blob: a5607c571cb340dafe00b6072e86ba6424c95f04 [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
Jan Kiszka414fa982012-04-24 16:40:15 +020085
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
Jan Kiszka414fa982012-04-24 16:40:15 +0200101
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100107Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300120
Jan Kiszka414fa982012-04-24 16:40:15 +0200121
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
Avi Kivity2e2602c2010-07-07 14:09:39 +0300144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
Jan Kiszka414fa982012-04-24 16:40:15 +0200148
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
Jan Kiszka414fa982012-04-24 16:40:15 +0200163
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
Jan Kiszka414fa982012-04-24 16:40:15 +0200176
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
Avi Kivityb74a07b2010-06-21 11:48:05 +0300185This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300186
Jan Kiszka414fa982012-04-24 16:40:15 +0200187
Paul Bolle68ba6972011-02-15 00:05:59 +01001884.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
Sasha Levin8c3ba332011-07-18 17:17:15 +0300197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
Pekka Enberg76d25402011-05-09 22:48:54 +0300204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300208
Paul Mackerras371fefd2011-06-29 00:23:08 +0000209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
Avi Kivity36442682011-08-29 16:27:08 +0300222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
Carsten Otte5b1c1492012-01-04 10:25:23 +0100235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
Jan Kiszka414fa982012-04-24 16:40:15 +0200240
Paul Bolle68ba6972011-02-15 00:05:59 +01002414.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
Jan Kiszka414fa982012-04-24 16:40:15 +0200264
Paul Bolle68ba6972011-02-15 00:05:59 +01002654.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300266
267Capability: basic
268Architectures: x86
269Type: vm ioctl
270Parameters: struct kvm_memory_alias (in)
271Returns: 0 (success), -1 (error)
272
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300273This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300274
Jan Kiszka414fa982012-04-24 16:40:15 +0200275
Paul Bolle68ba6972011-02-15 00:05:59 +01002764.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300277
278Capability: basic
279Architectures: all
280Type: vcpu ioctl
281Parameters: none
282Returns: 0 on success, -1 on error
283Errors:
284 EINTR: an unmasked signal is pending
285
286This ioctl is used to run a guest virtual cpu. While there are no
287explicit parameters, there is an implicit parameter block that can be
288obtained by mmap()ing the vcpu fd at offset 0, with the size given by
289KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
290kvm_run' (see below).
291
Jan Kiszka414fa982012-04-24 16:40:15 +0200292
Paul Bolle68ba6972011-02-15 00:05:59 +01002934.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300294
295Capability: basic
296Architectures: all
297Type: vcpu ioctl
298Parameters: struct kvm_regs (out)
299Returns: 0 on success, -1 on error
300
301Reads the general purpose registers from the vcpu.
302
303/* x86 */
304struct kvm_regs {
305 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
306 __u64 rax, rbx, rcx, rdx;
307 __u64 rsi, rdi, rsp, rbp;
308 __u64 r8, r9, r10, r11;
309 __u64 r12, r13, r14, r15;
310 __u64 rip, rflags;
311};
312
Jan Kiszka414fa982012-04-24 16:40:15 +0200313
Paul Bolle68ba6972011-02-15 00:05:59 +01003144.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300315
316Capability: basic
317Architectures: all
318Type: vcpu ioctl
319Parameters: struct kvm_regs (in)
320Returns: 0 on success, -1 on error
321
322Writes the general purpose registers into the vcpu.
323
324See KVM_GET_REGS for the data structure.
325
Jan Kiszka414fa982012-04-24 16:40:15 +0200326
Paul Bolle68ba6972011-02-15 00:05:59 +01003274.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300328
329Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500330Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300331Type: vcpu ioctl
332Parameters: struct kvm_sregs (out)
333Returns: 0 on success, -1 on error
334
335Reads special registers from the vcpu.
336
337/* x86 */
338struct kvm_sregs {
339 struct kvm_segment cs, ds, es, fs, gs, ss;
340 struct kvm_segment tr, ldt;
341 struct kvm_dtable gdt, idt;
342 __u64 cr0, cr2, cr3, cr4, cr8;
343 __u64 efer;
344 __u64 apic_base;
345 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
346};
347
Scott Wood5ce941e2011-04-27 17:24:21 -0500348/* ppc -- see arch/powerpc/include/asm/kvm.h */
349
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300350interrupt_bitmap is a bitmap of pending external interrupts. At most
351one bit may be set. This interrupt has been acknowledged by the APIC
352but not yet injected into the cpu core.
353
Jan Kiszka414fa982012-04-24 16:40:15 +0200354
Paul Bolle68ba6972011-02-15 00:05:59 +01003554.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300356
357Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500358Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300359Type: vcpu ioctl
360Parameters: struct kvm_sregs (in)
361Returns: 0 on success, -1 on error
362
363Writes special registers into the vcpu. See KVM_GET_SREGS for the
364data structures.
365
Jan Kiszka414fa982012-04-24 16:40:15 +0200366
Paul Bolle68ba6972011-02-15 00:05:59 +01003674.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368
369Capability: basic
370Architectures: x86
371Type: vcpu ioctl
372Parameters: struct kvm_translation (in/out)
373Returns: 0 on success, -1 on error
374
375Translates a virtual address according to the vcpu's current address
376translation mode.
377
378struct kvm_translation {
379 /* in */
380 __u64 linear_address;
381
382 /* out */
383 __u64 physical_address;
384 __u8 valid;
385 __u8 writeable;
386 __u8 usermode;
387 __u8 pad[5];
388};
389
Jan Kiszka414fa982012-04-24 16:40:15 +0200390
Paul Bolle68ba6972011-02-15 00:05:59 +01003914.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300392
393Capability: basic
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200394Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300395Type: vcpu ioctl
396Parameters: struct kvm_interrupt (in)
397Returns: 0 on success, -1 on error
398
399Queues a hardware interrupt vector to be injected. This is only
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200400useful if in-kernel local APIC or equivalent is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300401
402/* for KVM_INTERRUPT */
403struct kvm_interrupt {
404 /* in */
405 __u32 irq;
406};
407
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200408X86:
409
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300410Note 'irq' is an interrupt vector, not an interrupt pin or line.
411
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200412PPC:
413
414Queues an external interrupt to be injected. This ioctl is overleaded
415with 3 different irq values:
416
417a) KVM_INTERRUPT_SET
418
419 This injects an edge type external interrupt into the guest once it's ready
420 to receive interrupts. When injected, the interrupt is done.
421
422b) KVM_INTERRUPT_UNSET
423
424 This unsets any pending interrupt.
425
426 Only available with KVM_CAP_PPC_UNSET_IRQ.
427
428c) KVM_INTERRUPT_SET_LEVEL
429
430 This injects a level type external interrupt into the guest context. The
431 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
432 is triggered.
433
434 Only available with KVM_CAP_PPC_IRQ_LEVEL.
435
436Note that any value for 'irq' other than the ones stated above is invalid
437and incurs unexpected behavior.
438
Jan Kiszka414fa982012-04-24 16:40:15 +0200439
Paul Bolle68ba6972011-02-15 00:05:59 +01004404.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300441
442Capability: basic
443Architectures: none
444Type: vcpu ioctl
445Parameters: none)
446Returns: -1 on error
447
448Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
449
Jan Kiszka414fa982012-04-24 16:40:15 +0200450
Paul Bolle68ba6972011-02-15 00:05:59 +01004514.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300452
453Capability: basic
454Architectures: x86
455Type: vcpu ioctl
456Parameters: struct kvm_msrs (in/out)
457Returns: 0 on success, -1 on error
458
459Reads model-specific registers from the vcpu. Supported msr indices can
460be obtained using KVM_GET_MSR_INDEX_LIST.
461
462struct kvm_msrs {
463 __u32 nmsrs; /* number of msrs in entries */
464 __u32 pad;
465
466 struct kvm_msr_entry entries[0];
467};
468
469struct kvm_msr_entry {
470 __u32 index;
471 __u32 reserved;
472 __u64 data;
473};
474
475Application code should set the 'nmsrs' member (which indicates the
476size of the entries array) and the 'index' member of each array entry.
477kvm will fill in the 'data' member.
478
Jan Kiszka414fa982012-04-24 16:40:15 +0200479
Paul Bolle68ba6972011-02-15 00:05:59 +01004804.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in)
486Returns: 0 on success, -1 on error
487
488Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
489data structures.
490
491Application code should set the 'nmsrs' member (which indicates the
492size of the entries array), and the 'index' and 'data' members of each
493array entry.
494
Jan Kiszka414fa982012-04-24 16:40:15 +0200495
Paul Bolle68ba6972011-02-15 00:05:59 +01004964.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300497
498Capability: basic
499Architectures: x86
500Type: vcpu ioctl
501Parameters: struct kvm_cpuid (in)
502Returns: 0 on success, -1 on error
503
504Defines the vcpu responses to the cpuid instruction. Applications
505should use the KVM_SET_CPUID2 ioctl if available.
506
507
508struct kvm_cpuid_entry {
509 __u32 function;
510 __u32 eax;
511 __u32 ebx;
512 __u32 ecx;
513 __u32 edx;
514 __u32 padding;
515};
516
517/* for KVM_SET_CPUID */
518struct kvm_cpuid {
519 __u32 nent;
520 __u32 padding;
521 struct kvm_cpuid_entry entries[0];
522};
523
Jan Kiszka414fa982012-04-24 16:40:15 +0200524
Paul Bolle68ba6972011-02-15 00:05:59 +01005254.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_signal_mask (in)
531Returns: 0 on success, -1 on error
532
533Defines which signals are blocked during execution of KVM_RUN. This
534signal mask temporarily overrides the threads signal mask. Any
535unblocked signal received (except SIGKILL and SIGSTOP, which retain
536their traditional behaviour) will cause KVM_RUN to return with -EINTR.
537
538Note the signal will only be delivered if not blocked by the original
539signal mask.
540
541/* for KVM_SET_SIGNAL_MASK */
542struct kvm_signal_mask {
543 __u32 len;
544 __u8 sigset[0];
545};
546
Jan Kiszka414fa982012-04-24 16:40:15 +0200547
Paul Bolle68ba6972011-02-15 00:05:59 +01005484.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300549
550Capability: basic
551Architectures: x86
552Type: vcpu ioctl
553Parameters: struct kvm_fpu (out)
554Returns: 0 on success, -1 on error
555
556Reads the floating point state from the vcpu.
557
558/* for KVM_GET_FPU and KVM_SET_FPU */
559struct kvm_fpu {
560 __u8 fpr[8][16];
561 __u16 fcw;
562 __u16 fsw;
563 __u8 ftwx; /* in fxsave format */
564 __u8 pad1;
565 __u16 last_opcode;
566 __u64 last_ip;
567 __u64 last_dp;
568 __u8 xmm[16][16];
569 __u32 mxcsr;
570 __u32 pad2;
571};
572
Jan Kiszka414fa982012-04-24 16:40:15 +0200573
Paul Bolle68ba6972011-02-15 00:05:59 +01005744.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300575
576Capability: basic
577Architectures: x86
578Type: vcpu ioctl
579Parameters: struct kvm_fpu (in)
580Returns: 0 on success, -1 on error
581
582Writes the floating point state to the vcpu.
583
584/* for KVM_GET_FPU and KVM_SET_FPU */
585struct kvm_fpu {
586 __u8 fpr[8][16];
587 __u16 fcw;
588 __u16 fsw;
589 __u8 ftwx; /* in fxsave format */
590 __u8 pad1;
591 __u16 last_opcode;
592 __u64 last_ip;
593 __u64 last_dp;
594 __u8 xmm[16][16];
595 __u32 mxcsr;
596 __u32 pad2;
597};
598
Jan Kiszka414fa982012-04-24 16:40:15 +0200599
Paul Bolle68ba6972011-02-15 00:05:59 +01006004.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300601
602Capability: KVM_CAP_IRQCHIP
603Architectures: x86, ia64
604Type: vm ioctl
605Parameters: none
606Returns: 0 on success, -1 on error
607
608Creates an interrupt controller model in the kernel. On x86, creates a virtual
609ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
610local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
611only go to the IOAPIC. On ia64, a IOSAPIC is created.
612
Jan Kiszka414fa982012-04-24 16:40:15 +0200613
Paul Bolle68ba6972011-02-15 00:05:59 +01006144.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300615
616Capability: KVM_CAP_IRQCHIP
617Architectures: x86, ia64
618Type: vm ioctl
619Parameters: struct kvm_irq_level
620Returns: 0 on success, -1 on error
621
622Sets the level of a GSI input to the interrupt controller model in the kernel.
623Requires that an interrupt controller model has been previously created with
624KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level
625to be set to 1 and then back to 0.
626
627struct kvm_irq_level {
628 union {
629 __u32 irq; /* GSI */
630 __s32 status; /* not used for KVM_IRQ_LEVEL */
631 };
632 __u32 level; /* 0 or 1 */
633};
634
Jan Kiszka414fa982012-04-24 16:40:15 +0200635
Paul Bolle68ba6972011-02-15 00:05:59 +01006364.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300637
638Capability: KVM_CAP_IRQCHIP
639Architectures: x86, ia64
640Type: vm ioctl
641Parameters: struct kvm_irqchip (in/out)
642Returns: 0 on success, -1 on error
643
644Reads the state of a kernel interrupt controller created with
645KVM_CREATE_IRQCHIP into a buffer provided by the caller.
646
647struct kvm_irqchip {
648 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
649 __u32 pad;
650 union {
651 char dummy[512]; /* reserving space */
652 struct kvm_pic_state pic;
653 struct kvm_ioapic_state ioapic;
654 } chip;
655};
656
Jan Kiszka414fa982012-04-24 16:40:15 +0200657
Paul Bolle68ba6972011-02-15 00:05:59 +01006584.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300659
660Capability: KVM_CAP_IRQCHIP
661Architectures: x86, ia64
662Type: vm ioctl
663Parameters: struct kvm_irqchip (in)
664Returns: 0 on success, -1 on error
665
666Sets the state of a kernel interrupt controller created with
667KVM_CREATE_IRQCHIP from a buffer provided by the caller.
668
669struct kvm_irqchip {
670 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
671 __u32 pad;
672 union {
673 char dummy[512]; /* reserving space */
674 struct kvm_pic_state pic;
675 struct kvm_ioapic_state ioapic;
676 } chip;
677};
678
Jan Kiszka414fa982012-04-24 16:40:15 +0200679
Paul Bolle68ba6972011-02-15 00:05:59 +01006804.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700681
682Capability: KVM_CAP_XEN_HVM
683Architectures: x86
684Type: vm ioctl
685Parameters: struct kvm_xen_hvm_config (in)
686Returns: 0 on success, -1 on error
687
688Sets the MSR that the Xen HVM guest uses to initialize its hypercall
689page, and provides the starting address and size of the hypercall
690blobs in userspace. When the guest writes the MSR, kvm copies one
691page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
692memory.
693
694struct kvm_xen_hvm_config {
695 __u32 flags;
696 __u32 msr;
697 __u64 blob_addr_32;
698 __u64 blob_addr_64;
699 __u8 blob_size_32;
700 __u8 blob_size_64;
701 __u8 pad2[30];
702};
703
Jan Kiszka414fa982012-04-24 16:40:15 +0200704
Paul Bolle68ba6972011-02-15 00:05:59 +01007054.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400706
707Capability: KVM_CAP_ADJUST_CLOCK
708Architectures: x86
709Type: vm ioctl
710Parameters: struct kvm_clock_data (out)
711Returns: 0 on success, -1 on error
712
713Gets the current timestamp of kvmclock as seen by the current guest. In
714conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
715such as migration.
716
717struct kvm_clock_data {
718 __u64 clock; /* kvmclock current value */
719 __u32 flags;
720 __u32 pad[9];
721};
722
Jan Kiszka414fa982012-04-24 16:40:15 +0200723
Paul Bolle68ba6972011-02-15 00:05:59 +01007244.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400725
726Capability: KVM_CAP_ADJUST_CLOCK
727Architectures: x86
728Type: vm ioctl
729Parameters: struct kvm_clock_data (in)
730Returns: 0 on success, -1 on error
731
Wu Fengguang2044892d2009-12-24 09:04:16 +0800732Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400733In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
734such as migration.
735
736struct kvm_clock_data {
737 __u64 clock; /* kvmclock current value */
738 __u32 flags;
739 __u32 pad[9];
740};
741
Jan Kiszka414fa982012-04-24 16:40:15 +0200742
Paul Bolle68ba6972011-02-15 00:05:59 +01007434.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100744
745Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100746Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_vcpu_event (out)
750Returns: 0 on success, -1 on error
751
752Gets currently pending exceptions, interrupts, and NMIs as well as related
753states of the vcpu.
754
755struct kvm_vcpu_events {
756 struct {
757 __u8 injected;
758 __u8 nr;
759 __u8 has_error_code;
760 __u8 pad;
761 __u32 error_code;
762 } exception;
763 struct {
764 __u8 injected;
765 __u8 nr;
766 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100767 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100768 } interrupt;
769 struct {
770 __u8 injected;
771 __u8 pending;
772 __u8 masked;
773 __u8 pad;
774 } nmi;
775 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100776 __u32 flags;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100777};
778
Jan Kiszka48005f62010-02-19 19:38:07 +0100779KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
780interrupt.shadow contains a valid state. Otherwise, this field is undefined.
781
Jan Kiszka414fa982012-04-24 16:40:15 +0200782
Paul Bolle68ba6972011-02-15 00:05:59 +01007834.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100784
785Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100786Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100787Architectures: x86
788Type: vm ioctl
789Parameters: struct kvm_vcpu_event (in)
790Returns: 0 on success, -1 on error
791
792Set pending exceptions, interrupts, and NMIs as well as related states of the
793vcpu.
794
795See KVM_GET_VCPU_EVENTS for the data structure.
796
Jan Kiszkadab4b912009-12-06 18:24:15 +0100797Fields that may be modified asynchronously by running VCPUs can be excluded
798from the update. These fields are nmi.pending and sipi_vector. Keep the
799corresponding bits in the flags field cleared to suppress overwriting the
800current in-kernel state. The bits are:
801
802KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
803KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
804
Jan Kiszka48005f62010-02-19 19:38:07 +0100805If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
806the flags field to signal that interrupt.shadow contains a valid state and
807shall be written into the VCPU.
808
Jan Kiszka414fa982012-04-24 16:40:15 +0200809
Paul Bolle68ba6972011-02-15 00:05:59 +01008104.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100811
812Capability: KVM_CAP_DEBUGREGS
813Architectures: x86
814Type: vm ioctl
815Parameters: struct kvm_debugregs (out)
816Returns: 0 on success, -1 on error
817
818Reads debug registers from the vcpu.
819
820struct kvm_debugregs {
821 __u64 db[4];
822 __u64 dr6;
823 __u64 dr7;
824 __u64 flags;
825 __u64 reserved[9];
826};
827
Jan Kiszka414fa982012-04-24 16:40:15 +0200828
Paul Bolle68ba6972011-02-15 00:05:59 +01008294.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100830
831Capability: KVM_CAP_DEBUGREGS
832Architectures: x86
833Type: vm ioctl
834Parameters: struct kvm_debugregs (in)
835Returns: 0 on success, -1 on error
836
837Writes debug registers into the vcpu.
838
839See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
840yet and must be cleared on entry.
841
Jan Kiszka414fa982012-04-24 16:40:15 +0200842
Paul Bolle68ba6972011-02-15 00:05:59 +01008434.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200844
845Capability: KVM_CAP_USER_MEM
846Architectures: all
847Type: vm ioctl
848Parameters: struct kvm_userspace_memory_region (in)
849Returns: 0 on success, -1 on error
850
851struct kvm_userspace_memory_region {
852 __u32 slot;
853 __u32 flags;
854 __u64 guest_phys_addr;
855 __u64 memory_size; /* bytes */
856 __u64 userspace_addr; /* start of the userspace allocated memory */
857};
858
859/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800860#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
861#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200862
863This ioctl allows the user to create or modify a guest physical memory
864slot. When changing an existing slot, it may be moved in the guest
865physical memory space, or its flags may be modified. It may not be
866resized. Slots may not overlap in guest physical address space.
867
868Memory for the region is taken starting at the address denoted by the
869field userspace_addr, which must point at user addressable memory for
870the entire memory slot size. Any object may back this memory, including
871anonymous memory, ordinary files, and hugetlbfs.
872
873It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
874be identical. This allows large pages in the guest to be backed by large
875pages in the host.
876
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200877The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs
878kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG
879ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the
880KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only
881allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO
882exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200883
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200884When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
885the memory region are automatically reflected into the guest. For example, an
886mmap() that affects the region will be made visible immediately. Another
887example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200888
889It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
890The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
891allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100892
Jan Kiszka414fa982012-04-24 16:40:15 +0200893
Paul Bolle68ba6972011-02-15 00:05:59 +01008944.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200895
896Capability: KVM_CAP_SET_TSS_ADDR
897Architectures: x86
898Type: vm ioctl
899Parameters: unsigned long tss_address (in)
900Returns: 0 on success, -1 on error
901
902This ioctl defines the physical address of a three-page region in the guest
903physical address space. The region must be within the first 4GB of the
904guest physical address space and must not conflict with any memory slot
905or any mmio address. The guest may malfunction if it accesses this memory
906region.
907
908This ioctl is required on Intel-based hosts. This is needed on Intel hardware
909because of a quirk in the virtualization implementation (see the internals
910documentation when it pops into existence).
911
Jan Kiszka414fa982012-04-24 16:40:15 +0200912
Paul Bolle68ba6972011-02-15 00:05:59 +01009134.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +0100914
915Capability: KVM_CAP_ENABLE_CAP
916Architectures: ppc
917Type: vcpu ioctl
918Parameters: struct kvm_enable_cap (in)
919Returns: 0 on success; -1 on error
920
921+Not all extensions are enabled by default. Using this ioctl the application
922can enable an extension, making it available to the guest.
923
924On systems that do not support this ioctl, it always fails. On systems that
925do support it, it only works for extensions that are supported for enablement.
926
927To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
928be used.
929
930struct kvm_enable_cap {
931 /* in */
932 __u32 cap;
933
934The capability that is supposed to get enabled.
935
936 __u32 flags;
937
938A bitfield indicating future enhancements. Has to be 0 for now.
939
940 __u64 args[4];
941
942Arguments for enabling a feature. If a feature needs initial values to
943function properly, this is the place to put them.
944
945 __u8 pad[64];
946};
947
Jan Kiszka414fa982012-04-24 16:40:15 +0200948
Paul Bolle68ba6972011-02-15 00:05:59 +01009494.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +0300950
951Capability: KVM_CAP_MP_STATE
952Architectures: x86, ia64
953Type: vcpu ioctl
954Parameters: struct kvm_mp_state (out)
955Returns: 0 on success; -1 on error
956
957struct kvm_mp_state {
958 __u32 mp_state;
959};
960
961Returns the vcpu's current "multiprocessing state" (though also valid on
962uniprocessor guests).
963
964Possible values are:
965
966 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
967 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
968 which has not yet received an INIT signal
969 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
970 now ready for a SIPI
971 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
972 is waiting for an interrupt
973 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Uwe Kleine-Königb5950762010-11-01 15:38:34 -0400974 accessible via KVM_GET_VCPU_EVENTS)
Avi Kivityb843f062010-04-25 15:51:46 +0300975
976This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
977irqchip, the multiprocessing state must be maintained by userspace.
978
Jan Kiszka414fa982012-04-24 16:40:15 +0200979
Paul Bolle68ba6972011-02-15 00:05:59 +01009804.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +0300981
982Capability: KVM_CAP_MP_STATE
983Architectures: x86, ia64
984Type: vcpu ioctl
985Parameters: struct kvm_mp_state (in)
986Returns: 0 on success; -1 on error
987
988Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
989arguments.
990
991This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
992irqchip, the multiprocessing state must be maintained by userspace.
993
Jan Kiszka414fa982012-04-24 16:40:15 +0200994
Paul Bolle68ba6972011-02-15 00:05:59 +01009954.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +0300996
997Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
998Architectures: x86
999Type: vm ioctl
1000Parameters: unsigned long identity (in)
1001Returns: 0 on success, -1 on error
1002
1003This ioctl defines the physical address of a one-page region in the guest
1004physical address space. The region must be within the first 4GB of the
1005guest physical address space and must not conflict with any memory slot
1006or any mmio address. The guest may malfunction if it accesses this memory
1007region.
1008
1009This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1010because of a quirk in the virtualization implementation (see the internals
1011documentation when it pops into existence).
1012
Jan Kiszka414fa982012-04-24 16:40:15 +02001013
Paul Bolle68ba6972011-02-15 00:05:59 +010010144.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001015
1016Capability: KVM_CAP_SET_BOOT_CPU_ID
1017Architectures: x86, ia64
1018Type: vm ioctl
1019Parameters: unsigned long vcpu_id
1020Returns: 0 on success, -1 on error
1021
1022Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1023as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1024is vcpu 0.
1025
Jan Kiszka414fa982012-04-24 16:40:15 +02001026
Paul Bolle68ba6972011-02-15 00:05:59 +010010274.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001028
1029Capability: KVM_CAP_XSAVE
1030Architectures: x86
1031Type: vcpu ioctl
1032Parameters: struct kvm_xsave (out)
1033Returns: 0 on success, -1 on error
1034
1035struct kvm_xsave {
1036 __u32 region[1024];
1037};
1038
1039This ioctl would copy current vcpu's xsave struct to the userspace.
1040
Jan Kiszka414fa982012-04-24 16:40:15 +02001041
Paul Bolle68ba6972011-02-15 00:05:59 +010010424.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001043
1044Capability: KVM_CAP_XSAVE
1045Architectures: x86
1046Type: vcpu ioctl
1047Parameters: struct kvm_xsave (in)
1048Returns: 0 on success, -1 on error
1049
1050struct kvm_xsave {
1051 __u32 region[1024];
1052};
1053
1054This ioctl would copy userspace's xsave struct to the kernel.
1055
Jan Kiszka414fa982012-04-24 16:40:15 +02001056
Paul Bolle68ba6972011-02-15 00:05:59 +010010574.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001058
1059Capability: KVM_CAP_XCRS
1060Architectures: x86
1061Type: vcpu ioctl
1062Parameters: struct kvm_xcrs (out)
1063Returns: 0 on success, -1 on error
1064
1065struct kvm_xcr {
1066 __u32 xcr;
1067 __u32 reserved;
1068 __u64 value;
1069};
1070
1071struct kvm_xcrs {
1072 __u32 nr_xcrs;
1073 __u32 flags;
1074 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1075 __u64 padding[16];
1076};
1077
1078This ioctl would copy current vcpu's xcrs to the userspace.
1079
Jan Kiszka414fa982012-04-24 16:40:15 +02001080
Paul Bolle68ba6972011-02-15 00:05:59 +010010814.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001082
1083Capability: KVM_CAP_XCRS
1084Architectures: x86
1085Type: vcpu ioctl
1086Parameters: struct kvm_xcrs (in)
1087Returns: 0 on success, -1 on error
1088
1089struct kvm_xcr {
1090 __u32 xcr;
1091 __u32 reserved;
1092 __u64 value;
1093};
1094
1095struct kvm_xcrs {
1096 __u32 nr_xcrs;
1097 __u32 flags;
1098 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1099 __u64 padding[16];
1100};
1101
1102This ioctl would set vcpu's xcr to the value userspace specified.
1103
Jan Kiszka414fa982012-04-24 16:40:15 +02001104
Paul Bolle68ba6972011-02-15 00:05:59 +010011054.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001106
1107Capability: KVM_CAP_EXT_CPUID
1108Architectures: x86
1109Type: system ioctl
1110Parameters: struct kvm_cpuid2 (in/out)
1111Returns: 0 on success, -1 on error
1112
1113struct kvm_cpuid2 {
1114 __u32 nent;
1115 __u32 padding;
1116 struct kvm_cpuid_entry2 entries[0];
1117};
1118
1119#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1120#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1121#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1122
1123struct kvm_cpuid_entry2 {
1124 __u32 function;
1125 __u32 index;
1126 __u32 flags;
1127 __u32 eax;
1128 __u32 ebx;
1129 __u32 ecx;
1130 __u32 edx;
1131 __u32 padding[3];
1132};
1133
1134This ioctl returns x86 cpuid features which are supported by both the hardware
1135and kvm. Userspace can use the information returned by this ioctl to
1136construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1137hardware, kernel, and userspace capabilities, and with user requirements (for
1138example, the user may wish to constrain cpuid to emulate older hardware,
1139or for feature consistency across a cluster).
1140
1141Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1142with the 'nent' field indicating the number of entries in the variable-size
1143array 'entries'. If the number of entries is too low to describe the cpu
1144capabilities, an error (E2BIG) is returned. If the number is too high,
1145the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1146number is just right, the 'nent' field is adjusted to the number of valid
1147entries in the 'entries' array, which is then filled.
1148
1149The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001150with unknown or unsupported features masked out. Some features (for example,
1151x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1152emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001153
1154 function: the eax value used to obtain the entry
1155 index: the ecx value used to obtain the entry (for entries that are
1156 affected by ecx)
1157 flags: an OR of zero or more of the following:
1158 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1159 if the index field is valid
1160 KVM_CPUID_FLAG_STATEFUL_FUNC:
1161 if cpuid for this function returns different values for successive
1162 invocations; there will be several entries with the same function,
1163 all with this flag set
1164 KVM_CPUID_FLAG_STATE_READ_NEXT:
1165 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1166 the first entry to be read by a cpu
1167 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1168 this function/index combination
1169
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001170The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1171as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1172support. Instead it is reported via
1173
1174 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1175
1176if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1177feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1178
Jan Kiszka414fa982012-04-24 16:40:15 +02001179
Paul Bolle68ba6972011-02-15 00:05:59 +010011804.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001181
1182Capability: KVM_CAP_PPC_GET_PVINFO
1183Architectures: ppc
1184Type: vm ioctl
1185Parameters: struct kvm_ppc_pvinfo (out)
1186Returns: 0 on success, !0 on error
1187
1188struct kvm_ppc_pvinfo {
1189 __u32 flags;
1190 __u32 hcall[4];
1191 __u8 pad[108];
1192};
1193
1194This ioctl fetches PV specific information that need to be passed to the guest
1195using the device tree or other means from vm context.
1196
Liu Yu-B132019202e072012-07-03 05:48:52 +00001197The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001198
1199If any additional field gets added to this structure later on, a bit for that
1200additional piece of information will be set in the flags bitmap.
1201
Liu Yu-B132019202e072012-07-03 05:48:52 +00001202The flags bitmap is defined as:
1203
1204 /* the host supports the ePAPR idle hcall
1205 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001206
Paul Bolle68ba6972011-02-15 00:05:59 +010012074.48 KVM_ASSIGN_PCI_DEVICE
Jan Kiszka49f48172010-11-16 22:30:07 +01001208
1209Capability: KVM_CAP_DEVICE_ASSIGNMENT
1210Architectures: x86 ia64
1211Type: vm ioctl
1212Parameters: struct kvm_assigned_pci_dev (in)
1213Returns: 0 on success, -1 on error
1214
1215Assigns a host PCI device to the VM.
1216
1217struct kvm_assigned_pci_dev {
1218 __u32 assigned_dev_id;
1219 __u32 busnr;
1220 __u32 devfn;
1221 __u32 flags;
1222 __u32 segnr;
1223 union {
1224 __u32 reserved[11];
1225 };
1226};
1227
1228The PCI device is specified by the triple segnr, busnr, and devfn.
1229Identification in succeeding service requests is done via assigned_dev_id. The
1230following flags are specified:
1231
1232/* Depends on KVM_CAP_IOMMU */
1233#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
Jan Kiszka07700a92012-02-28 14:19:54 +01001234/* The following two depend on KVM_CAP_PCI_2_3 */
1235#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1236#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1237
1238If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1239via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1240assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1241guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
Jan Kiszka49f48172010-11-16 22:30:07 +01001242
Alex Williamson42387372011-12-20 21:59:03 -07001243The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1244isolation of the device. Usages not specifying this flag are deprecated.
1245
Alex Williamson3d27e232011-12-20 21:59:09 -07001246Only PCI header type 0 devices with PCI BAR resources are supported by
1247device assignment. The user requesting this ioctl must have read/write
1248access to the PCI sysfs resource files associated with the device.
1249
Jan Kiszka414fa982012-04-24 16:40:15 +02001250
Paul Bolle68ba6972011-02-15 00:05:59 +010012514.49 KVM_DEASSIGN_PCI_DEVICE
Jan Kiszka49f48172010-11-16 22:30:07 +01001252
1253Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1254Architectures: x86 ia64
1255Type: vm ioctl
1256Parameters: struct kvm_assigned_pci_dev (in)
1257Returns: 0 on success, -1 on error
1258
1259Ends PCI device assignment, releasing all associated resources.
1260
1261See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1262used in kvm_assigned_pci_dev to identify the device.
1263
Jan Kiszka414fa982012-04-24 16:40:15 +02001264
Paul Bolle68ba6972011-02-15 00:05:59 +010012654.50 KVM_ASSIGN_DEV_IRQ
Jan Kiszka49f48172010-11-16 22:30:07 +01001266
1267Capability: KVM_CAP_ASSIGN_DEV_IRQ
1268Architectures: x86 ia64
1269Type: vm ioctl
1270Parameters: struct kvm_assigned_irq (in)
1271Returns: 0 on success, -1 on error
1272
1273Assigns an IRQ to a passed-through device.
1274
1275struct kvm_assigned_irq {
1276 __u32 assigned_dev_id;
Jan Kiszka91e3d712011-06-03 08:51:05 +02001277 __u32 host_irq; /* ignored (legacy field) */
Jan Kiszka49f48172010-11-16 22:30:07 +01001278 __u32 guest_irq;
1279 __u32 flags;
1280 union {
Jan Kiszka49f48172010-11-16 22:30:07 +01001281 __u32 reserved[12];
1282 };
1283};
1284
1285The following flags are defined:
1286
1287#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1288#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1289#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1290
1291#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1292#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1293#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1294
1295It is not valid to specify multiple types per host or guest IRQ. However, the
1296IRQ type of host and guest can differ or can even be null.
1297
Jan Kiszka414fa982012-04-24 16:40:15 +02001298
Paul Bolle68ba6972011-02-15 00:05:59 +010012994.51 KVM_DEASSIGN_DEV_IRQ
Jan Kiszka49f48172010-11-16 22:30:07 +01001300
1301Capability: KVM_CAP_ASSIGN_DEV_IRQ
1302Architectures: x86 ia64
1303Type: vm ioctl
1304Parameters: struct kvm_assigned_irq (in)
1305Returns: 0 on success, -1 on error
1306
1307Ends an IRQ assignment to a passed-through device.
1308
1309See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1310by assigned_dev_id, flags must correspond to the IRQ type specified on
1311KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1312
Jan Kiszka414fa982012-04-24 16:40:15 +02001313
Paul Bolle68ba6972011-02-15 00:05:59 +010013144.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001315
1316Capability: KVM_CAP_IRQ_ROUTING
1317Architectures: x86 ia64
1318Type: vm ioctl
1319Parameters: struct kvm_irq_routing (in)
1320Returns: 0 on success, -1 on error
1321
1322Sets the GSI routing table entries, overwriting any previously set entries.
1323
1324struct kvm_irq_routing {
1325 __u32 nr;
1326 __u32 flags;
1327 struct kvm_irq_routing_entry entries[0];
1328};
1329
1330No flags are specified so far, the corresponding field must be set to zero.
1331
1332struct kvm_irq_routing_entry {
1333 __u32 gsi;
1334 __u32 type;
1335 __u32 flags;
1336 __u32 pad;
1337 union {
1338 struct kvm_irq_routing_irqchip irqchip;
1339 struct kvm_irq_routing_msi msi;
1340 __u32 pad[8];
1341 } u;
1342};
1343
1344/* gsi routing entry types */
1345#define KVM_IRQ_ROUTING_IRQCHIP 1
1346#define KVM_IRQ_ROUTING_MSI 2
1347
1348No flags are specified so far, the corresponding field must be set to zero.
1349
1350struct kvm_irq_routing_irqchip {
1351 __u32 irqchip;
1352 __u32 pin;
1353};
1354
1355struct kvm_irq_routing_msi {
1356 __u32 address_lo;
1357 __u32 address_hi;
1358 __u32 data;
1359 __u32 pad;
1360};
1361
Jan Kiszka414fa982012-04-24 16:40:15 +02001362
Paul Bolle68ba6972011-02-15 00:05:59 +010013634.53 KVM_ASSIGN_SET_MSIX_NR
Jan Kiszka49f48172010-11-16 22:30:07 +01001364
1365Capability: KVM_CAP_DEVICE_MSIX
1366Architectures: x86 ia64
1367Type: vm ioctl
1368Parameters: struct kvm_assigned_msix_nr (in)
1369Returns: 0 on success, -1 on error
1370
Jan Kiszka58f09642011-06-11 12:24:24 +02001371Set the number of MSI-X interrupts for an assigned device. The number is
1372reset again by terminating the MSI-X assignment of the device via
1373KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1374point will fail.
Jan Kiszka49f48172010-11-16 22:30:07 +01001375
1376struct kvm_assigned_msix_nr {
1377 __u32 assigned_dev_id;
1378 __u16 entry_nr;
1379 __u16 padding;
1380};
1381
1382#define KVM_MAX_MSIX_PER_DEV 256
1383
Jan Kiszka414fa982012-04-24 16:40:15 +02001384
Paul Bolle68ba6972011-02-15 00:05:59 +010013854.54 KVM_ASSIGN_SET_MSIX_ENTRY
Jan Kiszka49f48172010-11-16 22:30:07 +01001386
1387Capability: KVM_CAP_DEVICE_MSIX
1388Architectures: x86 ia64
1389Type: vm ioctl
1390Parameters: struct kvm_assigned_msix_entry (in)
1391Returns: 0 on success, -1 on error
1392
1393Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1394the GSI vector to zero means disabling the interrupt.
1395
1396struct kvm_assigned_msix_entry {
1397 __u32 assigned_dev_id;
1398 __u32 gsi;
1399 __u16 entry; /* The index of entry in the MSI-X table */
1400 __u16 padding[3];
1401};
1402
Jan Kiszka414fa982012-04-24 16:40:15 +02001403
14044.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001405
1406Capability: KVM_CAP_TSC_CONTROL
1407Architectures: x86
1408Type: vcpu ioctl
1409Parameters: virtual tsc_khz
1410Returns: 0 on success, -1 on error
1411
1412Specifies the tsc frequency for the virtual machine. The unit of the
1413frequency is KHz.
1414
Jan Kiszka414fa982012-04-24 16:40:15 +02001415
14164.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001417
1418Capability: KVM_CAP_GET_TSC_KHZ
1419Architectures: x86
1420Type: vcpu ioctl
1421Parameters: none
1422Returns: virtual tsc-khz on success, negative value on error
1423
1424Returns the tsc frequency of the guest. The unit of the return value is
1425KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1426error.
1427
Jan Kiszka414fa982012-04-24 16:40:15 +02001428
14294.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001430
1431Capability: KVM_CAP_IRQCHIP
1432Architectures: x86
1433Type: vcpu ioctl
1434Parameters: struct kvm_lapic_state (out)
1435Returns: 0 on success, -1 on error
1436
1437#define KVM_APIC_REG_SIZE 0x400
1438struct kvm_lapic_state {
1439 char regs[KVM_APIC_REG_SIZE];
1440};
1441
1442Reads the Local APIC registers and copies them into the input argument. The
1443data format and layout are the same as documented in the architecture manual.
1444
Jan Kiszka414fa982012-04-24 16:40:15 +02001445
14464.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001447
1448Capability: KVM_CAP_IRQCHIP
1449Architectures: x86
1450Type: vcpu ioctl
1451Parameters: struct kvm_lapic_state (in)
1452Returns: 0 on success, -1 on error
1453
1454#define KVM_APIC_REG_SIZE 0x400
1455struct kvm_lapic_state {
1456 char regs[KVM_APIC_REG_SIZE];
1457};
1458
1459Copies the input argument into the the Local APIC registers. The data format
1460and layout are the same as documented in the architecture manual.
1461
Jan Kiszka414fa982012-04-24 16:40:15 +02001462
14634.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001464
1465Capability: KVM_CAP_IOEVENTFD
1466Architectures: all
1467Type: vm ioctl
1468Parameters: struct kvm_ioeventfd (in)
1469Returns: 0 on success, !0 on error
1470
1471This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1472within the guest. A guest write in the registered address will signal the
1473provided event instead of triggering an exit.
1474
1475struct kvm_ioeventfd {
1476 __u64 datamatch;
1477 __u64 addr; /* legal pio/mmio address */
1478 __u32 len; /* 1, 2, 4, or 8 bytes */
1479 __s32 fd;
1480 __u32 flags;
1481 __u8 pad[36];
1482};
1483
1484The following flags are defined:
1485
1486#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1487#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1488#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1489
1490If datamatch flag is set, the event will be signaled only if the written value
1491to the registered address is equal to datamatch in struct kvm_ioeventfd.
1492
Jan Kiszka414fa982012-04-24 16:40:15 +02001493
14944.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001495
1496Capability: KVM_CAP_SW_TLB
1497Architectures: ppc
1498Type: vcpu ioctl
1499Parameters: struct kvm_dirty_tlb (in)
1500Returns: 0 on success, -1 on error
1501
1502struct kvm_dirty_tlb {
1503 __u64 bitmap;
1504 __u32 num_dirty;
1505};
1506
1507This must be called whenever userspace has changed an entry in the shared
1508TLB, prior to calling KVM_RUN on the associated vcpu.
1509
1510The "bitmap" field is the userspace address of an array. This array
1511consists of a number of bits, equal to the total number of TLB entries as
1512determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1513nearest multiple of 64.
1514
1515Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1516array.
1517
1518The array is little-endian: the bit 0 is the least significant bit of the
1519first byte, bit 8 is the least significant bit of the second byte, etc.
1520This avoids any complications with differing word sizes.
1521
1522The "num_dirty" field is a performance hint for KVM to determine whether it
1523should skip processing the bitmap and just invalidate everything. It must
1524be set to the number of set bits in the bitmap.
1525
Jan Kiszka414fa982012-04-24 16:40:15 +02001526
15274.61 KVM_ASSIGN_SET_INTX_MASK
Jan Kiszka07700a92012-02-28 14:19:54 +01001528
1529Capability: KVM_CAP_PCI_2_3
1530Architectures: x86
1531Type: vm ioctl
1532Parameters: struct kvm_assigned_pci_dev (in)
1533Returns: 0 on success, -1 on error
1534
1535Allows userspace to mask PCI INTx interrupts from the assigned device. The
1536kernel will not deliver INTx interrupts to the guest between setting and
1537clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1538and emulation of PCI 2.3 INTx disable command register behavior.
1539
1540This may be used for both PCI 2.3 devices supporting INTx disable natively and
1541older devices lacking this support. Userspace is responsible for emulating the
1542read value of the INTx disable bit in the guest visible PCI command register.
1543When modifying the INTx disable state, userspace should precede updating the
1544physical device command register by calling this ioctl to inform the kernel of
1545the new intended INTx mask state.
1546
1547Note that the kernel uses the device INTx disable bit to internally manage the
1548device interrupt state for PCI 2.3 devices. Reads of this register may
1549therefore not match the expected value. Writes should always use the guest
1550intended INTx disable value rather than attempting to read-copy-update the
1551current physical device state. Races between user and kernel updates to the
1552INTx disable bit are handled lazily in the kernel. It's possible the device
1553may generate unintended interrupts, but they will not be injected into the
1554guest.
1555
1556See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1557by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1558evaluated.
1559
Jan Kiszka414fa982012-04-24 16:40:15 +02001560
David Gibson54738c02011-06-29 00:22:41 +000015614.62 KVM_CREATE_SPAPR_TCE
1562
1563Capability: KVM_CAP_SPAPR_TCE
1564Architectures: powerpc
1565Type: vm ioctl
1566Parameters: struct kvm_create_spapr_tce (in)
1567Returns: file descriptor for manipulating the created TCE table
1568
1569This creates a virtual TCE (translation control entry) table, which
1570is an IOMMU for PAPR-style virtual I/O. It is used to translate
1571logical addresses used in virtual I/O into guest physical addresses,
1572and provides a scatter/gather capability for PAPR virtual I/O.
1573
1574/* for KVM_CAP_SPAPR_TCE */
1575struct kvm_create_spapr_tce {
1576 __u64 liobn;
1577 __u32 window_size;
1578};
1579
1580The liobn field gives the logical IO bus number for which to create a
1581TCE table. The window_size field specifies the size of the DMA window
1582which this TCE table will translate - the table will contain one 64
1583bit TCE entry for every 4kiB of the DMA window.
1584
1585When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1586table has been created using this ioctl(), the kernel will handle it
1587in real mode, updating the TCE table. H_PUT_TCE calls for other
1588liobns will cause a vm exit and must be handled by userspace.
1589
1590The return value is a file descriptor which can be passed to mmap(2)
1591to map the created TCE table into userspace. This lets userspace read
1592the entries written by kernel-handled H_PUT_TCE calls, and also lets
1593userspace update the TCE table directly which is useful in some
1594circumstances.
1595
Jan Kiszka414fa982012-04-24 16:40:15 +02001596
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000015974.63 KVM_ALLOCATE_RMA
1598
1599Capability: KVM_CAP_PPC_RMA
1600Architectures: powerpc
1601Type: vm ioctl
1602Parameters: struct kvm_allocate_rma (out)
1603Returns: file descriptor for mapping the allocated RMA
1604
1605This allocates a Real Mode Area (RMA) from the pool allocated at boot
1606time by the kernel. An RMA is a physically-contiguous, aligned region
1607of memory used on older POWER processors to provide the memory which
1608will be accessed by real-mode (MMU off) accesses in a KVM guest.
1609POWER processors support a set of sizes for the RMA that usually
1610includes 64MB, 128MB, 256MB and some larger powers of two.
1611
1612/* for KVM_ALLOCATE_RMA */
1613struct kvm_allocate_rma {
1614 __u64 rma_size;
1615};
1616
1617The return value is a file descriptor which can be passed to mmap(2)
1618to map the allocated RMA into userspace. The mapped area can then be
1619passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1620RMA for a virtual machine. The size of the RMA in bytes (which is
1621fixed at host kernel boot time) is returned in the rma_size field of
1622the argument structure.
1623
1624The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1625is supported; 2 if the processor requires all virtual machines to have
1626an RMA, or 1 if the processor can use an RMA but doesn't require it,
1627because it supports the Virtual RMA (VRMA) facility.
1628
Jan Kiszka414fa982012-04-24 16:40:15 +02001629
Avi Kivity3f745f12011-12-07 12:42:47 +020016304.64 KVM_NMI
1631
1632Capability: KVM_CAP_USER_NMI
1633Architectures: x86
1634Type: vcpu ioctl
1635Parameters: none
1636Returns: 0 on success, -1 on error
1637
1638Queues an NMI on the thread's vcpu. Note this is well defined only
1639when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1640between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1641has been called, this interface is completely emulated within the kernel.
1642
1643To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1644following algorithm:
1645
1646 - pause the vpcu
1647 - read the local APIC's state (KVM_GET_LAPIC)
1648 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1649 - if so, issue KVM_NMI
1650 - resume the vcpu
1651
1652Some guests configure the LINT1 NMI input to cause a panic, aiding in
1653debugging.
1654
Jan Kiszka414fa982012-04-24 16:40:15 +02001655
Alexander Grafe24ed812011-09-14 10:02:41 +020016564.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001657
1658Capability: KVM_CAP_S390_UCONTROL
1659Architectures: s390
1660Type: vcpu ioctl
1661Parameters: struct kvm_s390_ucas_mapping (in)
1662Returns: 0 in case of success
1663
1664The parameter is defined like this:
1665 struct kvm_s390_ucas_mapping {
1666 __u64 user_addr;
1667 __u64 vcpu_addr;
1668 __u64 length;
1669 };
1670
1671This ioctl maps the memory at "user_addr" with the length "length" to
1672the vcpu's address space starting at "vcpu_addr". All parameters need to
1673be alligned by 1 megabyte.
1674
Jan Kiszka414fa982012-04-24 16:40:15 +02001675
Alexander Grafe24ed812011-09-14 10:02:41 +020016764.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001677
1678Capability: KVM_CAP_S390_UCONTROL
1679Architectures: s390
1680Type: vcpu ioctl
1681Parameters: struct kvm_s390_ucas_mapping (in)
1682Returns: 0 in case of success
1683
1684The parameter is defined like this:
1685 struct kvm_s390_ucas_mapping {
1686 __u64 user_addr;
1687 __u64 vcpu_addr;
1688 __u64 length;
1689 };
1690
1691This ioctl unmaps the memory in the vcpu's address space starting at
1692"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1693All parameters need to be alligned by 1 megabyte.
1694
Jan Kiszka414fa982012-04-24 16:40:15 +02001695
Alexander Grafe24ed812011-09-14 10:02:41 +020016964.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001697
1698Capability: KVM_CAP_S390_UCONTROL
1699Architectures: s390
1700Type: vcpu ioctl
1701Parameters: vcpu absolute address (in)
1702Returns: 0 in case of success
1703
1704This call creates a page table entry on the virtual cpu's address space
1705(for user controlled virtual machines) or the virtual machine's address
1706space (for regular virtual machines). This only works for minor faults,
1707thus it's recommended to access subject memory page via the user page
1708table upfront. This is useful to handle validity intercepts for user
1709controlled virtual machines to fault in the virtual cpu's lowcore pages
1710prior to calling the KVM_RUN ioctl.
1711
Jan Kiszka414fa982012-04-24 16:40:15 +02001712
Alexander Grafe24ed812011-09-14 10:02:41 +020017134.68 KVM_SET_ONE_REG
1714
1715Capability: KVM_CAP_ONE_REG
1716Architectures: all
1717Type: vcpu ioctl
1718Parameters: struct kvm_one_reg (in)
1719Returns: 0 on success, negative value on failure
1720
1721struct kvm_one_reg {
1722 __u64 id;
1723 __u64 addr;
1724};
1725
1726Using this ioctl, a single vcpu register can be set to a specific value
1727defined by user space with the passed in struct kvm_one_reg, where id
1728refers to the register identifier as described below and addr is a pointer
1729to a variable with the respective size. There can be architecture agnostic
1730and architecture specific registers. Each have their own range of operation
1731and their own constants and width. To keep track of the implemented
1732registers, find a list below:
1733
1734 Arch | Register | Width (bits)
1735 | |
Alexander Graf1022fc32011-09-14 21:45:23 +02001736 PPC | KVM_REG_PPC_HIOR | 64
Bharat Bhushan2e232702012-08-15 17:37:13 +00001737 PPC | KVM_REG_PPC_IAC1 | 64
1738 PPC | KVM_REG_PPC_IAC2 | 64
1739 PPC | KVM_REG_PPC_IAC3 | 64
1740 PPC | KVM_REG_PPC_IAC4 | 64
1741 PPC | KVM_REG_PPC_DAC1 | 64
1742 PPC | KVM_REG_PPC_DAC2 | 64
Paul Mackerrasa136a8b2012-09-25 20:31:56 +00001743 PPC | KVM_REG_PPC_DABR | 64
1744 PPC | KVM_REG_PPC_DSCR | 64
1745 PPC | KVM_REG_PPC_PURR | 64
1746 PPC | KVM_REG_PPC_SPURR | 64
1747 PPC | KVM_REG_PPC_DAR | 64
1748 PPC | KVM_REG_PPC_DSISR | 32
1749 PPC | KVM_REG_PPC_AMR | 64
1750 PPC | KVM_REG_PPC_UAMOR | 64
1751 PPC | KVM_REG_PPC_MMCR0 | 64
1752 PPC | KVM_REG_PPC_MMCR1 | 64
1753 PPC | KVM_REG_PPC_MMCRA | 64
1754 PPC | KVM_REG_PPC_PMC1 | 32
1755 PPC | KVM_REG_PPC_PMC2 | 32
1756 PPC | KVM_REG_PPC_PMC3 | 32
1757 PPC | KVM_REG_PPC_PMC4 | 32
1758 PPC | KVM_REG_PPC_PMC5 | 32
1759 PPC | KVM_REG_PPC_PMC6 | 32
1760 PPC | KVM_REG_PPC_PMC7 | 32
1761 PPC | KVM_REG_PPC_PMC8 | 32
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001762 PPC | KVM_REG_PPC_FPR0 | 64
1763 ...
1764 PPC | KVM_REG_PPC_FPR31 | 64
1765 PPC | KVM_REG_PPC_VR0 | 128
1766 ...
1767 PPC | KVM_REG_PPC_VR31 | 128
1768 PPC | KVM_REG_PPC_VSR0 | 128
1769 ...
1770 PPC | KVM_REG_PPC_VSR31 | 128
1771 PPC | KVM_REG_PPC_FPSCR | 64
1772 PPC | KVM_REG_PPC_VSCR | 32
Paul Mackerras55b665b2012-09-25 20:33:06 +00001773 PPC | KVM_REG_PPC_VPA_ADDR | 64
1774 PPC | KVM_REG_PPC_VPA_SLB | 128
1775 PPC | KVM_REG_PPC_VPA_DTL | 128
Jan Kiszka414fa982012-04-24 16:40:15 +02001776
Alexander Grafe24ed812011-09-14 10:02:41 +020017774.69 KVM_GET_ONE_REG
1778
1779Capability: KVM_CAP_ONE_REG
1780Architectures: all
1781Type: vcpu ioctl
1782Parameters: struct kvm_one_reg (in and out)
1783Returns: 0 on success, negative value on failure
1784
1785This ioctl allows to receive the value of a single register implemented
1786in a vcpu. The register to read is indicated by the "id" field of the
1787kvm_one_reg struct passed in. On success, the register value can be found
1788at the memory location pointed to by "addr".
1789
1790The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00001791list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02001792
Jan Kiszka414fa982012-04-24 16:40:15 +02001793
Eric B Munson1c0b28c2012-03-10 14:37:27 -050017944.70 KVM_KVMCLOCK_CTRL
1795
1796Capability: KVM_CAP_KVMCLOCK_CTRL
1797Architectures: Any that implement pvclocks (currently x86 only)
1798Type: vcpu ioctl
1799Parameters: None
1800Returns: 0 on success, -1 on error
1801
1802This signals to the host kernel that the specified guest is being paused by
1803userspace. The host will set a flag in the pvclock structure that is checked
1804from the soft lockup watchdog. The flag is part of the pvclock structure that
1805is shared between guest and host, specifically the second bit of the flags
1806field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1807the host and read/cleared exclusively by the guest. The guest operation of
1808checking and clearing the flag must an atomic operation so
1809load-link/store-conditional, or equivalent must be used. There are two cases
1810where the guest will clear the flag: when the soft lockup watchdog timer resets
1811itself or when a soft lockup is detected. This ioctl can be called any time
1812after pausing the vcpu, but before it is resumed.
1813
Jan Kiszka414fa982012-04-24 16:40:15 +02001814
Jan Kiszka07975ad2012-03-29 21:14:12 +020018154.71 KVM_SIGNAL_MSI
1816
1817Capability: KVM_CAP_SIGNAL_MSI
1818Architectures: x86
1819Type: vm ioctl
1820Parameters: struct kvm_msi (in)
1821Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1822
1823Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1824MSI messages.
1825
1826struct kvm_msi {
1827 __u32 address_lo;
1828 __u32 address_hi;
1829 __u32 data;
1830 __u32 flags;
1831 __u8 pad[16];
1832};
1833
1834No flags are defined so far. The corresponding field must be 0.
1835
Jan Kiszka414fa982012-04-24 16:40:15 +02001836
Jan Kiszka0589ff62012-04-24 16:40:16 +020018374.71 KVM_CREATE_PIT2
1838
1839Capability: KVM_CAP_PIT2
1840Architectures: x86
1841Type: vm ioctl
1842Parameters: struct kvm_pit_config (in)
1843Returns: 0 on success, -1 on error
1844
1845Creates an in-kernel device model for the i8254 PIT. This call is only valid
1846after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1847parameters have to be passed:
1848
1849struct kvm_pit_config {
1850 __u32 flags;
1851 __u32 pad[15];
1852};
1853
1854Valid flags are:
1855
1856#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1857
Jan Kiszkab6ddf052012-04-24 16:40:17 +02001858PIT timer interrupts may use a per-VM kernel thread for injection. If it
1859exists, this thread will have a name of the following pattern:
1860
1861kvm-pit/<owner-process-pid>
1862
1863When running a guest with elevated priorities, the scheduling parameters of
1864this thread may have to be adjusted accordingly.
1865
Jan Kiszka0589ff62012-04-24 16:40:16 +02001866This IOCTL replaces the obsolete KVM_CREATE_PIT.
1867
1868
18694.72 KVM_GET_PIT2
1870
1871Capability: KVM_CAP_PIT_STATE2
1872Architectures: x86
1873Type: vm ioctl
1874Parameters: struct kvm_pit_state2 (out)
1875Returns: 0 on success, -1 on error
1876
1877Retrieves the state of the in-kernel PIT model. Only valid after
1878KVM_CREATE_PIT2. The state is returned in the following structure:
1879
1880struct kvm_pit_state2 {
1881 struct kvm_pit_channel_state channels[3];
1882 __u32 flags;
1883 __u32 reserved[9];
1884};
1885
1886Valid flags are:
1887
1888/* disable PIT in HPET legacy mode */
1889#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1890
1891This IOCTL replaces the obsolete KVM_GET_PIT.
1892
1893
18944.73 KVM_SET_PIT2
1895
1896Capability: KVM_CAP_PIT_STATE2
1897Architectures: x86
1898Type: vm ioctl
1899Parameters: struct kvm_pit_state2 (in)
1900Returns: 0 on success, -1 on error
1901
1902Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1903See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1904
1905This IOCTL replaces the obsolete KVM_SET_PIT.
1906
1907
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000019084.74 KVM_PPC_GET_SMMU_INFO
1909
1910Capability: KVM_CAP_PPC_GET_SMMU_INFO
1911Architectures: powerpc
1912Type: vm ioctl
1913Parameters: None
1914Returns: 0 on success, -1 on error
1915
1916This populates and returns a structure describing the features of
1917the "Server" class MMU emulation supported by KVM.
1918This can in turn be used by userspace to generate the appropariate
1919device-tree properties for the guest operating system.
1920
1921The structure contains some global informations, followed by an
1922array of supported segment page sizes:
1923
1924 struct kvm_ppc_smmu_info {
1925 __u64 flags;
1926 __u32 slb_size;
1927 __u32 pad;
1928 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1929 };
1930
1931The supported flags are:
1932
1933 - KVM_PPC_PAGE_SIZES_REAL:
1934 When that flag is set, guest page sizes must "fit" the backing
1935 store page sizes. When not set, any page size in the list can
1936 be used regardless of how they are backed by userspace.
1937
1938 - KVM_PPC_1T_SEGMENTS
1939 The emulated MMU supports 1T segments in addition to the
1940 standard 256M ones.
1941
1942The "slb_size" field indicates how many SLB entries are supported
1943
1944The "sps" array contains 8 entries indicating the supported base
1945page sizes for a segment in increasing order. Each entry is defined
1946as follow:
1947
1948 struct kvm_ppc_one_seg_page_size {
1949 __u32 page_shift; /* Base page shift of segment (or 0) */
1950 __u32 slb_enc; /* SLB encoding for BookS */
1951 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1952 };
1953
1954An entry with a "page_shift" of 0 is unused. Because the array is
1955organized in increasing order, a lookup can stop when encoutering
1956such an entry.
1957
1958The "slb_enc" field provides the encoding to use in the SLB for the
1959page size. The bits are in positions such as the value can directly
1960be OR'ed into the "vsid" argument of the slbmte instruction.
1961
1962The "enc" array is a list which for each of those segment base page
1963size provides the list of supported actual page sizes (which can be
1964only larger or equal to the base page size), along with the
1965corresponding encoding in the hash PTE. Similarily, the array is
19668 entries sorted by increasing sizes and an entry with a "0" shift
1967is an empty entry and a terminator:
1968
1969 struct kvm_ppc_one_page_size {
1970 __u32 page_shift; /* Page shift (or 0) */
1971 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
1972 };
1973
1974The "pte_enc" field provides a value that can OR'ed into the hash
1975PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
1976into the hash PTE second double word).
1977
Alex Williamsonf36992e2012-06-29 09:56:16 -060019784.75 KVM_IRQFD
1979
1980Capability: KVM_CAP_IRQFD
1981Architectures: x86
1982Type: vm ioctl
1983Parameters: struct kvm_irqfd (in)
1984Returns: 0 on success, -1 on error
1985
1986Allows setting an eventfd to directly trigger a guest interrupt.
1987kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
1988kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
1989an event is tiggered on the eventfd, an interrupt is injected into
1990the guest using the specified gsi pin. The irqfd is removed using
1991the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
1992and kvm_irqfd.gsi.
1993
Alex Williamson7a844282012-09-21 11:58:03 -06001994With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
1995mechanism allowing emulation of level-triggered, irqfd-based
1996interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
1997additional eventfd in the kvm_irqfd.resamplefd field. When operating
1998in resample mode, posting of an interrupt through kvm_irq.fd asserts
1999the specified gsi in the irqchip. When the irqchip is resampled, such
2000as from an EOI, the gsi is de-asserted and the user is notifed via
2001kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2002the interrupt if the device making use of it still requires service.
2003Note that closing the resamplefd is not sufficient to disable the
2004irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2005and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2006
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070020074.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002008
2009Capability: KVM_CAP_PPC_ALLOC_HTAB
2010Architectures: powerpc
2011Type: vm ioctl
2012Parameters: Pointer to u32 containing hash table order (in/out)
2013Returns: 0 on success, -1 on error
2014
2015This requests the host kernel to allocate an MMU hash table for a
2016guest using the PAPR paravirtualization interface. This only does
2017anything if the kernel is configured to use the Book 3S HV style of
2018virtualization. Otherwise the capability doesn't exist and the ioctl
2019returns an ENOTTY error. The rest of this description assumes Book 3S
2020HV.
2021
2022There must be no vcpus running when this ioctl is called; if there
2023are, it will do nothing and return an EBUSY error.
2024
2025The parameter is a pointer to a 32-bit unsigned integer variable
2026containing the order (log base 2) of the desired size of the hash
2027table, which must be between 18 and 46. On successful return from the
2028ioctl, it will have been updated with the order of the hash table that
2029was allocated.
2030
2031If no hash table has been allocated when any vcpu is asked to run
2032(with the KVM_RUN ioctl), the host kernel will allocate a
2033default-sized hash table (16 MB).
2034
2035If this ioctl is called when a hash table has already been allocated,
2036the kernel will clear out the existing hash table (zero all HPTEs) and
2037return the hash table order in the parameter. (If the guest is using
2038the virtualized real-mode area (VRMA) facility, the kernel will
2039re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2040
Cornelia Huck416ad652012-10-02 16:25:37 +020020414.77 KVM_S390_INTERRUPT
2042
2043Capability: basic
2044Architectures: s390
2045Type: vm ioctl, vcpu ioctl
2046Parameters: struct kvm_s390_interrupt (in)
2047Returns: 0 on success, -1 on error
2048
2049Allows to inject an interrupt to the guest. Interrupts can be floating
2050(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2051
2052Interrupt parameters are passed via kvm_s390_interrupt:
2053
2054struct kvm_s390_interrupt {
2055 __u32 type;
2056 __u32 parm;
2057 __u64 parm64;
2058};
2059
2060type can be one of the following:
2061
2062KVM_S390_SIGP_STOP (vcpu) - sigp restart
2063KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2064KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2065KVM_S390_RESTART (vcpu) - restart
2066KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2067 parameters in parm and parm64
2068KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2069KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2070KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
2071
2072Note that the vcpu ioctl is asynchronous to vcpu execution.
2073
Paul Mackerrasa2932922012-11-19 22:57:20 +000020744.78 KVM_PPC_GET_HTAB_FD
2075
2076Capability: KVM_CAP_PPC_HTAB_FD
2077Architectures: powerpc
2078Type: vm ioctl
2079Parameters: Pointer to struct kvm_get_htab_fd (in)
2080Returns: file descriptor number (>= 0) on success, -1 on error
2081
2082This returns a file descriptor that can be used either to read out the
2083entries in the guest's hashed page table (HPT), or to write entries to
2084initialize the HPT. The returned fd can only be written to if the
2085KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2086can only be read if that bit is clear. The argument struct looks like
2087this:
2088
2089/* For KVM_PPC_GET_HTAB_FD */
2090struct kvm_get_htab_fd {
2091 __u64 flags;
2092 __u64 start_index;
2093 __u64 reserved[2];
2094};
2095
2096/* Values for kvm_get_htab_fd.flags */
2097#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2098#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2099
2100The `start_index' field gives the index in the HPT of the entry at
2101which to start reading. It is ignored when writing.
2102
2103Reads on the fd will initially supply information about all
2104"interesting" HPT entries. Interesting entries are those with the
2105bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2106all entries. When the end of the HPT is reached, the read() will
2107return. If read() is called again on the fd, it will start again from
2108the beginning of the HPT, but will only return HPT entries that have
2109changed since they were last read.
2110
2111Data read or written is structured as a header (8 bytes) followed by a
2112series of valid HPT entries (16 bytes) each. The header indicates how
2113many valid HPT entries there are and how many invalid entries follow
2114the valid entries. The invalid entries are not represented explicitly
2115in the stream. The header format is:
2116
2117struct kvm_get_htab_header {
2118 __u32 index;
2119 __u16 n_valid;
2120 __u16 n_invalid;
2121};
2122
2123Writes to the fd create HPT entries starting at the index given in the
2124header; first `n_valid' valid entries with contents from the data
2125written, then `n_invalid' invalid entries, invalidating any previously
2126valid entries found.
2127
Alex Williamsonf36992e2012-06-29 09:56:16 -06002128
Avi Kivity9c1b96e2009-06-09 12:37:58 +030021295. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02002130------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002131
2132Application code obtains a pointer to the kvm_run structure by
2133mmap()ing a vcpu fd. From that point, application code can control
2134execution by changing fields in kvm_run prior to calling the KVM_RUN
2135ioctl, and obtain information about the reason KVM_RUN returned by
2136looking up structure members.
2137
2138struct kvm_run {
2139 /* in */
2140 __u8 request_interrupt_window;
2141
2142Request that KVM_RUN return when it becomes possible to inject external
2143interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2144
2145 __u8 padding1[7];
2146
2147 /* out */
2148 __u32 exit_reason;
2149
2150When KVM_RUN has returned successfully (return value 0), this informs
2151application code why KVM_RUN has returned. Allowable values for this
2152field are detailed below.
2153
2154 __u8 ready_for_interrupt_injection;
2155
2156If request_interrupt_window has been specified, this field indicates
2157an interrupt can be injected now with KVM_INTERRUPT.
2158
2159 __u8 if_flag;
2160
2161The value of the current interrupt flag. Only valid if in-kernel
2162local APIC is not used.
2163
2164 __u8 padding2[2];
2165
2166 /* in (pre_kvm_run), out (post_kvm_run) */
2167 __u64 cr8;
2168
2169The value of the cr8 register. Only valid if in-kernel local APIC is
2170not used. Both input and output.
2171
2172 __u64 apic_base;
2173
2174The value of the APIC BASE msr. Only valid if in-kernel local
2175APIC is not used. Both input and output.
2176
2177 union {
2178 /* KVM_EXIT_UNKNOWN */
2179 struct {
2180 __u64 hardware_exit_reason;
2181 } hw;
2182
2183If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2184reasons. Further architecture-specific information is available in
2185hardware_exit_reason.
2186
2187 /* KVM_EXIT_FAIL_ENTRY */
2188 struct {
2189 __u64 hardware_entry_failure_reason;
2190 } fail_entry;
2191
2192If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2193to unknown reasons. Further architecture-specific information is
2194available in hardware_entry_failure_reason.
2195
2196 /* KVM_EXIT_EXCEPTION */
2197 struct {
2198 __u32 exception;
2199 __u32 error_code;
2200 } ex;
2201
2202Unused.
2203
2204 /* KVM_EXIT_IO */
2205 struct {
2206#define KVM_EXIT_IO_IN 0
2207#define KVM_EXIT_IO_OUT 1
2208 __u8 direction;
2209 __u8 size; /* bytes */
2210 __u16 port;
2211 __u32 count;
2212 __u64 data_offset; /* relative to kvm_run start */
2213 } io;
2214
Wu Fengguang2044892d2009-12-24 09:04:16 +08002215If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002216executed a port I/O instruction which could not be satisfied by kvm.
2217data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2218where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08002219KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002220
2221 struct {
2222 struct kvm_debug_exit_arch arch;
2223 } debug;
2224
2225Unused.
2226
2227 /* KVM_EXIT_MMIO */
2228 struct {
2229 __u64 phys_addr;
2230 __u8 data[8];
2231 __u32 len;
2232 __u8 is_write;
2233 } mmio;
2234
Wu Fengguang2044892d2009-12-24 09:04:16 +08002235If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002236executed a memory-mapped I/O instruction which could not be satisfied
2237by kvm. The 'data' member contains the written data if 'is_write' is
2238true, and should be filled by application code otherwise.
2239
Alexander Graf686de182012-10-07 15:22:59 +02002240NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR
2241 and KVM_EXIT_PAPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01002242operations are complete (and guest state is consistent) only after userspace
2243has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02002244incomplete operations and then check for pending signals. Userspace
2245can re-enter the guest with an unmasked signal pending to complete
2246pending operations.
2247
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002248 /* KVM_EXIT_HYPERCALL */
2249 struct {
2250 __u64 nr;
2251 __u64 args[6];
2252 __u64 ret;
2253 __u32 longmode;
2254 __u32 pad;
2255 } hypercall;
2256
Avi Kivity647dc492010-04-01 14:39:21 +03002257Unused. This was once used for 'hypercall to userspace'. To implement
2258such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2259Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002260
2261 /* KVM_EXIT_TPR_ACCESS */
2262 struct {
2263 __u64 rip;
2264 __u32 is_write;
2265 __u32 pad;
2266 } tpr_access;
2267
2268To be documented (KVM_TPR_ACCESS_REPORTING).
2269
2270 /* KVM_EXIT_S390_SIEIC */
2271 struct {
2272 __u8 icptcode;
2273 __u64 mask; /* psw upper half */
2274 __u64 addr; /* psw lower half */
2275 __u16 ipa;
2276 __u32 ipb;
2277 } s390_sieic;
2278
2279s390 specific.
2280
2281 /* KVM_EXIT_S390_RESET */
2282#define KVM_S390_RESET_POR 1
2283#define KVM_S390_RESET_CLEAR 2
2284#define KVM_S390_RESET_SUBSYSTEM 4
2285#define KVM_S390_RESET_CPU_INIT 8
2286#define KVM_S390_RESET_IPL 16
2287 __u64 s390_reset_flags;
2288
2289s390 specific.
2290
Carsten Ottee168bf82012-01-04 10:25:22 +01002291 /* KVM_EXIT_S390_UCONTROL */
2292 struct {
2293 __u64 trans_exc_code;
2294 __u32 pgm_code;
2295 } s390_ucontrol;
2296
2297s390 specific. A page fault has occurred for a user controlled virtual
2298machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2299resolved by the kernel.
2300The program code and the translation exception code that were placed
2301in the cpu's lowcore are presented here as defined by the z Architecture
2302Principles of Operation Book in the Chapter for Dynamic Address Translation
2303(DAT)
2304
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002305 /* KVM_EXIT_DCR */
2306 struct {
2307 __u32 dcrn;
2308 __u32 data;
2309 __u8 is_write;
2310 } dcr;
2311
2312powerpc specific.
2313
Alexander Grafad0a0482010-03-24 21:48:30 +01002314 /* KVM_EXIT_OSI */
2315 struct {
2316 __u64 gprs[32];
2317 } osi;
2318
2319MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2320hypercalls and exit with this exit struct that contains all the guest gprs.
2321
2322If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2323Userspace can now handle the hypercall and when it's done modify the gprs as
2324necessary. Upon guest entry all guest GPRs will then be replaced by the values
2325in this struct.
2326
Paul Mackerrasde56a942011-06-29 00:21:34 +00002327 /* KVM_EXIT_PAPR_HCALL */
2328 struct {
2329 __u64 nr;
2330 __u64 ret;
2331 __u64 args[9];
2332 } papr_hcall;
2333
2334This is used on 64-bit PowerPC when emulating a pSeries partition,
2335e.g. with the 'pseries' machine type in qemu. It occurs when the
2336guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2337contains the hypercall number (from the guest R3), and 'args' contains
2338the arguments (from the guest R4 - R12). Userspace should put the
2339return code in 'ret' and any extra returned values in args[].
2340The possible hypercalls are defined in the Power Architecture Platform
2341Requirements (PAPR) document available from www.power.org (free
2342developer registration required to access it).
2343
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002344 /* Fix the size of the union. */
2345 char padding[256];
2346 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01002347
2348 /*
2349 * shared registers between kvm and userspace.
2350 * kvm_valid_regs specifies the register classes set by the host
2351 * kvm_dirty_regs specified the register classes dirtied by userspace
2352 * struct kvm_sync_regs is architecture specific, as well as the
2353 * bits for kvm_valid_regs and kvm_dirty_regs
2354 */
2355 __u64 kvm_valid_regs;
2356 __u64 kvm_dirty_regs;
2357 union {
2358 struct kvm_sync_regs regs;
2359 char padding[1024];
2360 } s;
2361
2362If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2363certain guest registers without having to call SET/GET_*REGS. Thus we can
2364avoid some system call overhead if userspace has to handle the exit.
2365Userspace can query the validity of the structure by checking
2366kvm_valid_regs for specific bits. These bits are architecture specific
2367and usually define the validity of a groups of registers. (e.g. one bit
2368 for general purpose registers)
2369
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002370};
Alexander Graf821246a2011-08-31 10:58:55 +02002371
Jan Kiszka414fa982012-04-24 16:40:15 +02002372
Alexander Graf821246a2011-08-31 10:58:55 +020023736. Capabilities that can be enabled
Jan Kiszka414fa982012-04-24 16:40:15 +02002374-----------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02002375
2376There are certain capabilities that change the behavior of the virtual CPU when
2377enabled. To enable them, please see section 4.37. Below you can find a list of
2378capabilities and what their effect on the vCPU is when enabling them.
2379
2380The following information is provided along with the description:
2381
2382 Architectures: which instruction set architectures provide this ioctl.
2383 x86 includes both i386 and x86_64.
2384
2385 Parameters: what parameters are accepted by the capability.
2386
2387 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2388 are not detailed, but errors with specific meanings are.
2389
Jan Kiszka414fa982012-04-24 16:40:15 +02002390
Alexander Graf821246a2011-08-31 10:58:55 +020023916.1 KVM_CAP_PPC_OSI
2392
2393Architectures: ppc
2394Parameters: none
2395Returns: 0 on success; -1 on error
2396
2397This capability enables interception of OSI hypercalls that otherwise would
2398be treated as normal system calls to be injected into the guest. OSI hypercalls
2399were invented by Mac-on-Linux to have a standardized communication mechanism
2400between the guest and the host.
2401
2402When this capability is enabled, KVM_EXIT_OSI can occur.
2403
Jan Kiszka414fa982012-04-24 16:40:15 +02002404
Alexander Graf821246a2011-08-31 10:58:55 +020024056.2 KVM_CAP_PPC_PAPR
2406
2407Architectures: ppc
2408Parameters: none
2409Returns: 0 on success; -1 on error
2410
2411This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2412done using the hypercall instruction "sc 1".
2413
2414It also sets the guest privilege level to "supervisor" mode. Usually the guest
2415runs in "hypervisor" privilege mode with a few missing features.
2416
2417In addition to the above, it changes the semantics of SDR1. In this mode, the
2418HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2419HTAB invisible to the guest.
2420
2421When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05002422
Jan Kiszka414fa982012-04-24 16:40:15 +02002423
Scott Wooddc83b8b2011-08-18 15:25:21 -050024246.3 KVM_CAP_SW_TLB
2425
2426Architectures: ppc
2427Parameters: args[0] is the address of a struct kvm_config_tlb
2428Returns: 0 on success; -1 on error
2429
2430struct kvm_config_tlb {
2431 __u64 params;
2432 __u64 array;
2433 __u32 mmu_type;
2434 __u32 array_len;
2435};
2436
2437Configures the virtual CPU's TLB array, establishing a shared memory area
2438between userspace and KVM. The "params" and "array" fields are userspace
2439addresses of mmu-type-specific data structures. The "array_len" field is an
2440safety mechanism, and should be set to the size in bytes of the memory that
2441userspace has reserved for the array. It must be at least the size dictated
2442by "mmu_type" and "params".
2443
2444While KVM_RUN is active, the shared region is under control of KVM. Its
2445contents are undefined, and any modification by userspace results in
2446boundedly undefined behavior.
2447
2448On return from KVM_RUN, the shared region will reflect the current state of
2449the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2450to tell KVM which entries have been changed, prior to calling KVM_RUN again
2451on this vcpu.
2452
2453For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2454 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2455 - The "array" field points to an array of type "struct
2456 kvm_book3e_206_tlb_entry".
2457 - The array consists of all entries in the first TLB, followed by all
2458 entries in the second TLB.
2459 - Within a TLB, entries are ordered first by increasing set number. Within a
2460 set, entries are ordered by way (increasing ESEL).
2461 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2462 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2463 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2464 hardware ignores this value for TLB0.