270 *
271 * Looks for interconnect provider under the node specified by @spec and if
272 * found, uses xlate function of the provider to map phandle args to node.
273 *
274 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
275 * on failure.
276 */
277static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
278{
279 struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
280 struct icc_provider *provider;
281
282 if (!spec || spec->args_count != 1)
283 return ERR_PTR(-EINVAL);
284
285 mutex_lock(&icc_lock);
286 list_for_each_entry(provider, &icc_providers, provider_list) {
287 if (provider->dev->of_node == spec->np)
288 node = provider->xlate(spec, provider->data);
289 if (!IS_ERR(node))
290 break;
291 }
292 mutex_unlock(&icc_lock);
293
294 return node;
295}
296
297/**
298 * of_icc_get() - get a path handle from a DT node based on name
299 * @dev: device pointer for the consumer device
300 * @name: interconnect path name
301 *
302 * This function will search for a path between two endpoints and return an
303 * icc_path handle on success. Use icc_put() to release constraints when they
304 * are not needed anymore.
305 * If the interconnect API is disabled, NULL is returned and the consumer
306 * drivers will still build. Drivers are free to handle this specifically,
307 * but they don't have to.
308 *
309 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
310 * when the API is disabled or the "interconnects" DT property is missing.
311 */
312struct icc_path *of_icc_get(struct device *dev, const char *name)
313{
314 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
315 struct icc_node *src_node, *dst_node;
316 struct device_node *np = NULL;
317 struct of_phandle_args src_args, dst_args;
318 int idx = 0;
319 int ret;
320
321 if (!dev || !dev->of_node)
322 return ERR_PTR(-ENODEV);
323
324 np = dev->of_node;
325
326 /*
327 * When the consumer DT node do not have "interconnects" property
328 * return a NULL path to skip setting constraints.
329 */
330 if (!of_find_property(np, "interconnects", NULL))
331 return NULL;
332
333 /*
334 * We use a combination of phandle and specifier for endpoint. For now
335 * lets support only global ids and extend this in the future if needed
336 * without breaking DT compatibility.
337 */
338 if (name) {
339 idx = of_property_match_string(np, "interconnect-names", name);
340 if (idx < 0)
341 return ERR_PTR(idx);
342 }
343
344 ret = of_parse_phandle_with_args(np, "interconnects",
345 "#interconnect-cells", idx * 2,
346 &src_args);
347 if (ret)
348 return ERR_PTR(ret);
349
350 of_node_put(src_args.np);
351
352 ret = of_parse_phandle_with_args(np, "interconnects",
353 "#interconnect-cells", idx * 2 + 1,
354 &dst_args);
355 if (ret)
356 return ERR_PTR(ret);
357
358 of_node_put(dst_args.np);
359
360 src_node = of_icc_get_from_provider(&src_args);
361
362 if (IS_ERR(src_node)) {
363 if (PTR_ERR(src_node) != -EPROBE_DEFER)
364 dev_err(dev, "error finding src node: %ld\n",
365 PTR_ERR(src_node));
366 return ERR_CAST(src_node);
367 }
368
369 dst_node = of_icc_get_from_provider(&dst_args);
370
371 if (IS_ERR(dst_node)) {
372 if (PTR_ERR(dst_node) != -EPROBE_DEFER)
373 dev_err(dev, "error finding dst node: %ld\n",
374 PTR_ERR(dst_node));
375 return ERR_CAST(dst_node);
376 }
377
378 mutex_lock(&icc_lock);
379 path = path_find(dev, src_node, dst_node);
380 if (IS_ERR(path))
381 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
382 mutex_unlock(&icc_lock);
383
384 return path;
385}
386EXPORT_SYMBOL_GPL(of_icc_get);
387
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200388/**
389 * icc_set_bw() - set bandwidth constraints on an interconnect path
390 * @path: reference to the path returned by icc_get()
391 * @avg_bw: average bandwidth in kilobytes per second
392 * @peak_bw: peak bandwidth in kilobytes per second
393 *
394 * This function is used by an interconnect consumer to express its own needs
395 * in terms of bandwidth for a previously requested path between two endpoints.
396 * The requests are aggregated and each node is updated accordingly. The entire
397 * path is locked by a mutex to ensure that the set() is completed.
398 * The @path can be NULL when the "interconnects" DT properties is missing,
399 * which will mean that no constraints will be set.
400 *
401 * Returns 0 on success, or an appropriate error code otherwise.
402 */
403int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
404{
405 struct icc_node *node;
Georgi Djakovdce6d402019-01-16 18:11:03 +0200406 u32 old_avg, old_peak;
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200407 size_t i;
408 int ret;
409
Georgi Djakovdce6d402019-01-16 18:11:03 +0200410 if (!path || !path->num_nodes)
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200411 return 0;
412
413 mutex_lock(&icc_lock);
414
Georgi Djakovdce6d402019-01-16 18:11:03 +0200415 old_avg = path->reqs[0].avg_bw;
416 old_peak = path->reqs[0].peak_bw;
417
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200418 for (i = 0; i < path->num_nodes; i++) {
419 node = path->reqs[i].node;
420
421 /* update the consumer request for this path */
422 path->reqs[i].avg_bw = avg_bw;
423 path->reqs[i].peak_bw = peak_bw;
424
425 /* aggregate requests for this node */
426 aggregate_requests(node);
427 }
428
429 ret = apply_constraints(path);
Georgi Djakovdce6d402019-01-16 18:11:03 +0200430 if (ret) {
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200431 pr_debug("interconnect: error applying constraints (%d)\n",
432 ret);
433
Georgi Djakovdce6d402019-01-16 18:11:03 +0200434 for (i = 0; i < path->num_nodes; i++) {
435 node = path->reqs[i].node;
436 path->reqs[i].avg_bw = old_avg;
437 path->reqs[i].peak_bw = old_peak;
438 aggregate_requests(node);
439 }
440 apply_constraints(path);
441 }
442
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200443 mutex_unlock(&icc_lock);
444
445 return ret;
446}
447EXPORT_SYMBOL_GPL(icc_set_bw);
448
449/**
450 * icc_get() - return a handle for path between two endpoints
451 * @dev: the device requesting the path
452 * @src_id: source device port id
453 * @dst_id: destination device port id
454 *
455 * This function will search for a path between two endpoints and return an
456 * icc_path handle on success. Use icc_put() to release
457 * constraints when they are not needed anymore.
458 * If the interconnect API is disabled, NULL is returned and the consumer
459 * drivers will still build. Drivers are free to handle this specifically,
460 * but they don't have to.
461 *
462 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
463 * interconnect API is disabled.
464 */
465struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
466{
467 struct icc_node *src, *dst;
468 struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
469
470 mutex_lock(&icc_lock);
471
472 src = node_find(src_id);
473 if (!src)
474 goto out;
475
476 dst = node_find(dst_id);
477 if (!dst)
478 goto out;
479
480 path = path_find(dev, src, dst);
481 if (IS_ERR(path))
482 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
483
484out:
485 mutex_unlock(&icc_lock);
486 return path;
487}
488EXPORT_SYMBOL_GPL(icc_get);
489
490/**
491 * icc_put() - release the reference to the icc_path
492 * @path: interconnect path
493 *
494 * Use this function to release the constraints on a path when the path is
495 * no longer needed. The constraints will be re-aggregated.
496 */
497void icc_put(struct icc_path *path)
498{
499 struct icc_node *node;
500 size_t i;
501 int ret;
502
503 if (!path || WARN_ON(IS_ERR(path)))
504 return;
505
506 ret = icc_set_bw(path, 0, 0);
507 if (ret)
508 pr_err("%s: error (%d)\n", __func__, ret);
509
510 mutex_lock(&icc_lock);
511 for (i = 0; i < path->num_nodes; i++) {
512 node = path->reqs[i].node;
513 hlist_del(&path->reqs[i].req_node);
514 if (!WARN_ON(!node->provider->users))
515 node->provider->users--;
516 }
517 mutex_unlock(&icc_lock);
518
519 kfree(path);
520}
521EXPORT_SYMBOL_GPL(icc_put);
522
523static struct icc_node *icc_node_create_nolock(int id)
524{
525 struct icc_node *node;
526
527 /* check if node already exists */
528 node = node_find(id);
529 if (node)
530 return node;
531
532 node = kzalloc(sizeof(*node), GFP_KERNEL);
533 if (!node)
534 return ERR_PTR(-ENOMEM);
535
536 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
537 if (id < 0) {
538 WARN(1, "%s: couldn't get idr\n", __func__);
539 kfree(node);
540 return ERR_PTR(id);
541 }
542
543 node->id = id;
544
545 return node;
546}
547
548/**
549 * icc_node_create() - create a node
550 * @id: node id
551 *
552 * Return: icc_node pointer on success, or ERR_PTR() on error
553 */
554struct icc_node *icc_node_create(int id)
555{
556 struct icc_node *node;
557
558 mutex_lock(&icc_lock);
559
560 node = icc_node_create_nolock(id);
561
562 mutex_unlock(&icc_lock);
563
564 return node;
565}
566EXPORT_SYMBOL_GPL(icc_node_create);
567
568/**
569 * icc_node_destroy() - destroy a node
570 * @id: node id
571 */
572void icc_node_destroy(int id)
573{
574 struct icc_node *node;
575
576 mutex_lock(&icc_lock);
577
578 node = node_find(id);
579 if (node) {
580 idr_remove(&icc_idr, node->id);
581 WARN_ON(!hlist_empty(&node->req_list));
582 }
583
584 mutex_unlock(&icc_lock);
585
586 kfree(node);
587}
588EXPORT_SYMBOL_GPL(icc_node_destroy);
589
590/**
591 * icc_link_create() - create a link between two nodes
592 * @node: source node id
593 * @dst_id: destination node id
594 *
595 * Create a link between two nodes. The nodes might belong to different
596 * interconnect providers and the @dst_id node might not exist (if the
597 * provider driver has not probed yet). So just create the @dst_id node
598 * and when the actual provider driver is probed, the rest of the node
599 * data is filled.
600 *
601 * Return: 0 on success, or an error code otherwise
602 */
603int icc_link_create(struct icc_node *node, const int dst_id)
604{
605 struct icc_node *dst;
606 struct icc_node **new;
607 int ret = 0;
608
609 if (!node->provider)
610 return -EINVAL;
611
612 mutex_lock(&icc_lock);
613
614 dst = node_find(dst_id);
615 if (!dst) {
616 dst = icc_node_create_nolock(dst_id);
617
618 if (IS_ERR(dst)) {
619 ret = PTR_ERR(dst);
620 goto out;
621 }
622 }
623
624 new = krealloc(node->links,
625 (node->num_links + 1) * sizeof(*node->links),
626 GFP_KERNEL);
627 if (!new) {
628 ret = -ENOMEM;
629 goto out;
630 }
631
632 node->links = new;
633 node->links[node->num_links++] = dst;
634
635out:
636 mutex_unlock(&icc_lock);
637
638 return ret;
639}
640EXPORT_SYMBOL_GPL(icc_link_create);
641
642/**
643 * icc_link_destroy() - destroy a link between two nodes
644 * @src: pointer to source node
645 * @dst: pointer to destination node
646 *
647 * Return: 0 on success, or an error code otherwise
648 */
649int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
650{
651 struct icc_node **new;
652 size_t slot;
653 int ret = 0;
654
655 if (IS_ERR_OR_NULL(src))
656 return -EINVAL;
657
658 if (IS_ERR_OR_NULL(dst))
659 return -EINVAL;
660
661 mutex_lock(&icc_lock);
662
663 for (slot = 0; slot < src->num_links; slot++)
664 if (src->links[slot] == dst)
665 break;
666
667 if (WARN_ON(slot == src->num_links)) {
668 ret = -ENXIO;
669 goto out;
670 }
671
672 src->links[slot] = src->links[--src->num_links];
673
674 new = krealloc(src->links, src->num_links * sizeof(*src->links),
675 GFP_KERNEL);
676 if (new)
677 src->links = new;
678
679out:
680 mutex_unlock(&icc_lock);
681
682 return ret;
683}
684EXPORT_SYMBOL_GPL(icc_link_destroy);
685
686/**
687 * icc_node_add() - add interconnect node to interconnect provider
688 * @node: pointer to the interconnect node
689 * @provider: pointer to the interconnect provider
690 */
691void icc_node_add(struct icc_node *node, struct icc_provider *provider)
692{
693 mutex_lock(&icc_lock);
694
695 node->provider = provider;
696 list_add_tail(&node->node_list, &provider->nodes);
697
698 mutex_unlock(&icc_lock);
699}
700EXPORT_SYMBOL_GPL(icc_node_add);
701
702/**
703 * icc_node_del() - delete interconnect node from interconnect provider
704 * @node: pointer to the interconnect node
705 */
706void icc_node_del(struct icc_node *node)
707{
708 mutex_lock(&icc_lock);
709
710 list_del(&node->node_list);
711
712 mutex_unlock(&icc_lock);
713}
714EXPORT_SYMBOL_GPL(icc_node_del);
715
716/**
717 * icc_provider_add() - add a new interconnect provider
718 * @provider: the interconnect provider that will be added into topology
719 *
720 * Return: 0 on success, or an error code otherwise
721 */
722int icc_provider_add(struct icc_provider *provider)
723{
724 if (WARN_ON(!provider->set))
725 return -EINVAL;
Georgi Djakov87e30312019-01-16 18:10:58 +0200726 if (WARN_ON(!provider->xlate))
727 return -EINVAL;
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200728
729 mutex_lock(&icc_lock);
730
731 INIT_LIST_HEAD(&provider->nodes);
732 list_add_tail(&provider->provider_list, &icc_providers);
733
734 mutex_unlock(&icc_lock);
735
736 dev_dbg(provider->dev, "interconnect provider added to topology\n");
737
738 return 0;
739}
740EXPORT_SYMBOL_GPL(icc_provider_add);
741
742/**
743 * icc_provider_del() - delete previously added interconnect provider
744 * @provider: the interconnect provider that will be removed from topology
745 *
746 * Return: 0 on success, or an error code otherwise
747 */
748int icc_provider_del(struct icc_provider *provider)
749{
750 mutex_lock(&icc_lock);
751 if (provider->users) {
752 pr_warn("interconnect provider still has %d users\n",
753 provider->users);
754 mutex_unlock(&icc_lock);
755 return -EBUSY;
756 }
757
758 if (!list_empty(&provider->nodes)) {
759 pr_warn("interconnect provider still has nodes\n");
760 mutex_unlock(&icc_lock);
761 return -EBUSY;
762 }
763
764 list_del(&provider->provider_list);
765 mutex_unlock(&icc_lock);
766
767 return 0;
768}
769EXPORT_SYMBOL_GPL(icc_provider_del);
770
Georgi Djakov3697ff42019-01-16 18:10:59 +0200771static int __init icc_init(void)
772{
773 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
774 debugfs_create_file("interconnect_summary", 0444,
775 icc_debugfs_dir, NULL, &icc_summary_fops);
776 return 0;
777}
778
779static void __exit icc_exit(void)
780{
781 debugfs_remove_recursive(icc_debugfs_dir);
782}
783module_init(icc_init);
784module_exit(icc_exit);
785
Georgi Djakov11f1cec2019-01-16 18:10:56 +0200786MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
787MODULE_DESCRIPTION("Interconnect Driver Core");
788MODULE_LICENSE("GPL v2");