blob: e63a35fafef0e153c30023e92622111006d1dd7c [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
Jann Hornbcb85c82017-04-24 11:16:49 +0200113The new VM has no virtual cpus and no memory.
James Hogana8a3c422017-03-14 10:15:19 +0000114You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115
116In order to create user controlled virtual machines on S390, check
117KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
118privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300119
James Hogana8a3c422017-03-14 10:15:19 +0000120To use hardware assisted virtualization on MIPS (VZ ASE) rather than
121the default trap & emulate implementation (which changes the virtual
122memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
123flag KVM_VM_MIPS_VZ.
124
Jan Kiszka414fa982012-04-24 16:40:15 +0200125
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001264.3 KVM_GET_MSR_INDEX_LIST
127
128Capability: basic
129Architectures: x86
130Type: system
131Parameters: struct kvm_msr_list (in/out)
132Returns: 0 on success; -1 on error
133Errors:
134 E2BIG: the msr index list is to be to fit in the array specified by
135 the user.
136
137struct kvm_msr_list {
138 __u32 nmsrs; /* number of msrs in entries */
139 __u32 indices[0];
140};
141
142This ioctl returns the guest msrs that are supported. The list varies
143by kvm version and host processor, but does not change otherwise. The
144user fills in the size of the indices array in nmsrs, and in return
145kvm adjusts nmsrs to reflect the actual number of msrs and fills in
146the indices array with their numbers.
147
Avi Kivity2e2602c2010-07-07 14:09:39 +0300148Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
149not returned in the MSR list, as different vcpus can have a different number
150of banks, as set via the KVM_X86_SETUP_MCE ioctl.
151
Jan Kiszka414fa982012-04-24 16:40:15 +0200152
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001534.4 KVM_CHECK_EXTENSION
154
Alexander Graf92b591a2014-07-14 18:33:08 +0200155Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300156Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200157Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300158Parameters: extension identifier (KVM_CAP_*)
159Returns: 0 if unsupported; 1 (or some other positive integer) if supported
160
161The API allows the application to query about extensions to the core
162kvm API. Userspace passes an extension identifier (an integer) and
163receives an integer that describes the extension availability.
164Generally 0 means no and 1 means yes, but some extensions may report
165additional information in the integer return value.
166
Alexander Graf92b591a2014-07-14 18:33:08 +0200167Based on their initialization different VMs may have different capabilities.
168It is thus encouraged to use the vm ioctl to query for capabilities (available
169with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200170
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001714.5 KVM_GET_VCPU_MMAP_SIZE
172
173Capability: basic
174Architectures: all
175Type: system ioctl
176Parameters: none
177Returns: size of vcpu mmap area, in bytes
178
179The KVM_RUN ioctl (cf.) communicates with userspace via a shared
180memory region. This ioctl returns the size of that region. See the
181KVM_RUN documentation for details.
182
Jan Kiszka414fa982012-04-24 16:40:15 +0200183
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001844.6 KVM_SET_MEMORY_REGION
185
186Capability: basic
187Architectures: all
188Type: vm ioctl
189Parameters: struct kvm_memory_region (in)
190Returns: 0 on success, -1 on error
191
Avi Kivityb74a07b2010-06-21 11:48:05 +0300192This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300193
Jan Kiszka414fa982012-04-24 16:40:15 +0200194
Paul Bolle68ba6972011-02-15 00:05:59 +01001954.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300196
197Capability: basic
198Architectures: all
199Type: vm ioctl
200Parameters: vcpu id (apic id on x86)
201Returns: vcpu fd on success, -1 on error
202
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200203This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
204The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300205
206The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
207the KVM_CHECK_EXTENSION ioctl() at run-time.
208The maximum possible value for max_vcpus can be retrieved using the
209KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
210
Pekka Enberg76d25402011-05-09 22:48:54 +0300211If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
212cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300213If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
214same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300215
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200216The maximum possible value for max_vcpu_id can be retrieved using the
217KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
218
219If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
220is the same as the value returned from KVM_CAP_MAX_VCPUS.
221
Paul Mackerras371fefd2011-06-29 00:23:08 +0000222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
Carsten Otte5b1c1492012-01-04 10:25:23 +0100235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
Jan Kiszka414fa982012-04-24 16:40:15 +0200240
Paul Bolle68ba6972011-02-15 00:05:59 +01002414.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
Paolo Bonzinif481b062015-05-17 17:30:37 +0200264If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
265the address space for which you want to return the dirty bitmap.
266They must be less than the value that KVM_CHECK_EXTENSION returns for
267the KVM_CAP_MULTI_ADDRESS_SPACE capability.
268
Jan Kiszka414fa982012-04-24 16:40:15 +0200269
Paul Bolle68ba6972011-02-15 00:05:59 +01002704.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300271
272Capability: basic
273Architectures: x86
274Type: vm ioctl
275Parameters: struct kvm_memory_alias (in)
276Returns: 0 (success), -1 (error)
277
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300278This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300279
Jan Kiszka414fa982012-04-24 16:40:15 +0200280
Paul Bolle68ba6972011-02-15 00:05:59 +01002814.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300282
283Capability: basic
284Architectures: all
285Type: vcpu ioctl
286Parameters: none
287Returns: 0 on success, -1 on error
288Errors:
289 EINTR: an unmasked signal is pending
290
291This ioctl is used to run a guest virtual cpu. While there are no
292explicit parameters, there is an implicit parameter block that can be
293obtained by mmap()ing the vcpu fd at offset 0, with the size given by
294KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
295kvm_run' (see below).
296
Jan Kiszka414fa982012-04-24 16:40:15 +0200297
Paul Bolle68ba6972011-02-15 00:05:59 +01002984.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300299
300Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100301Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300302Type: vcpu ioctl
303Parameters: struct kvm_regs (out)
304Returns: 0 on success, -1 on error
305
306Reads the general purpose registers from the vcpu.
307
308/* x86 */
309struct kvm_regs {
310 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
311 __u64 rax, rbx, rcx, rdx;
312 __u64 rsi, rdi, rsp, rbp;
313 __u64 r8, r9, r10, r11;
314 __u64 r12, r13, r14, r15;
315 __u64 rip, rflags;
316};
317
James Hoganc2d2c212014-07-04 15:11:35 +0100318/* mips */
319struct kvm_regs {
320 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
321 __u64 gpr[32];
322 __u64 hi;
323 __u64 lo;
324 __u64 pc;
325};
326
Jan Kiszka414fa982012-04-24 16:40:15 +0200327
Paul Bolle68ba6972011-02-15 00:05:59 +01003284.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300329
330Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100331Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300332Type: vcpu ioctl
333Parameters: struct kvm_regs (in)
334Returns: 0 on success, -1 on error
335
336Writes the general purpose registers into the vcpu.
337
338See KVM_GET_REGS for the data structure.
339
Jan Kiszka414fa982012-04-24 16:40:15 +0200340
Paul Bolle68ba6972011-02-15 00:05:59 +01003414.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300342
343Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500344Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300345Type: vcpu ioctl
346Parameters: struct kvm_sregs (out)
347Returns: 0 on success, -1 on error
348
349Reads special registers from the vcpu.
350
351/* x86 */
352struct kvm_sregs {
353 struct kvm_segment cs, ds, es, fs, gs, ss;
354 struct kvm_segment tr, ldt;
355 struct kvm_dtable gdt, idt;
356 __u64 cr0, cr2, cr3, cr4, cr8;
357 __u64 efer;
358 __u64 apic_base;
359 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
360};
361
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000362/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500363
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300364interrupt_bitmap is a bitmap of pending external interrupts. At most
365one bit may be set. This interrupt has been acknowledged by the APIC
366but not yet injected into the cpu core.
367
Jan Kiszka414fa982012-04-24 16:40:15 +0200368
Paul Bolle68ba6972011-02-15 00:05:59 +01003694.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300370
371Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500372Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300373Type: vcpu ioctl
374Parameters: struct kvm_sregs (in)
375Returns: 0 on success, -1 on error
376
377Writes special registers into the vcpu. See KVM_GET_SREGS for the
378data structures.
379
Jan Kiszka414fa982012-04-24 16:40:15 +0200380
Paul Bolle68ba6972011-02-15 00:05:59 +01003814.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300382
383Capability: basic
384Architectures: x86
385Type: vcpu ioctl
386Parameters: struct kvm_translation (in/out)
387Returns: 0 on success, -1 on error
388
389Translates a virtual address according to the vcpu's current address
390translation mode.
391
392struct kvm_translation {
393 /* in */
394 __u64 linear_address;
395
396 /* out */
397 __u64 physical_address;
398 __u8 valid;
399 __u8 writeable;
400 __u8 usermode;
401 __u8 pad[5];
402};
403
Jan Kiszka414fa982012-04-24 16:40:15 +0200404
Paul Bolle68ba6972011-02-15 00:05:59 +01004054.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300406
407Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100408Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300409Type: vcpu ioctl
410Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200411Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300412
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200413Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300414
415/* for KVM_INTERRUPT */
416struct kvm_interrupt {
417 /* in */
418 __u32 irq;
419};
420
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200421X86:
422
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200423Returns: 0 on success,
424 -EEXIST if an interrupt is already enqueued
425 -EINVAL the the irq number is invalid
426 -ENXIO if the PIC is in the kernel
427 -EFAULT if the pointer is invalid
428
429Note 'irq' is an interrupt vector, not an interrupt pin or line. This
430ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300431
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200432PPC:
433
434Queues an external interrupt to be injected. This ioctl is overleaded
435with 3 different irq values:
436
437a) KVM_INTERRUPT_SET
438
439 This injects an edge type external interrupt into the guest once it's ready
440 to receive interrupts. When injected, the interrupt is done.
441
442b) KVM_INTERRUPT_UNSET
443
444 This unsets any pending interrupt.
445
446 Only available with KVM_CAP_PPC_UNSET_IRQ.
447
448c) KVM_INTERRUPT_SET_LEVEL
449
450 This injects a level type external interrupt into the guest context. The
451 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
452 is triggered.
453
454 Only available with KVM_CAP_PPC_IRQ_LEVEL.
455
456Note that any value for 'irq' other than the ones stated above is invalid
457and incurs unexpected behavior.
458
James Hoganc2d2c212014-07-04 15:11:35 +0100459MIPS:
460
461Queues an external interrupt to be injected into the virtual CPU. A negative
462interrupt number dequeues the interrupt.
463
Jan Kiszka414fa982012-04-24 16:40:15 +0200464
Paul Bolle68ba6972011-02-15 00:05:59 +01004654.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300466
467Capability: basic
468Architectures: none
469Type: vcpu ioctl
470Parameters: none)
471Returns: -1 on error
472
473Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
474
Jan Kiszka414fa982012-04-24 16:40:15 +0200475
Paul Bolle68ba6972011-02-15 00:05:59 +01004764.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300477
478Capability: basic
479Architectures: x86
480Type: vcpu ioctl
481Parameters: struct kvm_msrs (in/out)
482Returns: 0 on success, -1 on error
483
484Reads model-specific registers from the vcpu. Supported msr indices can
485be obtained using KVM_GET_MSR_INDEX_LIST.
486
487struct kvm_msrs {
488 __u32 nmsrs; /* number of msrs in entries */
489 __u32 pad;
490
491 struct kvm_msr_entry entries[0];
492};
493
494struct kvm_msr_entry {
495 __u32 index;
496 __u32 reserved;
497 __u64 data;
498};
499
500Application code should set the 'nmsrs' member (which indicates the
501size of the entries array) and the 'index' member of each array entry.
502kvm will fill in the 'data' member.
503
Jan Kiszka414fa982012-04-24 16:40:15 +0200504
Paul Bolle68ba6972011-02-15 00:05:59 +01005054.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300506
507Capability: basic
508Architectures: x86
509Type: vcpu ioctl
510Parameters: struct kvm_msrs (in)
511Returns: 0 on success, -1 on error
512
513Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
514data structures.
515
516Application code should set the 'nmsrs' member (which indicates the
517size of the entries array), and the 'index' and 'data' members of each
518array entry.
519
Jan Kiszka414fa982012-04-24 16:40:15 +0200520
Paul Bolle68ba6972011-02-15 00:05:59 +01005214.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300522
523Capability: basic
524Architectures: x86
525Type: vcpu ioctl
526Parameters: struct kvm_cpuid (in)
527Returns: 0 on success, -1 on error
528
529Defines the vcpu responses to the cpuid instruction. Applications
530should use the KVM_SET_CPUID2 ioctl if available.
531
532
533struct kvm_cpuid_entry {
534 __u32 function;
535 __u32 eax;
536 __u32 ebx;
537 __u32 ecx;
538 __u32 edx;
539 __u32 padding;
540};
541
542/* for KVM_SET_CPUID */
543struct kvm_cpuid {
544 __u32 nent;
545 __u32 padding;
546 struct kvm_cpuid_entry entries[0];
547};
548
Jan Kiszka414fa982012-04-24 16:40:15 +0200549
Paul Bolle68ba6972011-02-15 00:05:59 +01005504.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300551
552Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100553Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300554Type: vcpu ioctl
555Parameters: struct kvm_signal_mask (in)
556Returns: 0 on success, -1 on error
557
558Defines which signals are blocked during execution of KVM_RUN. This
559signal mask temporarily overrides the threads signal mask. Any
560unblocked signal received (except SIGKILL and SIGSTOP, which retain
561their traditional behaviour) will cause KVM_RUN to return with -EINTR.
562
563Note the signal will only be delivered if not blocked by the original
564signal mask.
565
566/* for KVM_SET_SIGNAL_MASK */
567struct kvm_signal_mask {
568 __u32 len;
569 __u8 sigset[0];
570};
571
Jan Kiszka414fa982012-04-24 16:40:15 +0200572
Paul Bolle68ba6972011-02-15 00:05:59 +01005734.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300574
575Capability: basic
576Architectures: x86
577Type: vcpu ioctl
578Parameters: struct kvm_fpu (out)
579Returns: 0 on success, -1 on error
580
581Reads the floating point state from the vcpu.
582
583/* for KVM_GET_FPU and KVM_SET_FPU */
584struct kvm_fpu {
585 __u8 fpr[8][16];
586 __u16 fcw;
587 __u16 fsw;
588 __u8 ftwx; /* in fxsave format */
589 __u8 pad1;
590 __u16 last_opcode;
591 __u64 last_ip;
592 __u64 last_dp;
593 __u8 xmm[16][16];
594 __u32 mxcsr;
595 __u32 pad2;
596};
597
Jan Kiszka414fa982012-04-24 16:40:15 +0200598
Paul Bolle68ba6972011-02-15 00:05:59 +01005994.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300600
601Capability: basic
602Architectures: x86
603Type: vcpu ioctl
604Parameters: struct kvm_fpu (in)
605Returns: 0 on success, -1 on error
606
607Writes the floating point state to the vcpu.
608
609/* for KVM_GET_FPU and KVM_SET_FPU */
610struct kvm_fpu {
611 __u8 fpr[8][16];
612 __u16 fcw;
613 __u16 fsw;
614 __u8 ftwx; /* in fxsave format */
615 __u8 pad1;
616 __u16 last_opcode;
617 __u64 last_ip;
618 __u64 last_dp;
619 __u8 xmm[16][16];
620 __u32 mxcsr;
621 __u32 pad2;
622};
623
Jan Kiszka414fa982012-04-24 16:40:15 +0200624
Paul Bolle68ba6972011-02-15 00:05:59 +01006254.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300626
Cornelia Huck84223592013-07-15 13:36:01 +0200627Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100628Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300629Type: vm ioctl
630Parameters: none
631Returns: 0 on success, -1 on error
632
Andre Przywaraac3d3732014-06-03 10:26:30 +0200633Creates an interrupt controller model in the kernel.
634On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
635future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
636PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
637On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
638KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
639KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
640On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200641
642Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
643before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300644
Jan Kiszka414fa982012-04-24 16:40:15 +0200645
Paul Bolle68ba6972011-02-15 00:05:59 +01006464.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300647
648Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100649Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300650Type: vm ioctl
651Parameters: struct kvm_irq_level
652Returns: 0 on success, -1 on error
653
654Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500655On some architectures it is required that an interrupt controller model has
656been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
657interrupts require the level to be set to 1 and then back to 0.
658
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500659On real hardware, interrupt pins can be active-low or active-high. This
660does not matter for the level field of struct kvm_irq_level: 1 always
661means active (asserted), 0 means inactive (deasserted).
662
663x86 allows the operating system to program the interrupt polarity
664(active-low/active-high) for level-triggered interrupts, and KVM used
665to consider the polarity. However, due to bitrot in the handling of
666active-low interrupts, the above convention is now valid on x86 too.
667This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
668should not present interrupts to the guest as active-low unless this
669capability is present (or unless it is not using the in-kernel irqchip,
670of course).
671
672
Marc Zyngier379e04c72013-04-02 17:46:31 +0100673ARM/arm64 can signal an interrupt either at the CPU level, or at the
674in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
675use PPIs designated for specific cpus. The irq field is interpreted
676like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500677
678  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
679 field: | irq_type | vcpu_index | irq_id |
680
681The irq_type field has the following values:
682- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
683- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
684 (the vcpu_index field is ignored)
685- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
686
687(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
688
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500689In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300690
691struct kvm_irq_level {
692 union {
693 __u32 irq; /* GSI */
694 __s32 status; /* not used for KVM_IRQ_LEVEL */
695 };
696 __u32 level; /* 0 or 1 */
697};
698
Jan Kiszka414fa982012-04-24 16:40:15 +0200699
Paul Bolle68ba6972011-02-15 00:05:59 +01007004.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300701
702Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100703Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300704Type: vm ioctl
705Parameters: struct kvm_irqchip (in/out)
706Returns: 0 on success, -1 on error
707
708Reads the state of a kernel interrupt controller created with
709KVM_CREATE_IRQCHIP into a buffer provided by the caller.
710
711struct kvm_irqchip {
712 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
713 __u32 pad;
714 union {
715 char dummy[512]; /* reserving space */
716 struct kvm_pic_state pic;
717 struct kvm_ioapic_state ioapic;
718 } chip;
719};
720
Jan Kiszka414fa982012-04-24 16:40:15 +0200721
Paul Bolle68ba6972011-02-15 00:05:59 +01007224.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300723
724Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100725Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300726Type: vm ioctl
727Parameters: struct kvm_irqchip (in)
728Returns: 0 on success, -1 on error
729
730Sets the state of a kernel interrupt controller created with
731KVM_CREATE_IRQCHIP from a buffer provided by the caller.
732
733struct kvm_irqchip {
734 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
735 __u32 pad;
736 union {
737 char dummy[512]; /* reserving space */
738 struct kvm_pic_state pic;
739 struct kvm_ioapic_state ioapic;
740 } chip;
741};
742
Jan Kiszka414fa982012-04-24 16:40:15 +0200743
Paul Bolle68ba6972011-02-15 00:05:59 +01007444.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700745
746Capability: KVM_CAP_XEN_HVM
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_xen_hvm_config (in)
750Returns: 0 on success, -1 on error
751
752Sets the MSR that the Xen HVM guest uses to initialize its hypercall
753page, and provides the starting address and size of the hypercall
754blobs in userspace. When the guest writes the MSR, kvm copies one
755page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
756memory.
757
758struct kvm_xen_hvm_config {
759 __u32 flags;
760 __u32 msr;
761 __u64 blob_addr_32;
762 __u64 blob_addr_64;
763 __u8 blob_size_32;
764 __u8 blob_size_64;
765 __u8 pad2[30];
766};
767
Jan Kiszka414fa982012-04-24 16:40:15 +0200768
Paul Bolle68ba6972011-02-15 00:05:59 +01007694.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400770
771Capability: KVM_CAP_ADJUST_CLOCK
772Architectures: x86
773Type: vm ioctl
774Parameters: struct kvm_clock_data (out)
775Returns: 0 on success, -1 on error
776
777Gets the current timestamp of kvmclock as seen by the current guest. In
778conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
779such as migration.
780
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100781When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
782set of bits that KVM can return in struct kvm_clock_data's flag member.
783
784The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
785value is the exact kvmclock value seen by all VCPUs at the instant
786when KVM_GET_CLOCK was called. If clear, the returned value is simply
787CLOCK_MONOTONIC plus a constant offset; the offset can be modified
788with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
789but the exact value read by each VCPU could differ, because the host
790TSC is not stable.
791
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400792struct kvm_clock_data {
793 __u64 clock; /* kvmclock current value */
794 __u32 flags;
795 __u32 pad[9];
796};
797
Jan Kiszka414fa982012-04-24 16:40:15 +0200798
Paul Bolle68ba6972011-02-15 00:05:59 +01007994.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400800
801Capability: KVM_CAP_ADJUST_CLOCK
802Architectures: x86
803Type: vm ioctl
804Parameters: struct kvm_clock_data (in)
805Returns: 0 on success, -1 on error
806
Wu Fengguang2044892d2009-12-24 09:04:16 +0800807Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400808In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
809such as migration.
810
811struct kvm_clock_data {
812 __u64 clock; /* kvmclock current value */
813 __u32 flags;
814 __u32 pad[9];
815};
816
Jan Kiszka414fa982012-04-24 16:40:15 +0200817
Paul Bolle68ba6972011-02-15 00:05:59 +01008184.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100819
820Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100821Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100822Architectures: x86
823Type: vm ioctl
824Parameters: struct kvm_vcpu_event (out)
825Returns: 0 on success, -1 on error
826
827Gets currently pending exceptions, interrupts, and NMIs as well as related
828states of the vcpu.
829
830struct kvm_vcpu_events {
831 struct {
832 __u8 injected;
833 __u8 nr;
834 __u8 has_error_code;
835 __u8 pad;
836 __u32 error_code;
837 } exception;
838 struct {
839 __u8 injected;
840 __u8 nr;
841 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100842 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100843 } interrupt;
844 struct {
845 __u8 injected;
846 __u8 pending;
847 __u8 masked;
848 __u8 pad;
849 } nmi;
850 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100851 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200852 struct {
853 __u8 smm;
854 __u8 pending;
855 __u8 smm_inside_nmi;
856 __u8 latched_init;
857 } smi;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100858};
859
Paolo Bonzinif0778252015-04-01 15:06:40 +0200860Only two fields are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100861
Paolo Bonzinif0778252015-04-01 15:06:40 +0200862- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
863 interrupt.shadow contains a valid state.
864
865- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
866 smi contains a valid state.
Jan Kiszka414fa982012-04-24 16:40:15 +0200867
Paul Bolle68ba6972011-02-15 00:05:59 +01008684.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100869
870Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100871Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100872Architectures: x86
873Type: vm ioctl
874Parameters: struct kvm_vcpu_event (in)
875Returns: 0 on success, -1 on error
876
877Set pending exceptions, interrupts, and NMIs as well as related states of the
878vcpu.
879
880See KVM_GET_VCPU_EVENTS for the data structure.
881
Jan Kiszkadab4b912009-12-06 18:24:15 +0100882Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200883from the update. These fields are nmi.pending, sipi_vector, smi.smm,
884smi.pending. Keep the corresponding bits in the flags field cleared to
885suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100886
887KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
888KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200889KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100890
Jan Kiszka48005f62010-02-19 19:38:07 +0100891If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
892the flags field to signal that interrupt.shadow contains a valid state and
893shall be written into the VCPU.
894
Paolo Bonzinif0778252015-04-01 15:06:40 +0200895KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
896
Jan Kiszka414fa982012-04-24 16:40:15 +0200897
Paul Bolle68ba6972011-02-15 00:05:59 +01008984.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100899
900Capability: KVM_CAP_DEBUGREGS
901Architectures: x86
902Type: vm ioctl
903Parameters: struct kvm_debugregs (out)
904Returns: 0 on success, -1 on error
905
906Reads debug registers from the vcpu.
907
908struct kvm_debugregs {
909 __u64 db[4];
910 __u64 dr6;
911 __u64 dr7;
912 __u64 flags;
913 __u64 reserved[9];
914};
915
Jan Kiszka414fa982012-04-24 16:40:15 +0200916
Paul Bolle68ba6972011-02-15 00:05:59 +01009174.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100918
919Capability: KVM_CAP_DEBUGREGS
920Architectures: x86
921Type: vm ioctl
922Parameters: struct kvm_debugregs (in)
923Returns: 0 on success, -1 on error
924
925Writes debug registers into the vcpu.
926
927See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
928yet and must be cleared on entry.
929
Jan Kiszka414fa982012-04-24 16:40:15 +0200930
Paul Bolle68ba6972011-02-15 00:05:59 +01009314.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200932
933Capability: KVM_CAP_USER_MEM
934Architectures: all
935Type: vm ioctl
936Parameters: struct kvm_userspace_memory_region (in)
937Returns: 0 on success, -1 on error
938
939struct kvm_userspace_memory_region {
940 __u32 slot;
941 __u32 flags;
942 __u64 guest_phys_addr;
943 __u64 memory_size; /* bytes */
944 __u64 userspace_addr; /* start of the userspace allocated memory */
945};
946
947/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800948#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
949#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200950
951This ioctl allows the user to create or modify a guest physical memory
952slot. When changing an existing slot, it may be moved in the guest
953physical memory space, or its flags may be modified. It may not be
954resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +0530955Bits 0-15 of "slot" specifies the slot id and this value should be
956less than the maximum number of user memory slots supported per VM.
957The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
958if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200959
Paolo Bonzinif481b062015-05-17 17:30:37 +0200960If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
961specifies the address space which is being modified. They must be
962less than the value that KVM_CHECK_EXTENSION returns for the
963KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
964are unrelated; the restriction on overlapping slots only applies within
965each address space.
966
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200967Memory for the region is taken starting at the address denoted by the
968field userspace_addr, which must point at user addressable memory for
969the entire memory slot size. Any object may back this memory, including
970anonymous memory, ordinary files, and hugetlbfs.
971
972It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
973be identical. This allows large pages in the guest to be backed by large
974pages in the host.
975
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +0900976The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
977KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
978writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
979use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
980to make a new slot read-only. In this case, writes to this memory will be
981posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200982
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200983When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
984the memory region are automatically reflected into the guest. For example, an
985mmap() that affects the region will be made visible immediately. Another
986example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200987
988It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
989The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
990allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100991
Jan Kiszka414fa982012-04-24 16:40:15 +0200992
Paul Bolle68ba6972011-02-15 00:05:59 +01009934.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200994
995Capability: KVM_CAP_SET_TSS_ADDR
996Architectures: x86
997Type: vm ioctl
998Parameters: unsigned long tss_address (in)
999Returns: 0 on success, -1 on error
1000
1001This ioctl defines the physical address of a three-page region in the guest
1002physical address space. The region must be within the first 4GB of the
1003guest physical address space and must not conflict with any memory slot
1004or any mmio address. The guest may malfunction if it accesses this memory
1005region.
1006
1007This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1008because of a quirk in the virtualization implementation (see the internals
1009documentation when it pops into existence).
1010
Jan Kiszka414fa982012-04-24 16:40:15 +02001011
Paul Bolle68ba6972011-02-15 00:05:59 +010010124.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001013
Cornelia Huckd938dc52013-10-23 18:26:34 +02001014Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Nadav Amit90de4a12015-04-13 01:53:41 +03001015Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1016 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
Cornelia Huckd938dc52013-10-23 18:26:34 +02001017Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Alexander Graf71fbfd52010-03-24 21:48:29 +01001018Parameters: struct kvm_enable_cap (in)
1019Returns: 0 on success; -1 on error
1020
1021+Not all extensions are enabled by default. Using this ioctl the application
1022can enable an extension, making it available to the guest.
1023
1024On systems that do not support this ioctl, it always fails. On systems that
1025do support it, it only works for extensions that are supported for enablement.
1026
1027To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1028be used.
1029
1030struct kvm_enable_cap {
1031 /* in */
1032 __u32 cap;
1033
1034The capability that is supposed to get enabled.
1035
1036 __u32 flags;
1037
1038A bitfield indicating future enhancements. Has to be 0 for now.
1039
1040 __u64 args[4];
1041
1042Arguments for enabling a feature. If a feature needs initial values to
1043function properly, this is the place to put them.
1044
1045 __u8 pad[64];
1046};
1047
Cornelia Huckd938dc52013-10-23 18:26:34 +02001048The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1049for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001050
Paul Bolle68ba6972011-02-15 00:05:59 +010010514.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001052
1053Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001054Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001055Type: vcpu ioctl
1056Parameters: struct kvm_mp_state (out)
1057Returns: 0 on success; -1 on error
1058
1059struct kvm_mp_state {
1060 __u32 mp_state;
1061};
1062
1063Returns the vcpu's current "multiprocessing state" (though also valid on
1064uniprocessor guests).
1065
1066Possible values are:
1067
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001068 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001069 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001070 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001071 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001072 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001073 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001074 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001075 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001076 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001077 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001078 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1079 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1080 [s390]
1081 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1082 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001083
Tiejun Chenc32a4272014-11-20 11:07:18 +01001084On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001085in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1086these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001087
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001088For arm/arm64:
1089
1090The only states that are valid are KVM_MP_STATE_STOPPED and
1091KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001092
Paul Bolle68ba6972011-02-15 00:05:59 +010010934.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001094
1095Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001096Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001097Type: vcpu ioctl
1098Parameters: struct kvm_mp_state (in)
1099Returns: 0 on success; -1 on error
1100
1101Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1102arguments.
1103
Tiejun Chenc32a4272014-11-20 11:07:18 +01001104On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001105in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1106these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001107
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001108For arm/arm64:
1109
1110The only states that are valid are KVM_MP_STATE_STOPPED and
1111KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001112
Paul Bolle68ba6972011-02-15 00:05:59 +010011134.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001114
1115Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1116Architectures: x86
1117Type: vm ioctl
1118Parameters: unsigned long identity (in)
1119Returns: 0 on success, -1 on error
1120
1121This ioctl defines the physical address of a one-page region in the guest
1122physical address space. The region must be within the first 4GB of the
1123guest physical address space and must not conflict with any memory slot
1124or any mmio address. The guest may malfunction if it accesses this memory
1125region.
1126
1127This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1128because of a quirk in the virtualization implementation (see the internals
1129documentation when it pops into existence).
1130
Jan Kiszka414fa982012-04-24 16:40:15 +02001131
Paul Bolle68ba6972011-02-15 00:05:59 +010011324.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001133
1134Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001135Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001136Type: vm ioctl
1137Parameters: unsigned long vcpu_id
1138Returns: 0 on success, -1 on error
1139
1140Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1141as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1142is vcpu 0.
1143
Jan Kiszka414fa982012-04-24 16:40:15 +02001144
Paul Bolle68ba6972011-02-15 00:05:59 +010011454.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001146
1147Capability: KVM_CAP_XSAVE
1148Architectures: x86
1149Type: vcpu ioctl
1150Parameters: struct kvm_xsave (out)
1151Returns: 0 on success, -1 on error
1152
1153struct kvm_xsave {
1154 __u32 region[1024];
1155};
1156
1157This ioctl would copy current vcpu's xsave struct to the userspace.
1158
Jan Kiszka414fa982012-04-24 16:40:15 +02001159
Paul Bolle68ba6972011-02-15 00:05:59 +010011604.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001161
1162Capability: KVM_CAP_XSAVE
1163Architectures: x86
1164Type: vcpu ioctl
1165Parameters: struct kvm_xsave (in)
1166Returns: 0 on success, -1 on error
1167
1168struct kvm_xsave {
1169 __u32 region[1024];
1170};
1171
1172This ioctl would copy userspace's xsave struct to the kernel.
1173
Jan Kiszka414fa982012-04-24 16:40:15 +02001174
Paul Bolle68ba6972011-02-15 00:05:59 +010011754.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001176
1177Capability: KVM_CAP_XCRS
1178Architectures: x86
1179Type: vcpu ioctl
1180Parameters: struct kvm_xcrs (out)
1181Returns: 0 on success, -1 on error
1182
1183struct kvm_xcr {
1184 __u32 xcr;
1185 __u32 reserved;
1186 __u64 value;
1187};
1188
1189struct kvm_xcrs {
1190 __u32 nr_xcrs;
1191 __u32 flags;
1192 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1193 __u64 padding[16];
1194};
1195
1196This ioctl would copy current vcpu's xcrs to the userspace.
1197
Jan Kiszka414fa982012-04-24 16:40:15 +02001198
Paul Bolle68ba6972011-02-15 00:05:59 +010011994.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001200
1201Capability: KVM_CAP_XCRS
1202Architectures: x86
1203Type: vcpu ioctl
1204Parameters: struct kvm_xcrs (in)
1205Returns: 0 on success, -1 on error
1206
1207struct kvm_xcr {
1208 __u32 xcr;
1209 __u32 reserved;
1210 __u64 value;
1211};
1212
1213struct kvm_xcrs {
1214 __u32 nr_xcrs;
1215 __u32 flags;
1216 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1217 __u64 padding[16];
1218};
1219
1220This ioctl would set vcpu's xcr to the value userspace specified.
1221
Jan Kiszka414fa982012-04-24 16:40:15 +02001222
Paul Bolle68ba6972011-02-15 00:05:59 +010012234.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001224
1225Capability: KVM_CAP_EXT_CPUID
1226Architectures: x86
1227Type: system ioctl
1228Parameters: struct kvm_cpuid2 (in/out)
1229Returns: 0 on success, -1 on error
1230
1231struct kvm_cpuid2 {
1232 __u32 nent;
1233 __u32 padding;
1234 struct kvm_cpuid_entry2 entries[0];
1235};
1236
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001237#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1238#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1239#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001240
1241struct kvm_cpuid_entry2 {
1242 __u32 function;
1243 __u32 index;
1244 __u32 flags;
1245 __u32 eax;
1246 __u32 ebx;
1247 __u32 ecx;
1248 __u32 edx;
1249 __u32 padding[3];
1250};
1251
1252This ioctl returns x86 cpuid features which are supported by both the hardware
1253and kvm. Userspace can use the information returned by this ioctl to
1254construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1255hardware, kernel, and userspace capabilities, and with user requirements (for
1256example, the user may wish to constrain cpuid to emulate older hardware,
1257or for feature consistency across a cluster).
1258
1259Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1260with the 'nent' field indicating the number of entries in the variable-size
1261array 'entries'. If the number of entries is too low to describe the cpu
1262capabilities, an error (E2BIG) is returned. If the number is too high,
1263the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1264number is just right, the 'nent' field is adjusted to the number of valid
1265entries in the 'entries' array, which is then filled.
1266
1267The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001268with unknown or unsupported features masked out. Some features (for example,
1269x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1270emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001271
1272 function: the eax value used to obtain the entry
1273 index: the ecx value used to obtain the entry (for entries that are
1274 affected by ecx)
1275 flags: an OR of zero or more of the following:
1276 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1277 if the index field is valid
1278 KVM_CPUID_FLAG_STATEFUL_FUNC:
1279 if cpuid for this function returns different values for successive
1280 invocations; there will be several entries with the same function,
1281 all with this flag set
1282 KVM_CPUID_FLAG_STATE_READ_NEXT:
1283 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1284 the first entry to be read by a cpu
1285 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1286 this function/index combination
1287
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001288The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1289as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1290support. Instead it is reported via
1291
1292 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1293
1294if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1295feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1296
Jan Kiszka414fa982012-04-24 16:40:15 +02001297
Paul Bolle68ba6972011-02-15 00:05:59 +010012984.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001299
1300Capability: KVM_CAP_PPC_GET_PVINFO
1301Architectures: ppc
1302Type: vm ioctl
1303Parameters: struct kvm_ppc_pvinfo (out)
1304Returns: 0 on success, !0 on error
1305
1306struct kvm_ppc_pvinfo {
1307 __u32 flags;
1308 __u32 hcall[4];
1309 __u8 pad[108];
1310};
1311
1312This ioctl fetches PV specific information that need to be passed to the guest
1313using the device tree or other means from vm context.
1314
Liu Yu-B132019202e072012-07-03 05:48:52 +00001315The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001316
1317If any additional field gets added to this structure later on, a bit for that
1318additional piece of information will be set in the flags bitmap.
1319
Liu Yu-B132019202e072012-07-03 05:48:52 +00001320The flags bitmap is defined as:
1321
1322 /* the host supports the ePAPR idle hcall
1323 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001324
Paul Bolle68ba6972011-02-15 00:05:59 +010013254.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001326
1327Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001328Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001329Type: vm ioctl
1330Parameters: struct kvm_irq_routing (in)
1331Returns: 0 on success, -1 on error
1332
1333Sets the GSI routing table entries, overwriting any previously set entries.
1334
Eric Auger180ae7b2016-07-22 16:20:41 +00001335On arm/arm64, GSI routing has the following limitation:
1336- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1337
Jan Kiszka49f48172010-11-16 22:30:07 +01001338struct kvm_irq_routing {
1339 __u32 nr;
1340 __u32 flags;
1341 struct kvm_irq_routing_entry entries[0];
1342};
1343
1344No flags are specified so far, the corresponding field must be set to zero.
1345
1346struct kvm_irq_routing_entry {
1347 __u32 gsi;
1348 __u32 type;
1349 __u32 flags;
1350 __u32 pad;
1351 union {
1352 struct kvm_irq_routing_irqchip irqchip;
1353 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001354 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001355 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001356 __u32 pad[8];
1357 } u;
1358};
1359
1360/* gsi routing entry types */
1361#define KVM_IRQ_ROUTING_IRQCHIP 1
1362#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001363#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001364#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001365
Eric Auger76a10b82016-07-22 16:20:37 +00001366flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001367- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1368 type, specifies that the devid field contains a valid value. The per-VM
1369 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1370 the device ID. If this capability is not available, userspace should
1371 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001372- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001373
1374struct kvm_irq_routing_irqchip {
1375 __u32 irqchip;
1376 __u32 pin;
1377};
1378
1379struct kvm_irq_routing_msi {
1380 __u32 address_lo;
1381 __u32 address_hi;
1382 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001383 union {
1384 __u32 pad;
1385 __u32 devid;
1386 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001387};
1388
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001389If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1390for the device that wrote the MSI message. For PCI, this is usually a
1391BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001392
Radim Krčmář371313132016-07-12 22:09:27 +02001393On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1394feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1395address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1396address_hi must be zero.
1397
Cornelia Huck84223592013-07-15 13:36:01 +02001398struct kvm_irq_routing_s390_adapter {
1399 __u64 ind_addr;
1400 __u64 summary_addr;
1401 __u64 ind_offset;
1402 __u32 summary_offset;
1403 __u32 adapter_id;
1404};
1405
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001406struct kvm_irq_routing_hv_sint {
1407 __u32 vcpu;
1408 __u32 sint;
1409};
Jan Kiszka414fa982012-04-24 16:40:15 +02001410
Jan Kiszka414fa982012-04-24 16:40:15 +02001411
14124.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001413
1414Capability: KVM_CAP_TSC_CONTROL
1415Architectures: x86
1416Type: vcpu ioctl
1417Parameters: virtual tsc_khz
1418Returns: 0 on success, -1 on error
1419
1420Specifies the tsc frequency for the virtual machine. The unit of the
1421frequency is KHz.
1422
Jan Kiszka414fa982012-04-24 16:40:15 +02001423
14244.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001425
1426Capability: KVM_CAP_GET_TSC_KHZ
1427Architectures: x86
1428Type: vcpu ioctl
1429Parameters: none
1430Returns: virtual tsc-khz on success, negative value on error
1431
1432Returns the tsc frequency of the guest. The unit of the return value is
1433KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1434error.
1435
Jan Kiszka414fa982012-04-24 16:40:15 +02001436
14374.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001438
1439Capability: KVM_CAP_IRQCHIP
1440Architectures: x86
1441Type: vcpu ioctl
1442Parameters: struct kvm_lapic_state (out)
1443Returns: 0 on success, -1 on error
1444
1445#define KVM_APIC_REG_SIZE 0x400
1446struct kvm_lapic_state {
1447 char regs[KVM_APIC_REG_SIZE];
1448};
1449
1450Reads the Local APIC registers and copies them into the input argument. The
1451data format and layout are the same as documented in the architecture manual.
1452
Radim Krčmář371313132016-07-12 22:09:27 +02001453If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1454enabled, then the format of APIC_ID register depends on the APIC mode
1455(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1456the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1457which is stored in bits 31-24 of the APIC register, or equivalently in
1458byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1459be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1460
1461If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1462always uses xAPIC format.
1463
Jan Kiszka414fa982012-04-24 16:40:15 +02001464
14654.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001466
1467Capability: KVM_CAP_IRQCHIP
1468Architectures: x86
1469Type: vcpu ioctl
1470Parameters: struct kvm_lapic_state (in)
1471Returns: 0 on success, -1 on error
1472
1473#define KVM_APIC_REG_SIZE 0x400
1474struct kvm_lapic_state {
1475 char regs[KVM_APIC_REG_SIZE];
1476};
1477
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001478Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001479and layout are the same as documented in the architecture manual.
1480
Radim Krčmář371313132016-07-12 22:09:27 +02001481The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1482regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1483See the note in KVM_GET_LAPIC.
1484
Jan Kiszka414fa982012-04-24 16:40:15 +02001485
14864.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001487
1488Capability: KVM_CAP_IOEVENTFD
1489Architectures: all
1490Type: vm ioctl
1491Parameters: struct kvm_ioeventfd (in)
1492Returns: 0 on success, !0 on error
1493
1494This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1495within the guest. A guest write in the registered address will signal the
1496provided event instead of triggering an exit.
1497
1498struct kvm_ioeventfd {
1499 __u64 datamatch;
1500 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001501 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001502 __s32 fd;
1503 __u32 flags;
1504 __u8 pad[36];
1505};
1506
Cornelia Huck2b834512013-02-28 12:33:20 +01001507For the special case of virtio-ccw devices on s390, the ioevent is matched
1508to a subchannel/virtqueue tuple instead.
1509
Sasha Levin55399a02011-05-28 14:12:30 +03001510The following flags are defined:
1511
1512#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1513#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1514#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001515#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1516 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001517
1518If datamatch flag is set, the event will be signaled only if the written value
1519to the registered address is equal to datamatch in struct kvm_ioeventfd.
1520
Cornelia Huck2b834512013-02-28 12:33:20 +01001521For virtio-ccw devices, addr contains the subchannel id and datamatch the
1522virtqueue index.
1523
Jason Wange9ea5062015-09-15 14:41:59 +08001524With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1525the kernel will ignore the length of guest write and may get a faster vmexit.
1526The speedup may only apply to specific architectures, but the ioeventfd will
1527work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001528
15294.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001530
1531Capability: KVM_CAP_SW_TLB
1532Architectures: ppc
1533Type: vcpu ioctl
1534Parameters: struct kvm_dirty_tlb (in)
1535Returns: 0 on success, -1 on error
1536
1537struct kvm_dirty_tlb {
1538 __u64 bitmap;
1539 __u32 num_dirty;
1540};
1541
1542This must be called whenever userspace has changed an entry in the shared
1543TLB, prior to calling KVM_RUN on the associated vcpu.
1544
1545The "bitmap" field is the userspace address of an array. This array
1546consists of a number of bits, equal to the total number of TLB entries as
1547determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1548nearest multiple of 64.
1549
1550Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1551array.
1552
1553The array is little-endian: the bit 0 is the least significant bit of the
1554first byte, bit 8 is the least significant bit of the second byte, etc.
1555This avoids any complications with differing word sizes.
1556
1557The "num_dirty" field is a performance hint for KVM to determine whether it
1558should skip processing the bitmap and just invalidate everything. It must
1559be set to the number of set bits in the bitmap.
1560
Jan Kiszka414fa982012-04-24 16:40:15 +02001561
David Gibson54738c02011-06-29 00:22:41 +000015624.62 KVM_CREATE_SPAPR_TCE
1563
1564Capability: KVM_CAP_SPAPR_TCE
1565Architectures: powerpc
1566Type: vm ioctl
1567Parameters: struct kvm_create_spapr_tce (in)
1568Returns: file descriptor for manipulating the created TCE table
1569
1570This creates a virtual TCE (translation control entry) table, which
1571is an IOMMU for PAPR-style virtual I/O. It is used to translate
1572logical addresses used in virtual I/O into guest physical addresses,
1573and provides a scatter/gather capability for PAPR virtual I/O.
1574
1575/* for KVM_CAP_SPAPR_TCE */
1576struct kvm_create_spapr_tce {
1577 __u64 liobn;
1578 __u32 window_size;
1579};
1580
1581The liobn field gives the logical IO bus number for which to create a
1582TCE table. The window_size field specifies the size of the DMA window
1583which this TCE table will translate - the table will contain one 64
1584bit TCE entry for every 4kiB of the DMA window.
1585
1586When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1587table has been created using this ioctl(), the kernel will handle it
1588in real mode, updating the TCE table. H_PUT_TCE calls for other
1589liobns will cause a vm exit and must be handled by userspace.
1590
1591The return value is a file descriptor which can be passed to mmap(2)
1592to map the created TCE table into userspace. This lets userspace read
1593the entries written by kernel-handled H_PUT_TCE calls, and also lets
1594userspace update the TCE table directly which is useful in some
1595circumstances.
1596
Jan Kiszka414fa982012-04-24 16:40:15 +02001597
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000015984.63 KVM_ALLOCATE_RMA
1599
1600Capability: KVM_CAP_PPC_RMA
1601Architectures: powerpc
1602Type: vm ioctl
1603Parameters: struct kvm_allocate_rma (out)
1604Returns: file descriptor for mapping the allocated RMA
1605
1606This allocates a Real Mode Area (RMA) from the pool allocated at boot
1607time by the kernel. An RMA is a physically-contiguous, aligned region
1608of memory used on older POWER processors to provide the memory which
1609will be accessed by real-mode (MMU off) accesses in a KVM guest.
1610POWER processors support a set of sizes for the RMA that usually
1611includes 64MB, 128MB, 256MB and some larger powers of two.
1612
1613/* for KVM_ALLOCATE_RMA */
1614struct kvm_allocate_rma {
1615 __u64 rma_size;
1616};
1617
1618The return value is a file descriptor which can be passed to mmap(2)
1619to map the allocated RMA into userspace. The mapped area can then be
1620passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1621RMA for a virtual machine. The size of the RMA in bytes (which is
1622fixed at host kernel boot time) is returned in the rma_size field of
1623the argument structure.
1624
1625The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1626is supported; 2 if the processor requires all virtual machines to have
1627an RMA, or 1 if the processor can use an RMA but doesn't require it,
1628because it supports the Virtual RMA (VRMA) facility.
1629
Jan Kiszka414fa982012-04-24 16:40:15 +02001630
Avi Kivity3f745f12011-12-07 12:42:47 +020016314.64 KVM_NMI
1632
1633Capability: KVM_CAP_USER_NMI
1634Architectures: x86
1635Type: vcpu ioctl
1636Parameters: none
1637Returns: 0 on success, -1 on error
1638
1639Queues an NMI on the thread's vcpu. Note this is well defined only
1640when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1641between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1642has been called, this interface is completely emulated within the kernel.
1643
1644To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1645following algorithm:
1646
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001647 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001648 - read the local APIC's state (KVM_GET_LAPIC)
1649 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1650 - if so, issue KVM_NMI
1651 - resume the vcpu
1652
1653Some guests configure the LINT1 NMI input to cause a panic, aiding in
1654debugging.
1655
Jan Kiszka414fa982012-04-24 16:40:15 +02001656
Alexander Grafe24ed812011-09-14 10:02:41 +020016574.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001658
1659Capability: KVM_CAP_S390_UCONTROL
1660Architectures: s390
1661Type: vcpu ioctl
1662Parameters: struct kvm_s390_ucas_mapping (in)
1663Returns: 0 in case of success
1664
1665The parameter is defined like this:
1666 struct kvm_s390_ucas_mapping {
1667 __u64 user_addr;
1668 __u64 vcpu_addr;
1669 __u64 length;
1670 };
1671
1672This ioctl maps the memory at "user_addr" with the length "length" to
1673the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001674be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001675
Jan Kiszka414fa982012-04-24 16:40:15 +02001676
Alexander Grafe24ed812011-09-14 10:02:41 +020016774.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001678
1679Capability: KVM_CAP_S390_UCONTROL
1680Architectures: s390
1681Type: vcpu ioctl
1682Parameters: struct kvm_s390_ucas_mapping (in)
1683Returns: 0 in case of success
1684
1685The parameter is defined like this:
1686 struct kvm_s390_ucas_mapping {
1687 __u64 user_addr;
1688 __u64 vcpu_addr;
1689 __u64 length;
1690 };
1691
1692This ioctl unmaps the memory in the vcpu's address space starting at
1693"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001694All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001695
Jan Kiszka414fa982012-04-24 16:40:15 +02001696
Alexander Grafe24ed812011-09-14 10:02:41 +020016974.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001698
1699Capability: KVM_CAP_S390_UCONTROL
1700Architectures: s390
1701Type: vcpu ioctl
1702Parameters: vcpu absolute address (in)
1703Returns: 0 in case of success
1704
1705This call creates a page table entry on the virtual cpu's address space
1706(for user controlled virtual machines) or the virtual machine's address
1707space (for regular virtual machines). This only works for minor faults,
1708thus it's recommended to access subject memory page via the user page
1709table upfront. This is useful to handle validity intercepts for user
1710controlled virtual machines to fault in the virtual cpu's lowcore pages
1711prior to calling the KVM_RUN ioctl.
1712
Jan Kiszka414fa982012-04-24 16:40:15 +02001713
Alexander Grafe24ed812011-09-14 10:02:41 +020017144.68 KVM_SET_ONE_REG
1715
1716Capability: KVM_CAP_ONE_REG
1717Architectures: all
1718Type: vcpu ioctl
1719Parameters: struct kvm_one_reg (in)
1720Returns: 0 on success, negative value on failure
1721
1722struct kvm_one_reg {
1723 __u64 id;
1724 __u64 addr;
1725};
1726
1727Using this ioctl, a single vcpu register can be set to a specific value
1728defined by user space with the passed in struct kvm_one_reg, where id
1729refers to the register identifier as described below and addr is a pointer
1730to a variable with the respective size. There can be architecture agnostic
1731and architecture specific registers. Each have their own range of operation
1732and their own constants and width. To keep track of the implemented
1733registers, find a list below:
1734
James Hoganbf5590f2014-07-04 15:11:34 +01001735 Arch | Register | Width (bits)
1736 | |
1737 PPC | KVM_REG_PPC_HIOR | 64
1738 PPC | KVM_REG_PPC_IAC1 | 64
1739 PPC | KVM_REG_PPC_IAC2 | 64
1740 PPC | KVM_REG_PPC_IAC3 | 64
1741 PPC | KVM_REG_PPC_IAC4 | 64
1742 PPC | KVM_REG_PPC_DAC1 | 64
1743 PPC | KVM_REG_PPC_DAC2 | 64
1744 PPC | KVM_REG_PPC_DABR | 64
1745 PPC | KVM_REG_PPC_DSCR | 64
1746 PPC | KVM_REG_PPC_PURR | 64
1747 PPC | KVM_REG_PPC_SPURR | 64
1748 PPC | KVM_REG_PPC_DAR | 64
1749 PPC | KVM_REG_PPC_DSISR | 32
1750 PPC | KVM_REG_PPC_AMR | 64
1751 PPC | KVM_REG_PPC_UAMOR | 64
1752 PPC | KVM_REG_PPC_MMCR0 | 64
1753 PPC | KVM_REG_PPC_MMCR1 | 64
1754 PPC | KVM_REG_PPC_MMCRA | 64
1755 PPC | KVM_REG_PPC_MMCR2 | 64
1756 PPC | KVM_REG_PPC_MMCRS | 64
1757 PPC | KVM_REG_PPC_SIAR | 64
1758 PPC | KVM_REG_PPC_SDAR | 64
1759 PPC | KVM_REG_PPC_SIER | 64
1760 PPC | KVM_REG_PPC_PMC1 | 32
1761 PPC | KVM_REG_PPC_PMC2 | 32
1762 PPC | KVM_REG_PPC_PMC3 | 32
1763 PPC | KVM_REG_PPC_PMC4 | 32
1764 PPC | KVM_REG_PPC_PMC5 | 32
1765 PPC | KVM_REG_PPC_PMC6 | 32
1766 PPC | KVM_REG_PPC_PMC7 | 32
1767 PPC | KVM_REG_PPC_PMC8 | 32
1768 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001769 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001770 PPC | KVM_REG_PPC_FPR31 | 64
1771 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001772 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001773 PPC | KVM_REG_PPC_VR31 | 128
1774 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001775 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001776 PPC | KVM_REG_PPC_VSR31 | 128
1777 PPC | KVM_REG_PPC_FPSCR | 64
1778 PPC | KVM_REG_PPC_VSCR | 32
1779 PPC | KVM_REG_PPC_VPA_ADDR | 64
1780 PPC | KVM_REG_PPC_VPA_SLB | 128
1781 PPC | KVM_REG_PPC_VPA_DTL | 128
1782 PPC | KVM_REG_PPC_EPCR | 32
1783 PPC | KVM_REG_PPC_EPR | 32
1784 PPC | KVM_REG_PPC_TCR | 32
1785 PPC | KVM_REG_PPC_TSR | 32
1786 PPC | KVM_REG_PPC_OR_TSR | 32
1787 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1788 PPC | KVM_REG_PPC_MAS0 | 32
1789 PPC | KVM_REG_PPC_MAS1 | 32
1790 PPC | KVM_REG_PPC_MAS2 | 64
1791 PPC | KVM_REG_PPC_MAS7_3 | 64
1792 PPC | KVM_REG_PPC_MAS4 | 32
1793 PPC | KVM_REG_PPC_MAS6 | 32
1794 PPC | KVM_REG_PPC_MMUCFG | 32
1795 PPC | KVM_REG_PPC_TLB0CFG | 32
1796 PPC | KVM_REG_PPC_TLB1CFG | 32
1797 PPC | KVM_REG_PPC_TLB2CFG | 32
1798 PPC | KVM_REG_PPC_TLB3CFG | 32
1799 PPC | KVM_REG_PPC_TLB0PS | 32
1800 PPC | KVM_REG_PPC_TLB1PS | 32
1801 PPC | KVM_REG_PPC_TLB2PS | 32
1802 PPC | KVM_REG_PPC_TLB3PS | 32
1803 PPC | KVM_REG_PPC_EPTCFG | 32
1804 PPC | KVM_REG_PPC_ICP_STATE | 64
1805 PPC | KVM_REG_PPC_TB_OFFSET | 64
1806 PPC | KVM_REG_PPC_SPMC1 | 32
1807 PPC | KVM_REG_PPC_SPMC2 | 32
1808 PPC | KVM_REG_PPC_IAMR | 64
1809 PPC | KVM_REG_PPC_TFHAR | 64
1810 PPC | KVM_REG_PPC_TFIAR | 64
1811 PPC | KVM_REG_PPC_TEXASR | 64
1812 PPC | KVM_REG_PPC_FSCR | 64
1813 PPC | KVM_REG_PPC_PSPB | 32
1814 PPC | KVM_REG_PPC_EBBHR | 64
1815 PPC | KVM_REG_PPC_EBBRR | 64
1816 PPC | KVM_REG_PPC_BESCR | 64
1817 PPC | KVM_REG_PPC_TAR | 64
1818 PPC | KVM_REG_PPC_DPDES | 64
1819 PPC | KVM_REG_PPC_DAWR | 64
1820 PPC | KVM_REG_PPC_DAWRX | 64
1821 PPC | KVM_REG_PPC_CIABR | 64
1822 PPC | KVM_REG_PPC_IC | 64
1823 PPC | KVM_REG_PPC_VTB | 64
1824 PPC | KVM_REG_PPC_CSIGR | 64
1825 PPC | KVM_REG_PPC_TACR | 64
1826 PPC | KVM_REG_PPC_TCSCR | 64
1827 PPC | KVM_REG_PPC_PID | 64
1828 PPC | KVM_REG_PPC_ACOP | 64
1829 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02001830 PPC | KVM_REG_PPC_LPCR | 32
1831 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001832 PPC | KVM_REG_PPC_PPR | 64
1833 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1834 PPC | KVM_REG_PPC_DABRX | 32
1835 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05301836 PPC | KVM_REG_PPC_SPRG9 | 64
1837 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11001838 PPC | KVM_REG_PPC_TIDR | 64
1839 PPC | KVM_REG_PPC_PSSCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001840 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10001841 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001842 PPC | KVM_REG_PPC_TM_GPR31 | 64
1843 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10001844 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001845 PPC | KVM_REG_PPC_TM_VSR63 | 128
1846 PPC | KVM_REG_PPC_TM_CR | 64
1847 PPC | KVM_REG_PPC_TM_LR | 64
1848 PPC | KVM_REG_PPC_TM_CTR | 64
1849 PPC | KVM_REG_PPC_TM_FPSCR | 64
1850 PPC | KVM_REG_PPC_TM_AMR | 64
1851 PPC | KVM_REG_PPC_TM_PPR | 64
1852 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1853 PPC | KVM_REG_PPC_TM_VSCR | 32
1854 PPC | KVM_REG_PPC_TM_DSCR | 64
1855 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11001856 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001857 | |
1858 MIPS | KVM_REG_MIPS_R0 | 64
1859 ...
1860 MIPS | KVM_REG_MIPS_R31 | 64
1861 MIPS | KVM_REG_MIPS_HI | 64
1862 MIPS | KVM_REG_MIPS_LO | 64
1863 MIPS | KVM_REG_MIPS_PC | 64
1864 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00001865 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
1866 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001867 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00001868 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01001869 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00001870 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01001871 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001872 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00001873 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
1874 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
1875 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hogan5a2f3522017-03-14 10:15:36 +00001876 MIPS | KVM_REG_MIPS_CP0_PWBASE | 64
1877 MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64
1878 MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001879 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
James Hogan5a2f3522017-03-14 10:15:36 +00001880 MIPS | KVM_REG_MIPS_CP0_PWCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001881 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1882 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00001883 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
1884 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001885 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1886 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1887 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1888 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00001889 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001890 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1891 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01001892 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00001893 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001894 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1895 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1896 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1897 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01001898 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
1899 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001900 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001901 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001902 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01001903 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
1904 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
1905 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
1906 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
1907 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
1908 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hogand42a0082017-03-14 10:15:38 +00001909 MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001910 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1911 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1912 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00001913 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
1914 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00001915 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00001916 MIPS | KVM_REG_MIPS_FCR_IR | 32
1917 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00001918 MIPS | KVM_REG_MIPS_MSA_IR | 32
1919 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02001920
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001921ARM registers are mapped using the lower 32 bits. The upper 16 of that
1922is the register group type, or coprocessor number:
1923
1924ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001925 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001926
Christoffer Dall11382452013-01-20 18:28:10 -05001927ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001928 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05001929
1930ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001931 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001932
Christoffer Dallc27581e2013-01-20 18:28:10 -05001933ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001934 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001935
Rusty Russell4fe21e42013-01-20 18:28:11 -05001936ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001937 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001938
1939ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001940 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001941
Marc Zyngier379e04c72013-04-02 17:46:31 +01001942
1943arm64 registers are mapped using the lower 32 bits. The upper 16 of
1944that is the register group type, or coprocessor number:
1945
1946arm64 core/FP-SIMD registers have the following id bit patterns. Note
1947that the size of the access is variable, as the kvm_regs structure
1948contains elements ranging from 32 to 128 bits. The index is a 32bit
1949value in the kvm_regs structure seen as a 32bit array.
1950 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1951
1952arm64 CCSIDR registers are demultiplexed by CSSELR value:
1953 0x6020 0000 0011 00 <csselr:8>
1954
1955arm64 system registers have the following id bit patterns:
1956 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1957
James Hoganc2d2c212014-07-04 15:11:35 +01001958
1959MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
1960the register group type:
1961
1962MIPS core registers (see above) have the following id bit patterns:
1963 0x7030 0000 0000 <reg:16>
1964
1965MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
1966patterns depending on whether they're 32-bit or 64-bit registers:
1967 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
1968 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
1969
James Hogan013044c2016-12-07 17:16:37 +00001970Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
1971versions of the EntryLo registers regardless of the word size of the host
1972hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
1973with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
1974the PFNX field starting at bit 30.
1975
James Hogand42a0082017-03-14 10:15:38 +00001976MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
1977patterns:
1978 0x7030 0000 0001 01 <reg:8>
1979
James Hoganc2d2c212014-07-04 15:11:35 +01001980MIPS KVM control registers (see above) have the following id bit patterns:
1981 0x7030 0000 0002 <reg:16>
1982
James Hogan379245c2014-12-02 15:48:24 +00001983MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
1984id bit patterns depending on the size of the register being accessed. They are
1985always accessed according to the current guest FPU mode (Status.FR and
1986Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00001987if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
1988registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
1989overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00001990 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
1991 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00001992 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00001993
1994MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
1995following id bit patterns:
1996 0x7020 0000 0003 01 <0:3> <reg:5>
1997
James Hoganab86bd62014-12-02 15:48:24 +00001998MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
1999following id bit patterns:
2000 0x7020 0000 0003 02 <0:3> <reg:5>
2001
James Hoganc2d2c212014-07-04 15:11:35 +01002002
Alexander Grafe24ed812011-09-14 10:02:41 +020020034.69 KVM_GET_ONE_REG
2004
2005Capability: KVM_CAP_ONE_REG
2006Architectures: all
2007Type: vcpu ioctl
2008Parameters: struct kvm_one_reg (in and out)
2009Returns: 0 on success, negative value on failure
2010
2011This ioctl allows to receive the value of a single register implemented
2012in a vcpu. The register to read is indicated by the "id" field of the
2013kvm_one_reg struct passed in. On success, the register value can be found
2014at the memory location pointed to by "addr".
2015
2016The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002017list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002018
Jan Kiszka414fa982012-04-24 16:40:15 +02002019
Eric B Munson1c0b28c2012-03-10 14:37:27 -050020204.70 KVM_KVMCLOCK_CTRL
2021
2022Capability: KVM_CAP_KVMCLOCK_CTRL
2023Architectures: Any that implement pvclocks (currently x86 only)
2024Type: vcpu ioctl
2025Parameters: None
2026Returns: 0 on success, -1 on error
2027
2028This signals to the host kernel that the specified guest is being paused by
2029userspace. The host will set a flag in the pvclock structure that is checked
2030from the soft lockup watchdog. The flag is part of the pvclock structure that
2031is shared between guest and host, specifically the second bit of the flags
2032field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2033the host and read/cleared exclusively by the guest. The guest operation of
2034checking and clearing the flag must an atomic operation so
2035load-link/store-conditional, or equivalent must be used. There are two cases
2036where the guest will clear the flag: when the soft lockup watchdog timer resets
2037itself or when a soft lockup is detected. This ioctl can be called any time
2038after pausing the vcpu, but before it is resumed.
2039
Jan Kiszka414fa982012-04-24 16:40:15 +02002040
Jan Kiszka07975ad2012-03-29 21:14:12 +020020414.71 KVM_SIGNAL_MSI
2042
2043Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002044Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002045Type: vm ioctl
2046Parameters: struct kvm_msi (in)
2047Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2048
2049Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2050MSI messages.
2051
2052struct kvm_msi {
2053 __u32 address_lo;
2054 __u32 address_hi;
2055 __u32 data;
2056 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002057 __u32 devid;
2058 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002059};
2060
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002061flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2062 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2063 the device ID. If this capability is not available, userspace
2064 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002065
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002066If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2067for the device that wrote the MSI message. For PCI, this is usually a
2068BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002069
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002070On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2071feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2072address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2073address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002074
Jan Kiszka414fa982012-04-24 16:40:15 +02002075
Jan Kiszka0589ff62012-04-24 16:40:16 +020020764.71 KVM_CREATE_PIT2
2077
2078Capability: KVM_CAP_PIT2
2079Architectures: x86
2080Type: vm ioctl
2081Parameters: struct kvm_pit_config (in)
2082Returns: 0 on success, -1 on error
2083
2084Creates an in-kernel device model for the i8254 PIT. This call is only valid
2085after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2086parameters have to be passed:
2087
2088struct kvm_pit_config {
2089 __u32 flags;
2090 __u32 pad[15];
2091};
2092
2093Valid flags are:
2094
2095#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2096
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002097PIT timer interrupts may use a per-VM kernel thread for injection. If it
2098exists, this thread will have a name of the following pattern:
2099
2100kvm-pit/<owner-process-pid>
2101
2102When running a guest with elevated priorities, the scheduling parameters of
2103this thread may have to be adjusted accordingly.
2104
Jan Kiszka0589ff62012-04-24 16:40:16 +02002105This IOCTL replaces the obsolete KVM_CREATE_PIT.
2106
2107
21084.72 KVM_GET_PIT2
2109
2110Capability: KVM_CAP_PIT_STATE2
2111Architectures: x86
2112Type: vm ioctl
2113Parameters: struct kvm_pit_state2 (out)
2114Returns: 0 on success, -1 on error
2115
2116Retrieves the state of the in-kernel PIT model. Only valid after
2117KVM_CREATE_PIT2. The state is returned in the following structure:
2118
2119struct kvm_pit_state2 {
2120 struct kvm_pit_channel_state channels[3];
2121 __u32 flags;
2122 __u32 reserved[9];
2123};
2124
2125Valid flags are:
2126
2127/* disable PIT in HPET legacy mode */
2128#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2129
2130This IOCTL replaces the obsolete KVM_GET_PIT.
2131
2132
21334.73 KVM_SET_PIT2
2134
2135Capability: KVM_CAP_PIT_STATE2
2136Architectures: x86
2137Type: vm ioctl
2138Parameters: struct kvm_pit_state2 (in)
2139Returns: 0 on success, -1 on error
2140
2141Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2142See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2143
2144This IOCTL replaces the obsolete KVM_SET_PIT.
2145
2146
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000021474.74 KVM_PPC_GET_SMMU_INFO
2148
2149Capability: KVM_CAP_PPC_GET_SMMU_INFO
2150Architectures: powerpc
2151Type: vm ioctl
2152Parameters: None
2153Returns: 0 on success, -1 on error
2154
2155This populates and returns a structure describing the features of
2156the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002157This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002158device-tree properties for the guest operating system.
2159
Carlos Garciac98be0c2014-04-04 22:31:00 -04002160The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002161array of supported segment page sizes:
2162
2163 struct kvm_ppc_smmu_info {
2164 __u64 flags;
2165 __u32 slb_size;
2166 __u32 pad;
2167 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2168 };
2169
2170The supported flags are:
2171
2172 - KVM_PPC_PAGE_SIZES_REAL:
2173 When that flag is set, guest page sizes must "fit" the backing
2174 store page sizes. When not set, any page size in the list can
2175 be used regardless of how they are backed by userspace.
2176
2177 - KVM_PPC_1T_SEGMENTS
2178 The emulated MMU supports 1T segments in addition to the
2179 standard 256M ones.
2180
2181The "slb_size" field indicates how many SLB entries are supported
2182
2183The "sps" array contains 8 entries indicating the supported base
2184page sizes for a segment in increasing order. Each entry is defined
2185as follow:
2186
2187 struct kvm_ppc_one_seg_page_size {
2188 __u32 page_shift; /* Base page shift of segment (or 0) */
2189 __u32 slb_enc; /* SLB encoding for BookS */
2190 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2191 };
2192
2193An entry with a "page_shift" of 0 is unused. Because the array is
2194organized in increasing order, a lookup can stop when encoutering
2195such an entry.
2196
2197The "slb_enc" field provides the encoding to use in the SLB for the
2198page size. The bits are in positions such as the value can directly
2199be OR'ed into the "vsid" argument of the slbmte instruction.
2200
2201The "enc" array is a list which for each of those segment base page
2202size provides the list of supported actual page sizes (which can be
2203only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002204corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000022058 entries sorted by increasing sizes and an entry with a "0" shift
2206is an empty entry and a terminator:
2207
2208 struct kvm_ppc_one_page_size {
2209 __u32 page_shift; /* Page shift (or 0) */
2210 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2211 };
2212
2213The "pte_enc" field provides a value that can OR'ed into the hash
2214PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2215into the hash PTE second double word).
2216
Alex Williamsonf36992e2012-06-29 09:56:16 -060022174.75 KVM_IRQFD
2218
2219Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002220Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002221Type: vm ioctl
2222Parameters: struct kvm_irqfd (in)
2223Returns: 0 on success, -1 on error
2224
2225Allows setting an eventfd to directly trigger a guest interrupt.
2226kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2227kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002228an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002229the guest using the specified gsi pin. The irqfd is removed using
2230the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2231and kvm_irqfd.gsi.
2232
Alex Williamson7a844282012-09-21 11:58:03 -06002233With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2234mechanism allowing emulation of level-triggered, irqfd-based
2235interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2236additional eventfd in the kvm_irqfd.resamplefd field. When operating
2237in resample mode, posting of an interrupt through kvm_irq.fd asserts
2238the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002239as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002240kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2241the interrupt if the device making use of it still requires service.
2242Note that closing the resamplefd is not sufficient to disable the
2243irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2244and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2245
Eric Auger180ae7b2016-07-22 16:20:41 +00002246On arm/arm64, gsi routing being supported, the following can happen:
2247- in case no routing entry is associated to this gsi, injection fails
2248- in case the gsi is associated to an irqchip routing entry,
2249 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002250- in case the gsi is associated to an MSI routing entry, the MSI
2251 message and device ID are translated into an LPI (support restricted
2252 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002253
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070022544.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002255
2256Capability: KVM_CAP_PPC_ALLOC_HTAB
2257Architectures: powerpc
2258Type: vm ioctl
2259Parameters: Pointer to u32 containing hash table order (in/out)
2260Returns: 0 on success, -1 on error
2261
2262This requests the host kernel to allocate an MMU hash table for a
2263guest using the PAPR paravirtualization interface. This only does
2264anything if the kernel is configured to use the Book 3S HV style of
2265virtualization. Otherwise the capability doesn't exist and the ioctl
2266returns an ENOTTY error. The rest of this description assumes Book 3S
2267HV.
2268
2269There must be no vcpus running when this ioctl is called; if there
2270are, it will do nothing and return an EBUSY error.
2271
2272The parameter is a pointer to a 32-bit unsigned integer variable
2273containing the order (log base 2) of the desired size of the hash
2274table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002275ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002276
2277If no hash table has been allocated when any vcpu is asked to run
2278(with the KVM_RUN ioctl), the host kernel will allocate a
2279default-sized hash table (16 MB).
2280
2281If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002282with a different order from the existing hash table, the existing hash
2283table will be freed and a new one allocated. If this is ioctl is
2284called when a hash table has already been allocated of the same order
2285as specified, the kernel will clear out the existing hash table (zero
2286all HPTEs). In either case, if the guest is using the virtualized
2287real-mode area (VRMA) facility, the kernel will re-create the VMRA
2288HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002289
Cornelia Huck416ad652012-10-02 16:25:37 +020022904.77 KVM_S390_INTERRUPT
2291
2292Capability: basic
2293Architectures: s390
2294Type: vm ioctl, vcpu ioctl
2295Parameters: struct kvm_s390_interrupt (in)
2296Returns: 0 on success, -1 on error
2297
2298Allows to inject an interrupt to the guest. Interrupts can be floating
2299(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2300
2301Interrupt parameters are passed via kvm_s390_interrupt:
2302
2303struct kvm_s390_interrupt {
2304 __u32 type;
2305 __u32 parm;
2306 __u64 parm64;
2307};
2308
2309type can be one of the following:
2310
David Hildenbrand28225452014-10-15 16:48:16 +02002311KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002312KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2313KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2314KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002315KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2316KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002317KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2318 parameters in parm and parm64
2319KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2320KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2321KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002322KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2323 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2324 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2325 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002326KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2327 machine check interrupt code in parm64 (note that
2328 machine checks needing further payload are not
2329 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002330
2331Note that the vcpu ioctl is asynchronous to vcpu execution.
2332
Paul Mackerrasa2932922012-11-19 22:57:20 +000023334.78 KVM_PPC_GET_HTAB_FD
2334
2335Capability: KVM_CAP_PPC_HTAB_FD
2336Architectures: powerpc
2337Type: vm ioctl
2338Parameters: Pointer to struct kvm_get_htab_fd (in)
2339Returns: file descriptor number (>= 0) on success, -1 on error
2340
2341This returns a file descriptor that can be used either to read out the
2342entries in the guest's hashed page table (HPT), or to write entries to
2343initialize the HPT. The returned fd can only be written to if the
2344KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2345can only be read if that bit is clear. The argument struct looks like
2346this:
2347
2348/* For KVM_PPC_GET_HTAB_FD */
2349struct kvm_get_htab_fd {
2350 __u64 flags;
2351 __u64 start_index;
2352 __u64 reserved[2];
2353};
2354
2355/* Values for kvm_get_htab_fd.flags */
2356#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2357#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2358
2359The `start_index' field gives the index in the HPT of the entry at
2360which to start reading. It is ignored when writing.
2361
2362Reads on the fd will initially supply information about all
2363"interesting" HPT entries. Interesting entries are those with the
2364bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2365all entries. When the end of the HPT is reached, the read() will
2366return. If read() is called again on the fd, it will start again from
2367the beginning of the HPT, but will only return HPT entries that have
2368changed since they were last read.
2369
2370Data read or written is structured as a header (8 bytes) followed by a
2371series of valid HPT entries (16 bytes) each. The header indicates how
2372many valid HPT entries there are and how many invalid entries follow
2373the valid entries. The invalid entries are not represented explicitly
2374in the stream. The header format is:
2375
2376struct kvm_get_htab_header {
2377 __u32 index;
2378 __u16 n_valid;
2379 __u16 n_invalid;
2380};
2381
2382Writes to the fd create HPT entries starting at the index given in the
2383header; first `n_valid' valid entries with contents from the data
2384written, then `n_invalid' invalid entries, invalidating any previously
2385valid entries found.
2386
Scott Wood852b6d52013-04-12 14:08:42 +000023874.79 KVM_CREATE_DEVICE
2388
2389Capability: KVM_CAP_DEVICE_CTRL
2390Type: vm ioctl
2391Parameters: struct kvm_create_device (in/out)
2392Returns: 0 on success, -1 on error
2393Errors:
2394 ENODEV: The device type is unknown or unsupported
2395 EEXIST: Device already created, and this type of device may not
2396 be instantiated multiple times
2397
2398 Other error conditions may be defined by individual device types or
2399 have their standard meanings.
2400
2401Creates an emulated device in the kernel. The file descriptor returned
2402in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2403
2404If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2405device type is supported (not necessarily whether it can be created
2406in the current vm).
2407
2408Individual devices should not define flags. Attributes should be used
2409for specifying any behavior that is not implied by the device type
2410number.
2411
2412struct kvm_create_device {
2413 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2414 __u32 fd; /* out: device handle */
2415 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2416};
2417
24184.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2419
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002420Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2421 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2422Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002423Parameters: struct kvm_device_attr
2424Returns: 0 on success, -1 on error
2425Errors:
2426 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002427 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002428 EPERM: The attribute cannot (currently) be accessed this way
2429 (e.g. read-only attribute, or attribute that only makes
2430 sense when the device is in a different state)
2431
2432 Other error conditions may be defined by individual device types.
2433
2434Gets/sets a specified piece of device configuration and/or state. The
2435semantics are device-specific. See individual device documentation in
2436the "devices" directory. As with ONE_REG, the size of the data
2437transferred is defined by the particular attribute.
2438
2439struct kvm_device_attr {
2440 __u32 flags; /* no flags currently defined */
2441 __u32 group; /* device-defined */
2442 __u64 attr; /* group-defined */
2443 __u64 addr; /* userspace address of attr data */
2444};
2445
24464.81 KVM_HAS_DEVICE_ATTR
2447
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002448Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2449 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2450Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002451Parameters: struct kvm_device_attr
2452Returns: 0 on success, -1 on error
2453Errors:
2454 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002455 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002456
2457Tests whether a device supports a particular attribute. A successful
2458return indicates the attribute is implemented. It does not necessarily
2459indicate that the attribute can be read or written in the device's
2460current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002461
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100024624.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002463
2464Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +01002465Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002466Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302467Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002468Returns: 0 on success; -1 on error
2469Errors:
2470  EINVAL:    the target is unknown, or the combination of features is invalid.
2471  ENOENT:    a features bit specified is unknown.
2472
2473This tells KVM what type of CPU to present to the guest, and what
2474optional features it should have.  This will cause a reset of the cpu
2475registers to their initial values.  If this is not called, KVM_RUN will
2476return ENOEXEC for that vcpu.
2477
2478Note that because some registers reflect machine topology, all vcpus
2479should be created before this ioctl is invoked.
2480
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002481Userspace can call this function multiple times for a given vcpu, including
2482after the vcpu has been run. This will reset the vcpu to its initial
2483state. All calls to this function after the initial call must use the same
2484target and same set of feature flags, otherwise EINVAL will be returned.
2485
Marc Zyngieraa024c22013-01-20 18:28:13 -05002486Possible features:
2487 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002488 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2489 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c72013-04-02 17:46:31 +01002490 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2491 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Anup Patel50bb0c92014-04-29 11:24:17 +05302492 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2493 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2495 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002496
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002497
Anup Patel740edfc2013-09-30 14:20:08 +053024984.83 KVM_ARM_PREFERRED_TARGET
2499
2500Capability: basic
2501Architectures: arm, arm64
2502Type: vm ioctl
2503Parameters: struct struct kvm_vcpu_init (out)
2504Returns: 0 on success; -1 on error
2505Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002506 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302507
2508This queries KVM for preferred CPU target type which can be emulated
2509by KVM on underlying host.
2510
2511The ioctl returns struct kvm_vcpu_init instance containing information
2512about preferred CPU target type and recommended features for it. The
2513kvm_vcpu_init->features bitmap returned will have feature bits set if
2514the preferred target recommends setting these features, but this is
2515not mandatory.
2516
2517The information returned by this ioctl can be used to prepare an instance
2518of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2519in VCPU matching underlying host.
2520
2521
25224.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002523
2524Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002525Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002526Type: vcpu ioctl
2527Parameters: struct kvm_reg_list (in/out)
2528Returns: 0 on success; -1 on error
2529Errors:
2530  E2BIG:     the reg index list is too big to fit in the array specified by
2531             the user (the number required will be written into n).
2532
2533struct kvm_reg_list {
2534 __u64 n; /* number of registers in reg[] */
2535 __u64 reg[0];
2536};
2537
2538This ioctl returns the guest registers that are supported for the
2539KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2540
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002541
25424.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002543
2544Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c72013-04-02 17:46:31 +01002545Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002546Type: vm ioctl
2547Parameters: struct kvm_arm_device_address (in)
2548Returns: 0 on success, -1 on error
2549Errors:
2550 ENODEV: The device id is unknown
2551 ENXIO: Device not supported on current system
2552 EEXIST: Address already set
2553 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002554 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002555
2556struct kvm_arm_device_addr {
2557 __u64 id;
2558 __u64 addr;
2559};
2560
2561Specify a device address in the guest's physical address space where guests
2562can access emulated or directly exposed devices, which the host kernel needs
2563to know about. The id field is an architecture specific identifier for a
2564specific device.
2565
Marc Zyngier379e04c72013-04-02 17:46:31 +01002566ARM/arm64 divides the id field into two parts, a device id and an
2567address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002568
2569  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2570 field: | 0x00000000 | device id | addr type id |
2571
Marc Zyngier379e04c72013-04-02 17:46:31 +01002572ARM/arm64 currently only require this when using the in-kernel GIC
2573support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2574as the device id. When setting the base address for the guest's
2575mapping of the VGIC virtual CPU and distributor interface, the ioctl
2576must be called after calling KVM_CREATE_IRQCHIP, but before calling
2577KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2578base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002579
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002580Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2581should be used instead.
2582
2583
Anup Patel740edfc2013-09-30 14:20:08 +053025844.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002585
2586Capability: KVM_CAP_PPC_RTAS
2587Architectures: ppc
2588Type: vm ioctl
2589Parameters: struct kvm_rtas_token_args
2590Returns: 0 on success, -1 on error
2591
2592Defines a token value for a RTAS (Run Time Abstraction Services)
2593service in order to allow it to be handled in the kernel. The
2594argument struct gives the name of the service, which must be the name
2595of a service that has a kernel-side implementation. If the token
2596value is non-zero, it will be associated with that service, and
2597subsequent RTAS calls by the guest specifying that token will be
2598handled by the kernel. If the token value is 0, then any token
2599associated with the service will be forgotten, and subsequent RTAS
2600calls by the guest for that service will be passed to userspace to be
2601handled.
2602
Alex Bennée4bd9d342014-09-09 17:27:18 +010026034.87 KVM_SET_GUEST_DEBUG
2604
2605Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002606Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002607Type: vcpu ioctl
2608Parameters: struct kvm_guest_debug (in)
2609Returns: 0 on success; -1 on error
2610
2611struct kvm_guest_debug {
2612 __u32 control;
2613 __u32 pad;
2614 struct kvm_guest_debug_arch arch;
2615};
2616
2617Set up the processor specific debug registers and configure vcpu for
2618handling guest debug events. There are two parts to the structure, the
2619first a control bitfield indicates the type of debug events to handle
2620when running. Common control bits are:
2621
2622 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2623 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2624
2625The top 16 bits of the control field are architecture specific control
2626flags which can include the following:
2627
Alex Bennée4bd611c2015-07-07 17:29:57 +01002628 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002629 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002630 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2631 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2632 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2633
2634For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2635are enabled in memory so we need to ensure breakpoint exceptions are
2636correctly trapped and the KVM run loop exits at the breakpoint and not
2637running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2638we need to ensure the guest vCPUs architecture specific registers are
2639updated to the correct (supplied) values.
2640
2641The second part of the structure is architecture specific and
2642typically contains a set of debug registers.
2643
Alex Bennée834bf882015-07-07 17:30:02 +01002644For arm64 the number of debug registers is implementation defined and
2645can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2646KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2647indicating the number of supported registers.
2648
Alex Bennée4bd9d342014-09-09 17:27:18 +01002649When debug events exit the main run loop with the reason
2650KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2651structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002652
Alex Bennée209cf192014-09-09 17:27:19 +010026534.88 KVM_GET_EMULATED_CPUID
2654
2655Capability: KVM_CAP_EXT_EMUL_CPUID
2656Architectures: x86
2657Type: system ioctl
2658Parameters: struct kvm_cpuid2 (in/out)
2659Returns: 0 on success, -1 on error
2660
2661struct kvm_cpuid2 {
2662 __u32 nent;
2663 __u32 flags;
2664 struct kvm_cpuid_entry2 entries[0];
2665};
2666
2667The member 'flags' is used for passing flags from userspace.
2668
2669#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2670#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2671#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2672
2673struct kvm_cpuid_entry2 {
2674 __u32 function;
2675 __u32 index;
2676 __u32 flags;
2677 __u32 eax;
2678 __u32 ebx;
2679 __u32 ecx;
2680 __u32 edx;
2681 __u32 padding[3];
2682};
2683
2684This ioctl returns x86 cpuid features which are emulated by
2685kvm.Userspace can use the information returned by this ioctl to query
2686which features are emulated by kvm instead of being present natively.
2687
2688Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2689structure with the 'nent' field indicating the number of entries in
2690the variable-size array 'entries'. If the number of entries is too low
2691to describe the cpu capabilities, an error (E2BIG) is returned. If the
2692number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2693is returned. If the number is just right, the 'nent' field is adjusted
2694to the number of valid entries in the 'entries' array, which is then
2695filled.
2696
2697The entries returned are the set CPUID bits of the respective features
2698which kvm emulates, as returned by the CPUID instruction, with unknown
2699or unsupported feature bits cleared.
2700
2701Features like x2apic, for example, may not be present in the host cpu
2702but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2703emulated efficiently and thus not included here.
2704
2705The fields in each entry are defined as follows:
2706
2707 function: the eax value used to obtain the entry
2708 index: the ecx value used to obtain the entry (for entries that are
2709 affected by ecx)
2710 flags: an OR of zero or more of the following:
2711 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2712 if the index field is valid
2713 KVM_CPUID_FLAG_STATEFUL_FUNC:
2714 if cpuid for this function returns different values for successive
2715 invocations; there will be several entries with the same function,
2716 all with this flag set
2717 KVM_CPUID_FLAG_STATE_READ_NEXT:
2718 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2719 the first entry to be read by a cpu
2720 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2721 this function/index combination
2722
Thomas Huth41408c282015-02-06 15:01:21 +010027234.89 KVM_S390_MEM_OP
2724
2725Capability: KVM_CAP_S390_MEM_OP
2726Architectures: s390
2727Type: vcpu ioctl
2728Parameters: struct kvm_s390_mem_op (in)
2729Returns: = 0 on success,
2730 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2731 > 0 if an exception occurred while walking the page tables
2732
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002733Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c282015-02-06 15:01:21 +01002734
2735Parameters are specified via the following structure:
2736
2737struct kvm_s390_mem_op {
2738 __u64 gaddr; /* the guest address */
2739 __u64 flags; /* flags */
2740 __u32 size; /* amount of bytes */
2741 __u32 op; /* type of operation */
2742 __u64 buf; /* buffer in userspace */
2743 __u8 ar; /* the access register number */
2744 __u8 reserved[31]; /* should be set to 0 */
2745};
2746
2747The type of operation is specified in the "op" field. It is either
2748KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2749KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2750KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2751whether the corresponding memory access would create an access exception
2752(without touching the data in the memory at the destination). In case an
2753access exception occurred while walking the MMU tables of the guest, the
2754ioctl returns a positive error number to indicate the type of exception.
2755This exception is also raised directly at the corresponding VCPU if the
2756flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2757
2758The start address of the memory region has to be specified in the "gaddr"
2759field, and the length of the region in the "size" field. "buf" is the buffer
2760supplied by the userspace application where the read data should be written
2761to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2762is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2763when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2764register number to be used.
2765
2766The "reserved" field is meant for future extensions. It is not used by
2767KVM with the currently defined set of flags.
2768
Jason J. Herne30ee2a92014-09-23 09:23:01 -040027694.90 KVM_S390_GET_SKEYS
2770
2771Capability: KVM_CAP_S390_SKEYS
2772Architectures: s390
2773Type: vm ioctl
2774Parameters: struct kvm_s390_skeys
2775Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2776 keys, negative value on error
2777
2778This ioctl is used to get guest storage key values on the s390
2779architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2780
2781struct kvm_s390_skeys {
2782 __u64 start_gfn;
2783 __u64 count;
2784 __u64 skeydata_addr;
2785 __u32 flags;
2786 __u32 reserved[9];
2787};
2788
2789The start_gfn field is the number of the first guest frame whose storage keys
2790you want to get.
2791
2792The count field is the number of consecutive frames (starting from start_gfn)
2793whose storage keys to get. The count field must be at least 1 and the maximum
2794allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2795will cause the ioctl to return -EINVAL.
2796
2797The skeydata_addr field is the address to a buffer large enough to hold count
2798bytes. This buffer will be filled with storage key data by the ioctl.
2799
28004.91 KVM_S390_SET_SKEYS
2801
2802Capability: KVM_CAP_S390_SKEYS
2803Architectures: s390
2804Type: vm ioctl
2805Parameters: struct kvm_s390_skeys
2806Returns: 0 on success, negative value on error
2807
2808This ioctl is used to set guest storage key values on the s390
2809architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2810See section on KVM_S390_GET_SKEYS for struct definition.
2811
2812The start_gfn field is the number of the first guest frame whose storage keys
2813you want to set.
2814
2815The count field is the number of consecutive frames (starting from start_gfn)
2816whose storage keys to get. The count field must be at least 1 and the maximum
2817allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2818will cause the ioctl to return -EINVAL.
2819
2820The skeydata_addr field is the address to a buffer containing count bytes of
2821storage keys. Each byte in the buffer will be set as the storage key for a
2822single frame starting at start_gfn for count frames.
2823
2824Note: If any architecturally invalid key value is found in the given data then
2825the ioctl will return -EINVAL.
2826
Jens Freimann47b43c52014-11-11 20:57:06 +010028274.92 KVM_S390_IRQ
2828
2829Capability: KVM_CAP_S390_INJECT_IRQ
2830Architectures: s390
2831Type: vcpu ioctl
2832Parameters: struct kvm_s390_irq (in)
2833Returns: 0 on success, -1 on error
2834Errors:
2835 EINVAL: interrupt type is invalid
2836 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2837 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2838 than the maximum of VCPUs
2839 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2840 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2841 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2842 is already pending
2843
2844Allows to inject an interrupt to the guest.
2845
2846Using struct kvm_s390_irq as a parameter allows
2847to inject additional payload which is not
2848possible via KVM_S390_INTERRUPT.
2849
2850Interrupt parameters are passed via kvm_s390_irq:
2851
2852struct kvm_s390_irq {
2853 __u64 type;
2854 union {
2855 struct kvm_s390_io_info io;
2856 struct kvm_s390_ext_info ext;
2857 struct kvm_s390_pgm_info pgm;
2858 struct kvm_s390_emerg_info emerg;
2859 struct kvm_s390_extcall_info extcall;
2860 struct kvm_s390_prefix_info prefix;
2861 struct kvm_s390_stop_info stop;
2862 struct kvm_s390_mchk_info mchk;
2863 char reserved[64];
2864 } u;
2865};
2866
2867type can be one of the following:
2868
2869KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2870KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2871KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2872KVM_S390_RESTART - restart; no parameters
2873KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2874KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2875KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2876KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2877KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2878
2879
2880Note that the vcpu ioctl is asynchronous to vcpu execution.
2881
Jens Freimann816c7662014-11-24 17:13:46 +010028824.94 KVM_S390_GET_IRQ_STATE
2883
2884Capability: KVM_CAP_S390_IRQ_STATE
2885Architectures: s390
2886Type: vcpu ioctl
2887Parameters: struct kvm_s390_irq_state (out)
2888Returns: >= number of bytes copied into buffer,
2889 -EINVAL if buffer size is 0,
2890 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2891 -EFAULT if the buffer address was invalid
2892
2893This ioctl allows userspace to retrieve the complete state of all currently
2894pending interrupts in a single buffer. Use cases include migration
2895and introspection. The parameter structure contains the address of a
2896userspace buffer and its length:
2897
2898struct kvm_s390_irq_state {
2899 __u64 buf;
2900 __u32 flags;
2901 __u32 len;
2902 __u32 reserved[4];
2903};
2904
2905Userspace passes in the above struct and for each pending interrupt a
2906struct kvm_s390_irq is copied to the provided buffer.
2907
2908If -ENOBUFS is returned the buffer provided was too small and userspace
2909may retry with a bigger buffer.
2910
29114.95 KVM_S390_SET_IRQ_STATE
2912
2913Capability: KVM_CAP_S390_IRQ_STATE
2914Architectures: s390
2915Type: vcpu ioctl
2916Parameters: struct kvm_s390_irq_state (in)
2917Returns: 0 on success,
2918 -EFAULT if the buffer address was invalid,
2919 -EINVAL for an invalid buffer length (see below),
2920 -EBUSY if there were already interrupts pending,
2921 errors occurring when actually injecting the
2922 interrupt. See KVM_S390_IRQ.
2923
2924This ioctl allows userspace to set the complete state of all cpu-local
2925interrupts currently pending for the vcpu. It is intended for restoring
2926interrupt state after a migration. The input parameter is a userspace buffer
2927containing a struct kvm_s390_irq_state:
2928
2929struct kvm_s390_irq_state {
2930 __u64 buf;
2931 __u32 len;
2932 __u32 pad;
2933};
2934
2935The userspace memory referenced by buf contains a struct kvm_s390_irq
2936for each interrupt to be injected into the guest.
2937If one of the interrupts could not be injected for some reason the
2938ioctl aborts.
2939
2940len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2941and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2942which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01002943
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110029444.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02002945
2946Capability: KVM_CAP_X86_SMM
2947Architectures: x86
2948Type: vcpu ioctl
2949Parameters: none
2950Returns: 0 on success, -1 on error
2951
2952Queues an SMI on the thread's vcpu.
2953
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110029544.97 KVM_CAP_PPC_MULTITCE
2955
2956Capability: KVM_CAP_PPC_MULTITCE
2957Architectures: ppc
2958Type: vm
2959
2960This capability means the kernel is capable of handling hypercalls
2961H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
2962space. This significantly accelerates DMA operations for PPC KVM guests.
2963User space should expect that its handlers for these hypercalls
2964are not going to be called if user space previously registered LIOBN
2965in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
2966
2967In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
2968user space might have to advertise it for the guest. For example,
2969IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
2970present in the "ibm,hypertas-functions" device-tree property.
2971
2972The hypercalls mentioned above may or may not be processed successfully
2973in the kernel based fast path. If they can not be handled by the kernel,
2974they will get passed on to user space. So user space still has to have
2975an implementation for these despite the in kernel acceleration.
2976
2977This capability is always enabled.
2978
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110029794.98 KVM_CREATE_SPAPR_TCE_64
2980
2981Capability: KVM_CAP_SPAPR_TCE_64
2982Architectures: powerpc
2983Type: vm ioctl
2984Parameters: struct kvm_create_spapr_tce_64 (in)
2985Returns: file descriptor for manipulating the created TCE table
2986
2987This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
2988windows, described in 4.62 KVM_CREATE_SPAPR_TCE
2989
2990This capability uses extended struct in ioctl interface:
2991
2992/* for KVM_CAP_SPAPR_TCE_64 */
2993struct kvm_create_spapr_tce_64 {
2994 __u64 liobn;
2995 __u32 page_shift;
2996 __u32 flags;
2997 __u64 offset; /* in pages */
2998 __u64 size; /* in pages */
2999};
3000
3001The aim of extension is to support an additional bigger DMA window with
3002a variable page size.
3003KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3004a bus offset of the corresponding DMA window, @size and @offset are numbers
3005of IOMMU pages.
3006
3007@flags are not used at the moment.
3008
3009The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3010
David Gibsonccc4df42016-12-20 16:48:57 +110030114.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003012
3013Capability: KVM_CAP_REINJECT_CONTROL
3014Architectures: x86
3015Type: vm ioctl
3016Parameters: struct kvm_reinject_control (in)
3017Returns: 0 on success,
3018 -EFAULT if struct kvm_reinject_control cannot be read,
3019 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3020
3021i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3022where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3023vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3024interrupt whenever there isn't a pending interrupt from i8254.
3025!reinject mode injects an interrupt as soon as a tick arrives.
3026
3027struct kvm_reinject_control {
3028 __u8 pit_reinject;
3029 __u8 reserved[31];
3030};
3031
3032pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3033operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3034
David Gibsonccc4df42016-12-20 16:48:57 +110030354.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003036
3037Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3038Architectures: ppc
3039Type: vm ioctl
3040Parameters: struct kvm_ppc_mmuv3_cfg (in)
3041Returns: 0 on success,
3042 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3043 -EINVAL if the configuration is invalid
3044
3045This ioctl controls whether the guest will use radix or HPT (hashed
3046page table) translation, and sets the pointer to the process table for
3047the guest.
3048
3049struct kvm_ppc_mmuv3_cfg {
3050 __u64 flags;
3051 __u64 process_table;
3052};
3053
3054There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3055KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3056to use radix tree translation, and if clear, to use HPT translation.
3057KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3058to be able to use the global TLB and SLB invalidation instructions;
3059if clear, the guest may not use these instructions.
3060
3061The process_table field specifies the address and size of the guest
3062process table, which is in the guest's space. This field is formatted
3063as the second doubleword of the partition table entry, as defined in
3064the Power ISA V3.00, Book III section 5.7.6.1.
3065
David Gibsonccc4df42016-12-20 16:48:57 +110030664.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003067
3068Capability: KVM_CAP_PPC_RADIX_MMU
3069Architectures: ppc
3070Type: vm ioctl
3071Parameters: struct kvm_ppc_rmmu_info (out)
3072Returns: 0 on success,
3073 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3074 -EINVAL if no useful information can be returned
3075
3076This ioctl returns a structure containing two things: (a) a list
3077containing supported radix tree geometries, and (b) a list that maps
3078page sizes to put in the "AP" (actual page size) field for the tlbie
3079(TLB invalidate entry) instruction.
3080
3081struct kvm_ppc_rmmu_info {
3082 struct kvm_ppc_radix_geom {
3083 __u8 page_shift;
3084 __u8 level_bits[4];
3085 __u8 pad[3];
3086 } geometries[8];
3087 __u32 ap_encodings[8];
3088};
3089
3090The geometries[] field gives up to 8 supported geometries for the
3091radix page table, in terms of the log base 2 of the smallest page
3092size, and the number of bits indexed at each level of the tree, from
3093the PTE level up to the PGD level in that order. Any unused entries
3094will have 0 in the page_shift field.
3095
3096The ap_encodings gives the supported page sizes and their AP field
3097encodings, encoded with the AP value in the top 3 bits and the log
3098base 2 of the page size in the bottom 6 bits.
3099
David Gibsonef1ead02016-12-20 16:48:58 +110031004.102 KVM_PPC_RESIZE_HPT_PREPARE
3101
3102Capability: KVM_CAP_SPAPR_RESIZE_HPT
3103Architectures: powerpc
3104Type: vm ioctl
3105Parameters: struct kvm_ppc_resize_hpt (in)
3106Returns: 0 on successful completion,
3107 >0 if a new HPT is being prepared, the value is an estimated
3108 number of milliseconds until preparation is complete
3109 -EFAULT if struct kvm_reinject_control cannot be read,
3110 -EINVAL if the supplied shift or flags are invalid
3111 -ENOMEM if unable to allocate the new HPT
3112 -ENOSPC if there was a hash collision when moving existing
3113 HPT entries to the new HPT
3114 -EIO on other error conditions
3115
3116Used to implement the PAPR extension for runtime resizing of a guest's
3117Hashed Page Table (HPT). Specifically this starts, stops or monitors
3118the preparation of a new potential HPT for the guest, essentially
3119implementing the H_RESIZE_HPT_PREPARE hypercall.
3120
3121If called with shift > 0 when there is no pending HPT for the guest,
3122this begins preparation of a new pending HPT of size 2^(shift) bytes.
3123It then returns a positive integer with the estimated number of
3124milliseconds until preparation is complete.
3125
3126If called when there is a pending HPT whose size does not match that
3127requested in the parameters, discards the existing pending HPT and
3128creates a new one as above.
3129
3130If called when there is a pending HPT of the size requested, will:
3131 * If preparation of the pending HPT is already complete, return 0
3132 * If preparation of the pending HPT has failed, return an error
3133 code, then discard the pending HPT.
3134 * If preparation of the pending HPT is still in progress, return an
3135 estimated number of milliseconds until preparation is complete.
3136
3137If called with shift == 0, discards any currently pending HPT and
3138returns 0 (i.e. cancels any in-progress preparation).
3139
3140flags is reserved for future expansion, currently setting any bits in
3141flags will result in an -EINVAL.
3142
3143Normally this will be called repeatedly with the same parameters until
3144it returns <= 0. The first call will initiate preparation, subsequent
3145ones will monitor preparation until it completes or fails.
3146
3147struct kvm_ppc_resize_hpt {
3148 __u64 flags;
3149 __u32 shift;
3150 __u32 pad;
3151};
3152
31534.103 KVM_PPC_RESIZE_HPT_COMMIT
3154
3155Capability: KVM_CAP_SPAPR_RESIZE_HPT
3156Architectures: powerpc
3157Type: vm ioctl
3158Parameters: struct kvm_ppc_resize_hpt (in)
3159Returns: 0 on successful completion,
3160 -EFAULT if struct kvm_reinject_control cannot be read,
3161 -EINVAL if the supplied shift or flags are invalid
3162 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3163 have the requested size
3164 -EBUSY if the pending HPT is not fully prepared
3165 -ENOSPC if there was a hash collision when moving existing
3166 HPT entries to the new HPT
3167 -EIO on other error conditions
3168
3169Used to implement the PAPR extension for runtime resizing of a guest's
3170Hashed Page Table (HPT). Specifically this requests that the guest be
3171transferred to working with the new HPT, essentially implementing the
3172H_RESIZE_HPT_COMMIT hypercall.
3173
3174This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3175returned 0 with the same parameters. In other cases
3176KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3177-EBUSY, though others may be possible if the preparation was started,
3178but failed).
3179
3180This will have undefined effects on the guest if it has not already
3181placed itself in a quiescent state where no vcpu will make MMU enabled
3182memory accesses.
3183
3184On succsful completion, the pending HPT will become the guest's active
3185HPT and the previous HPT will be discarded.
3186
3187On failure, the guest will still be operating on its previous HPT.
3188
3189struct kvm_ppc_resize_hpt {
3190 __u64 flags;
3191 __u32 shift;
3192 __u32 pad;
3193};
3194
Luiz Capitulino3aa53852017-03-13 09:08:20 -040031954.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3196
3197Capability: KVM_CAP_MCE
3198Architectures: x86
3199Type: system ioctl
3200Parameters: u64 mce_cap (out)
3201Returns: 0 on success, -1 on error
3202
3203Returns supported MCE capabilities. The u64 mce_cap parameter
3204has the same format as the MSR_IA32_MCG_CAP register. Supported
3205capabilities will have the corresponding bits set.
3206
32074.105 KVM_X86_SETUP_MCE
3208
3209Capability: KVM_CAP_MCE
3210Architectures: x86
3211Type: vcpu ioctl
3212Parameters: u64 mcg_cap (in)
3213Returns: 0 on success,
3214 -EFAULT if u64 mcg_cap cannot be read,
3215 -EINVAL if the requested number of banks is invalid,
3216 -EINVAL if requested MCE capability is not supported.
3217
3218Initializes MCE support for use. The u64 mcg_cap parameter
3219has the same format as the MSR_IA32_MCG_CAP register and
3220specifies which capabilities should be enabled. The maximum
3221supported number of error-reporting banks can be retrieved when
3222checking for KVM_CAP_MCE. The supported capabilities can be
3223retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3224
32254.106 KVM_X86_SET_MCE
3226
3227Capability: KVM_CAP_MCE
3228Architectures: x86
3229Type: vcpu ioctl
3230Parameters: struct kvm_x86_mce (in)
3231Returns: 0 on success,
3232 -EFAULT if struct kvm_x86_mce cannot be read,
3233 -EINVAL if the bank number is invalid,
3234 -EINVAL if VAL bit is not set in status field.
3235
3236Inject a machine check error (MCE) into the guest. The input
3237parameter is:
3238
3239struct kvm_x86_mce {
3240 __u64 status;
3241 __u64 addr;
3242 __u64 misc;
3243 __u64 mcg_status;
3244 __u8 bank;
3245 __u8 pad1[7];
3246 __u64 pad2[3];
3247};
3248
3249If the MCE being reported is an uncorrected error, KVM will
3250inject it as an MCE exception into the guest. If the guest
3251MCG_STATUS register reports that an MCE is in progress, KVM
3252causes an KVM_EXIT_SHUTDOWN vmexit.
3253
3254Otherwise, if the MCE is a corrected error, KVM will just
3255store it in the corresponding bank (provided this bank is
3256not holding a previously reported uncorrected error).
3257
Claudio Imbrenda4036e382016-08-04 17:58:47 +020032584.107 KVM_S390_GET_CMMA_BITS
3259
3260Capability: KVM_CAP_S390_CMMA_MIGRATION
3261Architectures: s390
3262Type: vm ioctl
3263Parameters: struct kvm_s390_cmma_log (in, out)
3264Returns: 0 on success, a negative value on error
3265
3266This ioctl is used to get the values of the CMMA bits on the s390
3267architecture. It is meant to be used in two scenarios:
3268- During live migration to save the CMMA values. Live migration needs
3269 to be enabled via the KVM_REQ_START_MIGRATION VM property.
3270- To non-destructively peek at the CMMA values, with the flag
3271 KVM_S390_CMMA_PEEK set.
3272
3273The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired
3274values are written to a buffer whose location is indicated via the "values"
3275member in the kvm_s390_cmma_log struct. The values in the input struct are
3276also updated as needed.
3277Each CMMA value takes up one byte.
3278
3279struct kvm_s390_cmma_log {
3280 __u64 start_gfn;
3281 __u32 count;
3282 __u32 flags;
3283 union {
3284 __u64 remaining;
3285 __u64 mask;
3286 };
3287 __u64 values;
3288};
3289
3290start_gfn is the number of the first guest frame whose CMMA values are
3291to be retrieved,
3292
3293count is the length of the buffer in bytes,
3294
3295values points to the buffer where the result will be written to.
3296
3297If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be
3298KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with
3299other ioctls.
3300
3301The result is written in the buffer pointed to by the field values, and
3302the values of the input parameter are updated as follows.
3303
3304Depending on the flags, different actions are performed. The only
3305supported flag so far is KVM_S390_CMMA_PEEK.
3306
3307The default behaviour if KVM_S390_CMMA_PEEK is not set is:
3308start_gfn will indicate the first page frame whose CMMA bits were dirty.
3309It is not necessarily the same as the one passed as input, as clean pages
3310are skipped.
3311
3312count will indicate the number of bytes actually written in the buffer.
3313It can (and very often will) be smaller than the input value, since the
3314buffer is only filled until 16 bytes of clean values are found (which
3315are then not copied in the buffer). Since a CMMA migration block needs
3316the base address and the length, for a total of 16 bytes, we will send
3317back some clean data if there is some dirty data afterwards, as long as
3318the size of the clean data does not exceed the size of the header. This
3319allows to minimize the amount of data to be saved or transferred over
3320the network at the expense of more roundtrips to userspace. The next
3321invocation of the ioctl will skip over all the clean values, saving
3322potentially more than just the 16 bytes we found.
3323
3324If KVM_S390_CMMA_PEEK is set:
3325the existing storage attributes are read even when not in migration
3326mode, and no other action is performed;
3327
3328the output start_gfn will be equal to the input start_gfn,
3329
3330the output count will be equal to the input count, except if the end of
3331memory has been reached.
3332
3333In both cases:
3334the field "remaining" will indicate the total number of dirty CMMA values
3335still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is
3336not enabled.
3337
3338mask is unused.
3339
3340values points to the userspace buffer where the result will be stored.
3341
3342This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3343complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3344KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
3345-EFAULT if the userspace address is invalid or if no page table is
3346present for the addresses (e.g. when using hugepages).
3347
33484.108 KVM_S390_SET_CMMA_BITS
3349
3350Capability: KVM_CAP_S390_CMMA_MIGRATION
3351Architectures: s390
3352Type: vm ioctl
3353Parameters: struct kvm_s390_cmma_log (in)
3354Returns: 0 on success, a negative value on error
3355
3356This ioctl is used to set the values of the CMMA bits on the s390
3357architecture. It is meant to be used during live migration to restore
3358the CMMA values, but there are no restrictions on its use.
3359The ioctl takes parameters via the kvm_s390_cmma_values struct.
3360Each CMMA value takes up one byte.
3361
3362struct kvm_s390_cmma_log {
3363 __u64 start_gfn;
3364 __u32 count;
3365 __u32 flags;
3366 union {
3367 __u64 remaining;
3368 __u64 mask;
3369 };
3370 __u64 values;
3371};
3372
3373start_gfn indicates the starting guest frame number,
3374
3375count indicates how many values are to be considered in the buffer,
3376
3377flags is not used and must be 0.
3378
3379mask indicates which PGSTE bits are to be considered.
3380
3381remaining is not used.
3382
3383values points to the buffer in userspace where to store the values.
3384
3385This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3386complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3387the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or
3388if the flags field was not 0, with -EFAULT if the userspace address is
3389invalid, if invalid pages are written to (e.g. after the end of memory)
3390or if no page table is present for the addresses (e.g. when using
3391hugepages).
3392
Avi Kivity9c1b96e2009-06-09 12:37:58 +030033935. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003394------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003395
3396Application code obtains a pointer to the kvm_run structure by
3397mmap()ing a vcpu fd. From that point, application code can control
3398execution by changing fields in kvm_run prior to calling the KVM_RUN
3399ioctl, and obtain information about the reason KVM_RUN returned by
3400looking up structure members.
3401
3402struct kvm_run {
3403 /* in */
3404 __u8 request_interrupt_window;
3405
3406Request that KVM_RUN return when it becomes possible to inject external
3407interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3408
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003409 __u8 immediate_exit;
3410
3411This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3412exits immediately, returning -EINTR. In the common scenario where a
3413signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3414to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3415Rather than blocking the signal outside KVM_RUN, userspace can set up
3416a signal handler that sets run->immediate_exit to a non-zero value.
3417
3418This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3419
3420 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003421
3422 /* out */
3423 __u32 exit_reason;
3424
3425When KVM_RUN has returned successfully (return value 0), this informs
3426application code why KVM_RUN has returned. Allowable values for this
3427field are detailed below.
3428
3429 __u8 ready_for_interrupt_injection;
3430
3431If request_interrupt_window has been specified, this field indicates
3432an interrupt can be injected now with KVM_INTERRUPT.
3433
3434 __u8 if_flag;
3435
3436The value of the current interrupt flag. Only valid if in-kernel
3437local APIC is not used.
3438
Paolo Bonzinif0778252015-04-01 15:06:40 +02003439 __u16 flags;
3440
3441More architecture-specific flags detailing state of the VCPU that may
3442affect the device's behavior. The only currently defined flag is
3443KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3444VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003445
3446 /* in (pre_kvm_run), out (post_kvm_run) */
3447 __u64 cr8;
3448
3449The value of the cr8 register. Only valid if in-kernel local APIC is
3450not used. Both input and output.
3451
3452 __u64 apic_base;
3453
3454The value of the APIC BASE msr. Only valid if in-kernel local
3455APIC is not used. Both input and output.
3456
3457 union {
3458 /* KVM_EXIT_UNKNOWN */
3459 struct {
3460 __u64 hardware_exit_reason;
3461 } hw;
3462
3463If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3464reasons. Further architecture-specific information is available in
3465hardware_exit_reason.
3466
3467 /* KVM_EXIT_FAIL_ENTRY */
3468 struct {
3469 __u64 hardware_entry_failure_reason;
3470 } fail_entry;
3471
3472If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3473to unknown reasons. Further architecture-specific information is
3474available in hardware_entry_failure_reason.
3475
3476 /* KVM_EXIT_EXCEPTION */
3477 struct {
3478 __u32 exception;
3479 __u32 error_code;
3480 } ex;
3481
3482Unused.
3483
3484 /* KVM_EXIT_IO */
3485 struct {
3486#define KVM_EXIT_IO_IN 0
3487#define KVM_EXIT_IO_OUT 1
3488 __u8 direction;
3489 __u8 size; /* bytes */
3490 __u16 port;
3491 __u32 count;
3492 __u64 data_offset; /* relative to kvm_run start */
3493 } io;
3494
Wu Fengguang2044892d2009-12-24 09:04:16 +08003495If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003496executed a port I/O instruction which could not be satisfied by kvm.
3497data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3498where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003499KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003500
Alex Bennée8ab30c12015-07-07 17:29:53 +01003501 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003502 struct {
3503 struct kvm_debug_exit_arch arch;
3504 } debug;
3505
Alex Bennée8ab30c12015-07-07 17:29:53 +01003506If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3507for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003508
3509 /* KVM_EXIT_MMIO */
3510 struct {
3511 __u64 phys_addr;
3512 __u8 data[8];
3513 __u32 len;
3514 __u8 is_write;
3515 } mmio;
3516
Wu Fengguang2044892d2009-12-24 09:04:16 +08003517If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003518executed a memory-mapped I/O instruction which could not be satisfied
3519by kvm. The 'data' member contains the written data if 'is_write' is
3520true, and should be filled by application code otherwise.
3521
Christoffer Dall6acdb162014-01-28 08:28:42 -08003522The 'data' member contains, in its first 'len' bytes, the value as it would
3523appear if the VCPU performed a load or store of the appropriate width directly
3524to the byte array.
3525
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003526NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003527 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003528operations are complete (and guest state is consistent) only after userspace
3529has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003530incomplete operations and then check for pending signals. Userspace
3531can re-enter the guest with an unmasked signal pending to complete
3532pending operations.
3533
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003534 /* KVM_EXIT_HYPERCALL */
3535 struct {
3536 __u64 nr;
3537 __u64 args[6];
3538 __u64 ret;
3539 __u32 longmode;
3540 __u32 pad;
3541 } hypercall;
3542
Avi Kivity647dc492010-04-01 14:39:21 +03003543Unused. This was once used for 'hypercall to userspace'. To implement
3544such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3545Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003546
3547 /* KVM_EXIT_TPR_ACCESS */
3548 struct {
3549 __u64 rip;
3550 __u32 is_write;
3551 __u32 pad;
3552 } tpr_access;
3553
3554To be documented (KVM_TPR_ACCESS_REPORTING).
3555
3556 /* KVM_EXIT_S390_SIEIC */
3557 struct {
3558 __u8 icptcode;
3559 __u64 mask; /* psw upper half */
3560 __u64 addr; /* psw lower half */
3561 __u16 ipa;
3562 __u32 ipb;
3563 } s390_sieic;
3564
3565s390 specific.
3566
3567 /* KVM_EXIT_S390_RESET */
3568#define KVM_S390_RESET_POR 1
3569#define KVM_S390_RESET_CLEAR 2
3570#define KVM_S390_RESET_SUBSYSTEM 4
3571#define KVM_S390_RESET_CPU_INIT 8
3572#define KVM_S390_RESET_IPL 16
3573 __u64 s390_reset_flags;
3574
3575s390 specific.
3576
Carsten Ottee168bf82012-01-04 10:25:22 +01003577 /* KVM_EXIT_S390_UCONTROL */
3578 struct {
3579 __u64 trans_exc_code;
3580 __u32 pgm_code;
3581 } s390_ucontrol;
3582
3583s390 specific. A page fault has occurred for a user controlled virtual
3584machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3585resolved by the kernel.
3586The program code and the translation exception code that were placed
3587in the cpu's lowcore are presented here as defined by the z Architecture
3588Principles of Operation Book in the Chapter for Dynamic Address Translation
3589(DAT)
3590
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003591 /* KVM_EXIT_DCR */
3592 struct {
3593 __u32 dcrn;
3594 __u32 data;
3595 __u8 is_write;
3596 } dcr;
3597
Alexander Grafce91ddc2014-07-28 19:29:13 +02003598Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003599
Alexander Grafad0a0482010-03-24 21:48:30 +01003600 /* KVM_EXIT_OSI */
3601 struct {
3602 __u64 gprs[32];
3603 } osi;
3604
3605MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3606hypercalls and exit with this exit struct that contains all the guest gprs.
3607
3608If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3609Userspace can now handle the hypercall and when it's done modify the gprs as
3610necessary. Upon guest entry all guest GPRs will then be replaced by the values
3611in this struct.
3612
Paul Mackerrasde56a942011-06-29 00:21:34 +00003613 /* KVM_EXIT_PAPR_HCALL */
3614 struct {
3615 __u64 nr;
3616 __u64 ret;
3617 __u64 args[9];
3618 } papr_hcall;
3619
3620This is used on 64-bit PowerPC when emulating a pSeries partition,
3621e.g. with the 'pseries' machine type in qemu. It occurs when the
3622guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3623contains the hypercall number (from the guest R3), and 'args' contains
3624the arguments (from the guest R4 - R12). Userspace should put the
3625return code in 'ret' and any extra returned values in args[].
3626The possible hypercalls are defined in the Power Architecture Platform
3627Requirements (PAPR) document available from www.power.org (free
3628developer registration required to access it).
3629
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003630 /* KVM_EXIT_S390_TSCH */
3631 struct {
3632 __u16 subchannel_id;
3633 __u16 subchannel_nr;
3634 __u32 io_int_parm;
3635 __u32 io_int_word;
3636 __u32 ipb;
3637 __u8 dequeued;
3638 } s390_tsch;
3639
3640s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3641and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3642interrupt for the target subchannel has been dequeued and subchannel_id,
3643subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3644interrupt. ipb is needed for instruction parameter decoding.
3645
Alexander Graf1c810632013-01-04 18:12:48 +01003646 /* KVM_EXIT_EPR */
3647 struct {
3648 __u32 epr;
3649 } epr;
3650
3651On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3652interrupt acknowledge path to the core. When the core successfully
3653delivers an interrupt, it automatically populates the EPR register with
3654the interrupt vector number and acknowledges the interrupt inside
3655the interrupt controller.
3656
3657In case the interrupt controller lives in user space, we need to do
3658the interrupt acknowledge cycle through it to fetch the next to be
3659delivered interrupt vector using this exit.
3660
3661It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3662external interrupt has just been delivered into the guest. User space
3663should put the acknowledged interrupt vector into the 'epr' field.
3664
Anup Patel8ad6b632014-04-29 11:24:19 +05303665 /* KVM_EXIT_SYSTEM_EVENT */
3666 struct {
3667#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3668#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003669#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05303670 __u32 type;
3671 __u64 flags;
3672 } system_event;
3673
3674If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3675a system-level event using some architecture specific mechanism (hypercall
3676or some special instruction). In case of ARM/ARM64, this is triggered using
3677HVC instruction based PSCI call from the vcpu. The 'type' field describes
3678the system-level event type. The 'flags' field describes architecture
3679specific flags for the system-level event.
3680
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003681Valid values for 'type' are:
3682 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3683 VM. Userspace is not obliged to honour this, and if it does honour
3684 this does not need to destroy the VM synchronously (ie it may call
3685 KVM_RUN again before shutdown finally occurs).
3686 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3687 As with SHUTDOWN, userspace can choose to ignore the request, or
3688 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003689 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3690 has requested a crash condition maintenance. Userspace can choose
3691 to ignore the request, or to gather VM memory core dump and/or
3692 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003693
Steve Rutherford7543a632015-07-29 23:21:41 -07003694 /* KVM_EXIT_IOAPIC_EOI */
3695 struct {
3696 __u8 vector;
3697 } eoi;
3698
3699Indicates that the VCPU's in-kernel local APIC received an EOI for a
3700level-triggered IOAPIC interrupt. This exit only triggers when the
3701IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3702the userspace IOAPIC should process the EOI and retrigger the interrupt if
3703it is still asserted. Vector is the LAPIC interrupt vector for which the
3704EOI was received.
3705
Andrey Smetanindb3975712015-11-10 15:36:35 +03003706 struct kvm_hyperv_exit {
3707#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03003708#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03003709 __u32 type;
3710 union {
3711 struct {
3712 __u32 msr;
3713 __u64 control;
3714 __u64 evt_page;
3715 __u64 msg_page;
3716 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03003717 struct {
3718 __u64 input;
3719 __u64 result;
3720 __u64 params[2];
3721 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03003722 } u;
3723 };
3724 /* KVM_EXIT_HYPERV */
3725 struct kvm_hyperv_exit hyperv;
3726Indicates that the VCPU exits into userspace to process some tasks
3727related to Hyper-V emulation.
3728Valid values for 'type' are:
3729 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3730Hyper-V SynIC state change. Notification is used to remap SynIC
3731event/message pages and to enable/disable SynIC messages/events processing
3732in userspace.
3733
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003734 /* Fix the size of the union. */
3735 char padding[256];
3736 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01003737
3738 /*
3739 * shared registers between kvm and userspace.
3740 * kvm_valid_regs specifies the register classes set by the host
3741 * kvm_dirty_regs specified the register classes dirtied by userspace
3742 * struct kvm_sync_regs is architecture specific, as well as the
3743 * bits for kvm_valid_regs and kvm_dirty_regs
3744 */
3745 __u64 kvm_valid_regs;
3746 __u64 kvm_dirty_regs;
3747 union {
3748 struct kvm_sync_regs regs;
3749 char padding[1024];
3750 } s;
3751
3752If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3753certain guest registers without having to call SET/GET_*REGS. Thus we can
3754avoid some system call overhead if userspace has to handle the exit.
3755Userspace can query the validity of the structure by checking
3756kvm_valid_regs for specific bits. These bits are architecture specific
3757and usually define the validity of a groups of registers. (e.g. one bit
3758 for general purpose registers)
3759
David Hildenbrandd8482c02014-07-29 08:19:26 +02003760Please note that the kernel is allowed to use the kvm_run structure as the
3761primary storage for certain register types. Therefore, the kernel may use the
3762values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3763
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003764};
Alexander Graf821246a2011-08-31 10:58:55 +02003765
Jan Kiszka414fa982012-04-24 16:40:15 +02003766
Borislav Petkov9c15bb12013-09-22 16:44:50 +02003767
Paul Mackerras699a0ea2014-06-02 11:02:59 +100037686. Capabilities that can be enabled on vCPUs
3769--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02003770
Cornelia Huck0907c852014-06-27 09:29:26 +02003771There are certain capabilities that change the behavior of the virtual CPU or
3772the virtual machine when enabled. To enable them, please see section 4.37.
3773Below you can find a list of capabilities and what their effect on the vCPU or
3774the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02003775
3776The following information is provided along with the description:
3777
3778 Architectures: which instruction set architectures provide this ioctl.
3779 x86 includes both i386 and x86_64.
3780
Cornelia Huck0907c852014-06-27 09:29:26 +02003781 Target: whether this is a per-vcpu or per-vm capability.
3782
Alexander Graf821246a2011-08-31 10:58:55 +02003783 Parameters: what parameters are accepted by the capability.
3784
3785 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3786 are not detailed, but errors with specific meanings are.
3787
Jan Kiszka414fa982012-04-24 16:40:15 +02003788
Alexander Graf821246a2011-08-31 10:58:55 +020037896.1 KVM_CAP_PPC_OSI
3790
3791Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003792Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003793Parameters: none
3794Returns: 0 on success; -1 on error
3795
3796This capability enables interception of OSI hypercalls that otherwise would
3797be treated as normal system calls to be injected into the guest. OSI hypercalls
3798were invented by Mac-on-Linux to have a standardized communication mechanism
3799between the guest and the host.
3800
3801When this capability is enabled, KVM_EXIT_OSI can occur.
3802
Jan Kiszka414fa982012-04-24 16:40:15 +02003803
Alexander Graf821246a2011-08-31 10:58:55 +020038046.2 KVM_CAP_PPC_PAPR
3805
3806Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003807Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003808Parameters: none
3809Returns: 0 on success; -1 on error
3810
3811This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3812done using the hypercall instruction "sc 1".
3813
3814It also sets the guest privilege level to "supervisor" mode. Usually the guest
3815runs in "hypervisor" privilege mode with a few missing features.
3816
3817In addition to the above, it changes the semantics of SDR1. In this mode, the
3818HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3819HTAB invisible to the guest.
3820
3821When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05003822
Jan Kiszka414fa982012-04-24 16:40:15 +02003823
Scott Wooddc83b8b2011-08-18 15:25:21 -050038246.3 KVM_CAP_SW_TLB
3825
3826Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003827Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05003828Parameters: args[0] is the address of a struct kvm_config_tlb
3829Returns: 0 on success; -1 on error
3830
3831struct kvm_config_tlb {
3832 __u64 params;
3833 __u64 array;
3834 __u32 mmu_type;
3835 __u32 array_len;
3836};
3837
3838Configures the virtual CPU's TLB array, establishing a shared memory area
3839between userspace and KVM. The "params" and "array" fields are userspace
3840addresses of mmu-type-specific data structures. The "array_len" field is an
3841safety mechanism, and should be set to the size in bytes of the memory that
3842userspace has reserved for the array. It must be at least the size dictated
3843by "mmu_type" and "params".
3844
3845While KVM_RUN is active, the shared region is under control of KVM. Its
3846contents are undefined, and any modification by userspace results in
3847boundedly undefined behavior.
3848
3849On return from KVM_RUN, the shared region will reflect the current state of
3850the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3851to tell KVM which entries have been changed, prior to calling KVM_RUN again
3852on this vcpu.
3853
3854For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3855 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3856 - The "array" field points to an array of type "struct
3857 kvm_book3e_206_tlb_entry".
3858 - The array consists of all entries in the first TLB, followed by all
3859 entries in the second TLB.
3860 - Within a TLB, entries are ordered first by increasing set number. Within a
3861 set, entries are ordered by way (increasing ESEL).
3862 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3863 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3864 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3865 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003866
38676.4 KVM_CAP_S390_CSS_SUPPORT
3868
3869Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02003870Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003871Parameters: none
3872Returns: 0 on success; -1 on error
3873
3874This capability enables support for handling of channel I/O instructions.
3875
3876TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3877handled in-kernel, while the other I/O instructions are passed to userspace.
3878
3879When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3880SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01003881
Cornelia Huck0907c852014-06-27 09:29:26 +02003882Note that even though this capability is enabled per-vcpu, the complete
3883virtual machine is affected.
3884
Alexander Graf1c810632013-01-04 18:12:48 +010038856.5 KVM_CAP_PPC_EPR
3886
3887Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003888Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01003889Parameters: args[0] defines whether the proxy facility is active
3890Returns: 0 on success; -1 on error
3891
3892This capability enables or disables the delivery of interrupts through the
3893external proxy facility.
3894
3895When enabled (args[0] != 0), every time the guest gets an external interrupt
3896delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3897to receive the topmost interrupt vector.
3898
3899When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3900
3901When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00003902
39036.6 KVM_CAP_IRQ_MPIC
3904
3905Architectures: ppc
3906Parameters: args[0] is the MPIC device fd
3907 args[1] is the MPIC CPU number for this vcpu
3908
3909This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003910
39116.7 KVM_CAP_IRQ_XICS
3912
3913Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003914Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003915Parameters: args[0] is the XICS device fd
3916 args[1] is the XICS CPU number (server ID) for this vcpu
3917
3918This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02003919
39206.8 KVM_CAP_S390_IRQCHIP
3921
3922Architectures: s390
3923Target: vm
3924Parameters: none
3925
3926This capability enables the in-kernel irqchip for s390. Please refer to
3927"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10003928
James Hogan5fafd8742014-12-08 23:07:56 +000039296.9 KVM_CAP_MIPS_FPU
3930
3931Architectures: mips
3932Target: vcpu
3933Parameters: args[0] is reserved for future use (should be 0).
3934
3935This capability allows the use of the host Floating Point Unit by the guest. It
3936allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3937done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3938(depending on the current guest FPU register mode), and the Status.FR,
3939Config5.FRE bits are accessible via the KVM API and also from the guest,
3940depending on them being supported by the FPU.
3941
James Hogand952bd02014-12-08 23:07:56 +000039426.10 KVM_CAP_MIPS_MSA
3943
3944Architectures: mips
3945Target: vcpu
3946Parameters: args[0] is reserved for future use (should be 0).
3947
3948This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3949It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3950Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3951accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3952the guest.
3953
Paul Mackerras699a0ea2014-06-02 11:02:59 +100039547. Capabilities that can be enabled on VMs
3955------------------------------------------
3956
3957There are certain capabilities that change the behavior of the virtual
3958machine when enabled. To enable them, please see section 4.37. Below
3959you can find a list of capabilities and what their effect on the VM
3960is when enabling them.
3961
3962The following information is provided along with the description:
3963
3964 Architectures: which instruction set architectures provide this ioctl.
3965 x86 includes both i386 and x86_64.
3966
3967 Parameters: what parameters are accepted by the capability.
3968
3969 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3970 are not detailed, but errors with specific meanings are.
3971
3972
39737.1 KVM_CAP_PPC_ENABLE_HCALL
3974
3975Architectures: ppc
3976Parameters: args[0] is the sPAPR hcall number
3977 args[1] is 0 to disable, 1 to enable in-kernel handling
3978
3979This capability controls whether individual sPAPR hypercalls (hcalls)
3980get handled by the kernel or not. Enabling or disabling in-kernel
3981handling of an hcall is effective across the VM. On creation, an
3982initial set of hcalls are enabled for in-kernel handling, which
3983consists of those hcalls for which in-kernel handlers were implemented
3984before this capability was implemented. If disabled, the kernel will
3985not to attempt to handle the hcall, but will always exit to userspace
3986to handle it. Note that it may not make sense to enable some and
3987disable others of a group of related hcalls, but KVM does not prevent
3988userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10003989
3990If the hcall number specified is not one that has an in-kernel
3991implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3992error.
David Hildenbrand2444b352014-10-09 14:10:13 +02003993
39947.2 KVM_CAP_S390_USER_SIGP
3995
3996Architectures: s390
3997Parameters: none
3998
3999This capability controls which SIGP orders will be handled completely in user
4000space. With this capability enabled, all fast orders will be handled completely
4001in the kernel:
4002- SENSE
4003- SENSE RUNNING
4004- EXTERNAL CALL
4005- EMERGENCY SIGNAL
4006- CONDITIONAL EMERGENCY SIGNAL
4007
4008All other orders will be handled completely in user space.
4009
4010Only privileged operation exceptions will be checked for in the kernel (or even
4011in the hardware prior to interception). If this capability is not enabled, the
4012old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004013
40147.3 KVM_CAP_S390_VECTOR_REGISTERS
4015
4016Architectures: s390
4017Parameters: none
4018Returns: 0 on success, negative value on error
4019
4020Allows use of the vector registers introduced with z13 processor, and
4021provides for the synchronization between host and user space. Will
4022return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004023
40247.4 KVM_CAP_S390_USER_STSI
4025
4026Architectures: s390
4027Parameters: none
4028
4029This capability allows post-handlers for the STSI instruction. After
4030initial handling in the kernel, KVM exits to user space with
4031KVM_EXIT_S390_STSI to allow user space to insert further data.
4032
4033Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4034vcpu->run:
4035struct {
4036 __u64 addr;
4037 __u8 ar;
4038 __u8 reserved;
4039 __u8 fc;
4040 __u8 sel1;
4041 __u16 sel2;
4042} s390_stsi;
4043
4044@addr - guest address of STSI SYSIB
4045@fc - function code
4046@sel1 - selector 1
4047@sel2 - selector 2
4048@ar - access register number
4049
4050KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004051
Steve Rutherford49df6392015-07-29 23:21:40 -070040527.5 KVM_CAP_SPLIT_IRQCHIP
4053
4054Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004055Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004056Returns: 0 on success, -1 on error
4057
4058Create a local apic for each processor in the kernel. This can be used
4059instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4060IOAPIC and PIC (and also the PIT, even though this has to be enabled
4061separately).
4062
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004063This capability also enables in kernel routing of interrupt requests;
4064when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4065used in the IRQ routing table. The first args[0] MSI routes are reserved
4066for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4067a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004068
4069Fails if VCPU has already been created, or if the irqchip is already in the
4070kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4071
David Hildenbrand051c87f2016-04-19 13:13:40 +020040727.6 KVM_CAP_S390_RI
4073
4074Architectures: s390
4075Parameters: none
4076
4077Allows use of runtime-instrumentation introduced with zEC12 processor.
4078Will return -EINVAL if the machine does not support runtime-instrumentation.
4079Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004080
Radim Krčmář371313132016-07-12 22:09:27 +020040817.7 KVM_CAP_X2APIC_API
4082
4083Architectures: x86
4084Parameters: args[0] - features that should be enabled
4085Returns: 0 on success, -EINVAL when args[0] contains invalid features
4086
4087Valid feature flags in args[0] are
4088
4089#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004090#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004091
4092Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4093KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4094allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4095respective sections.
4096
Radim Krčmářc5192652016-07-12 22:09:28 +02004097KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4098in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4099as a broadcast even in x2APIC mode in order to support physical x2APIC
4100without interrupt remapping. This is undesirable in logical mode,
4101where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004102
David Hildenbrand6502a342016-06-21 14:19:51 +020041037.8 KVM_CAP_S390_USER_INSTR0
4104
4105Architectures: s390
4106Parameters: none
4107
4108With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4109be intercepted and forwarded to user space. User space can use this
4110mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4111not inject an operating exception for these instructions, user space has
4112to take care of that.
4113
4114This capability can be enabled dynamically even if VCPUs were already
4115created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004116
Fan Zhang4e0b1ab2016-11-29 07:17:55 +010041177.9 KVM_CAP_S390_GS
4118
4119Architectures: s390
4120Parameters: none
4121Returns: 0 on success; -EINVAL if the machine does not support
4122 guarded storage; -EBUSY if a VCPU has already been created.
4123
4124Allows use of guarded storage for the KVM guest.
4125
Yi Min Zhao47a46932017-03-10 09:29:38 +010041267.10 KVM_CAP_S390_AIS
4127
4128Architectures: s390
4129Parameters: none
4130
4131Allow use of adapter-interruption suppression.
4132Returns: 0 on success; -EBUSY if a VCPU has already been created.
4133
Paul Mackerras3c313522017-02-06 13:24:41 +110041347.11 KVM_CAP_PPC_SMT
4135
4136Architectures: ppc
4137Parameters: vsmt_mode, flags
4138
4139Enabling this capability on a VM provides userspace with a way to set
4140the desired virtual SMT mode (i.e. the number of virtual CPUs per
4141virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2
4142between 1 and 8. On POWER8, vsmt_mode must also be no greater than
4143the number of threads per subcore for the host. Currently flags must
4144be 0. A successful call to enable this capability will result in
4145vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is
4146subsequently queried for the VM. This capability is only supported by
4147HV KVM, and can only be set before any VCPUs have been created.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004148The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT
4149modes are available.
Paul Mackerras3c313522017-02-06 13:24:41 +11004150
Aravinda Prasad134764e2017-05-11 16:32:48 +053041517.12 KVM_CAP_PPC_FWNMI
4152
4153Architectures: ppc
4154Parameters: none
4155
4156With this capability a machine check exception in the guest address
4157space will cause KVM to exit the guest with NMI exit reason. This
4158enables QEMU to build error log and branch to guest kernel registered
4159machine check handling routine. Without this capability KVM will
4160branch to guests' 0x200 interrupt vector.
4161
Michael Ellermane928e9c2015-03-20 20:39:41 +110041628. Other capabilities.
4163----------------------
4164
4165This section lists capabilities that give information about other
4166features of the KVM implementation.
4167
41688.1 KVM_CAP_PPC_HWRNG
4169
4170Architectures: ppc
4171
4172This capability, if KVM_CHECK_EXTENSION indicates that it is
4173available, means that that the kernel has an implementation of the
4174H_RANDOM hypercall backed by a hardware random-number generator.
4175If present, the kernel H_RANDOM handler can be enabled for guest use
4176with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004177
41788.2 KVM_CAP_HYPERV_SYNIC
4179
4180Architectures: x86
4181This capability, if KVM_CHECK_EXTENSION indicates that it is
4182available, means that that the kernel has an implementation of the
4183Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4184used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4185
4186In order to use SynIC, it has to be activated by setting this
4187capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4188will disable the use of APIC hardware virtualization even if supported
4189by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004190
41918.3 KVM_CAP_PPC_RADIX_MMU
4192
4193Architectures: ppc
4194
4195This capability, if KVM_CHECK_EXTENSION indicates that it is
4196available, means that that the kernel can support guests using the
4197radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4198processor).
4199
42008.4 KVM_CAP_PPC_HASH_MMU_V3
4201
4202Architectures: ppc
4203
4204This capability, if KVM_CHECK_EXTENSION indicates that it is
4205available, means that that the kernel can support guests using the
4206hashed page table MMU defined in Power ISA V3.00 (as implemented in
4207the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004208
42098.5 KVM_CAP_MIPS_VZ
4210
4211Architectures: mips
4212
4213This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4214it is available, means that full hardware assisted virtualization capabilities
4215of the hardware are available for use through KVM. An appropriate
4216KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4217utilises it.
4218
4219If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4220available, it means that the VM is using full hardware assisted virtualization
4221capabilities of the hardware. This is useful to check after creating a VM with
4222KVM_VM_MIPS_DEFAULT.
4223
4224The value returned by KVM_CHECK_EXTENSION should be compared against known
4225values (see below). All other values are reserved. This is to allow for the
4226possibility of other hardware assisted virtualization implementations which
4227may be incompatible with the MIPS VZ ASE.
4228
4229 0: The trap & emulate implementation is in use to run guest code in user
4230 mode. Guest virtual memory segments are rearranged to fit the guest in the
4231 user mode address space.
4232
4233 1: The MIPS VZ ASE is in use, providing full hardware assisted
4234 virtualization, including standard guest virtual memory segments.
4235
42368.6 KVM_CAP_MIPS_TE
4237
4238Architectures: mips
4239
4240This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4241it is available, means that the trap & emulate implementation is available to
4242run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4243assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4244to KVM_CREATE_VM to create a VM which utilises it.
4245
4246If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4247available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004248
42498.7 KVM_CAP_MIPS_64BIT
4250
4251Architectures: mips
4252
4253This capability indicates the supported architecture type of the guest, i.e. the
4254supported register and address width.
4255
4256The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4257kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4258be checked specifically against known values (see below). All other values are
4259reserved.
4260
4261 0: MIPS32 or microMIPS32.
4262 Both registers and addresses are 32-bits wide.
4263 It will only be possible to run 32-bit guest code.
4264
4265 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4266 Registers are 64-bits wide, but addresses are 32-bits wide.
4267 64-bit guest code may run but cannot access MIPS64 memory segments.
4268 It will also be possible to run 32-bit guest code.
4269
4270 2: MIPS64 or microMIPS64 with access to all address segments.
4271 Both registers and addresses are 64-bits wide.
4272 It will be possible to run 64-bit or 32-bit guest code.
Michael S. Tsirkin668fffa2017-04-21 12:27:17 +02004273
42748.8 KVM_CAP_X86_GUEST_MWAIT
4275
4276Architectures: x86
4277
4278This capability indicates that guest using memory monotoring instructions
4279(MWAIT/MWAITX) to stop the virtual CPU will not cause a VM exit. As such time
4280spent while virtual CPU is halted in this way will then be accounted for as
4281guest running time on the host (as opposed to e.g. HLT).
Paolo Bonzinic24a7be2017-04-27 17:33:14 +02004282
42838.9 KVM_CAP_ARM_USER_IRQ
Alexander Graf3fe17e62016-09-27 21:08:05 +02004284
4285Architectures: arm, arm64
4286This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
4287that if userspace creates a VM without an in-kernel interrupt controller, it
4288will be notified of changes to the output level of in-kernel emulated devices,
4289which can generate virtual interrupts, presented to the VM.
4290For such VMs, on every return to userspace, the kernel
4291updates the vcpu's run->s.regs.device_irq_level field to represent the actual
4292output level of the device.
4293
4294Whenever kvm detects a change in the device output level, kvm guarantees at
4295least one return to userspace before running the VM. This exit could either
4296be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
4297userspace can always sample the device output level and re-compute the state of
4298the userspace interrupt controller. Userspace should always check the state
4299of run->s.regs.device_irq_level on every kvm exit.
4300The value in run->s.regs.device_irq_level can represent both level and edge
4301triggered interrupt signals, depending on the device. Edge triggered interrupt
4302signals will exit to userspace with the bit in run->s.regs.device_irq_level
4303set exactly once per edge signal.
4304
4305The field run->s.regs.device_irq_level is available independent of
4306run->kvm_valid_regs or run->kvm_dirty_regs bits.
4307
4308If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
4309number larger than 0 indicating the version of this capability is implemented
4310and thereby which bits in in run->s.regs.device_irq_level can signal values.
4311
4312Currently the following bits are defined for the device_irq_level bitmap:
4313
4314 KVM_CAP_ARM_USER_IRQ >= 1:
4315
4316 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
4317 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
4318 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
4319
4320Future versions of kvm may implement additional events. These will get
4321indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
4322listed above.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004323
43248.10 KVM_CAP_PPC_SMT_POSSIBLE
4325
4326Architectures: ppc
4327
4328Querying this capability returns a bitmap indicating the possible
4329virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
4330(counting from the right) is set, then a virtual SMT mode of 2^N is
4331available.
Roman Kaganefc479e2017-06-22 16:51:01 +03004332
43338.11 KVM_CAP_HYPERV_SYNIC2
4334
4335Architectures: x86
4336
4337This capability enables a newer version of Hyper-V Synthetic interrupt
4338controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
4339doesn't clear SynIC message and event flags pages when they are enabled by
4340writing to the respective MSRs.
Roman Kagand3457c82017-07-14 17:13:20 +03004341
43428.12 KVM_CAP_HYPERV_VP_INDEX
4343
4344Architectures: x86
4345
4346This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
4347value is used to denote the target vcpu for a SynIC interrupt. For
4348compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
4349capability is absent, userspace can still query this msr's value.