Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Interconnect framework core driver |
| 4 | * |
| 5 | * Copyright (c) 2017-2019, Linaro Ltd. |
| 6 | * Author: Georgi Djakov <georgi.djakov@linaro.org> |
| 7 | */ |
| 8 | |
Georgi Djakov | 3697ff4 | 2019-01-16 18:10:59 +0200 | [diff] [blame^] | 9 | #include <linux/debugfs.h> |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 10 | #include <linux/device.h> |
| 11 | #include <linux/idr.h> |
| 12 | #include <linux/init.h> |
| 13 | #include <linux/interconnect.h> |
| 14 | #include <linux/interconnect-provider.h> |
| 15 | #include <linux/list.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/mutex.h> |
| 18 | #include <linux/slab.h> |
Georgi Djakov | 87e3031 | 2019-01-16 18:10:58 +0200 | [diff] [blame] | 19 | #include <linux/of.h> |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 20 | #include <linux/overflow.h> |
| 21 | |
| 22 | static DEFINE_IDR(icc_idr); |
| 23 | static LIST_HEAD(icc_providers); |
| 24 | static DEFINE_MUTEX(icc_lock); |
Georgi Djakov | 3697ff4 | 2019-01-16 18:10:59 +0200 | [diff] [blame^] | 25 | static struct dentry *icc_debugfs_dir; |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 26 | |
| 27 | /** |
| 28 | * struct icc_req - constraints that are attached to each node |
| 29 | * @req_node: entry in list of requests for the particular @node |
| 30 | * @node: the interconnect node to which this constraint applies |
| 31 | * @dev: reference to the device that sets the constraints |
| 32 | * @avg_bw: an integer describing the average bandwidth in kBps |
| 33 | * @peak_bw: an integer describing the peak bandwidth in kBps |
| 34 | */ |
| 35 | struct icc_req { |
| 36 | struct hlist_node req_node; |
| 37 | struct icc_node *node; |
| 38 | struct device *dev; |
| 39 | u32 avg_bw; |
| 40 | u32 peak_bw; |
| 41 | }; |
| 42 | |
| 43 | /** |
| 44 | * struct icc_path - interconnect path structure |
| 45 | * @num_nodes: number of hops (nodes) |
| 46 | * @reqs: array of the requests applicable to this path of nodes |
| 47 | */ |
| 48 | struct icc_path { |
| 49 | size_t num_nodes; |
| 50 | struct icc_req reqs[]; |
| 51 | }; |
| 52 | |
Georgi Djakov | 3697ff4 | 2019-01-16 18:10:59 +0200 | [diff] [blame^] | 53 | static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) |
| 54 | { |
| 55 | if (!n) |
| 56 | return; |
| 57 | |
| 58 | seq_printf(s, "%-30s %12u %12u\n", |
| 59 | n->name, n->avg_bw, n->peak_bw); |
| 60 | } |
| 61 | |
| 62 | static int icc_summary_show(struct seq_file *s, void *data) |
| 63 | { |
| 64 | struct icc_provider *provider; |
| 65 | |
| 66 | seq_puts(s, " node avg peak\n"); |
| 67 | seq_puts(s, "--------------------------------------------------------\n"); |
| 68 | |
| 69 | mutex_lock(&icc_lock); |
| 70 | |
| 71 | list_for_each_entry(provider, &icc_providers, provider_list) { |
| 72 | struct icc_node *n; |
| 73 | |
| 74 | list_for_each_entry(n, &provider->nodes, node_list) { |
| 75 | struct icc_req *r; |
| 76 | |
| 77 | icc_summary_show_one(s, n); |
| 78 | hlist_for_each_entry(r, &n->req_list, req_node) { |
| 79 | if (!r->dev) |
| 80 | continue; |
| 81 | |
| 82 | seq_printf(s, " %-26s %12u %12u\n", |
| 83 | dev_name(r->dev), r->avg_bw, |
| 84 | r->peak_bw); |
| 85 | } |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | mutex_unlock(&icc_lock); |
| 90 | |
| 91 | return 0; |
| 92 | } |
| 93 | |
| 94 | static int icc_summary_open(struct inode *inode, struct file *file) |
| 95 | { |
| 96 | return single_open(file, icc_summary_show, inode->i_private); |
| 97 | } |
| 98 | |
| 99 | static const struct file_operations icc_summary_fops = { |
| 100 | .open = icc_summary_open, |
| 101 | .read = seq_read, |
| 102 | .llseek = seq_lseek, |
| 103 | .release = single_release, |
| 104 | }; |
| 105 | |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 106 | static struct icc_node *node_find(const int id) |
| 107 | { |
| 108 | return idr_find(&icc_idr, id); |
| 109 | } |
| 110 | |
| 111 | static struct icc_path *path_init(struct device *dev, struct icc_node *dst, |
| 112 | ssize_t num_nodes) |
| 113 | { |
| 114 | struct icc_node *node = dst; |
| 115 | struct icc_path *path; |
| 116 | int i; |
| 117 | |
| 118 | path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); |
| 119 | if (!path) |
| 120 | return ERR_PTR(-ENOMEM); |
| 121 | |
| 122 | path->num_nodes = num_nodes; |
| 123 | |
| 124 | for (i = num_nodes - 1; i >= 0; i--) { |
| 125 | node->provider->users++; |
| 126 | hlist_add_head(&path->reqs[i].req_node, &node->req_list); |
| 127 | path->reqs[i].node = node; |
| 128 | path->reqs[i].dev = dev; |
| 129 | /* reference to previous node was saved during path traversal */ |
| 130 | node = node->reverse; |
| 131 | } |
| 132 | |
| 133 | return path; |
| 134 | } |
| 135 | |
| 136 | static struct icc_path *path_find(struct device *dev, struct icc_node *src, |
| 137 | struct icc_node *dst) |
| 138 | { |
| 139 | struct icc_path *path = ERR_PTR(-EPROBE_DEFER); |
| 140 | struct icc_node *n, *node = NULL; |
| 141 | struct list_head traverse_list; |
| 142 | struct list_head edge_list; |
| 143 | struct list_head visited_list; |
| 144 | size_t i, depth = 1; |
| 145 | bool found = false; |
| 146 | |
| 147 | INIT_LIST_HEAD(&traverse_list); |
| 148 | INIT_LIST_HEAD(&edge_list); |
| 149 | INIT_LIST_HEAD(&visited_list); |
| 150 | |
| 151 | list_add(&src->search_list, &traverse_list); |
| 152 | src->reverse = NULL; |
| 153 | |
| 154 | do { |
| 155 | list_for_each_entry_safe(node, n, &traverse_list, search_list) { |
| 156 | if (node == dst) { |
| 157 | found = true; |
| 158 | list_splice_init(&edge_list, &visited_list); |
| 159 | list_splice_init(&traverse_list, &visited_list); |
| 160 | break; |
| 161 | } |
| 162 | for (i = 0; i < node->num_links; i++) { |
| 163 | struct icc_node *tmp = node->links[i]; |
| 164 | |
| 165 | if (!tmp) { |
| 166 | path = ERR_PTR(-ENOENT); |
| 167 | goto out; |
| 168 | } |
| 169 | |
| 170 | if (tmp->is_traversed) |
| 171 | continue; |
| 172 | |
| 173 | tmp->is_traversed = true; |
| 174 | tmp->reverse = node; |
| 175 | list_add_tail(&tmp->search_list, &edge_list); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | if (found) |
| 180 | break; |
| 181 | |
| 182 | list_splice_init(&traverse_list, &visited_list); |
| 183 | list_splice_init(&edge_list, &traverse_list); |
| 184 | |
| 185 | /* count the hops including the source */ |
| 186 | depth++; |
| 187 | |
| 188 | } while (!list_empty(&traverse_list)); |
| 189 | |
| 190 | out: |
| 191 | |
| 192 | /* reset the traversed state */ |
| 193 | list_for_each_entry_reverse(n, &visited_list, search_list) |
| 194 | n->is_traversed = false; |
| 195 | |
| 196 | if (found) |
| 197 | path = path_init(dev, dst, depth); |
| 198 | |
| 199 | return path; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * We want the path to honor all bandwidth requests, so the average and peak |
| 204 | * bandwidth requirements from each consumer are aggregated at each node. |
| 205 | * The aggregation is platform specific, so each platform can customize it by |
| 206 | * implementing its own aggregate() function. |
| 207 | */ |
| 208 | |
| 209 | static int aggregate_requests(struct icc_node *node) |
| 210 | { |
| 211 | struct icc_provider *p = node->provider; |
| 212 | struct icc_req *r; |
| 213 | |
| 214 | node->avg_bw = 0; |
| 215 | node->peak_bw = 0; |
| 216 | |
| 217 | hlist_for_each_entry(r, &node->req_list, req_node) |
| 218 | p->aggregate(node, r->avg_bw, r->peak_bw, |
| 219 | &node->avg_bw, &node->peak_bw); |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | static int apply_constraints(struct icc_path *path) |
| 225 | { |
| 226 | struct icc_node *next, *prev = NULL; |
| 227 | int ret = -EINVAL; |
| 228 | int i; |
| 229 | |
| 230 | for (i = 0; i < path->num_nodes; i++) { |
| 231 | next = path->reqs[i].node; |
| 232 | |
| 233 | /* |
| 234 | * Both endpoints should be valid master-slave pairs of the |
| 235 | * same interconnect provider that will be configured. |
| 236 | */ |
| 237 | if (!prev || next->provider != prev->provider) { |
| 238 | prev = next; |
| 239 | continue; |
| 240 | } |
| 241 | |
| 242 | /* set the constraints */ |
| 243 | ret = next->provider->set(prev, next); |
| 244 | if (ret) |
| 245 | goto out; |
| 246 | |
| 247 | prev = next; |
| 248 | } |
| 249 | out: |
| 250 | return ret; |
| 251 | } |
| 252 | |
Georgi Djakov | 87e3031 | 2019-01-16 18:10:58 +0200 | [diff] [blame] | 253 | /* of_icc_xlate_onecell() - Translate function using a single index. |
| 254 | * @spec: OF phandle args to map into an interconnect node. |
| 255 | * @data: private data (pointer to struct icc_onecell_data) |
| 256 | * |
| 257 | * This is a generic translate function that can be used to model simple |
| 258 | * interconnect providers that have one device tree node and provide |
| 259 | * multiple interconnect nodes. A single cell is used as an index into |
| 260 | * an array of icc nodes specified in the icc_onecell_data struct when |
| 261 | * registering the provider. |
| 262 | */ |
| 263 | struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, |
| 264 | void *data) |
| 265 | { |
| 266 | struct icc_onecell_data *icc_data = data; |
| 267 | unsigned int idx = spec->args[0]; |
| 268 | |
| 269 | if (idx >= icc_data->num_nodes) { |
| 270 | pr_err("%s: invalid index %u\n", __func__, idx); |
| 271 | return ERR_PTR(-EINVAL); |
| 272 | } |
| 273 | |
| 274 | return icc_data->nodes[idx]; |
| 275 | } |
| 276 | EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); |
| 277 | |
| 278 | /** |
| 279 | * of_icc_get_from_provider() - Look-up interconnect node |
| 280 | * @spec: OF phandle args to use for look-up |
| 281 | * |
| 282 | * Looks for interconnect provider under the node specified by @spec and if |
| 283 | * found, uses xlate function of the provider to map phandle args to node. |
| 284 | * |
| 285 | * Returns a valid pointer to struct icc_node on success or ERR_PTR() |
| 286 | * on failure. |
| 287 | */ |
| 288 | static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec) |
| 289 | { |
| 290 | struct icc_node *node = ERR_PTR(-EPROBE_DEFER); |
| 291 | struct icc_provider *provider; |
| 292 | |
| 293 | if (!spec || spec->args_count != 1) |
| 294 | return ERR_PTR(-EINVAL); |
| 295 | |
| 296 | mutex_lock(&icc_lock); |
| 297 | list_for_each_entry(provider, &icc_providers, provider_list) { |
| 298 | if (provider->dev->of_node == spec->np) |
| 299 | node = provider->xlate(spec, provider->data); |
| 300 | if (!IS_ERR(node)) |
| 301 | break; |
| 302 | } |
| 303 | mutex_unlock(&icc_lock); |
| 304 | |
| 305 | return node; |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * of_icc_get() - get a path handle from a DT node based on name |
| 310 | * @dev: device pointer for the consumer device |
| 311 | * @name: interconnect path name |
| 312 | * |
| 313 | * This function will search for a path between two endpoints and return an |
| 314 | * icc_path handle on success. Use icc_put() to release constraints when they |
| 315 | * are not needed anymore. |
| 316 | * If the interconnect API is disabled, NULL is returned and the consumer |
| 317 | * drivers will still build. Drivers are free to handle this specifically, |
| 318 | * but they don't have to. |
| 319 | * |
| 320 | * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned |
| 321 | * when the API is disabled or the "interconnects" DT property is missing. |
| 322 | */ |
| 323 | struct icc_path *of_icc_get(struct device *dev, const char *name) |
| 324 | { |
| 325 | struct icc_path *path = ERR_PTR(-EPROBE_DEFER); |
| 326 | struct icc_node *src_node, *dst_node; |
| 327 | struct device_node *np = NULL; |
| 328 | struct of_phandle_args src_args, dst_args; |
| 329 | int idx = 0; |
| 330 | int ret; |
| 331 | |
| 332 | if (!dev || !dev->of_node) |
| 333 | return ERR_PTR(-ENODEV); |
| 334 | |
| 335 | np = dev->of_node; |
| 336 | |
| 337 | /* |
| 338 | * When the consumer DT node do not have "interconnects" property |
| 339 | * return a NULL path to skip setting constraints. |
| 340 | */ |
| 341 | if (!of_find_property(np, "interconnects", NULL)) |
| 342 | return NULL; |
| 343 | |
| 344 | /* |
| 345 | * We use a combination of phandle and specifier for endpoint. For now |
| 346 | * lets support only global ids and extend this in the future if needed |
| 347 | * without breaking DT compatibility. |
| 348 | */ |
| 349 | if (name) { |
| 350 | idx = of_property_match_string(np, "interconnect-names", name); |
| 351 | if (idx < 0) |
| 352 | return ERR_PTR(idx); |
| 353 | } |
| 354 | |
| 355 | ret = of_parse_phandle_with_args(np, "interconnects", |
| 356 | "#interconnect-cells", idx * 2, |
| 357 | &src_args); |
| 358 | if (ret) |
| 359 | return ERR_PTR(ret); |
| 360 | |
| 361 | of_node_put(src_args.np); |
| 362 | |
| 363 | ret = of_parse_phandle_with_args(np, "interconnects", |
| 364 | "#interconnect-cells", idx * 2 + 1, |
| 365 | &dst_args); |
| 366 | if (ret) |
| 367 | return ERR_PTR(ret); |
| 368 | |
| 369 | of_node_put(dst_args.np); |
| 370 | |
| 371 | src_node = of_icc_get_from_provider(&src_args); |
| 372 | |
| 373 | if (IS_ERR(src_node)) { |
| 374 | if (PTR_ERR(src_node) != -EPROBE_DEFER) |
| 375 | dev_err(dev, "error finding src node: %ld\n", |
| 376 | PTR_ERR(src_node)); |
| 377 | return ERR_CAST(src_node); |
| 378 | } |
| 379 | |
| 380 | dst_node = of_icc_get_from_provider(&dst_args); |
| 381 | |
| 382 | if (IS_ERR(dst_node)) { |
| 383 | if (PTR_ERR(dst_node) != -EPROBE_DEFER) |
| 384 | dev_err(dev, "error finding dst node: %ld\n", |
| 385 | PTR_ERR(dst_node)); |
| 386 | return ERR_CAST(dst_node); |
| 387 | } |
| 388 | |
| 389 | mutex_lock(&icc_lock); |
| 390 | path = path_find(dev, src_node, dst_node); |
| 391 | if (IS_ERR(path)) |
| 392 | dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); |
| 393 | mutex_unlock(&icc_lock); |
| 394 | |
| 395 | return path; |
| 396 | } |
| 397 | EXPORT_SYMBOL_GPL(of_icc_get); |
| 398 | |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 399 | /** |
| 400 | * icc_set_bw() - set bandwidth constraints on an interconnect path |
| 401 | * @path: reference to the path returned by icc_get() |
| 402 | * @avg_bw: average bandwidth in kilobytes per second |
| 403 | * @peak_bw: peak bandwidth in kilobytes per second |
| 404 | * |
| 405 | * This function is used by an interconnect consumer to express its own needs |
| 406 | * in terms of bandwidth for a previously requested path between two endpoints. |
| 407 | * The requests are aggregated and each node is updated accordingly. The entire |
| 408 | * path is locked by a mutex to ensure that the set() is completed. |
| 409 | * The @path can be NULL when the "interconnects" DT properties is missing, |
| 410 | * which will mean that no constraints will be set. |
| 411 | * |
| 412 | * Returns 0 on success, or an appropriate error code otherwise. |
| 413 | */ |
| 414 | int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) |
| 415 | { |
| 416 | struct icc_node *node; |
| 417 | size_t i; |
| 418 | int ret; |
| 419 | |
| 420 | if (!path) |
| 421 | return 0; |
| 422 | |
| 423 | mutex_lock(&icc_lock); |
| 424 | |
| 425 | for (i = 0; i < path->num_nodes; i++) { |
| 426 | node = path->reqs[i].node; |
| 427 | |
| 428 | /* update the consumer request for this path */ |
| 429 | path->reqs[i].avg_bw = avg_bw; |
| 430 | path->reqs[i].peak_bw = peak_bw; |
| 431 | |
| 432 | /* aggregate requests for this node */ |
| 433 | aggregate_requests(node); |
| 434 | } |
| 435 | |
| 436 | ret = apply_constraints(path); |
| 437 | if (ret) |
| 438 | pr_debug("interconnect: error applying constraints (%d)\n", |
| 439 | ret); |
| 440 | |
| 441 | mutex_unlock(&icc_lock); |
| 442 | |
| 443 | return ret; |
| 444 | } |
| 445 | EXPORT_SYMBOL_GPL(icc_set_bw); |
| 446 | |
| 447 | /** |
| 448 | * icc_get() - return a handle for path between two endpoints |
| 449 | * @dev: the device requesting the path |
| 450 | * @src_id: source device port id |
| 451 | * @dst_id: destination device port id |
| 452 | * |
| 453 | * This function will search for a path between two endpoints and return an |
| 454 | * icc_path handle on success. Use icc_put() to release |
| 455 | * constraints when they are not needed anymore. |
| 456 | * If the interconnect API is disabled, NULL is returned and the consumer |
| 457 | * drivers will still build. Drivers are free to handle this specifically, |
| 458 | * but they don't have to. |
| 459 | * |
| 460 | * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the |
| 461 | * interconnect API is disabled. |
| 462 | */ |
| 463 | struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id) |
| 464 | { |
| 465 | struct icc_node *src, *dst; |
| 466 | struct icc_path *path = ERR_PTR(-EPROBE_DEFER); |
| 467 | |
| 468 | mutex_lock(&icc_lock); |
| 469 | |
| 470 | src = node_find(src_id); |
| 471 | if (!src) |
| 472 | goto out; |
| 473 | |
| 474 | dst = node_find(dst_id); |
| 475 | if (!dst) |
| 476 | goto out; |
| 477 | |
| 478 | path = path_find(dev, src, dst); |
| 479 | if (IS_ERR(path)) |
| 480 | dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); |
| 481 | |
| 482 | out: |
| 483 | mutex_unlock(&icc_lock); |
| 484 | return path; |
| 485 | } |
| 486 | EXPORT_SYMBOL_GPL(icc_get); |
| 487 | |
| 488 | /** |
| 489 | * icc_put() - release the reference to the icc_path |
| 490 | * @path: interconnect path |
| 491 | * |
| 492 | * Use this function to release the constraints on a path when the path is |
| 493 | * no longer needed. The constraints will be re-aggregated. |
| 494 | */ |
| 495 | void icc_put(struct icc_path *path) |
| 496 | { |
| 497 | struct icc_node *node; |
| 498 | size_t i; |
| 499 | int ret; |
| 500 | |
| 501 | if (!path || WARN_ON(IS_ERR(path))) |
| 502 | return; |
| 503 | |
| 504 | ret = icc_set_bw(path, 0, 0); |
| 505 | if (ret) |
| 506 | pr_err("%s: error (%d)\n", __func__, ret); |
| 507 | |
| 508 | mutex_lock(&icc_lock); |
| 509 | for (i = 0; i < path->num_nodes; i++) { |
| 510 | node = path->reqs[i].node; |
| 511 | hlist_del(&path->reqs[i].req_node); |
| 512 | if (!WARN_ON(!node->provider->users)) |
| 513 | node->provider->users--; |
| 514 | } |
| 515 | mutex_unlock(&icc_lock); |
| 516 | |
| 517 | kfree(path); |
| 518 | } |
| 519 | EXPORT_SYMBOL_GPL(icc_put); |
| 520 | |
| 521 | static struct icc_node *icc_node_create_nolock(int id) |
| 522 | { |
| 523 | struct icc_node *node; |
| 524 | |
| 525 | /* check if node already exists */ |
| 526 | node = node_find(id); |
| 527 | if (node) |
| 528 | return node; |
| 529 | |
| 530 | node = kzalloc(sizeof(*node), GFP_KERNEL); |
| 531 | if (!node) |
| 532 | return ERR_PTR(-ENOMEM); |
| 533 | |
| 534 | id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); |
| 535 | if (id < 0) { |
| 536 | WARN(1, "%s: couldn't get idr\n", __func__); |
| 537 | kfree(node); |
| 538 | return ERR_PTR(id); |
| 539 | } |
| 540 | |
| 541 | node->id = id; |
| 542 | |
| 543 | return node; |
| 544 | } |
| 545 | |
| 546 | /** |
| 547 | * icc_node_create() - create a node |
| 548 | * @id: node id |
| 549 | * |
| 550 | * Return: icc_node pointer on success, or ERR_PTR() on error |
| 551 | */ |
| 552 | struct icc_node *icc_node_create(int id) |
| 553 | { |
| 554 | struct icc_node *node; |
| 555 | |
| 556 | mutex_lock(&icc_lock); |
| 557 | |
| 558 | node = icc_node_create_nolock(id); |
| 559 | |
| 560 | mutex_unlock(&icc_lock); |
| 561 | |
| 562 | return node; |
| 563 | } |
| 564 | EXPORT_SYMBOL_GPL(icc_node_create); |
| 565 | |
| 566 | /** |
| 567 | * icc_node_destroy() - destroy a node |
| 568 | * @id: node id |
| 569 | */ |
| 570 | void icc_node_destroy(int id) |
| 571 | { |
| 572 | struct icc_node *node; |
| 573 | |
| 574 | mutex_lock(&icc_lock); |
| 575 | |
| 576 | node = node_find(id); |
| 577 | if (node) { |
| 578 | idr_remove(&icc_idr, node->id); |
| 579 | WARN_ON(!hlist_empty(&node->req_list)); |
| 580 | } |
| 581 | |
| 582 | mutex_unlock(&icc_lock); |
| 583 | |
| 584 | kfree(node); |
| 585 | } |
| 586 | EXPORT_SYMBOL_GPL(icc_node_destroy); |
| 587 | |
| 588 | /** |
| 589 | * icc_link_create() - create a link between two nodes |
| 590 | * @node: source node id |
| 591 | * @dst_id: destination node id |
| 592 | * |
| 593 | * Create a link between two nodes. The nodes might belong to different |
| 594 | * interconnect providers and the @dst_id node might not exist (if the |
| 595 | * provider driver has not probed yet). So just create the @dst_id node |
| 596 | * and when the actual provider driver is probed, the rest of the node |
| 597 | * data is filled. |
| 598 | * |
| 599 | * Return: 0 on success, or an error code otherwise |
| 600 | */ |
| 601 | int icc_link_create(struct icc_node *node, const int dst_id) |
| 602 | { |
| 603 | struct icc_node *dst; |
| 604 | struct icc_node **new; |
| 605 | int ret = 0; |
| 606 | |
| 607 | if (!node->provider) |
| 608 | return -EINVAL; |
| 609 | |
| 610 | mutex_lock(&icc_lock); |
| 611 | |
| 612 | dst = node_find(dst_id); |
| 613 | if (!dst) { |
| 614 | dst = icc_node_create_nolock(dst_id); |
| 615 | |
| 616 | if (IS_ERR(dst)) { |
| 617 | ret = PTR_ERR(dst); |
| 618 | goto out; |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | new = krealloc(node->links, |
| 623 | (node->num_links + 1) * sizeof(*node->links), |
| 624 | GFP_KERNEL); |
| 625 | if (!new) { |
| 626 | ret = -ENOMEM; |
| 627 | goto out; |
| 628 | } |
| 629 | |
| 630 | node->links = new; |
| 631 | node->links[node->num_links++] = dst; |
| 632 | |
| 633 | out: |
| 634 | mutex_unlock(&icc_lock); |
| 635 | |
| 636 | return ret; |
| 637 | } |
| 638 | EXPORT_SYMBOL_GPL(icc_link_create); |
| 639 | |
| 640 | /** |
| 641 | * icc_link_destroy() - destroy a link between two nodes |
| 642 | * @src: pointer to source node |
| 643 | * @dst: pointer to destination node |
| 644 | * |
| 645 | * Return: 0 on success, or an error code otherwise |
| 646 | */ |
| 647 | int icc_link_destroy(struct icc_node *src, struct icc_node *dst) |
| 648 | { |
| 649 | struct icc_node **new; |
| 650 | size_t slot; |
| 651 | int ret = 0; |
| 652 | |
| 653 | if (IS_ERR_OR_NULL(src)) |
| 654 | return -EINVAL; |
| 655 | |
| 656 | if (IS_ERR_OR_NULL(dst)) |
| 657 | return -EINVAL; |
| 658 | |
| 659 | mutex_lock(&icc_lock); |
| 660 | |
| 661 | for (slot = 0; slot < src->num_links; slot++) |
| 662 | if (src->links[slot] == dst) |
| 663 | break; |
| 664 | |
| 665 | if (WARN_ON(slot == src->num_links)) { |
| 666 | ret = -ENXIO; |
| 667 | goto out; |
| 668 | } |
| 669 | |
| 670 | src->links[slot] = src->links[--src->num_links]; |
| 671 | |
| 672 | new = krealloc(src->links, src->num_links * sizeof(*src->links), |
| 673 | GFP_KERNEL); |
| 674 | if (new) |
| 675 | src->links = new; |
| 676 | |
| 677 | out: |
| 678 | mutex_unlock(&icc_lock); |
| 679 | |
| 680 | return ret; |
| 681 | } |
| 682 | EXPORT_SYMBOL_GPL(icc_link_destroy); |
| 683 | |
| 684 | /** |
| 685 | * icc_node_add() - add interconnect node to interconnect provider |
| 686 | * @node: pointer to the interconnect node |
| 687 | * @provider: pointer to the interconnect provider |
| 688 | */ |
| 689 | void icc_node_add(struct icc_node *node, struct icc_provider *provider) |
| 690 | { |
| 691 | mutex_lock(&icc_lock); |
| 692 | |
| 693 | node->provider = provider; |
| 694 | list_add_tail(&node->node_list, &provider->nodes); |
| 695 | |
| 696 | mutex_unlock(&icc_lock); |
| 697 | } |
| 698 | EXPORT_SYMBOL_GPL(icc_node_add); |
| 699 | |
| 700 | /** |
| 701 | * icc_node_del() - delete interconnect node from interconnect provider |
| 702 | * @node: pointer to the interconnect node |
| 703 | */ |
| 704 | void icc_node_del(struct icc_node *node) |
| 705 | { |
| 706 | mutex_lock(&icc_lock); |
| 707 | |
| 708 | list_del(&node->node_list); |
| 709 | |
| 710 | mutex_unlock(&icc_lock); |
| 711 | } |
| 712 | EXPORT_SYMBOL_GPL(icc_node_del); |
| 713 | |
| 714 | /** |
| 715 | * icc_provider_add() - add a new interconnect provider |
| 716 | * @provider: the interconnect provider that will be added into topology |
| 717 | * |
| 718 | * Return: 0 on success, or an error code otherwise |
| 719 | */ |
| 720 | int icc_provider_add(struct icc_provider *provider) |
| 721 | { |
| 722 | if (WARN_ON(!provider->set)) |
| 723 | return -EINVAL; |
Georgi Djakov | 87e3031 | 2019-01-16 18:10:58 +0200 | [diff] [blame] | 724 | if (WARN_ON(!provider->xlate)) |
| 725 | return -EINVAL; |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 726 | |
| 727 | mutex_lock(&icc_lock); |
| 728 | |
| 729 | INIT_LIST_HEAD(&provider->nodes); |
| 730 | list_add_tail(&provider->provider_list, &icc_providers); |
| 731 | |
| 732 | mutex_unlock(&icc_lock); |
| 733 | |
| 734 | dev_dbg(provider->dev, "interconnect provider added to topology\n"); |
| 735 | |
| 736 | return 0; |
| 737 | } |
| 738 | EXPORT_SYMBOL_GPL(icc_provider_add); |
| 739 | |
| 740 | /** |
| 741 | * icc_provider_del() - delete previously added interconnect provider |
| 742 | * @provider: the interconnect provider that will be removed from topology |
| 743 | * |
| 744 | * Return: 0 on success, or an error code otherwise |
| 745 | */ |
| 746 | int icc_provider_del(struct icc_provider *provider) |
| 747 | { |
| 748 | mutex_lock(&icc_lock); |
| 749 | if (provider->users) { |
| 750 | pr_warn("interconnect provider still has %d users\n", |
| 751 | provider->users); |
| 752 | mutex_unlock(&icc_lock); |
| 753 | return -EBUSY; |
| 754 | } |
| 755 | |
| 756 | if (!list_empty(&provider->nodes)) { |
| 757 | pr_warn("interconnect provider still has nodes\n"); |
| 758 | mutex_unlock(&icc_lock); |
| 759 | return -EBUSY; |
| 760 | } |
| 761 | |
| 762 | list_del(&provider->provider_list); |
| 763 | mutex_unlock(&icc_lock); |
| 764 | |
| 765 | return 0; |
| 766 | } |
| 767 | EXPORT_SYMBOL_GPL(icc_provider_del); |
| 768 | |
Georgi Djakov | 3697ff4 | 2019-01-16 18:10:59 +0200 | [diff] [blame^] | 769 | static int __init icc_init(void) |
| 770 | { |
| 771 | icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); |
| 772 | debugfs_create_file("interconnect_summary", 0444, |
| 773 | icc_debugfs_dir, NULL, &icc_summary_fops); |
| 774 | return 0; |
| 775 | } |
| 776 | |
| 777 | static void __exit icc_exit(void) |
| 778 | { |
| 779 | debugfs_remove_recursive(icc_debugfs_dir); |
| 780 | } |
| 781 | module_init(icc_init); |
| 782 | module_exit(icc_exit); |
| 783 | |
Georgi Djakov | 11f1cec | 2019-01-16 18:10:56 +0200 | [diff] [blame] | 784 | MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>"); |
| 785 | MODULE_DESCRIPTION("Interconnect Driver Core"); |
| 786 | MODULE_LICENSE("GPL v2"); |