blob: 9fecec6b4e86c30c8999ac79f5d5c37d6eba106e [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
Sean Christopherson5e124902019-02-15 12:48:38 -08008of a virtual machine. The ioctls belong to three classes:
Avi Kivity9c1b96e2009-06-09 12:37:58 +03009
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
Sean Christopherson5e124902019-02-15 12:48:38 -080012 virtual machines.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030013
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
Sean Christophersonddba9182019-02-15 12:48:39 -080016 create virtual cpus (vcpus) and devices.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030017
Sean Christopherson5e124902019-02-15 12:48:38 -080018 VM ioctls must be issued from the same process (address space) that was
19 used to create the VM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030020
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
Sean Christopherson5e124902019-02-15 12:48:38 -080024 vcpu ioctls should be issued from the same thread that was used to create
25 the vcpu, except for asynchronous vcpu ioctl that are marked as such in
26 the documentation. Otherwise, the first ioctl after switching threads
27 could see a performance impact.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030028
Sean Christophersonddba9182019-02-15 12:48:39 -080029 - device ioctls: These query and set attributes that control the operation
30 of a single device.
31
32 device ioctls must be issued from the same process (address space) that
33 was used to create the VM.
Jan Kiszka414fa982012-04-24 16:40:15 +020034
Wu Fengguang2044892d2009-12-24 09:04:16 +0800352. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020036-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030037
38The kvm API is centered around file descriptors. An initial
39open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
40can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080041handle will create a VM file descriptor which can be used to issue VM
Sean Christophersonddba9182019-02-15 12:48:39 -080042ioctls. A KVM_CREATE_VCPU or KVM_CREATE_DEVICE ioctl on a VM fd will
43create a virtual cpu or device and return a file descriptor pointing to
44the new resource. Finally, ioctls on a vcpu or device fd can be used
45to control the vcpu or device. For vcpus, this includes the important
46task of actually running guest code.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030047
48In general file descriptors can be migrated among processes by means
49of fork() and the SCM_RIGHTS facility of unix domain socket. These
50kinds of tricks are explicitly not supported by kvm. While they will
51not cause harm to the host, their actual behavior is not guaranteed by
Sean Christopherson5e124902019-02-15 12:48:38 -080052the API. See "General description" for details on the ioctl usage
53model that is supported by KVM.
Jan Kiszka414fa982012-04-24 16:40:15 +020054
Sean Christophersoneca6be52019-02-15 12:48:40 -080055It is important to note that althought VM ioctls may only be issued from
56the process that created the VM, a VM's lifecycle is associated with its
57file descriptor, not its creator (process). In other words, the VM and
58its resources, *including the associated address space*, are not freed
59until the last reference to the VM's file descriptor has been released.
60For example, if fork() is issued after ioctl(KVM_CREATE_VM), the VM will
61not be freed until both the parent (original) process and its child have
62put their references to the VM's file descriptor.
63
64Because a VM's resources are not freed until the last reference to its
65file descriptor is released, creating additional references to a VM via
66via fork(), dup(), etc... without careful consideration is strongly
67discouraged and may have unwanted side effects, e.g. memory allocated
68by and on behalf of the VM's process may not be freed/unaccounted when
69the VM is shut down.
70
71
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300723. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020073-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030074
75As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
76incompatible change are allowed. However, there is an extension
77facility that allows backward-compatible extensions to the API to be
78queried and used.
79
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090080The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030081Instead, kvm defines extension identifiers and a facility to query
82whether a particular extension identifier is available. If it is, a
83set of ioctls is available for application use.
84
Jan Kiszka414fa982012-04-24 16:40:15 +020085
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300864. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020087------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030088
89This section describes ioctls that can be used to control kvm guests.
90For each ioctl, the following information is provided along with a
91description:
92
93 Capability: which KVM extension provides this ioctl. Can be 'basic',
94 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030095 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030096 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030097 (see section 4.4), or 'none' which means that while not all kernels
98 support this ioctl, there's no capability bit to check its
99 availability: for kernels that don't support the ioctl,
100 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300101
102 Architectures: which instruction set architectures provide this ioctl.
103 x86 includes both i386 and x86_64.
104
105 Type: system, vm, or vcpu.
106
107 Parameters: what parameters are accepted by the ioctl.
108
109 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
110 are not detailed, but errors with specific meanings are.
111
Jan Kiszka414fa982012-04-24 16:40:15 +0200112
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001134.1 KVM_GET_API_VERSION
114
115Capability: basic
116Architectures: all
117Type: system ioctl
118Parameters: none
119Returns: the constant KVM_API_VERSION (=12)
120
121This identifies the API version as the stable kvm API. It is not
122expected that this number will change. However, Linux 2.6.20 and
1232.6.21 report earlier versions; these are not documented and not
124supported. Applications should refuse to run if KVM_GET_API_VERSION
125returns a value other than 12. If this check passes, all ioctls
126described as 'basic' will be available.
127
Jan Kiszka414fa982012-04-24 16:40:15 +0200128
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001294.2 KVM_CREATE_VM
130
131Capability: basic
132Architectures: all
133Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100134Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300135Returns: a VM fd that can be used to control the new virtual machine.
136
Jann Hornbcb85c82017-04-24 11:16:49 +0200137The new VM has no virtual cpus and no memory.
James Hogana8a3c422017-03-14 10:15:19 +0000138You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100139
140In order to create user controlled virtual machines on S390, check
141KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
142privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300143
James Hogana8a3c422017-03-14 10:15:19 +0000144To use hardware assisted virtualization on MIPS (VZ ASE) rather than
145the default trap & emulate implementation (which changes the virtual
146memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
147flag KVM_VM_MIPS_VZ.
148
Jan Kiszka414fa982012-04-24 16:40:15 +0200149
Suzuki K Poulose233a7cb2018-09-26 17:32:54 +0100150On arm64, the physical address size for a VM (IPA Size limit) is limited
151to 40bits by default. The limit can be configured if the host supports the
152extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
153KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
154identifier, where IPA_Bits is the maximum width of any physical
155address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
156machine type identifier.
157
158e.g, to configure a guest to use 48bit physical address size :
159
160 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
161
162The requested size (IPA_Bits) must be :
163 0 - Implies default size, 40bits (for backward compatibility)
164
165 or
166
167 N - Implies N bits, where N is a positive integer such that,
168 32 <= N <= Host_IPA_Limit
169
170Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and
171is dependent on the CPU capability and the kernel configuration. The limit can
172be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION
173ioctl() at run-time.
174
175Please note that configuring the IPA size does not affect the capability
176exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects
177size of the address translated by the stage2 level (guest physical to
178host physical address translations).
179
180
Tom Lendacky801e4592018-02-21 13:39:51 -06001814.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300182
Tom Lendacky801e4592018-02-21 13:39:51 -0600183Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300184Architectures: x86
Tom Lendacky801e4592018-02-21 13:39:51 -0600185Type: system ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300186Parameters: struct kvm_msr_list (in/out)
187Returns: 0 on success; -1 on error
188Errors:
Tom Lendacky801e4592018-02-21 13:39:51 -0600189 EFAULT: the msr index list cannot be read from or written to
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300190 E2BIG: the msr index list is to be to fit in the array specified by
191 the user.
192
193struct kvm_msr_list {
194 __u32 nmsrs; /* number of msrs in entries */
195 __u32 indices[0];
196};
197
Tom Lendacky801e4592018-02-21 13:39:51 -0600198The user fills in the size of the indices array in nmsrs, and in return
199kvm adjusts nmsrs to reflect the actual number of msrs and fills in the
200indices array with their numbers.
201
202KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list
203varies by kvm version and host processor, but does not change otherwise.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300204
Avi Kivity2e2602c2010-07-07 14:09:39 +0300205Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
206not returned in the MSR list, as different vcpus can have a different number
207of banks, as set via the KVM_X86_SETUP_MCE ioctl.
208
Tom Lendacky801e4592018-02-21 13:39:51 -0600209KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed
210to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities
211and processor features that are exposed via MSRs (e.g., VMX capabilities).
212This list also varies by kvm version and host processor, but does not change
213otherwise.
214
Jan Kiszka414fa982012-04-24 16:40:15 +0200215
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002164.4 KVM_CHECK_EXTENSION
217
Alexander Graf92b591a2014-07-14 18:33:08 +0200218Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300219Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200220Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300221Parameters: extension identifier (KVM_CAP_*)
222Returns: 0 if unsupported; 1 (or some other positive integer) if supported
223
224The API allows the application to query about extensions to the core
225kvm API. Userspace passes an extension identifier (an integer) and
226receives an integer that describes the extension availability.
227Generally 0 means no and 1 means yes, but some extensions may report
228additional information in the integer return value.
229
Alexander Graf92b591a2014-07-14 18:33:08 +0200230Based on their initialization different VMs may have different capabilities.
231It is thus encouraged to use the vm ioctl to query for capabilities (available
232with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200233
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002344.5 KVM_GET_VCPU_MMAP_SIZE
235
236Capability: basic
237Architectures: all
238Type: system ioctl
239Parameters: none
240Returns: size of vcpu mmap area, in bytes
241
242The KVM_RUN ioctl (cf.) communicates with userspace via a shared
243memory region. This ioctl returns the size of that region. See the
244KVM_RUN documentation for details.
245
Jan Kiszka414fa982012-04-24 16:40:15 +0200246
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002474.6 KVM_SET_MEMORY_REGION
248
249Capability: basic
250Architectures: all
251Type: vm ioctl
252Parameters: struct kvm_memory_region (in)
253Returns: 0 on success, -1 on error
254
Avi Kivityb74a07b2010-06-21 11:48:05 +0300255This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300256
Jan Kiszka414fa982012-04-24 16:40:15 +0200257
Paul Bolle68ba6972011-02-15 00:05:59 +01002584.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300259
260Capability: basic
261Architectures: all
262Type: vm ioctl
263Parameters: vcpu id (apic id on x86)
264Returns: vcpu fd on success, -1 on error
265
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200266This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
267The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300268
269The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
270the KVM_CHECK_EXTENSION ioctl() at run-time.
271The maximum possible value for max_vcpus can be retrieved using the
272KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
273
Pekka Enberg76d25402011-05-09 22:48:54 +0300274If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
275cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300276If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
277same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300278
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200279The maximum possible value for max_vcpu_id can be retrieved using the
280KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
281
282If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
283is the same as the value returned from KVM_CAP_MAX_VCPUS.
284
Paul Mackerras371fefd2011-06-29 00:23:08 +0000285On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
286threads in one or more virtual CPU cores. (This is because the
287hardware requires all the hardware threads in a CPU core to be in the
288same partition.) The KVM_CAP_PPC_SMT capability indicates the number
289of vcpus per virtual core (vcore). The vcore id is obtained by
290dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
291given vcore will always be in the same physical core as each other
292(though that might be a different physical core from time to time).
293Userspace can control the threading (SMT) mode of the guest by its
294allocation of vcpu ids. For example, if userspace wants
295single-threaded guest vcpus, it should make all vcpu ids be a multiple
296of the number of vcpus per vcore.
297
Carsten Otte5b1c1492012-01-04 10:25:23 +0100298For virtual cpus that have been created with S390 user controlled virtual
299machines, the resulting vcpu fd can be memory mapped at page offset
300KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
301cpu's hardware control block.
302
Jan Kiszka414fa982012-04-24 16:40:15 +0200303
Paul Bolle68ba6972011-02-15 00:05:59 +01003044.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300305
306Capability: basic
Andrew Jonesdbcdae12019-04-29 10:27:10 +0200307Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300308Type: vm ioctl
309Parameters: struct kvm_dirty_log (in/out)
310Returns: 0 on success, -1 on error
311
312/* for KVM_GET_DIRTY_LOG */
313struct kvm_dirty_log {
314 __u32 slot;
315 __u32 padding;
316 union {
317 void __user *dirty_bitmap; /* one bit per page */
318 __u64 padding;
319 };
320};
321
322Given a memory slot, return a bitmap containing any pages dirtied
323since the last call to this ioctl. Bit 0 is the first page in the
324memory slot. Ensure the entire structure is cleared to avoid padding
325issues.
326
Paolo Bonzinif481b062015-05-17 17:30:37 +0200327If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
328the address space for which you want to return the dirty bitmap.
329They must be less than the value that KVM_CHECK_EXTENSION returns for
330the KVM_CAP_MULTI_ADDRESS_SPACE capability.
331
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +0200332The bits in the dirty bitmap are cleared before the ioctl returns, unless
Peter Xud7547c52019-05-08 17:15:47 +0800333KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information,
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +0200334see the description of the capability.
Jan Kiszka414fa982012-04-24 16:40:15 +0200335
Paul Bolle68ba6972011-02-15 00:05:59 +01003364.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300337
338Capability: basic
339Architectures: x86
340Type: vm ioctl
341Parameters: struct kvm_memory_alias (in)
342Returns: 0 (success), -1 (error)
343
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300344This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300345
Jan Kiszka414fa982012-04-24 16:40:15 +0200346
Paul Bolle68ba6972011-02-15 00:05:59 +01003474.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300348
349Capability: basic
350Architectures: all
351Type: vcpu ioctl
352Parameters: none
353Returns: 0 on success, -1 on error
354Errors:
355 EINTR: an unmasked signal is pending
356
357This ioctl is used to run a guest virtual cpu. While there are no
358explicit parameters, there is an implicit parameter block that can be
359obtained by mmap()ing the vcpu fd at offset 0, with the size given by
360KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
361kvm_run' (see below).
362
Jan Kiszka414fa982012-04-24 16:40:15 +0200363
Paul Bolle68ba6972011-02-15 00:05:59 +01003644.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300365
366Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100367Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368Type: vcpu ioctl
369Parameters: struct kvm_regs (out)
370Returns: 0 on success, -1 on error
371
372Reads the general purpose registers from the vcpu.
373
374/* x86 */
375struct kvm_regs {
376 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
377 __u64 rax, rbx, rcx, rdx;
378 __u64 rsi, rdi, rsp, rbp;
379 __u64 r8, r9, r10, r11;
380 __u64 r12, r13, r14, r15;
381 __u64 rip, rflags;
382};
383
James Hoganc2d2c212014-07-04 15:11:35 +0100384/* mips */
385struct kvm_regs {
386 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
387 __u64 gpr[32];
388 __u64 hi;
389 __u64 lo;
390 __u64 pc;
391};
392
Jan Kiszka414fa982012-04-24 16:40:15 +0200393
Paul Bolle68ba6972011-02-15 00:05:59 +01003944.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300395
396Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100397Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300398Type: vcpu ioctl
399Parameters: struct kvm_regs (in)
400Returns: 0 on success, -1 on error
401
402Writes the general purpose registers into the vcpu.
403
404See KVM_GET_REGS for the data structure.
405
Jan Kiszka414fa982012-04-24 16:40:15 +0200406
Paul Bolle68ba6972011-02-15 00:05:59 +01004074.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300408
409Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500410Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300411Type: vcpu ioctl
412Parameters: struct kvm_sregs (out)
413Returns: 0 on success, -1 on error
414
415Reads special registers from the vcpu.
416
417/* x86 */
418struct kvm_sregs {
419 struct kvm_segment cs, ds, es, fs, gs, ss;
420 struct kvm_segment tr, ldt;
421 struct kvm_dtable gdt, idt;
422 __u64 cr0, cr2, cr3, cr4, cr8;
423 __u64 efer;
424 __u64 apic_base;
425 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
426};
427
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000428/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500429
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300430interrupt_bitmap is a bitmap of pending external interrupts. At most
431one bit may be set. This interrupt has been acknowledged by the APIC
432but not yet injected into the cpu core.
433
Jan Kiszka414fa982012-04-24 16:40:15 +0200434
Paul Bolle68ba6972011-02-15 00:05:59 +01004354.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300436
437Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500438Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300439Type: vcpu ioctl
440Parameters: struct kvm_sregs (in)
441Returns: 0 on success, -1 on error
442
443Writes special registers into the vcpu. See KVM_GET_SREGS for the
444data structures.
445
Jan Kiszka414fa982012-04-24 16:40:15 +0200446
Paul Bolle68ba6972011-02-15 00:05:59 +01004474.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300448
449Capability: basic
450Architectures: x86
451Type: vcpu ioctl
452Parameters: struct kvm_translation (in/out)
453Returns: 0 on success, -1 on error
454
455Translates a virtual address according to the vcpu's current address
456translation mode.
457
458struct kvm_translation {
459 /* in */
460 __u64 linear_address;
461
462 /* out */
463 __u64 physical_address;
464 __u8 valid;
465 __u8 writeable;
466 __u8 usermode;
467 __u8 pad[5];
468};
469
Jan Kiszka414fa982012-04-24 16:40:15 +0200470
Paul Bolle68ba6972011-02-15 00:05:59 +01004714.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300472
473Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100474Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300475Type: vcpu ioctl
476Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200477Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300478
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200479Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300480
481/* for KVM_INTERRUPT */
482struct kvm_interrupt {
483 /* in */
484 __u32 irq;
485};
486
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200487X86:
488
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200489Returns: 0 on success,
490 -EEXIST if an interrupt is already enqueued
491 -EINVAL the the irq number is invalid
492 -ENXIO if the PIC is in the kernel
493 -EFAULT if the pointer is invalid
494
495Note 'irq' is an interrupt vector, not an interrupt pin or line. This
496ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300497
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200498PPC:
499
500Queues an external interrupt to be injected. This ioctl is overleaded
501with 3 different irq values:
502
503a) KVM_INTERRUPT_SET
504
505 This injects an edge type external interrupt into the guest once it's ready
506 to receive interrupts. When injected, the interrupt is done.
507
508b) KVM_INTERRUPT_UNSET
509
510 This unsets any pending interrupt.
511
512 Only available with KVM_CAP_PPC_UNSET_IRQ.
513
514c) KVM_INTERRUPT_SET_LEVEL
515
516 This injects a level type external interrupt into the guest context. The
517 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
518 is triggered.
519
520 Only available with KVM_CAP_PPC_IRQ_LEVEL.
521
522Note that any value for 'irq' other than the ones stated above is invalid
523and incurs unexpected behavior.
524
Sean Christopherson5e124902019-02-15 12:48:38 -0800525This is an asynchronous vcpu ioctl and can be invoked from any thread.
526
James Hoganc2d2c212014-07-04 15:11:35 +0100527MIPS:
528
529Queues an external interrupt to be injected into the virtual CPU. A negative
530interrupt number dequeues the interrupt.
531
Sean Christopherson5e124902019-02-15 12:48:38 -0800532This is an asynchronous vcpu ioctl and can be invoked from any thread.
533
Jan Kiszka414fa982012-04-24 16:40:15 +0200534
Paul Bolle68ba6972011-02-15 00:05:59 +01005354.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300536
537Capability: basic
538Architectures: none
539Type: vcpu ioctl
540Parameters: none)
541Returns: -1 on error
542
543Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
544
Jan Kiszka414fa982012-04-24 16:40:15 +0200545
Paul Bolle68ba6972011-02-15 00:05:59 +01005464.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300547
Tom Lendacky801e4592018-02-21 13:39:51 -0600548Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300549Architectures: x86
Tom Lendacky801e4592018-02-21 13:39:51 -0600550Type: system ioctl, vcpu ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300551Parameters: struct kvm_msrs (in/out)
Tom Lendacky801e4592018-02-21 13:39:51 -0600552Returns: number of msrs successfully returned;
553 -1 on error
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300554
Tom Lendacky801e4592018-02-21 13:39:51 -0600555When used as a system ioctl:
556Reads the values of MSR-based features that are available for the VM. This
557is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values.
558The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST
559in a system ioctl.
560
561When used as a vcpu ioctl:
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300562Reads model-specific registers from the vcpu. Supported msr indices can
Tom Lendacky801e4592018-02-21 13:39:51 -0600563be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300564
565struct kvm_msrs {
566 __u32 nmsrs; /* number of msrs in entries */
567 __u32 pad;
568
569 struct kvm_msr_entry entries[0];
570};
571
572struct kvm_msr_entry {
573 __u32 index;
574 __u32 reserved;
575 __u64 data;
576};
577
578Application code should set the 'nmsrs' member (which indicates the
579size of the entries array) and the 'index' member of each array entry.
580kvm will fill in the 'data' member.
581
Jan Kiszka414fa982012-04-24 16:40:15 +0200582
Paul Bolle68ba6972011-02-15 00:05:59 +01005834.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300584
585Capability: basic
586Architectures: x86
587Type: vcpu ioctl
588Parameters: struct kvm_msrs (in)
Xiaoyao Lib274a292019-09-05 08:57:37 +0800589Returns: number of msrs successfully set (see below), -1 on error
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300590
591Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
592data structures.
593
594Application code should set the 'nmsrs' member (which indicates the
595size of the entries array), and the 'index' and 'data' members of each
596array entry.
597
Xiaoyao Lib274a292019-09-05 08:57:37 +0800598It tries to set the MSRs in array entries[] one by one. If setting an MSR
599fails, e.g., due to setting reserved bits, the MSR isn't supported/emulated
600by KVM, etc..., it stops processing the MSR list and returns the number of
601MSRs that have been set successfully.
602
Jan Kiszka414fa982012-04-24 16:40:15 +0200603
Paul Bolle68ba6972011-02-15 00:05:59 +01006044.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300605
606Capability: basic
607Architectures: x86
608Type: vcpu ioctl
609Parameters: struct kvm_cpuid (in)
610Returns: 0 on success, -1 on error
611
612Defines the vcpu responses to the cpuid instruction. Applications
613should use the KVM_SET_CPUID2 ioctl if available.
614
615
616struct kvm_cpuid_entry {
617 __u32 function;
618 __u32 eax;
619 __u32 ebx;
620 __u32 ecx;
621 __u32 edx;
622 __u32 padding;
623};
624
625/* for KVM_SET_CPUID */
626struct kvm_cpuid {
627 __u32 nent;
628 __u32 padding;
629 struct kvm_cpuid_entry entries[0];
630};
631
Jan Kiszka414fa982012-04-24 16:40:15 +0200632
Paul Bolle68ba6972011-02-15 00:05:59 +01006334.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300634
635Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100636Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300637Type: vcpu ioctl
638Parameters: struct kvm_signal_mask (in)
639Returns: 0 on success, -1 on error
640
641Defines which signals are blocked during execution of KVM_RUN. This
642signal mask temporarily overrides the threads signal mask. Any
643unblocked signal received (except SIGKILL and SIGSTOP, which retain
644their traditional behaviour) will cause KVM_RUN to return with -EINTR.
645
646Note the signal will only be delivered if not blocked by the original
647signal mask.
648
649/* for KVM_SET_SIGNAL_MASK */
650struct kvm_signal_mask {
651 __u32 len;
652 __u8 sigset[0];
653};
654
Jan Kiszka414fa982012-04-24 16:40:15 +0200655
Paul Bolle68ba6972011-02-15 00:05:59 +01006564.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300657
658Capability: basic
659Architectures: x86
660Type: vcpu ioctl
661Parameters: struct kvm_fpu (out)
662Returns: 0 on success, -1 on error
663
664Reads the floating point state from the vcpu.
665
666/* for KVM_GET_FPU and KVM_SET_FPU */
667struct kvm_fpu {
668 __u8 fpr[8][16];
669 __u16 fcw;
670 __u16 fsw;
671 __u8 ftwx; /* in fxsave format */
672 __u8 pad1;
673 __u16 last_opcode;
674 __u64 last_ip;
675 __u64 last_dp;
676 __u8 xmm[16][16];
677 __u32 mxcsr;
678 __u32 pad2;
679};
680
Jan Kiszka414fa982012-04-24 16:40:15 +0200681
Paul Bolle68ba6972011-02-15 00:05:59 +01006824.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300683
684Capability: basic
685Architectures: x86
686Type: vcpu ioctl
687Parameters: struct kvm_fpu (in)
688Returns: 0 on success, -1 on error
689
690Writes the floating point state to the vcpu.
691
692/* for KVM_GET_FPU and KVM_SET_FPU */
693struct kvm_fpu {
694 __u8 fpr[8][16];
695 __u16 fcw;
696 __u16 fsw;
697 __u8 ftwx; /* in fxsave format */
698 __u8 pad1;
699 __u16 last_opcode;
700 __u64 last_ip;
701 __u64 last_dp;
702 __u8 xmm[16][16];
703 __u32 mxcsr;
704 __u32 pad2;
705};
706
Jan Kiszka414fa982012-04-24 16:40:15 +0200707
Paul Bolle68ba6972011-02-15 00:05:59 +01007084.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300709
Cornelia Huck84223592013-07-15 13:36:01 +0200710Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100711Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300712Type: vm ioctl
713Parameters: none
714Returns: 0 on success, -1 on error
715
Andre Przywaraac3d3732014-06-03 10:26:30 +0200716Creates an interrupt controller model in the kernel.
717On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
718future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
719PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
720On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
721KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
722KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
723On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200724
725Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
726before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300727
Jan Kiszka414fa982012-04-24 16:40:15 +0200728
Paul Bolle68ba6972011-02-15 00:05:59 +01007294.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300730
731Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100732Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300733Type: vm ioctl
734Parameters: struct kvm_irq_level
735Returns: 0 on success, -1 on error
736
737Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500738On some architectures it is required that an interrupt controller model has
739been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
740interrupts require the level to be set to 1 and then back to 0.
741
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500742On real hardware, interrupt pins can be active-low or active-high. This
743does not matter for the level field of struct kvm_irq_level: 1 always
744means active (asserted), 0 means inactive (deasserted).
745
746x86 allows the operating system to program the interrupt polarity
747(active-low/active-high) for level-triggered interrupts, and KVM used
748to consider the polarity. However, due to bitrot in the handling of
749active-low interrupts, the above convention is now valid on x86 too.
750This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
751should not present interrupts to the guest as active-low unless this
752capability is present (or unless it is not using the in-kernel irqchip,
753of course).
754
755
Marc Zyngier379e04c72013-04-02 17:46:31 +0100756ARM/arm64 can signal an interrupt either at the CPU level, or at the
757in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
758use PPIs designated for specific cpus. The irq field is interpreted
759like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500760
Marc Zyngier92f35b72019-08-18 14:09:47 +0100761  bits: | 31 ... 28 | 27 ... 24 | 23 ... 16 | 15 ... 0 |
762 field: | vcpu2_index | irq_type | vcpu_index | irq_id |
Christoffer Dall86ce8532013-01-20 18:28:08 -0500763
764The irq_type field has the following values:
765- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
766- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
767 (the vcpu_index field is ignored)
768- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
769
770(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
771
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500772In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300773
Marc Zyngier92f35b72019-08-18 14:09:47 +0100774When KVM_CAP_ARM_IRQ_LINE_LAYOUT_2 is supported, the target vcpu is
775identified as (256 * vcpu2_index + vcpu_index). Otherwise, vcpu2_index
776must be zero.
777
778Note that on arm/arm64, the KVM_CAP_IRQCHIP capability only conditions
779injection of interrupts for the in-kernel irqchip. KVM_IRQ_LINE can always
780be used for a userspace interrupt controller.
781
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300782struct kvm_irq_level {
783 union {
784 __u32 irq; /* GSI */
785 __s32 status; /* not used for KVM_IRQ_LEVEL */
786 };
787 __u32 level; /* 0 or 1 */
788};
789
Jan Kiszka414fa982012-04-24 16:40:15 +0200790
Paul Bolle68ba6972011-02-15 00:05:59 +01007914.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300792
793Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100794Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300795Type: vm ioctl
796Parameters: struct kvm_irqchip (in/out)
797Returns: 0 on success, -1 on error
798
799Reads the state of a kernel interrupt controller created with
800KVM_CREATE_IRQCHIP into a buffer provided by the caller.
801
802struct kvm_irqchip {
803 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
804 __u32 pad;
805 union {
806 char dummy[512]; /* reserving space */
807 struct kvm_pic_state pic;
808 struct kvm_ioapic_state ioapic;
809 } chip;
810};
811
Jan Kiszka414fa982012-04-24 16:40:15 +0200812
Paul Bolle68ba6972011-02-15 00:05:59 +01008134.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300814
815Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100816Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300817Type: vm ioctl
818Parameters: struct kvm_irqchip (in)
819Returns: 0 on success, -1 on error
820
821Sets the state of a kernel interrupt controller created with
822KVM_CREATE_IRQCHIP from a buffer provided by the caller.
823
824struct kvm_irqchip {
825 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
826 __u32 pad;
827 union {
828 char dummy[512]; /* reserving space */
829 struct kvm_pic_state pic;
830 struct kvm_ioapic_state ioapic;
831 } chip;
832};
833
Jan Kiszka414fa982012-04-24 16:40:15 +0200834
Paul Bolle68ba6972011-02-15 00:05:59 +01008354.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700836
837Capability: KVM_CAP_XEN_HVM
838Architectures: x86
839Type: vm ioctl
840Parameters: struct kvm_xen_hvm_config (in)
841Returns: 0 on success, -1 on error
842
843Sets the MSR that the Xen HVM guest uses to initialize its hypercall
844page, and provides the starting address and size of the hypercall
845blobs in userspace. When the guest writes the MSR, kvm copies one
846page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
847memory.
848
849struct kvm_xen_hvm_config {
850 __u32 flags;
851 __u32 msr;
852 __u64 blob_addr_32;
853 __u64 blob_addr_64;
854 __u8 blob_size_32;
855 __u8 blob_size_64;
856 __u8 pad2[30];
857};
858
Jan Kiszka414fa982012-04-24 16:40:15 +0200859
Paul Bolle68ba6972011-02-15 00:05:59 +01008604.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400861
862Capability: KVM_CAP_ADJUST_CLOCK
863Architectures: x86
864Type: vm ioctl
865Parameters: struct kvm_clock_data (out)
866Returns: 0 on success, -1 on error
867
868Gets the current timestamp of kvmclock as seen by the current guest. In
869conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
870such as migration.
871
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100872When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
873set of bits that KVM can return in struct kvm_clock_data's flag member.
874
875The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
876value is the exact kvmclock value seen by all VCPUs at the instant
877when KVM_GET_CLOCK was called. If clear, the returned value is simply
878CLOCK_MONOTONIC plus a constant offset; the offset can be modified
879with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
880but the exact value read by each VCPU could differ, because the host
881TSC is not stable.
882
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400883struct kvm_clock_data {
884 __u64 clock; /* kvmclock current value */
885 __u32 flags;
886 __u32 pad[9];
887};
888
Jan Kiszka414fa982012-04-24 16:40:15 +0200889
Paul Bolle68ba6972011-02-15 00:05:59 +01008904.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400891
892Capability: KVM_CAP_ADJUST_CLOCK
893Architectures: x86
894Type: vm ioctl
895Parameters: struct kvm_clock_data (in)
896Returns: 0 on success, -1 on error
897
Wu Fengguang2044892d2009-12-24 09:04:16 +0800898Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400899In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
900such as migration.
901
902struct kvm_clock_data {
903 __u64 clock; /* kvmclock current value */
904 __u32 flags;
905 __u32 pad[9];
906};
907
Jan Kiszka414fa982012-04-24 16:40:15 +0200908
Paul Bolle68ba6972011-02-15 00:05:59 +01009094.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100910
911Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100912Extended by: KVM_CAP_INTR_SHADOW
James Morseb0960b92018-07-19 16:24:25 +0100913Architectures: x86, arm, arm64
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100914Type: vcpu ioctl
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100915Parameters: struct kvm_vcpu_event (out)
916Returns: 0 on success, -1 on error
917
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100918X86:
919
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100920Gets currently pending exceptions, interrupts, and NMIs as well as related
921states of the vcpu.
922
923struct kvm_vcpu_events {
924 struct {
925 __u8 injected;
926 __u8 nr;
927 __u8 has_error_code;
Jim Mattson59073aa2018-10-16 14:29:20 -0700928 __u8 pending;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100929 __u32 error_code;
930 } exception;
931 struct {
932 __u8 injected;
933 __u8 nr;
934 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100935 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100936 } interrupt;
937 struct {
938 __u8 injected;
939 __u8 pending;
940 __u8 masked;
941 __u8 pad;
942 } nmi;
943 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100944 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200945 struct {
946 __u8 smm;
947 __u8 pending;
948 __u8 smm_inside_nmi;
949 __u8 latched_init;
950 } smi;
Jim Mattson59073aa2018-10-16 14:29:20 -0700951 __u8 reserved[27];
952 __u8 exception_has_payload;
953 __u64 exception_payload;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100954};
955
Jim Mattson59073aa2018-10-16 14:29:20 -0700956The following bits are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100957
Jim Mattson59073aa2018-10-16 14:29:20 -0700958- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that
Paolo Bonzinif0778252015-04-01 15:06:40 +0200959 interrupt.shadow contains a valid state.
960
Jim Mattson59073aa2018-10-16 14:29:20 -0700961- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a
962 valid state.
963
964- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the
965 exception_has_payload, exception_payload, and exception.pending
966 fields contain a valid state. This bit will be set whenever
967 KVM_CAP_EXCEPTION_PAYLOAD is enabled.
Jan Kiszka414fa982012-04-24 16:40:15 +0200968
James Morseb0960b92018-07-19 16:24:25 +0100969ARM/ARM64:
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100970
971If the guest accesses a device that is being emulated by the host kernel in
972such a way that a real device would generate a physical SError, KVM may make
973a virtual SError pending for that VCPU. This system error interrupt remains
974pending until the guest takes the exception by unmasking PSTATE.A.
975
976Running the VCPU may cause it to take a pending SError, or make an access that
977causes an SError to become pending. The event's description is only valid while
978the VPCU is not running.
979
980This API provides a way to read and write the pending 'event' state that is not
981visible to the guest. To save, restore or migrate a VCPU the struct representing
982the state can be read then written using this GET/SET API, along with the other
983guest-visible registers. It is not possible to 'cancel' an SError that has been
984made pending.
985
986A device being emulated in user-space may also wish to generate an SError. To do
987this the events structure can be populated by user-space. The current state
988should be read first, to ensure no existing SError is pending. If an existing
989SError is pending, the architecture's 'Multiple SError interrupts' rules should
990be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and
991Serviceability (RAS) Specification").
992
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100993SError exceptions always have an ESR value. Some CPUs have the ability to
994specify what the virtual SError's ESR value should be. These systems will
Dongjiu Geng688e0582018-08-20 17:39:25 -0400995advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100996always have a non-zero value when read, and the agent making an SError pending
997should specify the ISS field in the lower 24 bits of exception.serror_esr. If
Dongjiu Geng688e0582018-08-20 17:39:25 -0400998the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100999with exception.has_esr as zero, KVM will choose an ESR.
1000
1001Specifying exception.has_esr on a system that does not support it will return
1002-EINVAL. Setting anything other than the lower 24bits of exception.serror_esr
1003will return -EINVAL.
1004
Christoffer Dallda345172019-10-11 13:07:06 +02001005It is not possible to read back a pending external abort (injected via
1006KVM_SET_VCPU_EVENTS or otherwise) because such an exception is always delivered
1007directly to the virtual CPU).
1008
1009
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001010struct kvm_vcpu_events {
1011 struct {
1012 __u8 serror_pending;
1013 __u8 serror_has_esr;
Christoffer Dallda345172019-10-11 13:07:06 +02001014 __u8 ext_dabt_pending;
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001015 /* Align it to 8 bytes */
Christoffer Dallda345172019-10-11 13:07:06 +02001016 __u8 pad[5];
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001017 __u64 serror_esr;
1018 } exception;
1019 __u32 reserved[12];
1020};
1021
Paul Bolle68ba6972011-02-15 00:05:59 +010010224.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +01001023
1024Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +01001025Extended by: KVM_CAP_INTR_SHADOW
James Morseb0960b92018-07-19 16:24:25 +01001026Architectures: x86, arm, arm64
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001027Type: vcpu ioctl
Jan Kiszka3cfc3092009-11-12 01:04:25 +01001028Parameters: struct kvm_vcpu_event (in)
1029Returns: 0 on success, -1 on error
1030
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001031X86:
1032
Jan Kiszka3cfc3092009-11-12 01:04:25 +01001033Set pending exceptions, interrupts, and NMIs as well as related states of the
1034vcpu.
1035
1036See KVM_GET_VCPU_EVENTS for the data structure.
1037
Jan Kiszkadab4b912009-12-06 18:24:15 +01001038Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +02001039from the update. These fields are nmi.pending, sipi_vector, smi.smm,
1040smi.pending. Keep the corresponding bits in the flags field cleared to
1041suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +01001042
1043KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
1044KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +02001045KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +01001046
Jan Kiszka48005f62010-02-19 19:38:07 +01001047If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
1048the flags field to signal that interrupt.shadow contains a valid state and
1049shall be written into the VCPU.
1050
Paolo Bonzinif0778252015-04-01 15:06:40 +02001051KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
1052
Jim Mattson59073aa2018-10-16 14:29:20 -07001053If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD
1054can be set in the flags field to signal that the
1055exception_has_payload, exception_payload, and exception.pending fields
1056contain a valid state and shall be written into the VCPU.
1057
James Morseb0960b92018-07-19 16:24:25 +01001058ARM/ARM64:
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001059
Christoffer Dallda345172019-10-11 13:07:06 +02001060User space may need to inject several types of events to the guest.
1061
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001062Set the pending SError exception state for this VCPU. It is not possible to
1063'cancel' an Serror that has been made pending.
1064
Christoffer Dallda345172019-10-11 13:07:06 +02001065If the guest performed an access to I/O memory which could not be handled by
1066userspace, for example because of missing instruction syndrome decode
1067information or because there is no device mapped at the accessed IPA, then
1068userspace can ask the kernel to inject an external abort using the address
1069from the exiting fault on the VCPU. It is a programming error to set
1070ext_dabt_pending after an exit which was not either KVM_EXIT_MMIO or
1071KVM_EXIT_ARM_NISV. This feature is only available if the system supports
1072KVM_CAP_ARM_INJECT_EXT_DABT. This is a helper which provides commonality in
1073how userspace reports accesses for the above cases to guests, across different
1074userspace implementations. Nevertheless, userspace can still emulate all Arm
1075exceptions by manipulating individual registers using the KVM_SET_ONE_REG API.
1076
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001077See KVM_GET_VCPU_EVENTS for the data structure.
1078
Jan Kiszka414fa982012-04-24 16:40:15 +02001079
Paul Bolle68ba6972011-02-15 00:05:59 +010010804.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +01001081
1082Capability: KVM_CAP_DEBUGREGS
1083Architectures: x86
1084Type: vm ioctl
1085Parameters: struct kvm_debugregs (out)
1086Returns: 0 on success, -1 on error
1087
1088Reads debug registers from the vcpu.
1089
1090struct kvm_debugregs {
1091 __u64 db[4];
1092 __u64 dr6;
1093 __u64 dr7;
1094 __u64 flags;
1095 __u64 reserved[9];
1096};
1097
Jan Kiszka414fa982012-04-24 16:40:15 +02001098
Paul Bolle68ba6972011-02-15 00:05:59 +010010994.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +01001100
1101Capability: KVM_CAP_DEBUGREGS
1102Architectures: x86
1103Type: vm ioctl
1104Parameters: struct kvm_debugregs (in)
1105Returns: 0 on success, -1 on error
1106
1107Writes debug registers into the vcpu.
1108
1109See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
1110yet and must be cleared on entry.
1111
Jan Kiszka414fa982012-04-24 16:40:15 +02001112
Paul Bolle68ba6972011-02-15 00:05:59 +010011134.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001114
Dennis Restle76e3bcd2019-04-30 01:01:49 +02001115Capability: KVM_CAP_USER_MEMORY
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001116Architectures: all
1117Type: vm ioctl
1118Parameters: struct kvm_userspace_memory_region (in)
1119Returns: 0 on success, -1 on error
1120
1121struct kvm_userspace_memory_region {
1122 __u32 slot;
1123 __u32 flags;
1124 __u64 guest_phys_addr;
1125 __u64 memory_size; /* bytes */
1126 __u64 userspace_addr; /* start of the userspace allocated memory */
1127};
1128
1129/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +08001130#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
1131#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001132
Paolo Bonzinie2788c42019-03-28 17:22:31 +01001133This ioctl allows the user to create, modify or delete a guest physical
1134memory slot. Bits 0-15 of "slot" specify the slot id and this value
1135should be less than the maximum number of user memory slots supported per
Paolo Bonzinic110ae52019-03-28 17:24:03 +01001136VM. The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS.
1137Slots may not overlap in guest physical address space.
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001138
Paolo Bonzinif481b062015-05-17 17:30:37 +02001139If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
1140specifies the address space which is being modified. They must be
1141less than the value that KVM_CHECK_EXTENSION returns for the
1142KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
1143are unrelated; the restriction on overlapping slots only applies within
1144each address space.
1145
Paolo Bonzinie2788c42019-03-28 17:22:31 +01001146Deleting a slot is done by passing zero for memory_size. When changing
1147an existing slot, it may be moved in the guest physical memory space,
1148or its flags may be modified, but it may not be resized.
1149
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001150Memory for the region is taken starting at the address denoted by the
1151field userspace_addr, which must point at user addressable memory for
1152the entire memory slot size. Any object may back this memory, including
1153anonymous memory, ordinary files, and hugetlbfs.
1154
1155It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
1156be identical. This allows large pages in the guest to be backed by large
1157pages in the host.
1158
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +09001159The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
1160KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
1161writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
1162use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
1163to make a new slot read-only. In this case, writes to this memory will be
1164posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001165
Jan Kiszka7efd8fa2012-09-07 13:17:47 +02001166When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
1167the memory region are automatically reflected into the guest. For example, an
1168mmap() that affects the region will be made visible immediately. Another
1169example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001170
1171It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
1172The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
1173allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +01001174
Jan Kiszka414fa982012-04-24 16:40:15 +02001175
Paul Bolle68ba6972011-02-15 00:05:59 +010011764.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +02001177
1178Capability: KVM_CAP_SET_TSS_ADDR
1179Architectures: x86
1180Type: vm ioctl
1181Parameters: unsigned long tss_address (in)
1182Returns: 0 on success, -1 on error
1183
1184This ioctl defines the physical address of a three-page region in the guest
1185physical address space. The region must be within the first 4GB of the
1186guest physical address space and must not conflict with any memory slot
1187or any mmio address. The guest may malfunction if it accesses this memory
1188region.
1189
1190This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1191because of a quirk in the virtualization implementation (see the internals
1192documentation when it pops into existence).
1193
Jan Kiszka414fa982012-04-24 16:40:15 +02001194
Paul Bolle68ba6972011-02-15 00:05:59 +010011954.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001196
Paolo Bonzinie5d83c72017-02-16 10:40:56 +01001197Capability: KVM_CAP_ENABLE_CAP
1198Architectures: mips, ppc, s390
1199Type: vcpu ioctl
1200Parameters: struct kvm_enable_cap (in)
1201Returns: 0 on success; -1 on error
1202
1203Capability: KVM_CAP_ENABLE_CAP_VM
1204Architectures: all
1205Type: vcpu ioctl
Alexander Graf71fbfd52010-03-24 21:48:29 +01001206Parameters: struct kvm_enable_cap (in)
1207Returns: 0 on success; -1 on error
1208
1209+Not all extensions are enabled by default. Using this ioctl the application
1210can enable an extension, making it available to the guest.
1211
1212On systems that do not support this ioctl, it always fails. On systems that
1213do support it, it only works for extensions that are supported for enablement.
1214
1215To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1216be used.
1217
1218struct kvm_enable_cap {
1219 /* in */
1220 __u32 cap;
1221
1222The capability that is supposed to get enabled.
1223
1224 __u32 flags;
1225
1226A bitfield indicating future enhancements. Has to be 0 for now.
1227
1228 __u64 args[4];
1229
1230Arguments for enabling a feature. If a feature needs initial values to
1231function properly, this is the place to put them.
1232
1233 __u8 pad[64];
1234};
1235
Cornelia Huckd938dc52013-10-23 18:26:34 +02001236The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1237for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001238
Paul Bolle68ba6972011-02-15 00:05:59 +010012394.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001240
1241Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001242Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001243Type: vcpu ioctl
1244Parameters: struct kvm_mp_state (out)
1245Returns: 0 on success; -1 on error
1246
1247struct kvm_mp_state {
1248 __u32 mp_state;
1249};
1250
1251Returns the vcpu's current "multiprocessing state" (though also valid on
1252uniprocessor guests).
1253
1254Possible values are:
1255
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001256 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001257 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001258 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001259 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001260 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001261 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001262 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001263 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001264 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001265 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001266 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1267 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1268 [s390]
1269 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1270 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001271
Tiejun Chenc32a4272014-11-20 11:07:18 +01001272On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001273in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1274these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001275
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001276For arm/arm64:
1277
1278The only states that are valid are KVM_MP_STATE_STOPPED and
1279KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001280
Paul Bolle68ba6972011-02-15 00:05:59 +010012814.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001282
1283Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001284Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001285Type: vcpu ioctl
1286Parameters: struct kvm_mp_state (in)
1287Returns: 0 on success; -1 on error
1288
1289Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1290arguments.
1291
Tiejun Chenc32a4272014-11-20 11:07:18 +01001292On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001293in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1294these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001295
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001296For arm/arm64:
1297
1298The only states that are valid are KVM_MP_STATE_STOPPED and
1299KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001300
Paul Bolle68ba6972011-02-15 00:05:59 +010013014.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001302
1303Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1304Architectures: x86
1305Type: vm ioctl
1306Parameters: unsigned long identity (in)
1307Returns: 0 on success, -1 on error
1308
1309This ioctl defines the physical address of a one-page region in the guest
1310physical address space. The region must be within the first 4GB of the
1311guest physical address space and must not conflict with any memory slot
1312or any mmio address. The guest may malfunction if it accesses this memory
1313region.
1314
David Hildenbrand726b99c2017-08-24 20:51:35 +02001315Setting the address to 0 will result in resetting the address to its default
1316(0xfffbc000).
1317
Avi Kivity47dbb842010-04-29 12:08:56 +03001318This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1319because of a quirk in the virtualization implementation (see the internals
1320documentation when it pops into existence).
1321
David Hildenbrand1af1ac92017-08-24 20:51:36 +02001322Fails if any VCPU has already been created.
Jan Kiszka414fa982012-04-24 16:40:15 +02001323
Paul Bolle68ba6972011-02-15 00:05:59 +010013244.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001325
1326Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001327Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001328Type: vm ioctl
1329Parameters: unsigned long vcpu_id
1330Returns: 0 on success, -1 on error
1331
1332Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1333as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1334is vcpu 0.
1335
Jan Kiszka414fa982012-04-24 16:40:15 +02001336
Paul Bolle68ba6972011-02-15 00:05:59 +010013374.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001338
1339Capability: KVM_CAP_XSAVE
1340Architectures: x86
1341Type: vcpu ioctl
1342Parameters: struct kvm_xsave (out)
1343Returns: 0 on success, -1 on error
1344
1345struct kvm_xsave {
1346 __u32 region[1024];
1347};
1348
1349This ioctl would copy current vcpu's xsave struct to the userspace.
1350
Jan Kiszka414fa982012-04-24 16:40:15 +02001351
Paul Bolle68ba6972011-02-15 00:05:59 +010013524.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001353
1354Capability: KVM_CAP_XSAVE
1355Architectures: x86
1356Type: vcpu ioctl
1357Parameters: struct kvm_xsave (in)
1358Returns: 0 on success, -1 on error
1359
1360struct kvm_xsave {
1361 __u32 region[1024];
1362};
1363
1364This ioctl would copy userspace's xsave struct to the kernel.
1365
Jan Kiszka414fa982012-04-24 16:40:15 +02001366
Paul Bolle68ba6972011-02-15 00:05:59 +010013674.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001368
1369Capability: KVM_CAP_XCRS
1370Architectures: x86
1371Type: vcpu ioctl
1372Parameters: struct kvm_xcrs (out)
1373Returns: 0 on success, -1 on error
1374
1375struct kvm_xcr {
1376 __u32 xcr;
1377 __u32 reserved;
1378 __u64 value;
1379};
1380
1381struct kvm_xcrs {
1382 __u32 nr_xcrs;
1383 __u32 flags;
1384 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1385 __u64 padding[16];
1386};
1387
1388This ioctl would copy current vcpu's xcrs to the userspace.
1389
Jan Kiszka414fa982012-04-24 16:40:15 +02001390
Paul Bolle68ba6972011-02-15 00:05:59 +010013914.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001392
1393Capability: KVM_CAP_XCRS
1394Architectures: x86
1395Type: vcpu ioctl
1396Parameters: struct kvm_xcrs (in)
1397Returns: 0 on success, -1 on error
1398
1399struct kvm_xcr {
1400 __u32 xcr;
1401 __u32 reserved;
1402 __u64 value;
1403};
1404
1405struct kvm_xcrs {
1406 __u32 nr_xcrs;
1407 __u32 flags;
1408 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1409 __u64 padding[16];
1410};
1411
1412This ioctl would set vcpu's xcr to the value userspace specified.
1413
Jan Kiszka414fa982012-04-24 16:40:15 +02001414
Paul Bolle68ba6972011-02-15 00:05:59 +010014154.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001416
1417Capability: KVM_CAP_EXT_CPUID
1418Architectures: x86
1419Type: system ioctl
1420Parameters: struct kvm_cpuid2 (in/out)
1421Returns: 0 on success, -1 on error
1422
1423struct kvm_cpuid2 {
1424 __u32 nent;
1425 __u32 padding;
1426 struct kvm_cpuid_entry2 entries[0];
1427};
1428
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001429#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1430#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1431#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001432
1433struct kvm_cpuid_entry2 {
1434 __u32 function;
1435 __u32 index;
1436 __u32 flags;
1437 __u32 eax;
1438 __u32 ebx;
1439 __u32 ecx;
1440 __u32 edx;
1441 __u32 padding[3];
1442};
1443
Jim Mattsondf9cb9c2018-05-24 11:59:54 -07001444This ioctl returns x86 cpuid features which are supported by both the
1445hardware and kvm in its default configuration. Userspace can use the
1446information returned by this ioctl to construct cpuid information (for
1447KVM_SET_CPUID2) that is consistent with hardware, kernel, and
1448userspace capabilities, and with user requirements (for example, the
1449user may wish to constrain cpuid to emulate older hardware, or for
1450feature consistency across a cluster).
1451
1452Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may
1453expose cpuid features (e.g. MONITOR) which are not supported by kvm in
1454its default configuration. If userspace enables such capabilities, it
1455is responsible for modifying the results of this ioctl appropriately.
Avi Kivityd1535132010-07-14 09:45:21 +03001456
1457Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1458with the 'nent' field indicating the number of entries in the variable-size
1459array 'entries'. If the number of entries is too low to describe the cpu
1460capabilities, an error (E2BIG) is returned. If the number is too high,
1461the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1462number is just right, the 'nent' field is adjusted to the number of valid
1463entries in the 'entries' array, which is then filled.
1464
1465The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001466with unknown or unsupported features masked out. Some features (for example,
1467x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1468emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001469
1470 function: the eax value used to obtain the entry
1471 index: the ecx value used to obtain the entry (for entries that are
1472 affected by ecx)
1473 flags: an OR of zero or more of the following:
1474 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1475 if the index field is valid
1476 KVM_CPUID_FLAG_STATEFUL_FUNC:
1477 if cpuid for this function returns different values for successive
1478 invocations; there will be several entries with the same function,
1479 all with this flag set
1480 KVM_CPUID_FLAG_STATE_READ_NEXT:
1481 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1482 the first entry to be read by a cpu
1483 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1484 this function/index combination
1485
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001486The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1487as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1488support. Instead it is reported via
1489
1490 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1491
1492if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1493feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1494
Jan Kiszka414fa982012-04-24 16:40:15 +02001495
Paul Bolle68ba6972011-02-15 00:05:59 +010014964.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001497
1498Capability: KVM_CAP_PPC_GET_PVINFO
1499Architectures: ppc
1500Type: vm ioctl
1501Parameters: struct kvm_ppc_pvinfo (out)
1502Returns: 0 on success, !0 on error
1503
1504struct kvm_ppc_pvinfo {
1505 __u32 flags;
1506 __u32 hcall[4];
1507 __u8 pad[108];
1508};
1509
1510This ioctl fetches PV specific information that need to be passed to the guest
1511using the device tree or other means from vm context.
1512
Liu Yu-B132019202e072012-07-03 05:48:52 +00001513The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001514
1515If any additional field gets added to this structure later on, a bit for that
1516additional piece of information will be set in the flags bitmap.
1517
Liu Yu-B132019202e072012-07-03 05:48:52 +00001518The flags bitmap is defined as:
1519
1520 /* the host supports the ePAPR idle hcall
1521 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001522
Paul Bolle68ba6972011-02-15 00:05:59 +010015234.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001524
1525Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001526Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001527Type: vm ioctl
1528Parameters: struct kvm_irq_routing (in)
1529Returns: 0 on success, -1 on error
1530
1531Sets the GSI routing table entries, overwriting any previously set entries.
1532
Eric Auger180ae7b2016-07-22 16:20:41 +00001533On arm/arm64, GSI routing has the following limitation:
1534- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1535
Jan Kiszka49f48172010-11-16 22:30:07 +01001536struct kvm_irq_routing {
1537 __u32 nr;
1538 __u32 flags;
1539 struct kvm_irq_routing_entry entries[0];
1540};
1541
1542No flags are specified so far, the corresponding field must be set to zero.
1543
1544struct kvm_irq_routing_entry {
1545 __u32 gsi;
1546 __u32 type;
1547 __u32 flags;
1548 __u32 pad;
1549 union {
1550 struct kvm_irq_routing_irqchip irqchip;
1551 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001552 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001553 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001554 __u32 pad[8];
1555 } u;
1556};
1557
1558/* gsi routing entry types */
1559#define KVM_IRQ_ROUTING_IRQCHIP 1
1560#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001561#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001562#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001563
Eric Auger76a10b82016-07-22 16:20:37 +00001564flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001565- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1566 type, specifies that the devid field contains a valid value. The per-VM
1567 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1568 the device ID. If this capability is not available, userspace should
1569 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001570- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001571
1572struct kvm_irq_routing_irqchip {
1573 __u32 irqchip;
1574 __u32 pin;
1575};
1576
1577struct kvm_irq_routing_msi {
1578 __u32 address_lo;
1579 __u32 address_hi;
1580 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001581 union {
1582 __u32 pad;
1583 __u32 devid;
1584 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001585};
1586
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001587If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1588for the device that wrote the MSI message. For PCI, this is usually a
1589BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001590
Radim Krčmář371313132016-07-12 22:09:27 +02001591On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1592feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1593address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1594address_hi must be zero.
1595
Cornelia Huck84223592013-07-15 13:36:01 +02001596struct kvm_irq_routing_s390_adapter {
1597 __u64 ind_addr;
1598 __u64 summary_addr;
1599 __u64 ind_offset;
1600 __u32 summary_offset;
1601 __u32 adapter_id;
1602};
1603
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001604struct kvm_irq_routing_hv_sint {
1605 __u32 vcpu;
1606 __u32 sint;
1607};
Jan Kiszka414fa982012-04-24 16:40:15 +02001608
Jan Kiszka414fa982012-04-24 16:40:15 +02001609
16104.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001611
1612Capability: KVM_CAP_TSC_CONTROL
1613Architectures: x86
1614Type: vcpu ioctl
1615Parameters: virtual tsc_khz
1616Returns: 0 on success, -1 on error
1617
1618Specifies the tsc frequency for the virtual machine. The unit of the
1619frequency is KHz.
1620
Jan Kiszka414fa982012-04-24 16:40:15 +02001621
16224.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001623
1624Capability: KVM_CAP_GET_TSC_KHZ
1625Architectures: x86
1626Type: vcpu ioctl
1627Parameters: none
1628Returns: virtual tsc-khz on success, negative value on error
1629
1630Returns the tsc frequency of the guest. The unit of the return value is
1631KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1632error.
1633
Jan Kiszka414fa982012-04-24 16:40:15 +02001634
16354.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001636
1637Capability: KVM_CAP_IRQCHIP
1638Architectures: x86
1639Type: vcpu ioctl
1640Parameters: struct kvm_lapic_state (out)
1641Returns: 0 on success, -1 on error
1642
1643#define KVM_APIC_REG_SIZE 0x400
1644struct kvm_lapic_state {
1645 char regs[KVM_APIC_REG_SIZE];
1646};
1647
1648Reads the Local APIC registers and copies them into the input argument. The
1649data format and layout are the same as documented in the architecture manual.
1650
Radim Krčmář371313132016-07-12 22:09:27 +02001651If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1652enabled, then the format of APIC_ID register depends on the APIC mode
1653(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1654the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1655which is stored in bits 31-24 of the APIC register, or equivalently in
1656byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1657be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1658
1659If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1660always uses xAPIC format.
1661
Jan Kiszka414fa982012-04-24 16:40:15 +02001662
16634.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001664
1665Capability: KVM_CAP_IRQCHIP
1666Architectures: x86
1667Type: vcpu ioctl
1668Parameters: struct kvm_lapic_state (in)
1669Returns: 0 on success, -1 on error
1670
1671#define KVM_APIC_REG_SIZE 0x400
1672struct kvm_lapic_state {
1673 char regs[KVM_APIC_REG_SIZE];
1674};
1675
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001676Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001677and layout are the same as documented in the architecture manual.
1678
Radim Krčmář371313132016-07-12 22:09:27 +02001679The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1680regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1681See the note in KVM_GET_LAPIC.
1682
Jan Kiszka414fa982012-04-24 16:40:15 +02001683
16844.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001685
1686Capability: KVM_CAP_IOEVENTFD
1687Architectures: all
1688Type: vm ioctl
1689Parameters: struct kvm_ioeventfd (in)
1690Returns: 0 on success, !0 on error
1691
1692This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1693within the guest. A guest write in the registered address will signal the
1694provided event instead of triggering an exit.
1695
1696struct kvm_ioeventfd {
1697 __u64 datamatch;
1698 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001699 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001700 __s32 fd;
1701 __u32 flags;
1702 __u8 pad[36];
1703};
1704
Cornelia Huck2b834512013-02-28 12:33:20 +01001705For the special case of virtio-ccw devices on s390, the ioevent is matched
1706to a subchannel/virtqueue tuple instead.
1707
Sasha Levin55399a02011-05-28 14:12:30 +03001708The following flags are defined:
1709
1710#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1711#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1712#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001713#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1714 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001715
1716If datamatch flag is set, the event will be signaled only if the written value
1717to the registered address is equal to datamatch in struct kvm_ioeventfd.
1718
Cornelia Huck2b834512013-02-28 12:33:20 +01001719For virtio-ccw devices, addr contains the subchannel id and datamatch the
1720virtqueue index.
1721
Jason Wange9ea5062015-09-15 14:41:59 +08001722With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1723the kernel will ignore the length of guest write and may get a faster vmexit.
1724The speedup may only apply to specific architectures, but the ioeventfd will
1725work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001726
17274.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001728
1729Capability: KVM_CAP_SW_TLB
1730Architectures: ppc
1731Type: vcpu ioctl
1732Parameters: struct kvm_dirty_tlb (in)
1733Returns: 0 on success, -1 on error
1734
1735struct kvm_dirty_tlb {
1736 __u64 bitmap;
1737 __u32 num_dirty;
1738};
1739
1740This must be called whenever userspace has changed an entry in the shared
1741TLB, prior to calling KVM_RUN on the associated vcpu.
1742
1743The "bitmap" field is the userspace address of an array. This array
1744consists of a number of bits, equal to the total number of TLB entries as
1745determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1746nearest multiple of 64.
1747
1748Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1749array.
1750
1751The array is little-endian: the bit 0 is the least significant bit of the
1752first byte, bit 8 is the least significant bit of the second byte, etc.
1753This avoids any complications with differing word sizes.
1754
1755The "num_dirty" field is a performance hint for KVM to determine whether it
1756should skip processing the bitmap and just invalidate everything. It must
1757be set to the number of set bits in the bitmap.
1758
Jan Kiszka414fa982012-04-24 16:40:15 +02001759
David Gibson54738c02011-06-29 00:22:41 +000017604.62 KVM_CREATE_SPAPR_TCE
1761
1762Capability: KVM_CAP_SPAPR_TCE
1763Architectures: powerpc
1764Type: vm ioctl
1765Parameters: struct kvm_create_spapr_tce (in)
1766Returns: file descriptor for manipulating the created TCE table
1767
1768This creates a virtual TCE (translation control entry) table, which
1769is an IOMMU for PAPR-style virtual I/O. It is used to translate
1770logical addresses used in virtual I/O into guest physical addresses,
1771and provides a scatter/gather capability for PAPR virtual I/O.
1772
1773/* for KVM_CAP_SPAPR_TCE */
1774struct kvm_create_spapr_tce {
1775 __u64 liobn;
1776 __u32 window_size;
1777};
1778
1779The liobn field gives the logical IO bus number for which to create a
1780TCE table. The window_size field specifies the size of the DMA window
1781which this TCE table will translate - the table will contain one 64
1782bit TCE entry for every 4kiB of the DMA window.
1783
1784When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1785table has been created using this ioctl(), the kernel will handle it
1786in real mode, updating the TCE table. H_PUT_TCE calls for other
1787liobns will cause a vm exit and must be handled by userspace.
1788
1789The return value is a file descriptor which can be passed to mmap(2)
1790to map the created TCE table into userspace. This lets userspace read
1791the entries written by kernel-handled H_PUT_TCE calls, and also lets
1792userspace update the TCE table directly which is useful in some
1793circumstances.
1794
Jan Kiszka414fa982012-04-24 16:40:15 +02001795
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000017964.63 KVM_ALLOCATE_RMA
1797
1798Capability: KVM_CAP_PPC_RMA
1799Architectures: powerpc
1800Type: vm ioctl
1801Parameters: struct kvm_allocate_rma (out)
1802Returns: file descriptor for mapping the allocated RMA
1803
1804This allocates a Real Mode Area (RMA) from the pool allocated at boot
1805time by the kernel. An RMA is a physically-contiguous, aligned region
1806of memory used on older POWER processors to provide the memory which
1807will be accessed by real-mode (MMU off) accesses in a KVM guest.
1808POWER processors support a set of sizes for the RMA that usually
1809includes 64MB, 128MB, 256MB and some larger powers of two.
1810
1811/* for KVM_ALLOCATE_RMA */
1812struct kvm_allocate_rma {
1813 __u64 rma_size;
1814};
1815
1816The return value is a file descriptor which can be passed to mmap(2)
1817to map the allocated RMA into userspace. The mapped area can then be
1818passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1819RMA for a virtual machine. The size of the RMA in bytes (which is
1820fixed at host kernel boot time) is returned in the rma_size field of
1821the argument structure.
1822
1823The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1824is supported; 2 if the processor requires all virtual machines to have
1825an RMA, or 1 if the processor can use an RMA but doesn't require it,
1826because it supports the Virtual RMA (VRMA) facility.
1827
Jan Kiszka414fa982012-04-24 16:40:15 +02001828
Avi Kivity3f745f12011-12-07 12:42:47 +020018294.64 KVM_NMI
1830
1831Capability: KVM_CAP_USER_NMI
1832Architectures: x86
1833Type: vcpu ioctl
1834Parameters: none
1835Returns: 0 on success, -1 on error
1836
1837Queues an NMI on the thread's vcpu. Note this is well defined only
1838when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1839between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1840has been called, this interface is completely emulated within the kernel.
1841
1842To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1843following algorithm:
1844
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001845 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001846 - read the local APIC's state (KVM_GET_LAPIC)
1847 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1848 - if so, issue KVM_NMI
1849 - resume the vcpu
1850
1851Some guests configure the LINT1 NMI input to cause a panic, aiding in
1852debugging.
1853
Jan Kiszka414fa982012-04-24 16:40:15 +02001854
Alexander Grafe24ed812011-09-14 10:02:41 +020018554.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001856
1857Capability: KVM_CAP_S390_UCONTROL
1858Architectures: s390
1859Type: vcpu ioctl
1860Parameters: struct kvm_s390_ucas_mapping (in)
1861Returns: 0 in case of success
1862
1863The parameter is defined like this:
1864 struct kvm_s390_ucas_mapping {
1865 __u64 user_addr;
1866 __u64 vcpu_addr;
1867 __u64 length;
1868 };
1869
1870This ioctl maps the memory at "user_addr" with the length "length" to
1871the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001872be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001873
Jan Kiszka414fa982012-04-24 16:40:15 +02001874
Alexander Grafe24ed812011-09-14 10:02:41 +020018754.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001876
1877Capability: KVM_CAP_S390_UCONTROL
1878Architectures: s390
1879Type: vcpu ioctl
1880Parameters: struct kvm_s390_ucas_mapping (in)
1881Returns: 0 in case of success
1882
1883The parameter is defined like this:
1884 struct kvm_s390_ucas_mapping {
1885 __u64 user_addr;
1886 __u64 vcpu_addr;
1887 __u64 length;
1888 };
1889
1890This ioctl unmaps the memory in the vcpu's address space starting at
1891"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001892All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001893
Jan Kiszka414fa982012-04-24 16:40:15 +02001894
Alexander Grafe24ed812011-09-14 10:02:41 +020018954.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001896
1897Capability: KVM_CAP_S390_UCONTROL
1898Architectures: s390
1899Type: vcpu ioctl
1900Parameters: vcpu absolute address (in)
1901Returns: 0 in case of success
1902
1903This call creates a page table entry on the virtual cpu's address space
1904(for user controlled virtual machines) or the virtual machine's address
1905space (for regular virtual machines). This only works for minor faults,
1906thus it's recommended to access subject memory page via the user page
1907table upfront. This is useful to handle validity intercepts for user
1908controlled virtual machines to fault in the virtual cpu's lowcore pages
1909prior to calling the KVM_RUN ioctl.
1910
Jan Kiszka414fa982012-04-24 16:40:15 +02001911
Alexander Grafe24ed812011-09-14 10:02:41 +020019124.68 KVM_SET_ONE_REG
1913
1914Capability: KVM_CAP_ONE_REG
1915Architectures: all
1916Type: vcpu ioctl
1917Parameters: struct kvm_one_reg (in)
1918Returns: 0 on success, negative value on failure
Dave Martin395f5622019-01-15 17:02:08 +00001919Errors:
1920  ENOENT:   no such register
Dave Martinfe365b42019-04-12 12:59:47 +01001921  EINVAL:   invalid register ID, or no such register
1922  EPERM:    (arm64) register access not allowed before vcpu finalization
1923(These error codes are indicative only: do not rely on a specific error
1924code being returned in a specific situation.)
Alexander Grafe24ed812011-09-14 10:02:41 +02001925
1926struct kvm_one_reg {
1927 __u64 id;
1928 __u64 addr;
1929};
1930
1931Using this ioctl, a single vcpu register can be set to a specific value
1932defined by user space with the passed in struct kvm_one_reg, where id
1933refers to the register identifier as described below and addr is a pointer
1934to a variable with the respective size. There can be architecture agnostic
1935and architecture specific registers. Each have their own range of operation
1936and their own constants and width. To keep track of the implemented
1937registers, find a list below:
1938
James Hoganbf5590f2014-07-04 15:11:34 +01001939 Arch | Register | Width (bits)
1940 | |
1941 PPC | KVM_REG_PPC_HIOR | 64
1942 PPC | KVM_REG_PPC_IAC1 | 64
1943 PPC | KVM_REG_PPC_IAC2 | 64
1944 PPC | KVM_REG_PPC_IAC3 | 64
1945 PPC | KVM_REG_PPC_IAC4 | 64
1946 PPC | KVM_REG_PPC_DAC1 | 64
1947 PPC | KVM_REG_PPC_DAC2 | 64
1948 PPC | KVM_REG_PPC_DABR | 64
1949 PPC | KVM_REG_PPC_DSCR | 64
1950 PPC | KVM_REG_PPC_PURR | 64
1951 PPC | KVM_REG_PPC_SPURR | 64
1952 PPC | KVM_REG_PPC_DAR | 64
1953 PPC | KVM_REG_PPC_DSISR | 32
1954 PPC | KVM_REG_PPC_AMR | 64
1955 PPC | KVM_REG_PPC_UAMOR | 64
1956 PPC | KVM_REG_PPC_MMCR0 | 64
1957 PPC | KVM_REG_PPC_MMCR1 | 64
1958 PPC | KVM_REG_PPC_MMCRA | 64
1959 PPC | KVM_REG_PPC_MMCR2 | 64
1960 PPC | KVM_REG_PPC_MMCRS | 64
1961 PPC | KVM_REG_PPC_SIAR | 64
1962 PPC | KVM_REG_PPC_SDAR | 64
1963 PPC | KVM_REG_PPC_SIER | 64
1964 PPC | KVM_REG_PPC_PMC1 | 32
1965 PPC | KVM_REG_PPC_PMC2 | 32
1966 PPC | KVM_REG_PPC_PMC3 | 32
1967 PPC | KVM_REG_PPC_PMC4 | 32
1968 PPC | KVM_REG_PPC_PMC5 | 32
1969 PPC | KVM_REG_PPC_PMC6 | 32
1970 PPC | KVM_REG_PPC_PMC7 | 32
1971 PPC | KVM_REG_PPC_PMC8 | 32
1972 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001973 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001974 PPC | KVM_REG_PPC_FPR31 | 64
1975 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001976 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001977 PPC | KVM_REG_PPC_VR31 | 128
1978 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001979 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001980 PPC | KVM_REG_PPC_VSR31 | 128
1981 PPC | KVM_REG_PPC_FPSCR | 64
1982 PPC | KVM_REG_PPC_VSCR | 32
1983 PPC | KVM_REG_PPC_VPA_ADDR | 64
1984 PPC | KVM_REG_PPC_VPA_SLB | 128
1985 PPC | KVM_REG_PPC_VPA_DTL | 128
1986 PPC | KVM_REG_PPC_EPCR | 32
1987 PPC | KVM_REG_PPC_EPR | 32
1988 PPC | KVM_REG_PPC_TCR | 32
1989 PPC | KVM_REG_PPC_TSR | 32
1990 PPC | KVM_REG_PPC_OR_TSR | 32
1991 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1992 PPC | KVM_REG_PPC_MAS0 | 32
1993 PPC | KVM_REG_PPC_MAS1 | 32
1994 PPC | KVM_REG_PPC_MAS2 | 64
1995 PPC | KVM_REG_PPC_MAS7_3 | 64
1996 PPC | KVM_REG_PPC_MAS4 | 32
1997 PPC | KVM_REG_PPC_MAS6 | 32
1998 PPC | KVM_REG_PPC_MMUCFG | 32
1999 PPC | KVM_REG_PPC_TLB0CFG | 32
2000 PPC | KVM_REG_PPC_TLB1CFG | 32
2001 PPC | KVM_REG_PPC_TLB2CFG | 32
2002 PPC | KVM_REG_PPC_TLB3CFG | 32
2003 PPC | KVM_REG_PPC_TLB0PS | 32
2004 PPC | KVM_REG_PPC_TLB1PS | 32
2005 PPC | KVM_REG_PPC_TLB2PS | 32
2006 PPC | KVM_REG_PPC_TLB3PS | 32
2007 PPC | KVM_REG_PPC_EPTCFG | 32
2008 PPC | KVM_REG_PPC_ICP_STATE | 64
Cédric Le Goatere4945b92019-04-18 12:39:35 +02002009 PPC | KVM_REG_PPC_VP_STATE | 128
James Hoganbf5590f2014-07-04 15:11:34 +01002010 PPC | KVM_REG_PPC_TB_OFFSET | 64
2011 PPC | KVM_REG_PPC_SPMC1 | 32
2012 PPC | KVM_REG_PPC_SPMC2 | 32
2013 PPC | KVM_REG_PPC_IAMR | 64
2014 PPC | KVM_REG_PPC_TFHAR | 64
2015 PPC | KVM_REG_PPC_TFIAR | 64
2016 PPC | KVM_REG_PPC_TEXASR | 64
2017 PPC | KVM_REG_PPC_FSCR | 64
2018 PPC | KVM_REG_PPC_PSPB | 32
2019 PPC | KVM_REG_PPC_EBBHR | 64
2020 PPC | KVM_REG_PPC_EBBRR | 64
2021 PPC | KVM_REG_PPC_BESCR | 64
2022 PPC | KVM_REG_PPC_TAR | 64
2023 PPC | KVM_REG_PPC_DPDES | 64
2024 PPC | KVM_REG_PPC_DAWR | 64
2025 PPC | KVM_REG_PPC_DAWRX | 64
2026 PPC | KVM_REG_PPC_CIABR | 64
2027 PPC | KVM_REG_PPC_IC | 64
2028 PPC | KVM_REG_PPC_VTB | 64
2029 PPC | KVM_REG_PPC_CSIGR | 64
2030 PPC | KVM_REG_PPC_TACR | 64
2031 PPC | KVM_REG_PPC_TCSCR | 64
2032 PPC | KVM_REG_PPC_PID | 64
2033 PPC | KVM_REG_PPC_ACOP | 64
2034 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02002035 PPC | KVM_REG_PPC_LPCR | 32
2036 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002037 PPC | KVM_REG_PPC_PPR | 64
2038 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
2039 PPC | KVM_REG_PPC_DABRX | 32
2040 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05302041 PPC | KVM_REG_PPC_SPRG9 | 64
2042 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11002043 PPC | KVM_REG_PPC_TIDR | 64
2044 PPC | KVM_REG_PPC_PSSCR | 64
Paul Mackerras58555642018-01-12 20:55:20 +11002045 PPC | KVM_REG_PPC_DEC_EXPIRY | 64
Paul Mackerras30323412018-10-08 16:31:13 +11002046 PPC | KVM_REG_PPC_PTCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01002047 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10002048 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002049 PPC | KVM_REG_PPC_TM_GPR31 | 64
2050 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10002051 ...
James Hoganbf5590f2014-07-04 15:11:34 +01002052 PPC | KVM_REG_PPC_TM_VSR63 | 128
2053 PPC | KVM_REG_PPC_TM_CR | 64
2054 PPC | KVM_REG_PPC_TM_LR | 64
2055 PPC | KVM_REG_PPC_TM_CTR | 64
2056 PPC | KVM_REG_PPC_TM_FPSCR | 64
2057 PPC | KVM_REG_PPC_TM_AMR | 64
2058 PPC | KVM_REG_PPC_TM_PPR | 64
2059 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2060 PPC | KVM_REG_PPC_TM_VSCR | 32
2061 PPC | KVM_REG_PPC_TM_DSCR | 64
2062 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11002063 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002064 | |
2065 MIPS | KVM_REG_MIPS_R0 | 64
2066 ...
2067 MIPS | KVM_REG_MIPS_R31 | 64
2068 MIPS | KVM_REG_MIPS_HI | 64
2069 MIPS | KVM_REG_MIPS_LO | 64
2070 MIPS | KVM_REG_MIPS_PC | 64
2071 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00002072 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
2073 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002074 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00002075 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01002076 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00002077 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01002078 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002079 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00002080 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
2081 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
2082 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hogan5a2f3522017-03-14 10:15:36 +00002083 MIPS | KVM_REG_MIPS_CP0_PWBASE | 64
2084 MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64
2085 MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002086 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
James Hogan5a2f3522017-03-14 10:15:36 +00002087 MIPS | KVM_REG_MIPS_CP0_PWCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002088 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2089 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00002090 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
2091 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002092 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2093 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2094 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2095 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00002096 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002097 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2098 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01002099 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00002100 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002101 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2102 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2103 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2104 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01002105 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2106 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002107 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002108 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002109 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01002110 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2111 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2112 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2113 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2114 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2115 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hogand42a0082017-03-14 10:15:38 +00002116 MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002117 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2118 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2119 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00002120 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2121 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00002122 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00002123 MIPS | KVM_REG_MIPS_FCR_IR | 32
2124 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00002125 MIPS | KVM_REG_MIPS_MSA_IR | 32
2126 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02002127
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002128ARM registers are mapped using the lower 32 bits. The upper 16 of that
2129is the register group type, or coprocessor number:
2130
2131ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002132 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002133
Christoffer Dall11382452013-01-20 18:28:10 -05002134ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002135 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05002136
2137ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002138 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002139
Christoffer Dallc27581e2013-01-20 18:28:10 -05002140ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002141 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002142
Rusty Russell4fe21e42013-01-20 18:28:11 -05002143ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002144 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002145
2146ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002147 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002148
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002149ARM firmware pseudo-registers have the following bit pattern:
2150 0x4030 0000 0014 <regno:16>
2151
Marc Zyngier379e04c72013-04-02 17:46:31 +01002152
2153arm64 registers are mapped using the lower 32 bits. The upper 16 of
2154that is the register group type, or coprocessor number:
2155
2156arm64 core/FP-SIMD registers have the following id bit patterns. Note
2157that the size of the access is variable, as the kvm_regs structure
2158contains elements ranging from 32 to 128 bits. The index is a 32bit
2159value in the kvm_regs structure seen as a 32bit array.
2160 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2161
Dave Martinfd3bc912018-09-28 14:39:26 +01002162Specifically:
2163 Encoding Register Bits kvm_regs member
2164----------------------------------------------------------------
2165 0x6030 0000 0010 0000 X0 64 regs.regs[0]
2166 0x6030 0000 0010 0002 X1 64 regs.regs[1]
2167 ...
2168 0x6030 0000 0010 003c X30 64 regs.regs[30]
2169 0x6030 0000 0010 003e SP 64 regs.sp
2170 0x6030 0000 0010 0040 PC 64 regs.pc
2171 0x6030 0000 0010 0042 PSTATE 64 regs.pstate
2172 0x6030 0000 0010 0044 SP_EL1 64 sp_el1
2173 0x6030 0000 0010 0046 ELR_EL1 64 elr_el1
2174 0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC)
2175 0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT]
2176 0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND]
2177 0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ]
2178 0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ]
Dave Martin50036ad2018-09-28 14:39:27 +01002179 0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] (*)
2180 0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] (*)
Dave Martinfd3bc912018-09-28 14:39:26 +01002181 ...
Dave Martin50036ad2018-09-28 14:39:27 +01002182 0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] (*)
Dave Martinfd3bc912018-09-28 14:39:26 +01002183 0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr
2184 0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr
2185
Dave Martin50036ad2018-09-28 14:39:27 +01002186(*) These encodings are not accepted for SVE-enabled vcpus. See
2187 KVM_ARM_VCPU_INIT.
2188
2189 The equivalent register content can be accessed via bits [127:0] of
2190 the corresponding SVE Zn registers instead for vcpus that have SVE
2191 enabled (see below).
2192
Marc Zyngier379e04c72013-04-02 17:46:31 +01002193arm64 CCSIDR registers are demultiplexed by CSSELR value:
2194 0x6020 0000 0011 00 <csselr:8>
2195
2196arm64 system registers have the following id bit patterns:
2197 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2198
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002199arm64 firmware pseudo-registers have the following bit pattern:
2200 0x6030 0000 0014 <regno:16>
2201
Dave Martin50036ad2018-09-28 14:39:27 +01002202arm64 SVE registers have the following bit patterns:
2203 0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice]
2204 0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice]
2205 0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice]
2206 0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register
2207
Dave Martin43b8e1f2019-04-12 13:25:38 +01002208Access to register IDs where 2048 * slice >= 128 * max_vq will fail with
2209ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit
2210quadwords: see (**) below.
Dave Martin50036ad2018-09-28 14:39:27 +01002211
2212These registers are only accessible on vcpus for which SVE is enabled.
2213See KVM_ARM_VCPU_INIT for details.
2214
2215In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not
2216accessible until the vcpu's SVE configuration has been finalized
2217using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT
2218and KVM_ARM_VCPU_FINALIZE for more information about this procedure.
2219
2220KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector
2221lengths supported by the vcpu to be discovered and configured by
2222userspace. When transferred to or from user memory via KVM_GET_ONE_REG
Dave Martin4bd774e2019-04-11 17:09:59 +01002223or KVM_SET_ONE_REG, the value of this register is of type
2224__u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as
2225follows:
Dave Martin50036ad2018-09-28 14:39:27 +01002226
Dave Martin4bd774e2019-04-11 17:09:59 +01002227__u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS];
Dave Martin50036ad2018-09-28 14:39:27 +01002228
2229if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX &&
Dave Martin4bd774e2019-04-11 17:09:59 +01002230 ((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >>
2231 ((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1))
Dave Martin50036ad2018-09-28 14:39:27 +01002232 /* Vector length vq * 16 bytes supported */
2233else
2234 /* Vector length vq * 16 bytes not supported */
2235
2236(**) The maximum value vq for which the above condition is true is
2237max_vq. This is the maximum vector length available to the guest on
2238this vcpu, and determines which register slices are visible through
2239this ioctl interface.
2240
Mauro Carvalho Chehabb693d0b2019-06-12 14:52:38 -03002241(See Documentation/arm64/sve.rst for an explanation of the "vq"
Dave Martin50036ad2018-09-28 14:39:27 +01002242nomenclature.)
2243
2244KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
2245KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that
2246the host supports.
2247
2248Userspace may subsequently modify it if desired until the vcpu's SVE
2249configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE).
2250
2251Apart from simply removing all vector lengths from the host set that
2252exceed some value, support for arbitrarily chosen sets of vector lengths
2253is hardware-dependent and may not be available. Attempting to configure
2254an invalid set of vector lengths via KVM_SET_ONE_REG will fail with
2255EINVAL.
2256
2257After the vcpu's SVE configuration is finalized, further attempts to
2258write this register will fail with EPERM.
2259
James Hoganc2d2c212014-07-04 15:11:35 +01002260
2261MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2262the register group type:
2263
2264MIPS core registers (see above) have the following id bit patterns:
2265 0x7030 0000 0000 <reg:16>
2266
2267MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2268patterns depending on whether they're 32-bit or 64-bit registers:
2269 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2270 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2271
James Hogan013044c2016-12-07 17:16:37 +00002272Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
2273versions of the EntryLo registers regardless of the word size of the host
2274hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
2275with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
2276the PFNX field starting at bit 30.
2277
James Hogand42a0082017-03-14 10:15:38 +00002278MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
2279patterns:
2280 0x7030 0000 0001 01 <reg:8>
2281
James Hoganc2d2c212014-07-04 15:11:35 +01002282MIPS KVM control registers (see above) have the following id bit patterns:
2283 0x7030 0000 0002 <reg:16>
2284
James Hogan379245c2014-12-02 15:48:24 +00002285MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2286id bit patterns depending on the size of the register being accessed. They are
2287always accessed according to the current guest FPU mode (Status.FR and
2288Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00002289if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2290registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2291overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00002292 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2293 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00002294 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00002295
2296MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2297following id bit patterns:
2298 0x7020 0000 0003 01 <0:3> <reg:5>
2299
James Hoganab86bd62014-12-02 15:48:24 +00002300MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2301following id bit patterns:
2302 0x7020 0000 0003 02 <0:3> <reg:5>
2303
James Hoganc2d2c212014-07-04 15:11:35 +01002304
Alexander Grafe24ed812011-09-14 10:02:41 +020023054.69 KVM_GET_ONE_REG
2306
2307Capability: KVM_CAP_ONE_REG
2308Architectures: all
2309Type: vcpu ioctl
2310Parameters: struct kvm_one_reg (in and out)
2311Returns: 0 on success, negative value on failure
Dave Martinfe365b42019-04-12 12:59:47 +01002312Errors include:
Dave Martin395f5622019-01-15 17:02:08 +00002313  ENOENT:   no such register
Dave Martinfe365b42019-04-12 12:59:47 +01002314  EINVAL:   invalid register ID, or no such register
2315  EPERM:    (arm64) register access not allowed before vcpu finalization
2316(These error codes are indicative only: do not rely on a specific error
2317code being returned in a specific situation.)
Alexander Grafe24ed812011-09-14 10:02:41 +02002318
2319This ioctl allows to receive the value of a single register implemented
2320in a vcpu. The register to read is indicated by the "id" field of the
2321kvm_one_reg struct passed in. On success, the register value can be found
2322at the memory location pointed to by "addr".
2323
2324The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002325list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002326
Jan Kiszka414fa982012-04-24 16:40:15 +02002327
Eric B Munson1c0b28c2012-03-10 14:37:27 -050023284.70 KVM_KVMCLOCK_CTRL
2329
2330Capability: KVM_CAP_KVMCLOCK_CTRL
2331Architectures: Any that implement pvclocks (currently x86 only)
2332Type: vcpu ioctl
2333Parameters: None
2334Returns: 0 on success, -1 on error
2335
2336This signals to the host kernel that the specified guest is being paused by
2337userspace. The host will set a flag in the pvclock structure that is checked
2338from the soft lockup watchdog. The flag is part of the pvclock structure that
2339is shared between guest and host, specifically the second bit of the flags
2340field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2341the host and read/cleared exclusively by the guest. The guest operation of
2342checking and clearing the flag must an atomic operation so
2343load-link/store-conditional, or equivalent must be used. There are two cases
2344where the guest will clear the flag: when the soft lockup watchdog timer resets
2345itself or when a soft lockup is detected. This ioctl can be called any time
2346after pausing the vcpu, but before it is resumed.
2347
Jan Kiszka414fa982012-04-24 16:40:15 +02002348
Jan Kiszka07975ad2012-03-29 21:14:12 +020023494.71 KVM_SIGNAL_MSI
2350
2351Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002352Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002353Type: vm ioctl
2354Parameters: struct kvm_msi (in)
2355Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2356
2357Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2358MSI messages.
2359
2360struct kvm_msi {
2361 __u32 address_lo;
2362 __u32 address_hi;
2363 __u32 data;
2364 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002365 __u32 devid;
2366 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002367};
2368
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002369flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2370 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2371 the device ID. If this capability is not available, userspace
2372 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002373
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002374If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2375for the device that wrote the MSI message. For PCI, this is usually a
2376BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002377
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002378On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2379feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2380address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2381address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002382
Jan Kiszka414fa982012-04-24 16:40:15 +02002383
Jan Kiszka0589ff62012-04-24 16:40:16 +020023844.71 KVM_CREATE_PIT2
2385
2386Capability: KVM_CAP_PIT2
2387Architectures: x86
2388Type: vm ioctl
2389Parameters: struct kvm_pit_config (in)
2390Returns: 0 on success, -1 on error
2391
2392Creates an in-kernel device model for the i8254 PIT. This call is only valid
2393after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2394parameters have to be passed:
2395
2396struct kvm_pit_config {
2397 __u32 flags;
2398 __u32 pad[15];
2399};
2400
2401Valid flags are:
2402
2403#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2404
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002405PIT timer interrupts may use a per-VM kernel thread for injection. If it
2406exists, this thread will have a name of the following pattern:
2407
2408kvm-pit/<owner-process-pid>
2409
2410When running a guest with elevated priorities, the scheduling parameters of
2411this thread may have to be adjusted accordingly.
2412
Jan Kiszka0589ff62012-04-24 16:40:16 +02002413This IOCTL replaces the obsolete KVM_CREATE_PIT.
2414
2415
24164.72 KVM_GET_PIT2
2417
2418Capability: KVM_CAP_PIT_STATE2
2419Architectures: x86
2420Type: vm ioctl
2421Parameters: struct kvm_pit_state2 (out)
2422Returns: 0 on success, -1 on error
2423
2424Retrieves the state of the in-kernel PIT model. Only valid after
2425KVM_CREATE_PIT2. The state is returned in the following structure:
2426
2427struct kvm_pit_state2 {
2428 struct kvm_pit_channel_state channels[3];
2429 __u32 flags;
2430 __u32 reserved[9];
2431};
2432
2433Valid flags are:
2434
2435/* disable PIT in HPET legacy mode */
2436#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2437
2438This IOCTL replaces the obsolete KVM_GET_PIT.
2439
2440
24414.73 KVM_SET_PIT2
2442
2443Capability: KVM_CAP_PIT_STATE2
2444Architectures: x86
2445Type: vm ioctl
2446Parameters: struct kvm_pit_state2 (in)
2447Returns: 0 on success, -1 on error
2448
2449Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2450See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2451
2452This IOCTL replaces the obsolete KVM_SET_PIT.
2453
2454
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000024554.74 KVM_PPC_GET_SMMU_INFO
2456
2457Capability: KVM_CAP_PPC_GET_SMMU_INFO
2458Architectures: powerpc
2459Type: vm ioctl
2460Parameters: None
2461Returns: 0 on success, -1 on error
2462
2463This populates and returns a structure describing the features of
2464the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002465This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002466device-tree properties for the guest operating system.
2467
Carlos Garciac98be0c2014-04-04 22:31:00 -04002468The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002469array of supported segment page sizes:
2470
2471 struct kvm_ppc_smmu_info {
2472 __u64 flags;
2473 __u32 slb_size;
2474 __u32 pad;
2475 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2476 };
2477
2478The supported flags are:
2479
2480 - KVM_PPC_PAGE_SIZES_REAL:
2481 When that flag is set, guest page sizes must "fit" the backing
2482 store page sizes. When not set, any page size in the list can
2483 be used regardless of how they are backed by userspace.
2484
2485 - KVM_PPC_1T_SEGMENTS
2486 The emulated MMU supports 1T segments in addition to the
2487 standard 256M ones.
2488
Paul Mackerras901f8c32018-10-08 14:24:30 +11002489 - KVM_PPC_NO_HASH
2490 This flag indicates that HPT guests are not supported by KVM,
2491 thus all guests must use radix MMU mode.
2492
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002493The "slb_size" field indicates how many SLB entries are supported
2494
2495The "sps" array contains 8 entries indicating the supported base
2496page sizes for a segment in increasing order. Each entry is defined
2497as follow:
2498
2499 struct kvm_ppc_one_seg_page_size {
2500 __u32 page_shift; /* Base page shift of segment (or 0) */
2501 __u32 slb_enc; /* SLB encoding for BookS */
2502 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2503 };
2504
2505An entry with a "page_shift" of 0 is unused. Because the array is
2506organized in increasing order, a lookup can stop when encoutering
2507such an entry.
2508
2509The "slb_enc" field provides the encoding to use in the SLB for the
2510page size. The bits are in positions such as the value can directly
2511be OR'ed into the "vsid" argument of the slbmte instruction.
2512
2513The "enc" array is a list which for each of those segment base page
2514size provides the list of supported actual page sizes (which can be
2515only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002516corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000025178 entries sorted by increasing sizes and an entry with a "0" shift
2518is an empty entry and a terminator:
2519
2520 struct kvm_ppc_one_page_size {
2521 __u32 page_shift; /* Page shift (or 0) */
2522 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2523 };
2524
2525The "pte_enc" field provides a value that can OR'ed into the hash
2526PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2527into the hash PTE second double word).
2528
Alex Williamsonf36992e2012-06-29 09:56:16 -060025294.75 KVM_IRQFD
2530
2531Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002532Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002533Type: vm ioctl
2534Parameters: struct kvm_irqfd (in)
2535Returns: 0 on success, -1 on error
2536
2537Allows setting an eventfd to directly trigger a guest interrupt.
2538kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2539kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002540an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002541the guest using the specified gsi pin. The irqfd is removed using
2542the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2543and kvm_irqfd.gsi.
2544
Alex Williamson7a844282012-09-21 11:58:03 -06002545With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2546mechanism allowing emulation of level-triggered, irqfd-based
2547interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2548additional eventfd in the kvm_irqfd.resamplefd field. When operating
2549in resample mode, posting of an interrupt through kvm_irq.fd asserts
2550the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002551as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002552kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2553the interrupt if the device making use of it still requires service.
2554Note that closing the resamplefd is not sufficient to disable the
2555irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2556and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2557
Eric Auger180ae7b2016-07-22 16:20:41 +00002558On arm/arm64, gsi routing being supported, the following can happen:
2559- in case no routing entry is associated to this gsi, injection fails
2560- in case the gsi is associated to an irqchip routing entry,
2561 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002562- in case the gsi is associated to an MSI routing entry, the MSI
2563 message and device ID are translated into an LPI (support restricted
2564 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002565
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070025664.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002567
2568Capability: KVM_CAP_PPC_ALLOC_HTAB
2569Architectures: powerpc
2570Type: vm ioctl
2571Parameters: Pointer to u32 containing hash table order (in/out)
2572Returns: 0 on success, -1 on error
2573
2574This requests the host kernel to allocate an MMU hash table for a
2575guest using the PAPR paravirtualization interface. This only does
2576anything if the kernel is configured to use the Book 3S HV style of
2577virtualization. Otherwise the capability doesn't exist and the ioctl
2578returns an ENOTTY error. The rest of this description assumes Book 3S
2579HV.
2580
2581There must be no vcpus running when this ioctl is called; if there
2582are, it will do nothing and return an EBUSY error.
2583
2584The parameter is a pointer to a 32-bit unsigned integer variable
2585containing the order (log base 2) of the desired size of the hash
2586table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002587ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002588
2589If no hash table has been allocated when any vcpu is asked to run
2590(with the KVM_RUN ioctl), the host kernel will allocate a
2591default-sized hash table (16 MB).
2592
2593If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002594with a different order from the existing hash table, the existing hash
2595table will be freed and a new one allocated. If this is ioctl is
2596called when a hash table has already been allocated of the same order
2597as specified, the kernel will clear out the existing hash table (zero
2598all HPTEs). In either case, if the guest is using the virtualized
2599real-mode area (VRMA) facility, the kernel will re-create the VMRA
2600HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002601
Cornelia Huck416ad652012-10-02 16:25:37 +020026024.77 KVM_S390_INTERRUPT
2603
2604Capability: basic
2605Architectures: s390
2606Type: vm ioctl, vcpu ioctl
2607Parameters: struct kvm_s390_interrupt (in)
2608Returns: 0 on success, -1 on error
2609
2610Allows to inject an interrupt to the guest. Interrupts can be floating
2611(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2612
2613Interrupt parameters are passed via kvm_s390_interrupt:
2614
2615struct kvm_s390_interrupt {
2616 __u32 type;
2617 __u32 parm;
2618 __u64 parm64;
2619};
2620
2621type can be one of the following:
2622
David Hildenbrand28225452014-10-15 16:48:16 +02002623KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002624KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2625KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2626KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002627KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2628KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002629KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2630 parameters in parm and parm64
2631KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2632KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2633KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002634KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2635 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2636 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2637 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002638KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2639 machine check interrupt code in parm64 (note that
2640 machine checks needing further payload are not
2641 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002642
Sean Christopherson5e124902019-02-15 12:48:38 -08002643This is an asynchronous vcpu ioctl and can be invoked from any thread.
Cornelia Huck416ad652012-10-02 16:25:37 +02002644
Paul Mackerrasa2932922012-11-19 22:57:20 +000026454.78 KVM_PPC_GET_HTAB_FD
2646
2647Capability: KVM_CAP_PPC_HTAB_FD
2648Architectures: powerpc
2649Type: vm ioctl
2650Parameters: Pointer to struct kvm_get_htab_fd (in)
2651Returns: file descriptor number (>= 0) on success, -1 on error
2652
2653This returns a file descriptor that can be used either to read out the
2654entries in the guest's hashed page table (HPT), or to write entries to
2655initialize the HPT. The returned fd can only be written to if the
2656KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2657can only be read if that bit is clear. The argument struct looks like
2658this:
2659
2660/* For KVM_PPC_GET_HTAB_FD */
2661struct kvm_get_htab_fd {
2662 __u64 flags;
2663 __u64 start_index;
2664 __u64 reserved[2];
2665};
2666
2667/* Values for kvm_get_htab_fd.flags */
2668#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2669#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2670
2671The `start_index' field gives the index in the HPT of the entry at
2672which to start reading. It is ignored when writing.
2673
2674Reads on the fd will initially supply information about all
2675"interesting" HPT entries. Interesting entries are those with the
2676bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2677all entries. When the end of the HPT is reached, the read() will
2678return. If read() is called again on the fd, it will start again from
2679the beginning of the HPT, but will only return HPT entries that have
2680changed since they were last read.
2681
2682Data read or written is structured as a header (8 bytes) followed by a
2683series of valid HPT entries (16 bytes) each. The header indicates how
2684many valid HPT entries there are and how many invalid entries follow
2685the valid entries. The invalid entries are not represented explicitly
2686in the stream. The header format is:
2687
2688struct kvm_get_htab_header {
2689 __u32 index;
2690 __u16 n_valid;
2691 __u16 n_invalid;
2692};
2693
2694Writes to the fd create HPT entries starting at the index given in the
2695header; first `n_valid' valid entries with contents from the data
2696written, then `n_invalid' invalid entries, invalidating any previously
2697valid entries found.
2698
Scott Wood852b6d52013-04-12 14:08:42 +000026994.79 KVM_CREATE_DEVICE
2700
2701Capability: KVM_CAP_DEVICE_CTRL
2702Type: vm ioctl
2703Parameters: struct kvm_create_device (in/out)
2704Returns: 0 on success, -1 on error
2705Errors:
2706 ENODEV: The device type is unknown or unsupported
2707 EEXIST: Device already created, and this type of device may not
2708 be instantiated multiple times
2709
2710 Other error conditions may be defined by individual device types or
2711 have their standard meanings.
2712
2713Creates an emulated device in the kernel. The file descriptor returned
2714in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2715
2716If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2717device type is supported (not necessarily whether it can be created
2718in the current vm).
2719
2720Individual devices should not define flags. Attributes should be used
2721for specifying any behavior that is not implied by the device type
2722number.
2723
2724struct kvm_create_device {
2725 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2726 __u32 fd; /* out: device handle */
2727 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2728};
2729
27304.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2731
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002732Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2733 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2734Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002735Parameters: struct kvm_device_attr
2736Returns: 0 on success, -1 on error
2737Errors:
2738 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002739 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002740 EPERM: The attribute cannot (currently) be accessed this way
2741 (e.g. read-only attribute, or attribute that only makes
2742 sense when the device is in a different state)
2743
2744 Other error conditions may be defined by individual device types.
2745
2746Gets/sets a specified piece of device configuration and/or state. The
2747semantics are device-specific. See individual device documentation in
2748the "devices" directory. As with ONE_REG, the size of the data
2749transferred is defined by the particular attribute.
2750
2751struct kvm_device_attr {
2752 __u32 flags; /* no flags currently defined */
2753 __u32 group; /* device-defined */
2754 __u64 attr; /* group-defined */
2755 __u64 addr; /* userspace address of attr data */
2756};
2757
27584.81 KVM_HAS_DEVICE_ATTR
2759
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002760Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2761 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2762Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002763Parameters: struct kvm_device_attr
2764Returns: 0 on success, -1 on error
2765Errors:
2766 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002767 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002768
2769Tests whether a device supports a particular attribute. A successful
2770return indicates the attribute is implemented. It does not necessarily
2771indicate that the attribute can be read or written in the device's
2772current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002773
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100027744.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002775
2776Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +01002777Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002778Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302779Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002780Returns: 0 on success; -1 on error
2781Errors:
2782  EINVAL:    the target is unknown, or the combination of features is invalid.
2783  ENOENT:    a features bit specified is unknown.
2784
2785This tells KVM what type of CPU to present to the guest, and what
2786optional features it should have.  This will cause a reset of the cpu
2787registers to their initial values.  If this is not called, KVM_RUN will
2788return ENOEXEC for that vcpu.
2789
2790Note that because some registers reflect machine topology, all vcpus
2791should be created before this ioctl is invoked.
2792
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002793Userspace can call this function multiple times for a given vcpu, including
2794after the vcpu has been run. This will reset the vcpu to its initial
2795state. All calls to this function after the initial call must use the same
2796target and same set of feature flags, otherwise EINVAL will be returned.
2797
Marc Zyngieraa024c22013-01-20 18:28:13 -05002798Possible features:
2799 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002800 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2801 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c72013-04-02 17:46:31 +01002802 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2803 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002804 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision
2805 backward compatible with v0.2) for the CPU.
Anup Patel50bb0c92014-04-29 11:24:17 +05302806 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002807 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2808 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002809
Amit Daniel Kachhapa22fa322019-04-23 10:12:36 +05302810 - KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication
2811 for arm64 only.
Amit Daniel Kachhapa243c162019-04-23 10:12:37 +05302812 Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS.
2813 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
2814 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
2815 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
2816 requested.
Amit Daniel Kachhapa22fa322019-04-23 10:12:36 +05302817
2818 - KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication
2819 for arm64 only.
Amit Daniel Kachhapa243c162019-04-23 10:12:37 +05302820 Depends on KVM_CAP_ARM_PTRAUTH_GENERIC.
2821 If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
2822 both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
2823 KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
2824 requested.
Amit Daniel Kachhapa22fa322019-04-23 10:12:36 +05302825
Dave Martin50036ad2018-09-28 14:39:27 +01002826 - KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only).
2827 Depends on KVM_CAP_ARM_SVE.
2828 Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
2829
2830 * After KVM_ARM_VCPU_INIT:
2831
2832 - KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the
2833 initial value of this pseudo-register indicates the best set of
2834 vector lengths possible for a vcpu on this host.
2835
2836 * Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
2837
2838 - KVM_RUN and KVM_GET_REG_LIST are not available;
2839
2840 - KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access
2841 the scalable archietctural SVE registers
2842 KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or
2843 KVM_REG_ARM64_SVE_FFR;
2844
2845 - KVM_REG_ARM64_SVE_VLS may optionally be written using
2846 KVM_SET_ONE_REG, to modify the set of vector lengths available
2847 for the vcpu.
2848
2849 * After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):
2850
2851 - the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can
2852 no longer be written using KVM_SET_ONE_REG.
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002853
Anup Patel740edfc2013-09-30 14:20:08 +053028544.83 KVM_ARM_PREFERRED_TARGET
2855
2856Capability: basic
2857Architectures: arm, arm64
2858Type: vm ioctl
2859Parameters: struct struct kvm_vcpu_init (out)
2860Returns: 0 on success; -1 on error
2861Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002862 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302863
2864This queries KVM for preferred CPU target type which can be emulated
2865by KVM on underlying host.
2866
2867The ioctl returns struct kvm_vcpu_init instance containing information
2868about preferred CPU target type and recommended features for it. The
2869kvm_vcpu_init->features bitmap returned will have feature bits set if
2870the preferred target recommends setting these features, but this is
2871not mandatory.
2872
2873The information returned by this ioctl can be used to prepare an instance
2874of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2875in VCPU matching underlying host.
2876
2877
28784.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002879
2880Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002881Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002882Type: vcpu ioctl
2883Parameters: struct kvm_reg_list (in/out)
2884Returns: 0 on success; -1 on error
2885Errors:
2886  E2BIG:     the reg index list is too big to fit in the array specified by
2887             the user (the number required will be written into n).
2888
2889struct kvm_reg_list {
2890 __u64 n; /* number of registers in reg[] */
2891 __u64 reg[0];
2892};
2893
2894This ioctl returns the guest registers that are supported for the
2895KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2896
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002897
28984.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002899
2900Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c72013-04-02 17:46:31 +01002901Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002902Type: vm ioctl
2903Parameters: struct kvm_arm_device_address (in)
2904Returns: 0 on success, -1 on error
2905Errors:
2906 ENODEV: The device id is unknown
2907 ENXIO: Device not supported on current system
2908 EEXIST: Address already set
2909 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002910 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002911
2912struct kvm_arm_device_addr {
2913 __u64 id;
2914 __u64 addr;
2915};
2916
2917Specify a device address in the guest's physical address space where guests
2918can access emulated or directly exposed devices, which the host kernel needs
2919to know about. The id field is an architecture specific identifier for a
2920specific device.
2921
Marc Zyngier379e04c72013-04-02 17:46:31 +01002922ARM/arm64 divides the id field into two parts, a device id and an
2923address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002924
2925  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2926 field: | 0x00000000 | device id | addr type id |
2927
Marc Zyngier379e04c72013-04-02 17:46:31 +01002928ARM/arm64 currently only require this when using the in-kernel GIC
2929support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2930as the device id. When setting the base address for the guest's
2931mapping of the VGIC virtual CPU and distributor interface, the ioctl
2932must be called after calling KVM_CREATE_IRQCHIP, but before calling
2933KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2934base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002935
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002936Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2937should be used instead.
2938
2939
Anup Patel740edfc2013-09-30 14:20:08 +053029404.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002941
2942Capability: KVM_CAP_PPC_RTAS
2943Architectures: ppc
2944Type: vm ioctl
2945Parameters: struct kvm_rtas_token_args
2946Returns: 0 on success, -1 on error
2947
2948Defines a token value for a RTAS (Run Time Abstraction Services)
2949service in order to allow it to be handled in the kernel. The
2950argument struct gives the name of the service, which must be the name
2951of a service that has a kernel-side implementation. If the token
2952value is non-zero, it will be associated with that service, and
2953subsequent RTAS calls by the guest specifying that token will be
2954handled by the kernel. If the token value is 0, then any token
2955associated with the service will be forgotten, and subsequent RTAS
2956calls by the guest for that service will be passed to userspace to be
2957handled.
2958
Alex Bennée4bd9d342014-09-09 17:27:18 +010029594.87 KVM_SET_GUEST_DEBUG
2960
2961Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002962Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002963Type: vcpu ioctl
2964Parameters: struct kvm_guest_debug (in)
2965Returns: 0 on success; -1 on error
2966
2967struct kvm_guest_debug {
2968 __u32 control;
2969 __u32 pad;
2970 struct kvm_guest_debug_arch arch;
2971};
2972
2973Set up the processor specific debug registers and configure vcpu for
2974handling guest debug events. There are two parts to the structure, the
2975first a control bitfield indicates the type of debug events to handle
2976when running. Common control bits are:
2977
2978 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2979 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2980
2981The top 16 bits of the control field are architecture specific control
2982flags which can include the following:
2983
Alex Bennée4bd611c2015-07-07 17:29:57 +01002984 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002985 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002986 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2987 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2988 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2989
2990For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2991are enabled in memory so we need to ensure breakpoint exceptions are
2992correctly trapped and the KVM run loop exits at the breakpoint and not
2993running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2994we need to ensure the guest vCPUs architecture specific registers are
2995updated to the correct (supplied) values.
2996
2997The second part of the structure is architecture specific and
2998typically contains a set of debug registers.
2999
Alex Bennée834bf882015-07-07 17:30:02 +01003000For arm64 the number of debug registers is implementation defined and
3001can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
3002KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
3003indicating the number of supported registers.
3004
Fabiano Rosas1a9167a2019-06-19 13:01:27 -03003005For ppc, the KVM_CAP_PPC_GUEST_DEBUG_SSTEP capability indicates whether
3006the single-step debug event (KVM_GUESTDBG_SINGLESTEP) is supported.
3007
Alex Bennée4bd9d342014-09-09 17:27:18 +01003008When debug events exit the main run loop with the reason
3009KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
3010structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05003011
Alex Bennée209cf192014-09-09 17:27:19 +010030124.88 KVM_GET_EMULATED_CPUID
3013
3014Capability: KVM_CAP_EXT_EMUL_CPUID
3015Architectures: x86
3016Type: system ioctl
3017Parameters: struct kvm_cpuid2 (in/out)
3018Returns: 0 on success, -1 on error
3019
3020struct kvm_cpuid2 {
3021 __u32 nent;
3022 __u32 flags;
3023 struct kvm_cpuid_entry2 entries[0];
3024};
3025
3026The member 'flags' is used for passing flags from userspace.
3027
3028#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
3029#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
3030#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
3031
3032struct kvm_cpuid_entry2 {
3033 __u32 function;
3034 __u32 index;
3035 __u32 flags;
3036 __u32 eax;
3037 __u32 ebx;
3038 __u32 ecx;
3039 __u32 edx;
3040 __u32 padding[3];
3041};
3042
3043This ioctl returns x86 cpuid features which are emulated by
3044kvm.Userspace can use the information returned by this ioctl to query
3045which features are emulated by kvm instead of being present natively.
3046
3047Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
3048structure with the 'nent' field indicating the number of entries in
3049the variable-size array 'entries'. If the number of entries is too low
3050to describe the cpu capabilities, an error (E2BIG) is returned. If the
3051number is too high, the 'nent' field is adjusted and an error (ENOMEM)
3052is returned. If the number is just right, the 'nent' field is adjusted
3053to the number of valid entries in the 'entries' array, which is then
3054filled.
3055
3056The entries returned are the set CPUID bits of the respective features
3057which kvm emulates, as returned by the CPUID instruction, with unknown
3058or unsupported feature bits cleared.
3059
3060Features like x2apic, for example, may not be present in the host cpu
3061but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
3062emulated efficiently and thus not included here.
3063
3064The fields in each entry are defined as follows:
3065
3066 function: the eax value used to obtain the entry
3067 index: the ecx value used to obtain the entry (for entries that are
3068 affected by ecx)
3069 flags: an OR of zero or more of the following:
3070 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
3071 if the index field is valid
3072 KVM_CPUID_FLAG_STATEFUL_FUNC:
3073 if cpuid for this function returns different values for successive
3074 invocations; there will be several entries with the same function,
3075 all with this flag set
3076 KVM_CPUID_FLAG_STATE_READ_NEXT:
3077 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
3078 the first entry to be read by a cpu
3079 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
3080 this function/index combination
3081
Thomas Huth41408c282015-02-06 15:01:21 +010030824.89 KVM_S390_MEM_OP
3083
3084Capability: KVM_CAP_S390_MEM_OP
3085Architectures: s390
3086Type: vcpu ioctl
3087Parameters: struct kvm_s390_mem_op (in)
3088Returns: = 0 on success,
3089 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
3090 > 0 if an exception occurred while walking the page tables
3091
Masanari Iida5d4f6f32015-10-04 00:46:21 +09003092Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c282015-02-06 15:01:21 +01003093
3094Parameters are specified via the following structure:
3095
3096struct kvm_s390_mem_op {
3097 __u64 gaddr; /* the guest address */
3098 __u64 flags; /* flags */
3099 __u32 size; /* amount of bytes */
3100 __u32 op; /* type of operation */
3101 __u64 buf; /* buffer in userspace */
3102 __u8 ar; /* the access register number */
3103 __u8 reserved[31]; /* should be set to 0 */
3104};
3105
3106The type of operation is specified in the "op" field. It is either
3107KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
3108KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
3109KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
3110whether the corresponding memory access would create an access exception
3111(without touching the data in the memory at the destination). In case an
3112access exception occurred while walking the MMU tables of the guest, the
3113ioctl returns a positive error number to indicate the type of exception.
3114This exception is also raised directly at the corresponding VCPU if the
3115flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
3116
3117The start address of the memory region has to be specified in the "gaddr"
Cornelia Huckb4d863c2019-08-29 14:47:46 +02003118field, and the length of the region in the "size" field (which must not
3119be 0). The maximum value for "size" can be obtained by checking the
3120KVM_CAP_S390_MEM_OP capability. "buf" is the buffer supplied by the
3121userspace application where the read data should be written to for
3122KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written is
3123stored for a KVM_S390_MEMOP_LOGICAL_WRITE. When KVM_S390_MEMOP_F_CHECK_ONLY
3124is specified, "buf" is unused and can be NULL. "ar" designates the access
3125register number to be used; the valid range is 0..15.
Thomas Huth41408c282015-02-06 15:01:21 +01003126
3127The "reserved" field is meant for future extensions. It is not used by
3128KVM with the currently defined set of flags.
3129
Jason J. Herne30ee2a92014-09-23 09:23:01 -040031304.90 KVM_S390_GET_SKEYS
3131
3132Capability: KVM_CAP_S390_SKEYS
3133Architectures: s390
3134Type: vm ioctl
3135Parameters: struct kvm_s390_skeys
3136Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
3137 keys, negative value on error
3138
3139This ioctl is used to get guest storage key values on the s390
3140architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
3141
3142struct kvm_s390_skeys {
3143 __u64 start_gfn;
3144 __u64 count;
3145 __u64 skeydata_addr;
3146 __u32 flags;
3147 __u32 reserved[9];
3148};
3149
3150The start_gfn field is the number of the first guest frame whose storage keys
3151you want to get.
3152
3153The count field is the number of consecutive frames (starting from start_gfn)
3154whose storage keys to get. The count field must be at least 1 and the maximum
3155allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3156will cause the ioctl to return -EINVAL.
3157
3158The skeydata_addr field is the address to a buffer large enough to hold count
3159bytes. This buffer will be filled with storage key data by the ioctl.
3160
31614.91 KVM_S390_SET_SKEYS
3162
3163Capability: KVM_CAP_S390_SKEYS
3164Architectures: s390
3165Type: vm ioctl
3166Parameters: struct kvm_s390_skeys
3167Returns: 0 on success, negative value on error
3168
3169This ioctl is used to set guest storage key values on the s390
3170architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
3171See section on KVM_S390_GET_SKEYS for struct definition.
3172
3173The start_gfn field is the number of the first guest frame whose storage keys
3174you want to set.
3175
3176The count field is the number of consecutive frames (starting from start_gfn)
3177whose storage keys to get. The count field must be at least 1 and the maximum
3178allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
3179will cause the ioctl to return -EINVAL.
3180
3181The skeydata_addr field is the address to a buffer containing count bytes of
3182storage keys. Each byte in the buffer will be set as the storage key for a
3183single frame starting at start_gfn for count frames.
3184
3185Note: If any architecturally invalid key value is found in the given data then
3186the ioctl will return -EINVAL.
3187
Jens Freimann47b43c52014-11-11 20:57:06 +010031884.92 KVM_S390_IRQ
3189
3190Capability: KVM_CAP_S390_INJECT_IRQ
3191Architectures: s390
3192Type: vcpu ioctl
3193Parameters: struct kvm_s390_irq (in)
3194Returns: 0 on success, -1 on error
3195Errors:
3196 EINVAL: interrupt type is invalid
3197 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
3198 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
3199 than the maximum of VCPUs
3200 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
3201 type is KVM_S390_SIGP_STOP and a stop irq is already pending
3202 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
3203 is already pending
3204
3205Allows to inject an interrupt to the guest.
3206
3207Using struct kvm_s390_irq as a parameter allows
3208to inject additional payload which is not
3209possible via KVM_S390_INTERRUPT.
3210
3211Interrupt parameters are passed via kvm_s390_irq:
3212
3213struct kvm_s390_irq {
3214 __u64 type;
3215 union {
3216 struct kvm_s390_io_info io;
3217 struct kvm_s390_ext_info ext;
3218 struct kvm_s390_pgm_info pgm;
3219 struct kvm_s390_emerg_info emerg;
3220 struct kvm_s390_extcall_info extcall;
3221 struct kvm_s390_prefix_info prefix;
3222 struct kvm_s390_stop_info stop;
3223 struct kvm_s390_mchk_info mchk;
3224 char reserved[64];
3225 } u;
3226};
3227
3228type can be one of the following:
3229
3230KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3231KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3232KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3233KVM_S390_RESTART - restart; no parameters
3234KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3235KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3236KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3237KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3238KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3239
Sean Christopherson5e124902019-02-15 12:48:38 -08003240This is an asynchronous vcpu ioctl and can be invoked from any thread.
Jens Freimann47b43c52014-11-11 20:57:06 +01003241
Jens Freimann816c7662014-11-24 17:13:46 +010032424.94 KVM_S390_GET_IRQ_STATE
3243
3244Capability: KVM_CAP_S390_IRQ_STATE
3245Architectures: s390
3246Type: vcpu ioctl
3247Parameters: struct kvm_s390_irq_state (out)
3248Returns: >= number of bytes copied into buffer,
3249 -EINVAL if buffer size is 0,
3250 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3251 -EFAULT if the buffer address was invalid
3252
3253This ioctl allows userspace to retrieve the complete state of all currently
3254pending interrupts in a single buffer. Use cases include migration
3255and introspection. The parameter structure contains the address of a
3256userspace buffer and its length:
3257
3258struct kvm_s390_irq_state {
3259 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003260 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003261 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003262 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003263};
3264
3265Userspace passes in the above struct and for each pending interrupt a
3266struct kvm_s390_irq is copied to the provided buffer.
3267
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003268The structure contains a flags and a reserved field for future extensions. As
3269the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
3270reserved, these fields can not be used in the future without breaking
3271compatibility.
3272
Jens Freimann816c7662014-11-24 17:13:46 +01003273If -ENOBUFS is returned the buffer provided was too small and userspace
3274may retry with a bigger buffer.
3275
32764.95 KVM_S390_SET_IRQ_STATE
3277
3278Capability: KVM_CAP_S390_IRQ_STATE
3279Architectures: s390
3280Type: vcpu ioctl
3281Parameters: struct kvm_s390_irq_state (in)
3282Returns: 0 on success,
3283 -EFAULT if the buffer address was invalid,
3284 -EINVAL for an invalid buffer length (see below),
3285 -EBUSY if there were already interrupts pending,
3286 errors occurring when actually injecting the
3287 interrupt. See KVM_S390_IRQ.
3288
3289This ioctl allows userspace to set the complete state of all cpu-local
3290interrupts currently pending for the vcpu. It is intended for restoring
3291interrupt state after a migration. The input parameter is a userspace buffer
3292containing a struct kvm_s390_irq_state:
3293
3294struct kvm_s390_irq_state {
3295 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003296 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003297 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003298 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003299};
3300
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003301The restrictions for flags and reserved apply as well.
3302(see KVM_S390_GET_IRQ_STATE)
3303
Jens Freimann816c7662014-11-24 17:13:46 +01003304The userspace memory referenced by buf contains a struct kvm_s390_irq
3305for each interrupt to be injected into the guest.
3306If one of the interrupts could not be injected for some reason the
3307ioctl aborts.
3308
3309len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3310and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3311which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01003312
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110033134.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02003314
3315Capability: KVM_CAP_X86_SMM
3316Architectures: x86
3317Type: vcpu ioctl
3318Parameters: none
3319Returns: 0 on success, -1 on error
3320
3321Queues an SMI on the thread's vcpu.
3322
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110033234.97 KVM_CAP_PPC_MULTITCE
3324
3325Capability: KVM_CAP_PPC_MULTITCE
3326Architectures: ppc
3327Type: vm
3328
3329This capability means the kernel is capable of handling hypercalls
3330H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3331space. This significantly accelerates DMA operations for PPC KVM guests.
3332User space should expect that its handlers for these hypercalls
3333are not going to be called if user space previously registered LIOBN
3334in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3335
3336In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3337user space might have to advertise it for the guest. For example,
3338IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3339present in the "ibm,hypertas-functions" device-tree property.
3340
3341The hypercalls mentioned above may or may not be processed successfully
3342in the kernel based fast path. If they can not be handled by the kernel,
3343they will get passed on to user space. So user space still has to have
3344an implementation for these despite the in kernel acceleration.
3345
3346This capability is always enabled.
3347
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110033484.98 KVM_CREATE_SPAPR_TCE_64
3349
3350Capability: KVM_CAP_SPAPR_TCE_64
3351Architectures: powerpc
3352Type: vm ioctl
3353Parameters: struct kvm_create_spapr_tce_64 (in)
3354Returns: file descriptor for manipulating the created TCE table
3355
3356This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3357windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3358
3359This capability uses extended struct in ioctl interface:
3360
3361/* for KVM_CAP_SPAPR_TCE_64 */
3362struct kvm_create_spapr_tce_64 {
3363 __u64 liobn;
3364 __u32 page_shift;
3365 __u32 flags;
3366 __u64 offset; /* in pages */
3367 __u64 size; /* in pages */
3368};
3369
3370The aim of extension is to support an additional bigger DMA window with
3371a variable page size.
3372KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3373a bus offset of the corresponding DMA window, @size and @offset are numbers
3374of IOMMU pages.
3375
3376@flags are not used at the moment.
3377
3378The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3379
David Gibsonccc4df42016-12-20 16:48:57 +110033804.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003381
3382Capability: KVM_CAP_REINJECT_CONTROL
3383Architectures: x86
3384Type: vm ioctl
3385Parameters: struct kvm_reinject_control (in)
3386Returns: 0 on success,
3387 -EFAULT if struct kvm_reinject_control cannot be read,
3388 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3389
3390i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3391where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3392vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3393interrupt whenever there isn't a pending interrupt from i8254.
3394!reinject mode injects an interrupt as soon as a tick arrives.
3395
3396struct kvm_reinject_control {
3397 __u8 pit_reinject;
3398 __u8 reserved[31];
3399};
3400
3401pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3402operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3403
David Gibsonccc4df42016-12-20 16:48:57 +110034044.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003405
3406Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3407Architectures: ppc
3408Type: vm ioctl
3409Parameters: struct kvm_ppc_mmuv3_cfg (in)
3410Returns: 0 on success,
3411 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3412 -EINVAL if the configuration is invalid
3413
3414This ioctl controls whether the guest will use radix or HPT (hashed
3415page table) translation, and sets the pointer to the process table for
3416the guest.
3417
3418struct kvm_ppc_mmuv3_cfg {
3419 __u64 flags;
3420 __u64 process_table;
3421};
3422
3423There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3424KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3425to use radix tree translation, and if clear, to use HPT translation.
3426KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3427to be able to use the global TLB and SLB invalidation instructions;
3428if clear, the guest may not use these instructions.
3429
3430The process_table field specifies the address and size of the guest
3431process table, which is in the guest's space. This field is formatted
3432as the second doubleword of the partition table entry, as defined in
3433the Power ISA V3.00, Book III section 5.7.6.1.
3434
David Gibsonccc4df42016-12-20 16:48:57 +110034354.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003436
3437Capability: KVM_CAP_PPC_RADIX_MMU
3438Architectures: ppc
3439Type: vm ioctl
3440Parameters: struct kvm_ppc_rmmu_info (out)
3441Returns: 0 on success,
3442 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3443 -EINVAL if no useful information can be returned
3444
3445This ioctl returns a structure containing two things: (a) a list
3446containing supported radix tree geometries, and (b) a list that maps
3447page sizes to put in the "AP" (actual page size) field for the tlbie
3448(TLB invalidate entry) instruction.
3449
3450struct kvm_ppc_rmmu_info {
3451 struct kvm_ppc_radix_geom {
3452 __u8 page_shift;
3453 __u8 level_bits[4];
3454 __u8 pad[3];
3455 } geometries[8];
3456 __u32 ap_encodings[8];
3457};
3458
3459The geometries[] field gives up to 8 supported geometries for the
3460radix page table, in terms of the log base 2 of the smallest page
3461size, and the number of bits indexed at each level of the tree, from
3462the PTE level up to the PGD level in that order. Any unused entries
3463will have 0 in the page_shift field.
3464
3465The ap_encodings gives the supported page sizes and their AP field
3466encodings, encoded with the AP value in the top 3 bits and the log
3467base 2 of the page size in the bottom 6 bits.
3468
David Gibsonef1ead02016-12-20 16:48:58 +110034694.102 KVM_PPC_RESIZE_HPT_PREPARE
3470
3471Capability: KVM_CAP_SPAPR_RESIZE_HPT
3472Architectures: powerpc
3473Type: vm ioctl
3474Parameters: struct kvm_ppc_resize_hpt (in)
3475Returns: 0 on successful completion,
3476 >0 if a new HPT is being prepared, the value is an estimated
3477 number of milliseconds until preparation is complete
3478 -EFAULT if struct kvm_reinject_control cannot be read,
3479 -EINVAL if the supplied shift or flags are invalid
3480 -ENOMEM if unable to allocate the new HPT
3481 -ENOSPC if there was a hash collision when moving existing
3482 HPT entries to the new HPT
3483 -EIO on other error conditions
3484
3485Used to implement the PAPR extension for runtime resizing of a guest's
3486Hashed Page Table (HPT). Specifically this starts, stops or monitors
3487the preparation of a new potential HPT for the guest, essentially
3488implementing the H_RESIZE_HPT_PREPARE hypercall.
3489
3490If called with shift > 0 when there is no pending HPT for the guest,
3491this begins preparation of a new pending HPT of size 2^(shift) bytes.
3492It then returns a positive integer with the estimated number of
3493milliseconds until preparation is complete.
3494
3495If called when there is a pending HPT whose size does not match that
3496requested in the parameters, discards the existing pending HPT and
3497creates a new one as above.
3498
3499If called when there is a pending HPT of the size requested, will:
3500 * If preparation of the pending HPT is already complete, return 0
3501 * If preparation of the pending HPT has failed, return an error
3502 code, then discard the pending HPT.
3503 * If preparation of the pending HPT is still in progress, return an
3504 estimated number of milliseconds until preparation is complete.
3505
3506If called with shift == 0, discards any currently pending HPT and
3507returns 0 (i.e. cancels any in-progress preparation).
3508
3509flags is reserved for future expansion, currently setting any bits in
3510flags will result in an -EINVAL.
3511
3512Normally this will be called repeatedly with the same parameters until
3513it returns <= 0. The first call will initiate preparation, subsequent
3514ones will monitor preparation until it completes or fails.
3515
3516struct kvm_ppc_resize_hpt {
3517 __u64 flags;
3518 __u32 shift;
3519 __u32 pad;
3520};
3521
35224.103 KVM_PPC_RESIZE_HPT_COMMIT
3523
3524Capability: KVM_CAP_SPAPR_RESIZE_HPT
3525Architectures: powerpc
3526Type: vm ioctl
3527Parameters: struct kvm_ppc_resize_hpt (in)
3528Returns: 0 on successful completion,
3529 -EFAULT if struct kvm_reinject_control cannot be read,
3530 -EINVAL if the supplied shift or flags are invalid
3531 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3532 have the requested size
3533 -EBUSY if the pending HPT is not fully prepared
3534 -ENOSPC if there was a hash collision when moving existing
3535 HPT entries to the new HPT
3536 -EIO on other error conditions
3537
3538Used to implement the PAPR extension for runtime resizing of a guest's
3539Hashed Page Table (HPT). Specifically this requests that the guest be
3540transferred to working with the new HPT, essentially implementing the
3541H_RESIZE_HPT_COMMIT hypercall.
3542
3543This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3544returned 0 with the same parameters. In other cases
3545KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3546-EBUSY, though others may be possible if the preparation was started,
3547but failed).
3548
3549This will have undefined effects on the guest if it has not already
3550placed itself in a quiescent state where no vcpu will make MMU enabled
3551memory accesses.
3552
3553On succsful completion, the pending HPT will become the guest's active
3554HPT and the previous HPT will be discarded.
3555
3556On failure, the guest will still be operating on its previous HPT.
3557
3558struct kvm_ppc_resize_hpt {
3559 __u64 flags;
3560 __u32 shift;
3561 __u32 pad;
3562};
3563
Luiz Capitulino3aa53852017-03-13 09:08:20 -040035644.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3565
3566Capability: KVM_CAP_MCE
3567Architectures: x86
3568Type: system ioctl
3569Parameters: u64 mce_cap (out)
3570Returns: 0 on success, -1 on error
3571
3572Returns supported MCE capabilities. The u64 mce_cap parameter
3573has the same format as the MSR_IA32_MCG_CAP register. Supported
3574capabilities will have the corresponding bits set.
3575
35764.105 KVM_X86_SETUP_MCE
3577
3578Capability: KVM_CAP_MCE
3579Architectures: x86
3580Type: vcpu ioctl
3581Parameters: u64 mcg_cap (in)
3582Returns: 0 on success,
3583 -EFAULT if u64 mcg_cap cannot be read,
3584 -EINVAL if the requested number of banks is invalid,
3585 -EINVAL if requested MCE capability is not supported.
3586
3587Initializes MCE support for use. The u64 mcg_cap parameter
3588has the same format as the MSR_IA32_MCG_CAP register and
3589specifies which capabilities should be enabled. The maximum
3590supported number of error-reporting banks can be retrieved when
3591checking for KVM_CAP_MCE. The supported capabilities can be
3592retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3593
35944.106 KVM_X86_SET_MCE
3595
3596Capability: KVM_CAP_MCE
3597Architectures: x86
3598Type: vcpu ioctl
3599Parameters: struct kvm_x86_mce (in)
3600Returns: 0 on success,
3601 -EFAULT if struct kvm_x86_mce cannot be read,
3602 -EINVAL if the bank number is invalid,
3603 -EINVAL if VAL bit is not set in status field.
3604
3605Inject a machine check error (MCE) into the guest. The input
3606parameter is:
3607
3608struct kvm_x86_mce {
3609 __u64 status;
3610 __u64 addr;
3611 __u64 misc;
3612 __u64 mcg_status;
3613 __u8 bank;
3614 __u8 pad1[7];
3615 __u64 pad2[3];
3616};
3617
3618If the MCE being reported is an uncorrected error, KVM will
3619inject it as an MCE exception into the guest. If the guest
3620MCG_STATUS register reports that an MCE is in progress, KVM
3621causes an KVM_EXIT_SHUTDOWN vmexit.
3622
3623Otherwise, if the MCE is a corrected error, KVM will just
3624store it in the corresponding bank (provided this bank is
3625not holding a previously reported uncorrected error).
3626
Claudio Imbrenda4036e382016-08-04 17:58:47 +020036274.107 KVM_S390_GET_CMMA_BITS
3628
3629Capability: KVM_CAP_S390_CMMA_MIGRATION
3630Architectures: s390
3631Type: vm ioctl
3632Parameters: struct kvm_s390_cmma_log (in, out)
3633Returns: 0 on success, a negative value on error
3634
3635This ioctl is used to get the values of the CMMA bits on the s390
3636architecture. It is meant to be used in two scenarios:
3637- During live migration to save the CMMA values. Live migration needs
3638 to be enabled via the KVM_REQ_START_MIGRATION VM property.
3639- To non-destructively peek at the CMMA values, with the flag
3640 KVM_S390_CMMA_PEEK set.
3641
3642The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired
3643values are written to a buffer whose location is indicated via the "values"
3644member in the kvm_s390_cmma_log struct. The values in the input struct are
3645also updated as needed.
3646Each CMMA value takes up one byte.
3647
3648struct kvm_s390_cmma_log {
3649 __u64 start_gfn;
3650 __u32 count;
3651 __u32 flags;
3652 union {
3653 __u64 remaining;
3654 __u64 mask;
3655 };
3656 __u64 values;
3657};
3658
3659start_gfn is the number of the first guest frame whose CMMA values are
3660to be retrieved,
3661
3662count is the length of the buffer in bytes,
3663
3664values points to the buffer where the result will be written to.
3665
3666If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be
3667KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with
3668other ioctls.
3669
3670The result is written in the buffer pointed to by the field values, and
3671the values of the input parameter are updated as follows.
3672
3673Depending on the flags, different actions are performed. The only
3674supported flag so far is KVM_S390_CMMA_PEEK.
3675
3676The default behaviour if KVM_S390_CMMA_PEEK is not set is:
3677start_gfn will indicate the first page frame whose CMMA bits were dirty.
3678It is not necessarily the same as the one passed as input, as clean pages
3679are skipped.
3680
3681count will indicate the number of bytes actually written in the buffer.
3682It can (and very often will) be smaller than the input value, since the
3683buffer is only filled until 16 bytes of clean values are found (which
3684are then not copied in the buffer). Since a CMMA migration block needs
3685the base address and the length, for a total of 16 bytes, we will send
3686back some clean data if there is some dirty data afterwards, as long as
3687the size of the clean data does not exceed the size of the header. This
3688allows to minimize the amount of data to be saved or transferred over
3689the network at the expense of more roundtrips to userspace. The next
3690invocation of the ioctl will skip over all the clean values, saving
3691potentially more than just the 16 bytes we found.
3692
3693If KVM_S390_CMMA_PEEK is set:
3694the existing storage attributes are read even when not in migration
3695mode, and no other action is performed;
3696
3697the output start_gfn will be equal to the input start_gfn,
3698
3699the output count will be equal to the input count, except if the end of
3700memory has been reached.
3701
3702In both cases:
3703the field "remaining" will indicate the total number of dirty CMMA values
3704still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is
3705not enabled.
3706
3707mask is unused.
3708
3709values points to the userspace buffer where the result will be stored.
3710
3711This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3712complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3713KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
3714-EFAULT if the userspace address is invalid or if no page table is
3715present for the addresses (e.g. when using hugepages).
3716
37174.108 KVM_S390_SET_CMMA_BITS
3718
3719Capability: KVM_CAP_S390_CMMA_MIGRATION
3720Architectures: s390
3721Type: vm ioctl
3722Parameters: struct kvm_s390_cmma_log (in)
3723Returns: 0 on success, a negative value on error
3724
3725This ioctl is used to set the values of the CMMA bits on the s390
3726architecture. It is meant to be used during live migration to restore
3727the CMMA values, but there are no restrictions on its use.
3728The ioctl takes parameters via the kvm_s390_cmma_values struct.
3729Each CMMA value takes up one byte.
3730
3731struct kvm_s390_cmma_log {
3732 __u64 start_gfn;
3733 __u32 count;
3734 __u32 flags;
3735 union {
3736 __u64 remaining;
3737 __u64 mask;
3738 };
3739 __u64 values;
3740};
3741
3742start_gfn indicates the starting guest frame number,
3743
3744count indicates how many values are to be considered in the buffer,
3745
3746flags is not used and must be 0.
3747
3748mask indicates which PGSTE bits are to be considered.
3749
3750remaining is not used.
3751
3752values points to the buffer in userspace where to store the values.
3753
3754This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3755complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3756the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or
3757if the flags field was not 0, with -EFAULT if the userspace address is
3758invalid, if invalid pages are written to (e.g. after the end of memory)
3759or if no page table is present for the addresses (e.g. when using
3760hugepages).
3761
Radim Krčmář7bf14c22018-02-01 15:04:17 +010037624.109 KVM_PPC_GET_CPU_CHAR
Paul Mackerras3214d012018-01-15 16:06:47 +11003763
3764Capability: KVM_CAP_PPC_GET_CPU_CHAR
3765Architectures: powerpc
3766Type: vm ioctl
3767Parameters: struct kvm_ppc_cpu_char (out)
3768Returns: 0 on successful completion
3769 -EFAULT if struct kvm_ppc_cpu_char cannot be written
3770
3771This ioctl gives userspace information about certain characteristics
3772of the CPU relating to speculative execution of instructions and
3773possible information leakage resulting from speculative execution (see
3774CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is
3775returned in struct kvm_ppc_cpu_char, which looks like this:
3776
3777struct kvm_ppc_cpu_char {
3778 __u64 character; /* characteristics of the CPU */
3779 __u64 behaviour; /* recommended software behaviour */
3780 __u64 character_mask; /* valid bits in character */
3781 __u64 behaviour_mask; /* valid bits in behaviour */
3782};
3783
3784For extensibility, the character_mask and behaviour_mask fields
3785indicate which bits of character and behaviour have been filled in by
3786the kernel. If the set of defined bits is extended in future then
3787userspace will be able to tell whether it is running on a kernel that
3788knows about the new bits.
3789
3790The character field describes attributes of the CPU which can help
3791with preventing inadvertent information disclosure - specifically,
3792whether there is an instruction to flash-invalidate the L1 data cache
3793(ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set
3794to a mode where entries can only be used by the thread that created
3795them, whether the bcctr[l] instruction prevents speculation, and
3796whether a speculation barrier instruction (ori 31,31,0) is provided.
3797
3798The behaviour field describes actions that software should take to
3799prevent inadvertent information disclosure, and thus describes which
3800vulnerabilities the hardware is subject to; specifically whether the
3801L1 data cache should be flushed when returning to user mode from the
3802kernel, and whether a speculation barrier should be placed between an
3803array bounds check and the array access.
3804
3805These fields use the same bit definitions as the new
3806H_GET_CPU_CHARACTERISTICS hypercall.
3807
Radim Krčmář7bf14c22018-02-01 15:04:17 +010038084.110 KVM_MEMORY_ENCRYPT_OP
Brijesh Singh5acc5c02017-12-04 10:57:26 -06003809
3810Capability: basic
3811Architectures: x86
3812Type: system
3813Parameters: an opaque platform specific structure (in/out)
3814Returns: 0 on success; -1 on error
3815
3816If the platform supports creating encrypted VMs then this ioctl can be used
3817for issuing platform-specific memory encryption commands to manage those
3818encrypted VMs.
3819
3820Currently, this ioctl is used for issuing Secure Encrypted Virtualization
3821(SEV) commands on AMD Processors. The SEV commands are defined in
Christoph Hellwig2f5947d2019-07-24 09:24:49 +02003822Documentation/virt/kvm/amd-memory-encryption.rst.
Brijesh Singh5acc5c02017-12-04 10:57:26 -06003823
Radim Krčmář7bf14c22018-02-01 15:04:17 +010038244.111 KVM_MEMORY_ENCRYPT_REG_REGION
Brijesh Singh69eaede2017-12-04 10:57:26 -06003825
3826Capability: basic
3827Architectures: x86
3828Type: system
3829Parameters: struct kvm_enc_region (in)
3830Returns: 0 on success; -1 on error
3831
3832This ioctl can be used to register a guest memory region which may
3833contain encrypted data (e.g. guest RAM, SMRAM etc).
3834
3835It is used in the SEV-enabled guest. When encryption is enabled, a guest
3836memory region may contain encrypted data. The SEV memory encryption
3837engine uses a tweak such that two identical plaintext pages, each at
3838different locations will have differing ciphertexts. So swapping or
3839moving ciphertext of those pages will not result in plaintext being
3840swapped. So relocating (or migrating) physical backing pages for the SEV
3841guest will require some additional steps.
3842
3843Note: The current SEV key management spec does not provide commands to
3844swap or migrate (move) ciphertext pages. Hence, for now we pin the guest
3845memory region registered with the ioctl.
3846
Radim Krčmář7bf14c22018-02-01 15:04:17 +010038474.112 KVM_MEMORY_ENCRYPT_UNREG_REGION
Brijesh Singh69eaede2017-12-04 10:57:26 -06003848
3849Capability: basic
3850Architectures: x86
3851Type: system
3852Parameters: struct kvm_enc_region (in)
3853Returns: 0 on success; -1 on error
3854
3855This ioctl can be used to unregister the guest memory region registered
3856with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above.
3857
Roman Kaganfaeb7832018-02-01 16:48:32 +030038584.113 KVM_HYPERV_EVENTFD
3859
3860Capability: KVM_CAP_HYPERV_EVENTFD
3861Architectures: x86
3862Type: vm ioctl
3863Parameters: struct kvm_hyperv_eventfd (in)
3864
3865This ioctl (un)registers an eventfd to receive notifications from the guest on
3866the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without
3867causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number
3868(bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit.
3869
3870struct kvm_hyperv_eventfd {
3871 __u32 conn_id;
3872 __s32 fd;
3873 __u32 flags;
3874 __u32 padding[3];
3875};
3876
3877The conn_id field should fit within 24 bits:
3878
3879#define KVM_HYPERV_CONN_ID_MASK 0x00ffffff
3880
3881The acceptable values for the flags field are:
3882
3883#define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0)
3884
3885Returns: 0 on success,
3886 -EINVAL if conn_id or flags is outside the allowed range
3887 -ENOENT on deassign if the conn_id isn't registered
3888 -EEXIST on assign if the conn_id is already registered
3889
Jim Mattson8fcc4b52018-07-10 11:27:20 +020038904.114 KVM_GET_NESTED_STATE
3891
3892Capability: KVM_CAP_NESTED_STATE
3893Architectures: x86
3894Type: vcpu ioctl
3895Parameters: struct kvm_nested_state (in/out)
3896Returns: 0 on success, -1 on error
3897Errors:
Liran Alon6ca00df2019-06-16 15:03:10 +03003898 E2BIG: the total state size exceeds the value of 'size' specified by
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003899 the user; the size required will be written into size.
3900
3901struct kvm_nested_state {
3902 __u16 flags;
3903 __u16 format;
3904 __u32 size;
Liran Alon6ca00df2019-06-16 15:03:10 +03003905
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003906 union {
Liran Alon6ca00df2019-06-16 15:03:10 +03003907 struct kvm_vmx_nested_state_hdr vmx;
3908 struct kvm_svm_nested_state_hdr svm;
3909
3910 /* Pad the header to 128 bytes. */
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003911 __u8 pad[120];
Liran Alon6ca00df2019-06-16 15:03:10 +03003912 } hdr;
3913
3914 union {
3915 struct kvm_vmx_nested_state_data vmx[0];
3916 struct kvm_svm_nested_state_data svm[0];
3917 } data;
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003918};
3919
3920#define KVM_STATE_NESTED_GUEST_MODE 0x00000001
3921#define KVM_STATE_NESTED_RUN_PENDING 0x00000002
Liran Alon6ca00df2019-06-16 15:03:10 +03003922#define KVM_STATE_NESTED_EVMCS 0x00000004
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003923
Liran Alon6ca00df2019-06-16 15:03:10 +03003924#define KVM_STATE_NESTED_FORMAT_VMX 0
3925#define KVM_STATE_NESTED_FORMAT_SVM 1
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003926
Liran Alon6ca00df2019-06-16 15:03:10 +03003927#define KVM_STATE_NESTED_VMX_VMCS_SIZE 0x1000
3928
3929#define KVM_STATE_NESTED_VMX_SMM_GUEST_MODE 0x00000001
3930#define KVM_STATE_NESTED_VMX_SMM_VMXON 0x00000002
3931
3932struct kvm_vmx_nested_state_hdr {
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003933 __u64 vmxon_pa;
Liran Alon6ca00df2019-06-16 15:03:10 +03003934 __u64 vmcs12_pa;
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003935
3936 struct {
3937 __u16 flags;
3938 } smm;
3939};
3940
Liran Alon6ca00df2019-06-16 15:03:10 +03003941struct kvm_vmx_nested_state_data {
3942 __u8 vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
3943 __u8 shadow_vmcs12[KVM_STATE_NESTED_VMX_VMCS_SIZE];
3944};
3945
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003946This ioctl copies the vcpu's nested virtualization state from the kernel to
3947userspace.
3948
Liran Alon6ca00df2019-06-16 15:03:10 +03003949The maximum size of the state can be retrieved by passing KVM_CAP_NESTED_STATE
3950to the KVM_CHECK_EXTENSION ioctl().
Jim Mattson8fcc4b52018-07-10 11:27:20 +02003951
39524.115 KVM_SET_NESTED_STATE
3953
3954Capability: KVM_CAP_NESTED_STATE
3955Architectures: x86
3956Type: vcpu ioctl
3957Parameters: struct kvm_nested_state (in)
3958Returns: 0 on success, -1 on error
3959
Liran Alon6ca00df2019-06-16 15:03:10 +03003960This copies the vcpu's kvm_nested_state struct from userspace to the kernel.
3961For the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
Radim Krčmář7bf14c22018-02-01 15:04:17 +01003962
Peng Hao99434502018-10-14 07:09:56 +080039634.116 KVM_(UN)REGISTER_COALESCED_MMIO
3964
Peng Hao0804c842018-10-14 07:09:55 +08003965Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio)
3966 KVM_CAP_COALESCED_PIO (for coalesced pio)
Peng Hao99434502018-10-14 07:09:56 +08003967Architectures: all
3968Type: vm ioctl
3969Parameters: struct kvm_coalesced_mmio_zone
3970Returns: 0 on success, < 0 on error
3971
Peng Hao0804c842018-10-14 07:09:55 +08003972Coalesced I/O is a performance optimization that defers hardware
Peng Hao99434502018-10-14 07:09:56 +08003973register write emulation so that userspace exits are avoided. It is
3974typically used to reduce the overhead of emulating frequently accessed
3975hardware registers.
3976
Peng Hao0804c842018-10-14 07:09:55 +08003977When a hardware register is configured for coalesced I/O, write accesses
Peng Hao99434502018-10-14 07:09:56 +08003978do not exit to userspace and their value is recorded in a ring buffer
3979that is shared between kernel and userspace.
3980
Peng Hao0804c842018-10-14 07:09:55 +08003981Coalesced I/O is used if one or more write accesses to a hardware
Peng Hao99434502018-10-14 07:09:56 +08003982register can be deferred until a read or a write to another hardware
3983register on the same device. This last access will cause a vmexit and
3984userspace will process accesses from the ring buffer before emulating
Peng Hao0804c842018-10-14 07:09:55 +08003985it. That will avoid exiting to userspace on repeated writes.
3986
3987Coalesced pio is based on coalesced mmio. There is little difference
3988between coalesced mmio and pio except that coalesced pio records accesses
3989to I/O ports.
Peng Hao99434502018-10-14 07:09:56 +08003990
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +020039914.117 KVM_CLEAR_DIRTY_LOG (vm ioctl)
3992
Peter Xud7547c52019-05-08 17:15:47 +08003993Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
Andrew Jonesdbcdae12019-04-29 10:27:10 +02003994Architectures: x86, arm, arm64, mips
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02003995Type: vm ioctl
3996Parameters: struct kvm_dirty_log (in)
3997Returns: 0 on success, -1 on error
3998
3999/* for KVM_CLEAR_DIRTY_LOG */
4000struct kvm_clear_dirty_log {
4001 __u32 slot;
4002 __u32 num_pages;
4003 __u64 first_page;
4004 union {
4005 void __user *dirty_bitmap; /* one bit per page */
4006 __u64 padding;
4007 };
4008};
4009
4010The ioctl clears the dirty status of pages in a memory slot, according to
4011the bitmap that is passed in struct kvm_clear_dirty_log's dirty_bitmap
4012field. Bit 0 of the bitmap corresponds to page "first_page" in the
4013memory slot, and num_pages is the size in bits of the input bitmap.
Paolo Bonzini76d58e02019-04-17 15:28:44 +02004014first_page must be a multiple of 64; num_pages must also be a multiple of
401564 unless first_page + num_pages is the size of the memory slot. For each
4016bit that is set in the input bitmap, the corresponding page is marked "clean"
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02004017in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
4018(for example via write-protection, or by clearing the dirty bit in
4019a page table entry).
4020
4021If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
4022the address space for which you want to return the dirty bitmap.
4023They must be less than the value that KVM_CHECK_EXTENSION returns for
4024the KVM_CAP_MULTI_ADDRESS_SPACE capability.
4025
Peter Xud7547c52019-05-08 17:15:47 +08004026This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02004027is enabled; for more information, see the description of the capability.
4028However, it can always be used as long as KVM_CHECK_EXTENSION confirms
Peter Xud7547c52019-05-08 17:15:47 +08004029that KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is present.
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02004030
Vitaly Kuznetsov2bc39972018-12-10 18:21:56 +010040314.118 KVM_GET_SUPPORTED_HV_CPUID
4032
4033Capability: KVM_CAP_HYPERV_CPUID
4034Architectures: x86
4035Type: vcpu ioctl
4036Parameters: struct kvm_cpuid2 (in/out)
4037Returns: 0 on success, -1 on error
4038
4039struct kvm_cpuid2 {
4040 __u32 nent;
4041 __u32 padding;
4042 struct kvm_cpuid_entry2 entries[0];
4043};
4044
4045struct kvm_cpuid_entry2 {
4046 __u32 function;
4047 __u32 index;
4048 __u32 flags;
4049 __u32 eax;
4050 __u32 ebx;
4051 __u32 ecx;
4052 __u32 edx;
4053 __u32 padding[3];
4054};
4055
4056This ioctl returns x86 cpuid features leaves related to Hyper-V emulation in
4057KVM. Userspace can use the information returned by this ioctl to construct
4058cpuid information presented to guests consuming Hyper-V enlightenments (e.g.
4059Windows or Hyper-V guests).
4060
4061CPUID feature leaves returned by this ioctl are defined by Hyper-V Top Level
4062Functional Specification (TLFS). These leaves can't be obtained with
4063KVM_GET_SUPPORTED_CPUID ioctl because some of them intersect with KVM feature
4064leaves (0x40000000, 0x40000001).
4065
4066Currently, the following list of CPUID leaves are returned:
4067 HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
4068 HYPERV_CPUID_INTERFACE
4069 HYPERV_CPUID_VERSION
4070 HYPERV_CPUID_FEATURES
4071 HYPERV_CPUID_ENLIGHTMENT_INFO
4072 HYPERV_CPUID_IMPLEMENT_LIMITS
4073 HYPERV_CPUID_NESTED_FEATURES
4074
4075HYPERV_CPUID_NESTED_FEATURES leaf is only exposed when Enlightened VMCS was
4076enabled on the corresponding vCPU (KVM_CAP_HYPERV_ENLIGHTENED_VMCS).
4077
4078Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
4079with the 'nent' field indicating the number of entries in the variable-size
4080array 'entries'. If the number of entries is too low to describe all Hyper-V
4081feature leaves, an error (E2BIG) is returned. If the number is more or equal
4082to the number of Hyper-V feature leaves, the 'nent' field is adjusted to the
4083number of valid entries in the 'entries' array, which is then filled.
4084
4085'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved,
4086userspace should not expect to get any particular value there.
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02004087
Dave Martin50036ad2018-09-28 14:39:27 +010040884.119 KVM_ARM_VCPU_FINALIZE
4089
Dave Martin50036ad2018-09-28 14:39:27 +01004090Architectures: arm, arm64
4091Type: vcpu ioctl
4092Parameters: int feature (in)
4093Returns: 0 on success, -1 on error
4094Errors:
4095 EPERM: feature not enabled, needs configuration, or already finalized
Dave Martin9df2d662019-04-12 13:28:05 +01004096 EINVAL: feature unknown or not present
Dave Martin50036ad2018-09-28 14:39:27 +01004097
4098Recognised values for feature:
Dave Martin9df2d662019-04-12 13:28:05 +01004099 arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE)
Dave Martin50036ad2018-09-28 14:39:27 +01004100
4101Finalizes the configuration of the specified vcpu feature.
4102
4103The vcpu must already have been initialised, enabling the affected feature, by
4104means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in
4105features[].
4106
4107For affected vcpu features, this is a mandatory step that must be performed
4108before the vcpu is fully usable.
4109
4110Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be
4111configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration
4112that should be performaned and how to do it are feature-dependent.
4113
4114Other calls that depend on a particular feature being finalized, such as
4115KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with
4116-EPERM unless the feature has already been finalized by means of a
4117KVM_ARM_VCPU_FINALIZE call.
4118
4119See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization
4120using this ioctl.
4121
Eric Hankland66bb8a02019-07-10 18:25:15 -070041224.120 KVM_SET_PMU_EVENT_FILTER
4123
4124Capability: KVM_CAP_PMU_EVENT_FILTER
4125Architectures: x86
4126Type: vm ioctl
4127Parameters: struct kvm_pmu_event_filter (in)
4128Returns: 0 on success, -1 on error
4129
4130struct kvm_pmu_event_filter {
Eric Hankland30cd8602019-07-18 11:38:18 -07004131 __u32 action;
4132 __u32 nevents;
4133 __u32 fixed_counter_bitmap;
4134 __u32 flags;
4135 __u32 pad[4];
4136 __u64 events[0];
Eric Hankland66bb8a02019-07-10 18:25:15 -07004137};
4138
4139This ioctl restricts the set of PMU events that the guest can program.
4140The argument holds a list of events which will be allowed or denied.
4141The eventsel+umask of each event the guest attempts to program is compared
4142against the events field to determine whether the guest should have access.
Eric Hankland30cd8602019-07-18 11:38:18 -07004143The events field only controls general purpose counters; fixed purpose
4144counters are controlled by the fixed_counter_bitmap.
4145
4146No flags are defined yet, the field must be zero.
Eric Hankland66bb8a02019-07-10 18:25:15 -07004147
4148Valid values for 'action':
4149#define KVM_PMU_EVENT_ALLOW 0
4150#define KVM_PMU_EVENT_DENY 1
4151
Bharata B Rao22945682019-11-25 08:36:30 +053041524.121 KVM_PPC_SVM_OFF
4153
4154Capability: basic
4155Architectures: powerpc
4156Type: vm ioctl
4157Parameters: none
4158Returns: 0 on successful completion,
4159Errors:
4160 EINVAL: if ultravisor failed to terminate the secure guest
4161 ENOMEM: if hypervisor failed to allocate new radix page tables for guest
4162
4163This ioctl is used to turn off the secure mode of the guest or transition
4164the guest from secure mode to normal mode. This is invoked when the guest
4165is reset. This has no effect if called for a normal guest.
4166
4167This ioctl issues an ultravisor call to terminate the secure guest,
4168unpins the VPA pages and releases all the device pages that are used to
4169track the secure pages by hypervisor.
Eric Hankland66bb8a02019-07-10 18:25:15 -07004170
Avi Kivity9c1b96e2009-06-09 12:37:58 +030041715. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02004172------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004173
4174Application code obtains a pointer to the kvm_run structure by
4175mmap()ing a vcpu fd. From that point, application code can control
4176execution by changing fields in kvm_run prior to calling the KVM_RUN
4177ioctl, and obtain information about the reason KVM_RUN returned by
4178looking up structure members.
4179
4180struct kvm_run {
4181 /* in */
4182 __u8 request_interrupt_window;
4183
4184Request that KVM_RUN return when it becomes possible to inject external
4185interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
4186
Paolo Bonzini460df4c2017-02-08 11:50:15 +01004187 __u8 immediate_exit;
4188
4189This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
4190exits immediately, returning -EINTR. In the common scenario where a
4191signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
4192to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
4193Rather than blocking the signal outside KVM_RUN, userspace can set up
4194a signal handler that sets run->immediate_exit to a non-zero value.
4195
4196This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
4197
4198 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004199
4200 /* out */
4201 __u32 exit_reason;
4202
4203When KVM_RUN has returned successfully (return value 0), this informs
4204application code why KVM_RUN has returned. Allowable values for this
4205field are detailed below.
4206
4207 __u8 ready_for_interrupt_injection;
4208
4209If request_interrupt_window has been specified, this field indicates
4210an interrupt can be injected now with KVM_INTERRUPT.
4211
4212 __u8 if_flag;
4213
4214The value of the current interrupt flag. Only valid if in-kernel
4215local APIC is not used.
4216
Paolo Bonzinif0778252015-04-01 15:06:40 +02004217 __u16 flags;
4218
4219More architecture-specific flags detailing state of the VCPU that may
4220affect the device's behavior. The only currently defined flag is
4221KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
4222VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004223
4224 /* in (pre_kvm_run), out (post_kvm_run) */
4225 __u64 cr8;
4226
4227The value of the cr8 register. Only valid if in-kernel local APIC is
4228not used. Both input and output.
4229
4230 __u64 apic_base;
4231
4232The value of the APIC BASE msr. Only valid if in-kernel local
4233APIC is not used. Both input and output.
4234
4235 union {
4236 /* KVM_EXIT_UNKNOWN */
4237 struct {
4238 __u64 hardware_exit_reason;
4239 } hw;
4240
4241If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
4242reasons. Further architecture-specific information is available in
4243hardware_exit_reason.
4244
4245 /* KVM_EXIT_FAIL_ENTRY */
4246 struct {
4247 __u64 hardware_entry_failure_reason;
4248 } fail_entry;
4249
4250If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
4251to unknown reasons. Further architecture-specific information is
4252available in hardware_entry_failure_reason.
4253
4254 /* KVM_EXIT_EXCEPTION */
4255 struct {
4256 __u32 exception;
4257 __u32 error_code;
4258 } ex;
4259
4260Unused.
4261
4262 /* KVM_EXIT_IO */
4263 struct {
4264#define KVM_EXIT_IO_IN 0
4265#define KVM_EXIT_IO_OUT 1
4266 __u8 direction;
4267 __u8 size; /* bytes */
4268 __u16 port;
4269 __u32 count;
4270 __u64 data_offset; /* relative to kvm_run start */
4271 } io;
4272
Wu Fengguang2044892d2009-12-24 09:04:16 +08004273If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004274executed a port I/O instruction which could not be satisfied by kvm.
4275data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
4276where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08004277KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004278
Alex Bennée8ab30c12015-07-07 17:29:53 +01004279 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004280 struct {
4281 struct kvm_debug_exit_arch arch;
4282 } debug;
4283
Alex Bennée8ab30c12015-07-07 17:29:53 +01004284If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
4285for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004286
4287 /* KVM_EXIT_MMIO */
4288 struct {
4289 __u64 phys_addr;
4290 __u8 data[8];
4291 __u32 len;
4292 __u8 is_write;
4293 } mmio;
4294
Wu Fengguang2044892d2009-12-24 09:04:16 +08004295If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004296executed a memory-mapped I/O instruction which could not be satisfied
4297by kvm. The 'data' member contains the written data if 'is_write' is
4298true, and should be filled by application code otherwise.
4299
Christoffer Dall6acdb162014-01-28 08:28:42 -08004300The 'data' member contains, in its first 'len' bytes, the value as it would
4301appear if the VCPU performed a load or store of the appropriate width directly
4302to the byte array.
4303
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02004304NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02004305 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01004306operations are complete (and guest state is consistent) only after userspace
4307has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02004308incomplete operations and then check for pending signals. Userspace
4309can re-enter the guest with an unmasked signal pending to complete
4310pending operations.
4311
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004312 /* KVM_EXIT_HYPERCALL */
4313 struct {
4314 __u64 nr;
4315 __u64 args[6];
4316 __u64 ret;
4317 __u32 longmode;
4318 __u32 pad;
4319 } hypercall;
4320
Avi Kivity647dc492010-04-01 14:39:21 +03004321Unused. This was once used for 'hypercall to userspace'. To implement
4322such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
4323Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004324
4325 /* KVM_EXIT_TPR_ACCESS */
4326 struct {
4327 __u64 rip;
4328 __u32 is_write;
4329 __u32 pad;
4330 } tpr_access;
4331
4332To be documented (KVM_TPR_ACCESS_REPORTING).
4333
4334 /* KVM_EXIT_S390_SIEIC */
4335 struct {
4336 __u8 icptcode;
4337 __u64 mask; /* psw upper half */
4338 __u64 addr; /* psw lower half */
4339 __u16 ipa;
4340 __u32 ipb;
4341 } s390_sieic;
4342
4343s390 specific.
4344
4345 /* KVM_EXIT_S390_RESET */
4346#define KVM_S390_RESET_POR 1
4347#define KVM_S390_RESET_CLEAR 2
4348#define KVM_S390_RESET_SUBSYSTEM 4
4349#define KVM_S390_RESET_CPU_INIT 8
4350#define KVM_S390_RESET_IPL 16
4351 __u64 s390_reset_flags;
4352
4353s390 specific.
4354
Carsten Ottee168bf82012-01-04 10:25:22 +01004355 /* KVM_EXIT_S390_UCONTROL */
4356 struct {
4357 __u64 trans_exc_code;
4358 __u32 pgm_code;
4359 } s390_ucontrol;
4360
4361s390 specific. A page fault has occurred for a user controlled virtual
4362machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
4363resolved by the kernel.
4364The program code and the translation exception code that were placed
4365in the cpu's lowcore are presented here as defined by the z Architecture
4366Principles of Operation Book in the Chapter for Dynamic Address Translation
4367(DAT)
4368
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004369 /* KVM_EXIT_DCR */
4370 struct {
4371 __u32 dcrn;
4372 __u32 data;
4373 __u8 is_write;
4374 } dcr;
4375
Alexander Grafce91ddc2014-07-28 19:29:13 +02004376Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004377
Alexander Grafad0a0482010-03-24 21:48:30 +01004378 /* KVM_EXIT_OSI */
4379 struct {
4380 __u64 gprs[32];
4381 } osi;
4382
4383MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
4384hypercalls and exit with this exit struct that contains all the guest gprs.
4385
4386If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
4387Userspace can now handle the hypercall and when it's done modify the gprs as
4388necessary. Upon guest entry all guest GPRs will then be replaced by the values
4389in this struct.
4390
Paul Mackerrasde56a942011-06-29 00:21:34 +00004391 /* KVM_EXIT_PAPR_HCALL */
4392 struct {
4393 __u64 nr;
4394 __u64 ret;
4395 __u64 args[9];
4396 } papr_hcall;
4397
4398This is used on 64-bit PowerPC when emulating a pSeries partition,
4399e.g. with the 'pseries' machine type in qemu. It occurs when the
4400guest does a hypercall using the 'sc 1' instruction. The 'nr' field
4401contains the hypercall number (from the guest R3), and 'args' contains
4402the arguments (from the guest R4 - R12). Userspace should put the
4403return code in 'ret' and any extra returned values in args[].
4404The possible hypercalls are defined in the Power Architecture Platform
4405Requirements (PAPR) document available from www.power.org (free
4406developer registration required to access it).
4407
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01004408 /* KVM_EXIT_S390_TSCH */
4409 struct {
4410 __u16 subchannel_id;
4411 __u16 subchannel_nr;
4412 __u32 io_int_parm;
4413 __u32 io_int_word;
4414 __u32 ipb;
4415 __u8 dequeued;
4416 } s390_tsch;
4417
4418s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
4419and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
4420interrupt for the target subchannel has been dequeued and subchannel_id,
4421subchannel_nr, io_int_parm and io_int_word contain the parameters for that
4422interrupt. ipb is needed for instruction parameter decoding.
4423
Alexander Graf1c810632013-01-04 18:12:48 +01004424 /* KVM_EXIT_EPR */
4425 struct {
4426 __u32 epr;
4427 } epr;
4428
4429On FSL BookE PowerPC chips, the interrupt controller has a fast patch
4430interrupt acknowledge path to the core. When the core successfully
4431delivers an interrupt, it automatically populates the EPR register with
4432the interrupt vector number and acknowledges the interrupt inside
4433the interrupt controller.
4434
4435In case the interrupt controller lives in user space, we need to do
4436the interrupt acknowledge cycle through it to fetch the next to be
4437delivered interrupt vector using this exit.
4438
4439It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
4440external interrupt has just been delivered into the guest. User space
4441should put the acknowledged interrupt vector into the 'epr' field.
4442
Anup Patel8ad6b632014-04-29 11:24:19 +05304443 /* KVM_EXIT_SYSTEM_EVENT */
4444 struct {
4445#define KVM_SYSTEM_EVENT_SHUTDOWN 1
4446#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03004447#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05304448 __u32 type;
4449 __u64 flags;
4450 } system_event;
4451
4452If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
4453a system-level event using some architecture specific mechanism (hypercall
4454or some special instruction). In case of ARM/ARM64, this is triggered using
4455HVC instruction based PSCI call from the vcpu. The 'type' field describes
4456the system-level event type. The 'flags' field describes architecture
4457specific flags for the system-level event.
4458
Christoffer Dallcf5d31882014-10-16 17:00:18 +02004459Valid values for 'type' are:
4460 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
4461 VM. Userspace is not obliged to honour this, and if it does honour
4462 this does not need to destroy the VM synchronously (ie it may call
4463 KVM_RUN again before shutdown finally occurs).
4464 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
4465 As with SHUTDOWN, userspace can choose to ignore the request, or
4466 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03004467 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
4468 has requested a crash condition maintenance. Userspace can choose
4469 to ignore the request, or to gather VM memory core dump and/or
4470 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02004471
Steve Rutherford7543a632015-07-29 23:21:41 -07004472 /* KVM_EXIT_IOAPIC_EOI */
4473 struct {
4474 __u8 vector;
4475 } eoi;
4476
4477Indicates that the VCPU's in-kernel local APIC received an EOI for a
4478level-triggered IOAPIC interrupt. This exit only triggers when the
4479IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
4480the userspace IOAPIC should process the EOI and retrigger the interrupt if
4481it is still asserted. Vector is the LAPIC interrupt vector for which the
4482EOI was received.
4483
Andrey Smetanindb3975712015-11-10 15:36:35 +03004484 struct kvm_hyperv_exit {
4485#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03004486#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03004487 __u32 type;
4488 union {
4489 struct {
4490 __u32 msr;
4491 __u64 control;
4492 __u64 evt_page;
4493 __u64 msg_page;
4494 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03004495 struct {
4496 __u64 input;
4497 __u64 result;
4498 __u64 params[2];
4499 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03004500 } u;
4501 };
4502 /* KVM_EXIT_HYPERV */
4503 struct kvm_hyperv_exit hyperv;
4504Indicates that the VCPU exits into userspace to process some tasks
4505related to Hyper-V emulation.
4506Valid values for 'type' are:
4507 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
4508Hyper-V SynIC state change. Notification is used to remap SynIC
4509event/message pages and to enable/disable SynIC messages/events processing
4510in userspace.
4511
Christoffer Dallc7262002019-10-11 13:07:05 +02004512 /* KVM_EXIT_ARM_NISV */
4513 struct {
4514 __u64 esr_iss;
4515 __u64 fault_ipa;
4516 } arm_nisv;
4517
4518Used on arm and arm64 systems. If a guest accesses memory not in a memslot,
4519KVM will typically return to userspace and ask it to do MMIO emulation on its
4520behalf. However, for certain classes of instructions, no instruction decode
4521(direction, length of memory access) is provided, and fetching and decoding
4522the instruction from the VM is overly complicated to live in the kernel.
4523
4524Historically, when this situation occurred, KVM would print a warning and kill
4525the VM. KVM assumed that if the guest accessed non-memslot memory, it was
4526trying to do I/O, which just couldn't be emulated, and the warning message was
4527phrased accordingly. However, what happened more often was that a guest bug
4528caused access outside the guest memory areas which should lead to a more
4529meaningful warning message and an external abort in the guest, if the access
4530did not fall within an I/O window.
4531
4532Userspace implementations can query for KVM_CAP_ARM_NISV_TO_USER, and enable
4533this capability at VM creation. Once this is done, these types of errors will
4534instead return to userspace with KVM_EXIT_ARM_NISV, with the valid bits from
4535the HSR (arm) and ESR_EL2 (arm64) in the esr_iss field, and the faulting IPA
4536in the fault_ipa field. Userspace can either fix up the access if it's
4537actually an I/O access by decoding the instruction from guest memory (if it's
4538very brave) and continue executing the guest, or it can decide to suspend,
4539dump, or restart the guest.
4540
4541Note that KVM does not skip the faulting instruction as it does for
4542KVM_EXIT_MMIO, but userspace has to emulate any change to the processing state
4543if it decides to decode and emulate the instruction.
4544
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004545 /* Fix the size of the union. */
4546 char padding[256];
4547 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01004548
4549 /*
4550 * shared registers between kvm and userspace.
4551 * kvm_valid_regs specifies the register classes set by the host
4552 * kvm_dirty_regs specified the register classes dirtied by userspace
4553 * struct kvm_sync_regs is architecture specific, as well as the
4554 * bits for kvm_valid_regs and kvm_dirty_regs
4555 */
4556 __u64 kvm_valid_regs;
4557 __u64 kvm_dirty_regs;
4558 union {
4559 struct kvm_sync_regs regs;
Ken Hofsass7b7e3952018-01-31 16:03:35 -08004560 char padding[SYNC_REGS_SIZE_BYTES];
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01004561 } s;
4562
4563If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
4564certain guest registers without having to call SET/GET_*REGS. Thus we can
4565avoid some system call overhead if userspace has to handle the exit.
4566Userspace can query the validity of the structure by checking
4567kvm_valid_regs for specific bits. These bits are architecture specific
4568and usually define the validity of a groups of registers. (e.g. one bit
4569 for general purpose registers)
4570
David Hildenbrandd8482c02014-07-29 08:19:26 +02004571Please note that the kernel is allowed to use the kvm_run structure as the
4572primary storage for certain register types. Therefore, the kernel may use the
4573values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
4574
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004575};
Alexander Graf821246a2011-08-31 10:58:55 +02004576
Jan Kiszka414fa982012-04-24 16:40:15 +02004577
Borislav Petkov9c15bb12013-09-22 16:44:50 +02004578
Paul Mackerras699a0ea2014-06-02 11:02:59 +100045796. Capabilities that can be enabled on vCPUs
4580--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02004581
Cornelia Huck0907c852014-06-27 09:29:26 +02004582There are certain capabilities that change the behavior of the virtual CPU or
4583the virtual machine when enabled. To enable them, please see section 4.37.
4584Below you can find a list of capabilities and what their effect on the vCPU or
4585the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02004586
4587The following information is provided along with the description:
4588
4589 Architectures: which instruction set architectures provide this ioctl.
4590 x86 includes both i386 and x86_64.
4591
Cornelia Huck0907c852014-06-27 09:29:26 +02004592 Target: whether this is a per-vcpu or per-vm capability.
4593
Alexander Graf821246a2011-08-31 10:58:55 +02004594 Parameters: what parameters are accepted by the capability.
4595
4596 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
4597 are not detailed, but errors with specific meanings are.
4598
Jan Kiszka414fa982012-04-24 16:40:15 +02004599
Alexander Graf821246a2011-08-31 10:58:55 +020046006.1 KVM_CAP_PPC_OSI
4601
4602Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004603Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02004604Parameters: none
4605Returns: 0 on success; -1 on error
4606
4607This capability enables interception of OSI hypercalls that otherwise would
4608be treated as normal system calls to be injected into the guest. OSI hypercalls
4609were invented by Mac-on-Linux to have a standardized communication mechanism
4610between the guest and the host.
4611
4612When this capability is enabled, KVM_EXIT_OSI can occur.
4613
Jan Kiszka414fa982012-04-24 16:40:15 +02004614
Alexander Graf821246a2011-08-31 10:58:55 +020046156.2 KVM_CAP_PPC_PAPR
4616
4617Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004618Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02004619Parameters: none
4620Returns: 0 on success; -1 on error
4621
4622This capability enables interception of PAPR hypercalls. PAPR hypercalls are
4623done using the hypercall instruction "sc 1".
4624
4625It also sets the guest privilege level to "supervisor" mode. Usually the guest
4626runs in "hypervisor" privilege mode with a few missing features.
4627
4628In addition to the above, it changes the semantics of SDR1. In this mode, the
4629HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
4630HTAB invisible to the guest.
4631
4632When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05004633
Jan Kiszka414fa982012-04-24 16:40:15 +02004634
Scott Wooddc83b8b2011-08-18 15:25:21 -050046356.3 KVM_CAP_SW_TLB
4636
4637Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004638Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05004639Parameters: args[0] is the address of a struct kvm_config_tlb
4640Returns: 0 on success; -1 on error
4641
4642struct kvm_config_tlb {
4643 __u64 params;
4644 __u64 array;
4645 __u32 mmu_type;
4646 __u32 array_len;
4647};
4648
4649Configures the virtual CPU's TLB array, establishing a shared memory area
4650between userspace and KVM. The "params" and "array" fields are userspace
4651addresses of mmu-type-specific data structures. The "array_len" field is an
4652safety mechanism, and should be set to the size in bytes of the memory that
4653userspace has reserved for the array. It must be at least the size dictated
4654by "mmu_type" and "params".
4655
4656While KVM_RUN is active, the shared region is under control of KVM. Its
4657contents are undefined, and any modification by userspace results in
4658boundedly undefined behavior.
4659
4660On return from KVM_RUN, the shared region will reflect the current state of
4661the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
4662to tell KVM which entries have been changed, prior to calling KVM_RUN again
4663on this vcpu.
4664
4665For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
4666 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
4667 - The "array" field points to an array of type "struct
4668 kvm_book3e_206_tlb_entry".
4669 - The array consists of all entries in the first TLB, followed by all
4670 entries in the second TLB.
4671 - Within a TLB, entries are ordered first by increasing set number. Within a
4672 set, entries are ordered by way (increasing ESEL).
4673 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
4674 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
4675 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
4676 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01004677
46786.4 KVM_CAP_S390_CSS_SUPPORT
4679
4680Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02004681Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01004682Parameters: none
4683Returns: 0 on success; -1 on error
4684
4685This capability enables support for handling of channel I/O instructions.
4686
4687TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
4688handled in-kernel, while the other I/O instructions are passed to userspace.
4689
4690When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
4691SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01004692
Cornelia Huck0907c852014-06-27 09:29:26 +02004693Note that even though this capability is enabled per-vcpu, the complete
4694virtual machine is affected.
4695
Alexander Graf1c810632013-01-04 18:12:48 +010046966.5 KVM_CAP_PPC_EPR
4697
4698Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004699Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01004700Parameters: args[0] defines whether the proxy facility is active
4701Returns: 0 on success; -1 on error
4702
4703This capability enables or disables the delivery of interrupts through the
4704external proxy facility.
4705
4706When enabled (args[0] != 0), every time the guest gets an external interrupt
4707delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
4708to receive the topmost interrupt vector.
4709
4710When disabled (args[0] == 0), behavior is as if this facility is unsupported.
4711
4712When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00004713
47146.6 KVM_CAP_IRQ_MPIC
4715
4716Architectures: ppc
4717Parameters: args[0] is the MPIC device fd
4718 args[1] is the MPIC CPU number for this vcpu
4719
4720This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00004721
47226.7 KVM_CAP_IRQ_XICS
4723
4724Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004725Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00004726Parameters: args[0] is the XICS device fd
4727 args[1] is the XICS CPU number (server ID) for this vcpu
4728
4729This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02004730
47316.8 KVM_CAP_S390_IRQCHIP
4732
4733Architectures: s390
4734Target: vm
4735Parameters: none
4736
4737This capability enables the in-kernel irqchip for s390. Please refer to
4738"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10004739
James Hogan5fafd8742014-12-08 23:07:56 +000047406.9 KVM_CAP_MIPS_FPU
4741
4742Architectures: mips
4743Target: vcpu
4744Parameters: args[0] is reserved for future use (should be 0).
4745
4746This capability allows the use of the host Floating Point Unit by the guest. It
4747allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
4748done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
4749(depending on the current guest FPU register mode), and the Status.FR,
4750Config5.FRE bits are accessible via the KVM API and also from the guest,
4751depending on them being supported by the FPU.
4752
James Hogand952bd02014-12-08 23:07:56 +000047536.10 KVM_CAP_MIPS_MSA
4754
4755Architectures: mips
4756Target: vcpu
4757Parameters: args[0] is reserved for future use (should be 0).
4758
4759This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
4760It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
4761Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
4762accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
4763the guest.
4764
Ken Hofsass01643c52018-01-31 16:03:36 -080047656.74 KVM_CAP_SYNC_REGS
4766Architectures: s390, x86
4767Target: s390: always enabled, x86: vcpu
4768Parameters: none
4769Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register
4770sets are supported (bitfields defined in arch/x86/include/uapi/asm/kvm.h).
4771
4772As described above in the kvm_sync_regs struct info in section 5 (kvm_run):
4773KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers
4774without having to call SET/GET_*REGS". This reduces overhead by eliminating
4775repeated ioctl calls for setting and/or getting register values. This is
4776particularly important when userspace is making synchronous guest state
4777modifications, e.g. when emulating and/or intercepting instructions in
4778userspace.
4779
4780For s390 specifics, please refer to the source code.
4781
4782For x86:
4783- the register sets to be copied out to kvm_run are selectable
4784 by userspace (rather that all sets being copied out for every exit).
4785- vcpu_events are available in addition to regs and sregs.
4786
4787For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to
4788function as an input bit-array field set by userspace to indicate the
4789specific register sets to be copied out on the next exit.
4790
4791To indicate when userspace has modified values that should be copied into
4792the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set.
4793This is done using the same bitflags as for the 'kvm_valid_regs' field.
4794If the dirty bit is not set, then the register set values will not be copied
4795into the vCPU even if they've been modified.
4796
4797Unused bitfields in the bitarrays must be set to zero.
4798
4799struct kvm_sync_regs {
4800 struct kvm_regs regs;
4801 struct kvm_sregs sregs;
4802 struct kvm_vcpu_events events;
4803};
4804
Cédric Le Goatereacc56b2019-04-18 12:39:28 +020048056.75 KVM_CAP_PPC_IRQ_XIVE
4806
4807Architectures: ppc
4808Target: vcpu
4809Parameters: args[0] is the XIVE device fd
4810 args[1] is the XIVE CPU number (server ID) for this vcpu
4811
4812This capability connects the vcpu to an in-kernel XIVE device.
4813
Paul Mackerras699a0ea2014-06-02 11:02:59 +100048147. Capabilities that can be enabled on VMs
4815------------------------------------------
4816
4817There are certain capabilities that change the behavior of the virtual
4818machine when enabled. To enable them, please see section 4.37. Below
4819you can find a list of capabilities and what their effect on the VM
4820is when enabling them.
4821
4822The following information is provided along with the description:
4823
4824 Architectures: which instruction set architectures provide this ioctl.
4825 x86 includes both i386 and x86_64.
4826
4827 Parameters: what parameters are accepted by the capability.
4828
4829 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
4830 are not detailed, but errors with specific meanings are.
4831
4832
48337.1 KVM_CAP_PPC_ENABLE_HCALL
4834
4835Architectures: ppc
4836Parameters: args[0] is the sPAPR hcall number
4837 args[1] is 0 to disable, 1 to enable in-kernel handling
4838
4839This capability controls whether individual sPAPR hypercalls (hcalls)
4840get handled by the kernel or not. Enabling or disabling in-kernel
4841handling of an hcall is effective across the VM. On creation, an
4842initial set of hcalls are enabled for in-kernel handling, which
4843consists of those hcalls for which in-kernel handlers were implemented
4844before this capability was implemented. If disabled, the kernel will
4845not to attempt to handle the hcall, but will always exit to userspace
4846to handle it. Note that it may not make sense to enable some and
4847disable others of a group of related hcalls, but KVM does not prevent
4848userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10004849
4850If the hcall number specified is not one that has an in-kernel
4851implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
4852error.
David Hildenbrand2444b352014-10-09 14:10:13 +02004853
48547.2 KVM_CAP_S390_USER_SIGP
4855
4856Architectures: s390
4857Parameters: none
4858
4859This capability controls which SIGP orders will be handled completely in user
4860space. With this capability enabled, all fast orders will be handled completely
4861in the kernel:
4862- SENSE
4863- SENSE RUNNING
4864- EXTERNAL CALL
4865- EMERGENCY SIGNAL
4866- CONDITIONAL EMERGENCY SIGNAL
4867
4868All other orders will be handled completely in user space.
4869
4870Only privileged operation exceptions will be checked for in the kernel (or even
4871in the hardware prior to interception). If this capability is not enabled, the
4872old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004873
48747.3 KVM_CAP_S390_VECTOR_REGISTERS
4875
4876Architectures: s390
4877Parameters: none
4878Returns: 0 on success, negative value on error
4879
4880Allows use of the vector registers introduced with z13 processor, and
4881provides for the synchronization between host and user space. Will
4882return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004883
48847.4 KVM_CAP_S390_USER_STSI
4885
4886Architectures: s390
4887Parameters: none
4888
4889This capability allows post-handlers for the STSI instruction. After
4890initial handling in the kernel, KVM exits to user space with
4891KVM_EXIT_S390_STSI to allow user space to insert further data.
4892
4893Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4894vcpu->run:
4895struct {
4896 __u64 addr;
4897 __u8 ar;
4898 __u8 reserved;
4899 __u8 fc;
4900 __u8 sel1;
4901 __u16 sel2;
4902} s390_stsi;
4903
4904@addr - guest address of STSI SYSIB
4905@fc - function code
4906@sel1 - selector 1
4907@sel2 - selector 2
4908@ar - access register number
4909
4910KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004911
Steve Rutherford49df6392015-07-29 23:21:40 -070049127.5 KVM_CAP_SPLIT_IRQCHIP
4913
4914Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004915Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004916Returns: 0 on success, -1 on error
4917
4918Create a local apic for each processor in the kernel. This can be used
4919instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4920IOAPIC and PIC (and also the PIT, even though this has to be enabled
4921separately).
4922
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004923This capability also enables in kernel routing of interrupt requests;
4924when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4925used in the IRQ routing table. The first args[0] MSI routes are reserved
4926for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4927a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004928
4929Fails if VCPU has already been created, or if the irqchip is already in the
4930kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4931
David Hildenbrand051c87f2016-04-19 13:13:40 +020049327.6 KVM_CAP_S390_RI
4933
4934Architectures: s390
4935Parameters: none
4936
4937Allows use of runtime-instrumentation introduced with zEC12 processor.
4938Will return -EINVAL if the machine does not support runtime-instrumentation.
4939Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004940
Radim Krčmář371313132016-07-12 22:09:27 +020049417.7 KVM_CAP_X2APIC_API
4942
4943Architectures: x86
4944Parameters: args[0] - features that should be enabled
4945Returns: 0 on success, -EINVAL when args[0] contains invalid features
4946
4947Valid feature flags in args[0] are
4948
4949#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004950#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004951
4952Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4953KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4954allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4955respective sections.
4956
Radim Krčmářc5192652016-07-12 22:09:28 +02004957KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4958in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4959as a broadcast even in x2APIC mode in order to support physical x2APIC
4960without interrupt remapping. This is undesirable in logical mode,
4961where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004962
David Hildenbrand6502a342016-06-21 14:19:51 +020049637.8 KVM_CAP_S390_USER_INSTR0
4964
4965Architectures: s390
4966Parameters: none
4967
4968With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4969be intercepted and forwarded to user space. User space can use this
4970mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4971not inject an operating exception for these instructions, user space has
4972to take care of that.
4973
4974This capability can be enabled dynamically even if VCPUs were already
4975created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004976
Fan Zhang4e0b1ab2016-11-29 07:17:55 +010049777.9 KVM_CAP_S390_GS
4978
4979Architectures: s390
4980Parameters: none
4981Returns: 0 on success; -EINVAL if the machine does not support
4982 guarded storage; -EBUSY if a VCPU has already been created.
4983
4984Allows use of guarded storage for the KVM guest.
4985
Yi Min Zhao47a46932017-03-10 09:29:38 +010049867.10 KVM_CAP_S390_AIS
4987
4988Architectures: s390
4989Parameters: none
4990
4991Allow use of adapter-interruption suppression.
4992Returns: 0 on success; -EBUSY if a VCPU has already been created.
4993
Paul Mackerras3c313522017-02-06 13:24:41 +110049947.11 KVM_CAP_PPC_SMT
4995
4996Architectures: ppc
4997Parameters: vsmt_mode, flags
4998
4999Enabling this capability on a VM provides userspace with a way to set
5000the desired virtual SMT mode (i.e. the number of virtual CPUs per
5001virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2
5002between 1 and 8. On POWER8, vsmt_mode must also be no greater than
5003the number of threads per subcore for the host. Currently flags must
5004be 0. A successful call to enable this capability will result in
5005vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is
5006subsequently queried for the VM. This capability is only supported by
5007HV KVM, and can only be set before any VCPUs have been created.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10005008The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT
5009modes are available.
Paul Mackerras3c313522017-02-06 13:24:41 +11005010
Aravinda Prasad134764e2017-05-11 16:32:48 +053050117.12 KVM_CAP_PPC_FWNMI
5012
5013Architectures: ppc
5014Parameters: none
5015
5016With this capability a machine check exception in the guest address
5017space will cause KVM to exit the guest with NMI exit reason. This
5018enables QEMU to build error log and branch to guest kernel registered
5019machine check handling routine. Without this capability KVM will
5020branch to guests' 0x200 interrupt vector.
5021
Wanpeng Li4d5422c2018-03-12 04:53:02 -070050227.13 KVM_CAP_X86_DISABLE_EXITS
5023
5024Architectures: x86
5025Parameters: args[0] defines which exits are disabled
5026Returns: 0 on success, -EINVAL when args[0] contains invalid exits
5027
5028Valid bits in args[0] are
5029
5030#define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0)
Wanpeng Licaa057a2018-03-12 04:53:03 -07005031#define KVM_X86_DISABLE_EXITS_HLT (1 << 1)
Wanpeng Li8ffdaa72019-05-21 14:06:52 +08005032#define KVM_X86_DISABLE_EXITS_PAUSE (1 << 2)
Wanpeng Lib5170062019-05-21 14:06:53 +08005033#define KVM_X86_DISABLE_EXITS_CSTATE (1 << 3)
Wanpeng Li4d5422c2018-03-12 04:53:02 -07005034
5035Enabling this capability on a VM provides userspace with a way to no
5036longer intercept some instructions for improved latency in some
5037workloads, and is suggested when vCPUs are associated to dedicated
5038physical CPUs. More bits can be added in the future; userspace can
5039just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable
5040all such vmexits.
5041
Wanpeng Licaa057a2018-03-12 04:53:03 -07005042Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits.
Wanpeng Li4d5422c2018-03-12 04:53:02 -07005043
Janosch Franka4499382018-07-13 11:28:31 +010050447.14 KVM_CAP_S390_HPAGE_1M
5045
5046Architectures: s390
5047Parameters: none
5048Returns: 0 on success, -EINVAL if hpage module parameter was not set
Janosch Frank40ebdb82018-08-01 11:48:28 +01005049 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL
5050 flag set
Janosch Franka4499382018-07-13 11:28:31 +01005051
5052With this capability the KVM support for memory backing with 1m pages
5053through hugetlbfs can be enabled for a VM. After the capability is
5054enabled, cmma can't be enabled anymore and pfmfi and the storage key
5055interpretation are disabled. If cmma has already been enabled or the
5056hpage module parameter is not set to 1, -EINVAL is returned.
5057
5058While it is generally possible to create a huge page backed VM without
5059this capability, the VM will not be able to run.
5060
Jim Mattsonc4f55192018-10-16 14:29:24 -070050617.15 KVM_CAP_MSR_PLATFORM_INFO
Drew Schmitt6fbbde92018-08-20 10:32:15 -07005062
5063Architectures: x86
5064Parameters: args[0] whether feature should be enabled or not
5065
5066With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise,
5067a #GP would be raised when the guest tries to access. Currently, this
5068capability does not enable write permissions of this MSR for the guest.
5069
Paul Mackerrasaa069a92018-09-21 20:02:01 +100050707.16 KVM_CAP_PPC_NESTED_HV
5071
5072Architectures: ppc
5073Parameters: none
5074Returns: 0 on success, -EINVAL when the implementation doesn't support
5075 nested-HV virtualization.
5076
5077HV-KVM on POWER9 and later systems allows for "nested-HV"
5078virtualization, which provides a way for a guest VM to run guests that
5079can run using the CPU's supervisor mode (privileged non-hypervisor
5080state). Enabling this capability on a VM depends on the CPU having
5081the necessary functionality and on the facility being enabled with a
5082kvm-hv module parameter.
5083
Jim Mattsonc4f55192018-10-16 14:29:24 -070050847.17 KVM_CAP_EXCEPTION_PAYLOAD
5085
5086Architectures: x86
5087Parameters: args[0] whether feature should be enabled or not
5088
5089With this capability enabled, CR2 will not be modified prior to the
5090emulated VM-exit when L1 intercepts a #PF exception that occurs in
5091L2. Similarly, for kvm-intel only, DR6 will not be modified prior to
5092the emulated VM-exit when L1 intercepts a #DB exception that occurs in
5093L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or
5094#DB) exception for L2, exception.has_payload will be set and the
5095faulting address (or the new DR6 bits*) will be reported in the
5096exception_payload field. Similarly, when userspace injects a #PF (or
5097#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set
5098exception.has_payload and to put the faulting address (or the new DR6
5099bits*) in the exception_payload field.
5100
5101This capability also enables exception.pending in struct
5102kvm_vcpu_events, which allows userspace to distinguish between pending
5103and injected exceptions.
5104
5105
5106* For the new DR6 bits, note that bit 16 is set iff the #DB exception
5107 will clear DR6.RTM.
5108
Peter Xud7547c52019-05-08 17:15:47 +080051097.18 KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02005110
Andrew Jonesdbcdae12019-04-29 10:27:10 +02005111Architectures: x86, arm, arm64, mips
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02005112Parameters: args[0] whether feature should be enabled or not
5113
5114With this capability enabled, KVM_GET_DIRTY_LOG will not automatically
5115clear and write-protect all pages that are returned as dirty.
5116Rather, userspace will have to do this operation separately using
5117KVM_CLEAR_DIRTY_LOG.
5118
5119At the cost of a slightly more complicated operation, this provides better
5120scalability and responsiveness for two reasons. First,
5121KVM_CLEAR_DIRTY_LOG ioctl can operate on a 64-page granularity rather
5122than requiring to sync a full memslot; this ensures that KVM does not
5123take spinlocks for an extended period of time. Second, in some cases a
5124large amount of time can pass between a call to KVM_GET_DIRTY_LOG and
5125userspace actually using the data in the page. Pages can be modified
5126during this time, which is inefficint for both the guest and userspace:
5127the guest will incur a higher penalty due to write protection faults,
5128while userspace can see false reports of dirty pages. Manual reprotection
5129helps reducing this time, improving guest performance and reducing the
5130number of dirty log false positives.
5131
Peter Xud7547c52019-05-08 17:15:47 +08005132KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 was previously available under the name
5133KVM_CAP_MANUAL_DIRTY_LOG_PROTECT, but the implementation had bugs that make
5134it hard or impossible to use it correctly. The availability of
5135KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 signals that those bugs are fixed.
5136Userspace should not try to use KVM_CAP_MANUAL_DIRTY_LOG_PROTECT.
Paolo Bonzini2a31b9d2018-10-23 02:36:47 +02005137
Michael Ellermane928e9c2015-03-20 20:39:41 +110051388. Other capabilities.
5139----------------------
5140
5141This section lists capabilities that give information about other
5142features of the KVM implementation.
5143
51448.1 KVM_CAP_PPC_HWRNG
5145
5146Architectures: ppc
5147
5148This capability, if KVM_CHECK_EXTENSION indicates that it is
5149available, means that that the kernel has an implementation of the
5150H_RANDOM hypercall backed by a hardware random-number generator.
5151If present, the kernel H_RANDOM handler can be enabled for guest use
5152with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03005153
51548.2 KVM_CAP_HYPERV_SYNIC
5155
5156Architectures: x86
5157This capability, if KVM_CHECK_EXTENSION indicates that it is
5158available, means that that the kernel has an implementation of the
5159Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
5160used to support Windows Hyper-V based guest paravirt drivers(VMBus).
5161
5162In order to use SynIC, it has to be activated by setting this
5163capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
5164will disable the use of APIC hardware virtualization even if supported
5165by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11005166
51678.3 KVM_CAP_PPC_RADIX_MMU
5168
5169Architectures: ppc
5170
5171This capability, if KVM_CHECK_EXTENSION indicates that it is
5172available, means that that the kernel can support guests using the
5173radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
5174processor).
5175
51768.4 KVM_CAP_PPC_HASH_MMU_V3
5177
5178Architectures: ppc
5179
5180This capability, if KVM_CHECK_EXTENSION indicates that it is
5181available, means that that the kernel can support guests using the
5182hashed page table MMU defined in Power ISA V3.00 (as implemented in
5183the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00005184
51858.5 KVM_CAP_MIPS_VZ
5186
5187Architectures: mips
5188
5189This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
5190it is available, means that full hardware assisted virtualization capabilities
5191of the hardware are available for use through KVM. An appropriate
5192KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
5193utilises it.
5194
5195If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
5196available, it means that the VM is using full hardware assisted virtualization
5197capabilities of the hardware. This is useful to check after creating a VM with
5198KVM_VM_MIPS_DEFAULT.
5199
5200The value returned by KVM_CHECK_EXTENSION should be compared against known
5201values (see below). All other values are reserved. This is to allow for the
5202possibility of other hardware assisted virtualization implementations which
5203may be incompatible with the MIPS VZ ASE.
5204
5205 0: The trap & emulate implementation is in use to run guest code in user
5206 mode. Guest virtual memory segments are rearranged to fit the guest in the
5207 user mode address space.
5208
5209 1: The MIPS VZ ASE is in use, providing full hardware assisted
5210 virtualization, including standard guest virtual memory segments.
5211
52128.6 KVM_CAP_MIPS_TE
5213
5214Architectures: mips
5215
5216This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
5217it is available, means that the trap & emulate implementation is available to
5218run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
5219assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
5220to KVM_CREATE_VM to create a VM which utilises it.
5221
5222If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
5223available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00005224
52258.7 KVM_CAP_MIPS_64BIT
5226
5227Architectures: mips
5228
5229This capability indicates the supported architecture type of the guest, i.e. the
5230supported register and address width.
5231
5232The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
5233kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
5234be checked specifically against known values (see below). All other values are
5235reserved.
5236
5237 0: MIPS32 or microMIPS32.
5238 Both registers and addresses are 32-bits wide.
5239 It will only be possible to run 32-bit guest code.
5240
5241 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
5242 Registers are 64-bits wide, but addresses are 32-bits wide.
5243 64-bit guest code may run but cannot access MIPS64 memory segments.
5244 It will also be possible to run 32-bit guest code.
5245
5246 2: MIPS64 or microMIPS64 with access to all address segments.
5247 Both registers and addresses are 64-bits wide.
5248 It will be possible to run 64-bit or 32-bit guest code.
Michael S. Tsirkin668fffa2017-04-21 12:27:17 +02005249
Paolo Bonzinic24a7be2017-04-27 17:33:14 +020052508.9 KVM_CAP_ARM_USER_IRQ
Alexander Graf3fe17e62016-09-27 21:08:05 +02005251
5252Architectures: arm, arm64
5253This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
5254that if userspace creates a VM without an in-kernel interrupt controller, it
5255will be notified of changes to the output level of in-kernel emulated devices,
5256which can generate virtual interrupts, presented to the VM.
5257For such VMs, on every return to userspace, the kernel
5258updates the vcpu's run->s.regs.device_irq_level field to represent the actual
5259output level of the device.
5260
5261Whenever kvm detects a change in the device output level, kvm guarantees at
5262least one return to userspace before running the VM. This exit could either
5263be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
5264userspace can always sample the device output level and re-compute the state of
5265the userspace interrupt controller. Userspace should always check the state
5266of run->s.regs.device_irq_level on every kvm exit.
5267The value in run->s.regs.device_irq_level can represent both level and edge
5268triggered interrupt signals, depending on the device. Edge triggered interrupt
5269signals will exit to userspace with the bit in run->s.regs.device_irq_level
5270set exactly once per edge signal.
5271
5272The field run->s.regs.device_irq_level is available independent of
5273run->kvm_valid_regs or run->kvm_dirty_regs bits.
5274
5275If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
5276number larger than 0 indicating the version of this capability is implemented
5277and thereby which bits in in run->s.regs.device_irq_level can signal values.
5278
5279Currently the following bits are defined for the device_irq_level bitmap:
5280
5281 KVM_CAP_ARM_USER_IRQ >= 1:
5282
5283 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
5284 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
5285 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
5286
5287Future versions of kvm may implement additional events. These will get
5288indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
5289listed above.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10005290
52918.10 KVM_CAP_PPC_SMT_POSSIBLE
5292
5293Architectures: ppc
5294
5295Querying this capability returns a bitmap indicating the possible
5296virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
5297(counting from the right) is set, then a virtual SMT mode of 2^N is
5298available.
Roman Kaganefc479e2017-06-22 16:51:01 +03005299
53008.11 KVM_CAP_HYPERV_SYNIC2
5301
5302Architectures: x86
5303
5304This capability enables a newer version of Hyper-V Synthetic interrupt
5305controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
5306doesn't clear SynIC message and event flags pages when they are enabled by
5307writing to the respective MSRs.
Roman Kagand3457c82017-07-14 17:13:20 +03005308
53098.12 KVM_CAP_HYPERV_VP_INDEX
5310
5311Architectures: x86
5312
5313This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
5314value is used to denote the target vcpu for a SynIC interrupt. For
5315compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
5316capability is absent, userspace can still query this msr's value.
Christian Borntraegerda9a1442017-11-09 10:00:45 +01005317
53188.13 KVM_CAP_S390_AIS_MIGRATION
5319
5320Architectures: s390
5321Parameters: none
5322
5323This capability indicates if the flic device will be able to get/set the
5324AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows
5325to discover this without having to create a flic device.
Christian Borntraeger5c2b4d52018-02-22 13:40:04 +00005326
53278.14 KVM_CAP_S390_PSW
5328
5329Architectures: s390
5330
5331This capability indicates that the PSW is exposed via the kvm_run structure.
5332
53338.15 KVM_CAP_S390_GMAP
5334
5335Architectures: s390
5336
5337This capability indicates that the user space memory used as guest mapping can
5338be anywhere in the user memory address space, as long as the memory slots are
5339aligned and sized to a segment (1MB) boundary.
5340
53418.16 KVM_CAP_S390_COW
5342
5343Architectures: s390
5344
5345This capability indicates that the user space memory used as guest mapping can
5346use copy-on-write semantics as well as dirty pages tracking via read-only page
5347tables.
5348
53498.17 KVM_CAP_S390_BPB
5350
5351Architectures: s390
5352
5353This capability indicates that kvm will implement the interfaces to handle
5354reset, migration and nested KVM for branch prediction blocking. The stfle
5355facility 82 should not be provided to the guest without this capability.
Vitaly Kuznetsovc1aea912018-05-16 17:21:31 +02005356
Vitaly Kuznetsov2ddc6492018-06-22 16:56:14 +020053578.18 KVM_CAP_HYPERV_TLBFLUSH
Vitaly Kuznetsovc1aea912018-05-16 17:21:31 +02005358
5359Architectures: x86
5360
5361This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush
5362hypercalls:
5363HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx,
5364HvFlushVirtualAddressList, HvFlushVirtualAddressListEx.
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +01005365
Dongjiu Geng688e0582018-08-20 17:39:25 -040053668.19 KVM_CAP_ARM_INJECT_SERROR_ESR
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +01005367
5368Architectures: arm, arm64
5369
5370This capability indicates that userspace can specify (via the
5371KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it
5372takes a virtual SError interrupt exception.
5373If KVM advertises this capability, userspace can only specify the ISS field for
5374the ESR syndrome. Other parts of the ESR, such as the EC are generated by the
5375CPU when the exception is taken. If this virtual SError is taken to EL1 using
5376AArch64, this value will be reported in the ISS field of ESR_ELx.
5377
5378See KVM_CAP_VCPU_EVENTS for more details.
Vitaly Kuznetsov214ff832018-09-26 19:02:59 +020053798.20 KVM_CAP_HYPERV_SEND_IPI
5380
5381Architectures: x86
5382
5383This capability indicates that KVM supports paravirtualized Hyper-V IPI send
5384hypercalls:
5385HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.
Tianyu Lan344c6c82019-08-22 22:30:20 +080053868.21 KVM_CAP_HYPERV_DIRECT_TLBFLUSH
5387
5388Architecture: x86
5389
5390This capability indicates that KVM running on top of Hyper-V hypervisor
5391enables Direct TLB flush for its guests meaning that TLB flush
5392hypercalls are handled by Level 0 hypervisor (Hyper-V) bypassing KVM.
5393Due to the different ABI for hypercall parameters between Hyper-V and
5394KVM, enabling this capability effectively disables all hypercall
5395handling by KVM (as some KVM hypercall may be mistakenly treated as TLB
5396flush hypercalls by Hyper-V) so userspace should disable KVM identification
5397in CPUID and only exposes Hyper-V identification. In this case, guest
5398thinks it's running on Hyper-V and only use Hyper-V hypercalls.