blob: 4029943887a30b89e4cc8a30d4d533ca10aaa36a [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
Jann Hornbcb85c82017-04-24 11:16:49 +0200113The new VM has no virtual cpus and no memory.
James Hogana8a3c422017-03-14 10:15:19 +0000114You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115
116In order to create user controlled virtual machines on S390, check
117KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
118privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300119
James Hogana8a3c422017-03-14 10:15:19 +0000120To use hardware assisted virtualization on MIPS (VZ ASE) rather than
121the default trap & emulate implementation (which changes the virtual
122memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
123flag KVM_VM_MIPS_VZ.
124
Jan Kiszka414fa982012-04-24 16:40:15 +0200125
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001264.3 KVM_GET_MSR_INDEX_LIST
127
128Capability: basic
129Architectures: x86
130Type: system
131Parameters: struct kvm_msr_list (in/out)
132Returns: 0 on success; -1 on error
133Errors:
134 E2BIG: the msr index list is to be to fit in the array specified by
135 the user.
136
137struct kvm_msr_list {
138 __u32 nmsrs; /* number of msrs in entries */
139 __u32 indices[0];
140};
141
142This ioctl returns the guest msrs that are supported. The list varies
143by kvm version and host processor, but does not change otherwise. The
144user fills in the size of the indices array in nmsrs, and in return
145kvm adjusts nmsrs to reflect the actual number of msrs and fills in
146the indices array with their numbers.
147
Avi Kivity2e2602c2010-07-07 14:09:39 +0300148Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
149not returned in the MSR list, as different vcpus can have a different number
150of banks, as set via the KVM_X86_SETUP_MCE ioctl.
151
Jan Kiszka414fa982012-04-24 16:40:15 +0200152
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001534.4 KVM_CHECK_EXTENSION
154
Alexander Graf92b591a2014-07-14 18:33:08 +0200155Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300156Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200157Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300158Parameters: extension identifier (KVM_CAP_*)
159Returns: 0 if unsupported; 1 (or some other positive integer) if supported
160
161The API allows the application to query about extensions to the core
162kvm API. Userspace passes an extension identifier (an integer) and
163receives an integer that describes the extension availability.
164Generally 0 means no and 1 means yes, but some extensions may report
165additional information in the integer return value.
166
Alexander Graf92b591a2014-07-14 18:33:08 +0200167Based on their initialization different VMs may have different capabilities.
168It is thus encouraged to use the vm ioctl to query for capabilities (available
169with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200170
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001714.5 KVM_GET_VCPU_MMAP_SIZE
172
173Capability: basic
174Architectures: all
175Type: system ioctl
176Parameters: none
177Returns: size of vcpu mmap area, in bytes
178
179The KVM_RUN ioctl (cf.) communicates with userspace via a shared
180memory region. This ioctl returns the size of that region. See the
181KVM_RUN documentation for details.
182
Jan Kiszka414fa982012-04-24 16:40:15 +0200183
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001844.6 KVM_SET_MEMORY_REGION
185
186Capability: basic
187Architectures: all
188Type: vm ioctl
189Parameters: struct kvm_memory_region (in)
190Returns: 0 on success, -1 on error
191
Avi Kivityb74a07b2010-06-21 11:48:05 +0300192This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300193
Jan Kiszka414fa982012-04-24 16:40:15 +0200194
Paul Bolle68ba6972011-02-15 00:05:59 +01001954.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300196
197Capability: basic
198Architectures: all
199Type: vm ioctl
200Parameters: vcpu id (apic id on x86)
201Returns: vcpu fd on success, -1 on error
202
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200203This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
204The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300205
206The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
207the KVM_CHECK_EXTENSION ioctl() at run-time.
208The maximum possible value for max_vcpus can be retrieved using the
209KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
210
Pekka Enberg76d25402011-05-09 22:48:54 +0300211If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
212cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300213If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
214same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300215
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200216The maximum possible value for max_vcpu_id can be retrieved using the
217KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
218
219If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
220is the same as the value returned from KVM_CAP_MAX_VCPUS.
221
Paul Mackerras371fefd2011-06-29 00:23:08 +0000222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
Carsten Otte5b1c1492012-01-04 10:25:23 +0100235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
Jan Kiszka414fa982012-04-24 16:40:15 +0200240
Paul Bolle68ba6972011-02-15 00:05:59 +01002414.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
Paolo Bonzinif481b062015-05-17 17:30:37 +0200264If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
265the address space for which you want to return the dirty bitmap.
266They must be less than the value that KVM_CHECK_EXTENSION returns for
267the KVM_CAP_MULTI_ADDRESS_SPACE capability.
268
Jan Kiszka414fa982012-04-24 16:40:15 +0200269
Paul Bolle68ba6972011-02-15 00:05:59 +01002704.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300271
272Capability: basic
273Architectures: x86
274Type: vm ioctl
275Parameters: struct kvm_memory_alias (in)
276Returns: 0 (success), -1 (error)
277
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300278This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300279
Jan Kiszka414fa982012-04-24 16:40:15 +0200280
Paul Bolle68ba6972011-02-15 00:05:59 +01002814.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300282
283Capability: basic
284Architectures: all
285Type: vcpu ioctl
286Parameters: none
287Returns: 0 on success, -1 on error
288Errors:
289 EINTR: an unmasked signal is pending
290
291This ioctl is used to run a guest virtual cpu. While there are no
292explicit parameters, there is an implicit parameter block that can be
293obtained by mmap()ing the vcpu fd at offset 0, with the size given by
294KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
295kvm_run' (see below).
296
Jan Kiszka414fa982012-04-24 16:40:15 +0200297
Paul Bolle68ba6972011-02-15 00:05:59 +01002984.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300299
300Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100301Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300302Type: vcpu ioctl
303Parameters: struct kvm_regs (out)
304Returns: 0 on success, -1 on error
305
306Reads the general purpose registers from the vcpu.
307
308/* x86 */
309struct kvm_regs {
310 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
311 __u64 rax, rbx, rcx, rdx;
312 __u64 rsi, rdi, rsp, rbp;
313 __u64 r8, r9, r10, r11;
314 __u64 r12, r13, r14, r15;
315 __u64 rip, rflags;
316};
317
James Hoganc2d2c212014-07-04 15:11:35 +0100318/* mips */
319struct kvm_regs {
320 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
321 __u64 gpr[32];
322 __u64 hi;
323 __u64 lo;
324 __u64 pc;
325};
326
Jan Kiszka414fa982012-04-24 16:40:15 +0200327
Paul Bolle68ba6972011-02-15 00:05:59 +01003284.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300329
330Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100331Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300332Type: vcpu ioctl
333Parameters: struct kvm_regs (in)
334Returns: 0 on success, -1 on error
335
336Writes the general purpose registers into the vcpu.
337
338See KVM_GET_REGS for the data structure.
339
Jan Kiszka414fa982012-04-24 16:40:15 +0200340
Paul Bolle68ba6972011-02-15 00:05:59 +01003414.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300342
343Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500344Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300345Type: vcpu ioctl
346Parameters: struct kvm_sregs (out)
347Returns: 0 on success, -1 on error
348
349Reads special registers from the vcpu.
350
351/* x86 */
352struct kvm_sregs {
353 struct kvm_segment cs, ds, es, fs, gs, ss;
354 struct kvm_segment tr, ldt;
355 struct kvm_dtable gdt, idt;
356 __u64 cr0, cr2, cr3, cr4, cr8;
357 __u64 efer;
358 __u64 apic_base;
359 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
360};
361
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000362/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500363
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300364interrupt_bitmap is a bitmap of pending external interrupts. At most
365one bit may be set. This interrupt has been acknowledged by the APIC
366but not yet injected into the cpu core.
367
Jan Kiszka414fa982012-04-24 16:40:15 +0200368
Paul Bolle68ba6972011-02-15 00:05:59 +01003694.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300370
371Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500372Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300373Type: vcpu ioctl
374Parameters: struct kvm_sregs (in)
375Returns: 0 on success, -1 on error
376
377Writes special registers into the vcpu. See KVM_GET_SREGS for the
378data structures.
379
Jan Kiszka414fa982012-04-24 16:40:15 +0200380
Paul Bolle68ba6972011-02-15 00:05:59 +01003814.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300382
383Capability: basic
384Architectures: x86
385Type: vcpu ioctl
386Parameters: struct kvm_translation (in/out)
387Returns: 0 on success, -1 on error
388
389Translates a virtual address according to the vcpu's current address
390translation mode.
391
392struct kvm_translation {
393 /* in */
394 __u64 linear_address;
395
396 /* out */
397 __u64 physical_address;
398 __u8 valid;
399 __u8 writeable;
400 __u8 usermode;
401 __u8 pad[5];
402};
403
Jan Kiszka414fa982012-04-24 16:40:15 +0200404
Paul Bolle68ba6972011-02-15 00:05:59 +01004054.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300406
407Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100408Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300409Type: vcpu ioctl
410Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200411Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300412
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200413Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300414
415/* for KVM_INTERRUPT */
416struct kvm_interrupt {
417 /* in */
418 __u32 irq;
419};
420
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200421X86:
422
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200423Returns: 0 on success,
424 -EEXIST if an interrupt is already enqueued
425 -EINVAL the the irq number is invalid
426 -ENXIO if the PIC is in the kernel
427 -EFAULT if the pointer is invalid
428
429Note 'irq' is an interrupt vector, not an interrupt pin or line. This
430ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300431
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200432PPC:
433
434Queues an external interrupt to be injected. This ioctl is overleaded
435with 3 different irq values:
436
437a) KVM_INTERRUPT_SET
438
439 This injects an edge type external interrupt into the guest once it's ready
440 to receive interrupts. When injected, the interrupt is done.
441
442b) KVM_INTERRUPT_UNSET
443
444 This unsets any pending interrupt.
445
446 Only available with KVM_CAP_PPC_UNSET_IRQ.
447
448c) KVM_INTERRUPT_SET_LEVEL
449
450 This injects a level type external interrupt into the guest context. The
451 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
452 is triggered.
453
454 Only available with KVM_CAP_PPC_IRQ_LEVEL.
455
456Note that any value for 'irq' other than the ones stated above is invalid
457and incurs unexpected behavior.
458
James Hoganc2d2c212014-07-04 15:11:35 +0100459MIPS:
460
461Queues an external interrupt to be injected into the virtual CPU. A negative
462interrupt number dequeues the interrupt.
463
Jan Kiszka414fa982012-04-24 16:40:15 +0200464
Paul Bolle68ba6972011-02-15 00:05:59 +01004654.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300466
467Capability: basic
468Architectures: none
469Type: vcpu ioctl
470Parameters: none)
471Returns: -1 on error
472
473Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
474
Jan Kiszka414fa982012-04-24 16:40:15 +0200475
Paul Bolle68ba6972011-02-15 00:05:59 +01004764.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300477
478Capability: basic
479Architectures: x86
480Type: vcpu ioctl
481Parameters: struct kvm_msrs (in/out)
482Returns: 0 on success, -1 on error
483
484Reads model-specific registers from the vcpu. Supported msr indices can
485be obtained using KVM_GET_MSR_INDEX_LIST.
486
487struct kvm_msrs {
488 __u32 nmsrs; /* number of msrs in entries */
489 __u32 pad;
490
491 struct kvm_msr_entry entries[0];
492};
493
494struct kvm_msr_entry {
495 __u32 index;
496 __u32 reserved;
497 __u64 data;
498};
499
500Application code should set the 'nmsrs' member (which indicates the
501size of the entries array) and the 'index' member of each array entry.
502kvm will fill in the 'data' member.
503
Jan Kiszka414fa982012-04-24 16:40:15 +0200504
Paul Bolle68ba6972011-02-15 00:05:59 +01005054.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300506
507Capability: basic
508Architectures: x86
509Type: vcpu ioctl
510Parameters: struct kvm_msrs (in)
511Returns: 0 on success, -1 on error
512
513Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
514data structures.
515
516Application code should set the 'nmsrs' member (which indicates the
517size of the entries array), and the 'index' and 'data' members of each
518array entry.
519
Jan Kiszka414fa982012-04-24 16:40:15 +0200520
Paul Bolle68ba6972011-02-15 00:05:59 +01005214.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300522
523Capability: basic
524Architectures: x86
525Type: vcpu ioctl
526Parameters: struct kvm_cpuid (in)
527Returns: 0 on success, -1 on error
528
529Defines the vcpu responses to the cpuid instruction. Applications
530should use the KVM_SET_CPUID2 ioctl if available.
531
532
533struct kvm_cpuid_entry {
534 __u32 function;
535 __u32 eax;
536 __u32 ebx;
537 __u32 ecx;
538 __u32 edx;
539 __u32 padding;
540};
541
542/* for KVM_SET_CPUID */
543struct kvm_cpuid {
544 __u32 nent;
545 __u32 padding;
546 struct kvm_cpuid_entry entries[0];
547};
548
Jan Kiszka414fa982012-04-24 16:40:15 +0200549
Paul Bolle68ba6972011-02-15 00:05:59 +01005504.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300551
552Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100553Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300554Type: vcpu ioctl
555Parameters: struct kvm_signal_mask (in)
556Returns: 0 on success, -1 on error
557
558Defines which signals are blocked during execution of KVM_RUN. This
559signal mask temporarily overrides the threads signal mask. Any
560unblocked signal received (except SIGKILL and SIGSTOP, which retain
561their traditional behaviour) will cause KVM_RUN to return with -EINTR.
562
563Note the signal will only be delivered if not blocked by the original
564signal mask.
565
566/* for KVM_SET_SIGNAL_MASK */
567struct kvm_signal_mask {
568 __u32 len;
569 __u8 sigset[0];
570};
571
Jan Kiszka414fa982012-04-24 16:40:15 +0200572
Paul Bolle68ba6972011-02-15 00:05:59 +01005734.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300574
575Capability: basic
576Architectures: x86
577Type: vcpu ioctl
578Parameters: struct kvm_fpu (out)
579Returns: 0 on success, -1 on error
580
581Reads the floating point state from the vcpu.
582
583/* for KVM_GET_FPU and KVM_SET_FPU */
584struct kvm_fpu {
585 __u8 fpr[8][16];
586 __u16 fcw;
587 __u16 fsw;
588 __u8 ftwx; /* in fxsave format */
589 __u8 pad1;
590 __u16 last_opcode;
591 __u64 last_ip;
592 __u64 last_dp;
593 __u8 xmm[16][16];
594 __u32 mxcsr;
595 __u32 pad2;
596};
597
Jan Kiszka414fa982012-04-24 16:40:15 +0200598
Paul Bolle68ba6972011-02-15 00:05:59 +01005994.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300600
601Capability: basic
602Architectures: x86
603Type: vcpu ioctl
604Parameters: struct kvm_fpu (in)
605Returns: 0 on success, -1 on error
606
607Writes the floating point state to the vcpu.
608
609/* for KVM_GET_FPU and KVM_SET_FPU */
610struct kvm_fpu {
611 __u8 fpr[8][16];
612 __u16 fcw;
613 __u16 fsw;
614 __u8 ftwx; /* in fxsave format */
615 __u8 pad1;
616 __u16 last_opcode;
617 __u64 last_ip;
618 __u64 last_dp;
619 __u8 xmm[16][16];
620 __u32 mxcsr;
621 __u32 pad2;
622};
623
Jan Kiszka414fa982012-04-24 16:40:15 +0200624
Paul Bolle68ba6972011-02-15 00:05:59 +01006254.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300626
Cornelia Huck84223592013-07-15 13:36:01 +0200627Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100628Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300629Type: vm ioctl
630Parameters: none
631Returns: 0 on success, -1 on error
632
Andre Przywaraac3d3732014-06-03 10:26:30 +0200633Creates an interrupt controller model in the kernel.
634On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
635future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
636PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
637On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
638KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
639KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
640On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200641
642Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
643before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300644
Jan Kiszka414fa982012-04-24 16:40:15 +0200645
Paul Bolle68ba6972011-02-15 00:05:59 +01006464.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300647
648Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100649Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300650Type: vm ioctl
651Parameters: struct kvm_irq_level
652Returns: 0 on success, -1 on error
653
654Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500655On some architectures it is required that an interrupt controller model has
656been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
657interrupts require the level to be set to 1 and then back to 0.
658
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500659On real hardware, interrupt pins can be active-low or active-high. This
660does not matter for the level field of struct kvm_irq_level: 1 always
661means active (asserted), 0 means inactive (deasserted).
662
663x86 allows the operating system to program the interrupt polarity
664(active-low/active-high) for level-triggered interrupts, and KVM used
665to consider the polarity. However, due to bitrot in the handling of
666active-low interrupts, the above convention is now valid on x86 too.
667This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
668should not present interrupts to the guest as active-low unless this
669capability is present (or unless it is not using the in-kernel irqchip,
670of course).
671
672
Marc Zyngier379e04c72013-04-02 17:46:31 +0100673ARM/arm64 can signal an interrupt either at the CPU level, or at the
674in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
675use PPIs designated for specific cpus. The irq field is interpreted
676like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500677
678  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
679 field: | irq_type | vcpu_index | irq_id |
680
681The irq_type field has the following values:
682- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
683- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
684 (the vcpu_index field is ignored)
685- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
686
687(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
688
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500689In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300690
691struct kvm_irq_level {
692 union {
693 __u32 irq; /* GSI */
694 __s32 status; /* not used for KVM_IRQ_LEVEL */
695 };
696 __u32 level; /* 0 or 1 */
697};
698
Jan Kiszka414fa982012-04-24 16:40:15 +0200699
Paul Bolle68ba6972011-02-15 00:05:59 +01007004.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300701
702Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100703Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300704Type: vm ioctl
705Parameters: struct kvm_irqchip (in/out)
706Returns: 0 on success, -1 on error
707
708Reads the state of a kernel interrupt controller created with
709KVM_CREATE_IRQCHIP into a buffer provided by the caller.
710
711struct kvm_irqchip {
712 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
713 __u32 pad;
714 union {
715 char dummy[512]; /* reserving space */
716 struct kvm_pic_state pic;
717 struct kvm_ioapic_state ioapic;
718 } chip;
719};
720
Jan Kiszka414fa982012-04-24 16:40:15 +0200721
Paul Bolle68ba6972011-02-15 00:05:59 +01007224.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300723
724Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100725Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300726Type: vm ioctl
727Parameters: struct kvm_irqchip (in)
728Returns: 0 on success, -1 on error
729
730Sets the state of a kernel interrupt controller created with
731KVM_CREATE_IRQCHIP from a buffer provided by the caller.
732
733struct kvm_irqchip {
734 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
735 __u32 pad;
736 union {
737 char dummy[512]; /* reserving space */
738 struct kvm_pic_state pic;
739 struct kvm_ioapic_state ioapic;
740 } chip;
741};
742
Jan Kiszka414fa982012-04-24 16:40:15 +0200743
Paul Bolle68ba6972011-02-15 00:05:59 +01007444.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700745
746Capability: KVM_CAP_XEN_HVM
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_xen_hvm_config (in)
750Returns: 0 on success, -1 on error
751
752Sets the MSR that the Xen HVM guest uses to initialize its hypercall
753page, and provides the starting address and size of the hypercall
754blobs in userspace. When the guest writes the MSR, kvm copies one
755page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
756memory.
757
758struct kvm_xen_hvm_config {
759 __u32 flags;
760 __u32 msr;
761 __u64 blob_addr_32;
762 __u64 blob_addr_64;
763 __u8 blob_size_32;
764 __u8 blob_size_64;
765 __u8 pad2[30];
766};
767
Jan Kiszka414fa982012-04-24 16:40:15 +0200768
Paul Bolle68ba6972011-02-15 00:05:59 +01007694.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400770
771Capability: KVM_CAP_ADJUST_CLOCK
772Architectures: x86
773Type: vm ioctl
774Parameters: struct kvm_clock_data (out)
775Returns: 0 on success, -1 on error
776
777Gets the current timestamp of kvmclock as seen by the current guest. In
778conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
779such as migration.
780
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100781When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
782set of bits that KVM can return in struct kvm_clock_data's flag member.
783
784The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
785value is the exact kvmclock value seen by all VCPUs at the instant
786when KVM_GET_CLOCK was called. If clear, the returned value is simply
787CLOCK_MONOTONIC plus a constant offset; the offset can be modified
788with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
789but the exact value read by each VCPU could differ, because the host
790TSC is not stable.
791
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400792struct kvm_clock_data {
793 __u64 clock; /* kvmclock current value */
794 __u32 flags;
795 __u32 pad[9];
796};
797
Jan Kiszka414fa982012-04-24 16:40:15 +0200798
Paul Bolle68ba6972011-02-15 00:05:59 +01007994.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400800
801Capability: KVM_CAP_ADJUST_CLOCK
802Architectures: x86
803Type: vm ioctl
804Parameters: struct kvm_clock_data (in)
805Returns: 0 on success, -1 on error
806
Wu Fengguang2044892d2009-12-24 09:04:16 +0800807Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400808In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
809such as migration.
810
811struct kvm_clock_data {
812 __u64 clock; /* kvmclock current value */
813 __u32 flags;
814 __u32 pad[9];
815};
816
Jan Kiszka414fa982012-04-24 16:40:15 +0200817
Paul Bolle68ba6972011-02-15 00:05:59 +01008184.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100819
820Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100821Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100822Architectures: x86
823Type: vm ioctl
824Parameters: struct kvm_vcpu_event (out)
825Returns: 0 on success, -1 on error
826
827Gets currently pending exceptions, interrupts, and NMIs as well as related
828states of the vcpu.
829
830struct kvm_vcpu_events {
831 struct {
832 __u8 injected;
833 __u8 nr;
834 __u8 has_error_code;
835 __u8 pad;
836 __u32 error_code;
837 } exception;
838 struct {
839 __u8 injected;
840 __u8 nr;
841 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100842 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100843 } interrupt;
844 struct {
845 __u8 injected;
846 __u8 pending;
847 __u8 masked;
848 __u8 pad;
849 } nmi;
850 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100851 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200852 struct {
853 __u8 smm;
854 __u8 pending;
855 __u8 smm_inside_nmi;
856 __u8 latched_init;
857 } smi;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100858};
859
Paolo Bonzinif0778252015-04-01 15:06:40 +0200860Only two fields are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100861
Paolo Bonzinif0778252015-04-01 15:06:40 +0200862- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
863 interrupt.shadow contains a valid state.
864
865- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
866 smi contains a valid state.
Jan Kiszka414fa982012-04-24 16:40:15 +0200867
Paul Bolle68ba6972011-02-15 00:05:59 +01008684.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100869
870Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100871Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100872Architectures: x86
873Type: vm ioctl
874Parameters: struct kvm_vcpu_event (in)
875Returns: 0 on success, -1 on error
876
877Set pending exceptions, interrupts, and NMIs as well as related states of the
878vcpu.
879
880See KVM_GET_VCPU_EVENTS for the data structure.
881
Jan Kiszkadab4b912009-12-06 18:24:15 +0100882Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200883from the update. These fields are nmi.pending, sipi_vector, smi.smm,
884smi.pending. Keep the corresponding bits in the flags field cleared to
885suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100886
887KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
888KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200889KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100890
Jan Kiszka48005f62010-02-19 19:38:07 +0100891If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
892the flags field to signal that interrupt.shadow contains a valid state and
893shall be written into the VCPU.
894
Paolo Bonzinif0778252015-04-01 15:06:40 +0200895KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
896
Jan Kiszka414fa982012-04-24 16:40:15 +0200897
Paul Bolle68ba6972011-02-15 00:05:59 +01008984.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100899
900Capability: KVM_CAP_DEBUGREGS
901Architectures: x86
902Type: vm ioctl
903Parameters: struct kvm_debugregs (out)
904Returns: 0 on success, -1 on error
905
906Reads debug registers from the vcpu.
907
908struct kvm_debugregs {
909 __u64 db[4];
910 __u64 dr6;
911 __u64 dr7;
912 __u64 flags;
913 __u64 reserved[9];
914};
915
Jan Kiszka414fa982012-04-24 16:40:15 +0200916
Paul Bolle68ba6972011-02-15 00:05:59 +01009174.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100918
919Capability: KVM_CAP_DEBUGREGS
920Architectures: x86
921Type: vm ioctl
922Parameters: struct kvm_debugregs (in)
923Returns: 0 on success, -1 on error
924
925Writes debug registers into the vcpu.
926
927See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
928yet and must be cleared on entry.
929
Jan Kiszka414fa982012-04-24 16:40:15 +0200930
Paul Bolle68ba6972011-02-15 00:05:59 +01009314.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200932
933Capability: KVM_CAP_USER_MEM
934Architectures: all
935Type: vm ioctl
936Parameters: struct kvm_userspace_memory_region (in)
937Returns: 0 on success, -1 on error
938
939struct kvm_userspace_memory_region {
940 __u32 slot;
941 __u32 flags;
942 __u64 guest_phys_addr;
943 __u64 memory_size; /* bytes */
944 __u64 userspace_addr; /* start of the userspace allocated memory */
945};
946
947/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800948#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
949#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200950
951This ioctl allows the user to create or modify a guest physical memory
952slot. When changing an existing slot, it may be moved in the guest
953physical memory space, or its flags may be modified. It may not be
954resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +0530955Bits 0-15 of "slot" specifies the slot id and this value should be
956less than the maximum number of user memory slots supported per VM.
957The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
958if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200959
Paolo Bonzinif481b062015-05-17 17:30:37 +0200960If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
961specifies the address space which is being modified. They must be
962less than the value that KVM_CHECK_EXTENSION returns for the
963KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
964are unrelated; the restriction on overlapping slots only applies within
965each address space.
966
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200967Memory for the region is taken starting at the address denoted by the
968field userspace_addr, which must point at user addressable memory for
969the entire memory slot size. Any object may back this memory, including
970anonymous memory, ordinary files, and hugetlbfs.
971
972It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
973be identical. This allows large pages in the guest to be backed by large
974pages in the host.
975
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +0900976The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
977KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
978writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
979use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
980to make a new slot read-only. In this case, writes to this memory will be
981posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200982
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200983When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
984the memory region are automatically reflected into the guest. For example, an
985mmap() that affects the region will be made visible immediately. Another
986example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200987
988It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
989The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
990allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100991
Jan Kiszka414fa982012-04-24 16:40:15 +0200992
Paul Bolle68ba6972011-02-15 00:05:59 +01009934.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200994
995Capability: KVM_CAP_SET_TSS_ADDR
996Architectures: x86
997Type: vm ioctl
998Parameters: unsigned long tss_address (in)
999Returns: 0 on success, -1 on error
1000
1001This ioctl defines the physical address of a three-page region in the guest
1002physical address space. The region must be within the first 4GB of the
1003guest physical address space and must not conflict with any memory slot
1004or any mmio address. The guest may malfunction if it accesses this memory
1005region.
1006
1007This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1008because of a quirk in the virtualization implementation (see the internals
1009documentation when it pops into existence).
1010
Jan Kiszka414fa982012-04-24 16:40:15 +02001011
Paul Bolle68ba6972011-02-15 00:05:59 +010010124.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001013
Cornelia Huckd938dc52013-10-23 18:26:34 +02001014Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Nadav Amit90de4a12015-04-13 01:53:41 +03001015Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1016 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
Cornelia Huckd938dc52013-10-23 18:26:34 +02001017Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Alexander Graf71fbfd52010-03-24 21:48:29 +01001018Parameters: struct kvm_enable_cap (in)
1019Returns: 0 on success; -1 on error
1020
1021+Not all extensions are enabled by default. Using this ioctl the application
1022can enable an extension, making it available to the guest.
1023
1024On systems that do not support this ioctl, it always fails. On systems that
1025do support it, it only works for extensions that are supported for enablement.
1026
1027To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1028be used.
1029
1030struct kvm_enable_cap {
1031 /* in */
1032 __u32 cap;
1033
1034The capability that is supposed to get enabled.
1035
1036 __u32 flags;
1037
1038A bitfield indicating future enhancements. Has to be 0 for now.
1039
1040 __u64 args[4];
1041
1042Arguments for enabling a feature. If a feature needs initial values to
1043function properly, this is the place to put them.
1044
1045 __u8 pad[64];
1046};
1047
Cornelia Huckd938dc52013-10-23 18:26:34 +02001048The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1049for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001050
Paul Bolle68ba6972011-02-15 00:05:59 +010010514.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001052
1053Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001054Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001055Type: vcpu ioctl
1056Parameters: struct kvm_mp_state (out)
1057Returns: 0 on success; -1 on error
1058
1059struct kvm_mp_state {
1060 __u32 mp_state;
1061};
1062
1063Returns the vcpu's current "multiprocessing state" (though also valid on
1064uniprocessor guests).
1065
1066Possible values are:
1067
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001068 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001069 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001070 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001071 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001072 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001073 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001074 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001075 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001076 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001077 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001078 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1079 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1080 [s390]
1081 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1082 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001083
Tiejun Chenc32a4272014-11-20 11:07:18 +01001084On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001085in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1086these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001087
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001088For arm/arm64:
1089
1090The only states that are valid are KVM_MP_STATE_STOPPED and
1091KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001092
Paul Bolle68ba6972011-02-15 00:05:59 +010010934.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001094
1095Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001096Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001097Type: vcpu ioctl
1098Parameters: struct kvm_mp_state (in)
1099Returns: 0 on success; -1 on error
1100
1101Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1102arguments.
1103
Tiejun Chenc32a4272014-11-20 11:07:18 +01001104On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001105in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1106these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001107
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001108For arm/arm64:
1109
1110The only states that are valid are KVM_MP_STATE_STOPPED and
1111KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001112
Paul Bolle68ba6972011-02-15 00:05:59 +010011134.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001114
1115Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1116Architectures: x86
1117Type: vm ioctl
1118Parameters: unsigned long identity (in)
1119Returns: 0 on success, -1 on error
1120
1121This ioctl defines the physical address of a one-page region in the guest
1122physical address space. The region must be within the first 4GB of the
1123guest physical address space and must not conflict with any memory slot
1124or any mmio address. The guest may malfunction if it accesses this memory
1125region.
1126
1127This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1128because of a quirk in the virtualization implementation (see the internals
1129documentation when it pops into existence).
1130
Jan Kiszka414fa982012-04-24 16:40:15 +02001131
Paul Bolle68ba6972011-02-15 00:05:59 +010011324.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001133
1134Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001135Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001136Type: vm ioctl
1137Parameters: unsigned long vcpu_id
1138Returns: 0 on success, -1 on error
1139
1140Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1141as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1142is vcpu 0.
1143
Jan Kiszka414fa982012-04-24 16:40:15 +02001144
Paul Bolle68ba6972011-02-15 00:05:59 +010011454.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001146
1147Capability: KVM_CAP_XSAVE
1148Architectures: x86
1149Type: vcpu ioctl
1150Parameters: struct kvm_xsave (out)
1151Returns: 0 on success, -1 on error
1152
1153struct kvm_xsave {
1154 __u32 region[1024];
1155};
1156
1157This ioctl would copy current vcpu's xsave struct to the userspace.
1158
Jan Kiszka414fa982012-04-24 16:40:15 +02001159
Paul Bolle68ba6972011-02-15 00:05:59 +010011604.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001161
1162Capability: KVM_CAP_XSAVE
1163Architectures: x86
1164Type: vcpu ioctl
1165Parameters: struct kvm_xsave (in)
1166Returns: 0 on success, -1 on error
1167
1168struct kvm_xsave {
1169 __u32 region[1024];
1170};
1171
1172This ioctl would copy userspace's xsave struct to the kernel.
1173
Jan Kiszka414fa982012-04-24 16:40:15 +02001174
Paul Bolle68ba6972011-02-15 00:05:59 +010011754.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001176
1177Capability: KVM_CAP_XCRS
1178Architectures: x86
1179Type: vcpu ioctl
1180Parameters: struct kvm_xcrs (out)
1181Returns: 0 on success, -1 on error
1182
1183struct kvm_xcr {
1184 __u32 xcr;
1185 __u32 reserved;
1186 __u64 value;
1187};
1188
1189struct kvm_xcrs {
1190 __u32 nr_xcrs;
1191 __u32 flags;
1192 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1193 __u64 padding[16];
1194};
1195
1196This ioctl would copy current vcpu's xcrs to the userspace.
1197
Jan Kiszka414fa982012-04-24 16:40:15 +02001198
Paul Bolle68ba6972011-02-15 00:05:59 +010011994.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001200
1201Capability: KVM_CAP_XCRS
1202Architectures: x86
1203Type: vcpu ioctl
1204Parameters: struct kvm_xcrs (in)
1205Returns: 0 on success, -1 on error
1206
1207struct kvm_xcr {
1208 __u32 xcr;
1209 __u32 reserved;
1210 __u64 value;
1211};
1212
1213struct kvm_xcrs {
1214 __u32 nr_xcrs;
1215 __u32 flags;
1216 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1217 __u64 padding[16];
1218};
1219
1220This ioctl would set vcpu's xcr to the value userspace specified.
1221
Jan Kiszka414fa982012-04-24 16:40:15 +02001222
Paul Bolle68ba6972011-02-15 00:05:59 +010012234.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001224
1225Capability: KVM_CAP_EXT_CPUID
1226Architectures: x86
1227Type: system ioctl
1228Parameters: struct kvm_cpuid2 (in/out)
1229Returns: 0 on success, -1 on error
1230
1231struct kvm_cpuid2 {
1232 __u32 nent;
1233 __u32 padding;
1234 struct kvm_cpuid_entry2 entries[0];
1235};
1236
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001237#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1238#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1239#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001240
1241struct kvm_cpuid_entry2 {
1242 __u32 function;
1243 __u32 index;
1244 __u32 flags;
1245 __u32 eax;
1246 __u32 ebx;
1247 __u32 ecx;
1248 __u32 edx;
1249 __u32 padding[3];
1250};
1251
1252This ioctl returns x86 cpuid features which are supported by both the hardware
1253and kvm. Userspace can use the information returned by this ioctl to
1254construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1255hardware, kernel, and userspace capabilities, and with user requirements (for
1256example, the user may wish to constrain cpuid to emulate older hardware,
1257or for feature consistency across a cluster).
1258
1259Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1260with the 'nent' field indicating the number of entries in the variable-size
1261array 'entries'. If the number of entries is too low to describe the cpu
1262capabilities, an error (E2BIG) is returned. If the number is too high,
1263the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1264number is just right, the 'nent' field is adjusted to the number of valid
1265entries in the 'entries' array, which is then filled.
1266
1267The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001268with unknown or unsupported features masked out. Some features (for example,
1269x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1270emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001271
1272 function: the eax value used to obtain the entry
1273 index: the ecx value used to obtain the entry (for entries that are
1274 affected by ecx)
1275 flags: an OR of zero or more of the following:
1276 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1277 if the index field is valid
1278 KVM_CPUID_FLAG_STATEFUL_FUNC:
1279 if cpuid for this function returns different values for successive
1280 invocations; there will be several entries with the same function,
1281 all with this flag set
1282 KVM_CPUID_FLAG_STATE_READ_NEXT:
1283 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1284 the first entry to be read by a cpu
1285 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1286 this function/index combination
1287
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001288The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1289as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1290support. Instead it is reported via
1291
1292 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1293
1294if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1295feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1296
Jan Kiszka414fa982012-04-24 16:40:15 +02001297
Paul Bolle68ba6972011-02-15 00:05:59 +010012984.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001299
1300Capability: KVM_CAP_PPC_GET_PVINFO
1301Architectures: ppc
1302Type: vm ioctl
1303Parameters: struct kvm_ppc_pvinfo (out)
1304Returns: 0 on success, !0 on error
1305
1306struct kvm_ppc_pvinfo {
1307 __u32 flags;
1308 __u32 hcall[4];
1309 __u8 pad[108];
1310};
1311
1312This ioctl fetches PV specific information that need to be passed to the guest
1313using the device tree or other means from vm context.
1314
Liu Yu-B132019202e072012-07-03 05:48:52 +00001315The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001316
1317If any additional field gets added to this structure later on, a bit for that
1318additional piece of information will be set in the flags bitmap.
1319
Liu Yu-B132019202e072012-07-03 05:48:52 +00001320The flags bitmap is defined as:
1321
1322 /* the host supports the ePAPR idle hcall
1323 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001324
Paul Bolle68ba6972011-02-15 00:05:59 +010013254.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001326
1327Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001328Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001329Type: vm ioctl
1330Parameters: struct kvm_irq_routing (in)
1331Returns: 0 on success, -1 on error
1332
1333Sets the GSI routing table entries, overwriting any previously set entries.
1334
Eric Auger180ae7b2016-07-22 16:20:41 +00001335On arm/arm64, GSI routing has the following limitation:
1336- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1337
Jan Kiszka49f48172010-11-16 22:30:07 +01001338struct kvm_irq_routing {
1339 __u32 nr;
1340 __u32 flags;
1341 struct kvm_irq_routing_entry entries[0];
1342};
1343
1344No flags are specified so far, the corresponding field must be set to zero.
1345
1346struct kvm_irq_routing_entry {
1347 __u32 gsi;
1348 __u32 type;
1349 __u32 flags;
1350 __u32 pad;
1351 union {
1352 struct kvm_irq_routing_irqchip irqchip;
1353 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001354 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001355 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001356 __u32 pad[8];
1357 } u;
1358};
1359
1360/* gsi routing entry types */
1361#define KVM_IRQ_ROUTING_IRQCHIP 1
1362#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001363#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001364#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001365
Eric Auger76a10b82016-07-22 16:20:37 +00001366flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001367- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1368 type, specifies that the devid field contains a valid value. The per-VM
1369 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1370 the device ID. If this capability is not available, userspace should
1371 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001372- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001373
1374struct kvm_irq_routing_irqchip {
1375 __u32 irqchip;
1376 __u32 pin;
1377};
1378
1379struct kvm_irq_routing_msi {
1380 __u32 address_lo;
1381 __u32 address_hi;
1382 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001383 union {
1384 __u32 pad;
1385 __u32 devid;
1386 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001387};
1388
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001389If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1390for the device that wrote the MSI message. For PCI, this is usually a
1391BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001392
Radim Krčmář371313132016-07-12 22:09:27 +02001393On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1394feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1395address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1396address_hi must be zero.
1397
Cornelia Huck84223592013-07-15 13:36:01 +02001398struct kvm_irq_routing_s390_adapter {
1399 __u64 ind_addr;
1400 __u64 summary_addr;
1401 __u64 ind_offset;
1402 __u32 summary_offset;
1403 __u32 adapter_id;
1404};
1405
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001406struct kvm_irq_routing_hv_sint {
1407 __u32 vcpu;
1408 __u32 sint;
1409};
Jan Kiszka414fa982012-04-24 16:40:15 +02001410
Jan Kiszka414fa982012-04-24 16:40:15 +02001411
14124.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001413
1414Capability: KVM_CAP_TSC_CONTROL
1415Architectures: x86
1416Type: vcpu ioctl
1417Parameters: virtual tsc_khz
1418Returns: 0 on success, -1 on error
1419
1420Specifies the tsc frequency for the virtual machine. The unit of the
1421frequency is KHz.
1422
Jan Kiszka414fa982012-04-24 16:40:15 +02001423
14244.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001425
1426Capability: KVM_CAP_GET_TSC_KHZ
1427Architectures: x86
1428Type: vcpu ioctl
1429Parameters: none
1430Returns: virtual tsc-khz on success, negative value on error
1431
1432Returns the tsc frequency of the guest. The unit of the return value is
1433KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1434error.
1435
Jan Kiszka414fa982012-04-24 16:40:15 +02001436
14374.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001438
1439Capability: KVM_CAP_IRQCHIP
1440Architectures: x86
1441Type: vcpu ioctl
1442Parameters: struct kvm_lapic_state (out)
1443Returns: 0 on success, -1 on error
1444
1445#define KVM_APIC_REG_SIZE 0x400
1446struct kvm_lapic_state {
1447 char regs[KVM_APIC_REG_SIZE];
1448};
1449
1450Reads the Local APIC registers and copies them into the input argument. The
1451data format and layout are the same as documented in the architecture manual.
1452
Radim Krčmář371313132016-07-12 22:09:27 +02001453If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1454enabled, then the format of APIC_ID register depends on the APIC mode
1455(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1456the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1457which is stored in bits 31-24 of the APIC register, or equivalently in
1458byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1459be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1460
1461If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1462always uses xAPIC format.
1463
Jan Kiszka414fa982012-04-24 16:40:15 +02001464
14654.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001466
1467Capability: KVM_CAP_IRQCHIP
1468Architectures: x86
1469Type: vcpu ioctl
1470Parameters: struct kvm_lapic_state (in)
1471Returns: 0 on success, -1 on error
1472
1473#define KVM_APIC_REG_SIZE 0x400
1474struct kvm_lapic_state {
1475 char regs[KVM_APIC_REG_SIZE];
1476};
1477
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001478Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001479and layout are the same as documented in the architecture manual.
1480
Radim Krčmář371313132016-07-12 22:09:27 +02001481The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1482regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1483See the note in KVM_GET_LAPIC.
1484
Jan Kiszka414fa982012-04-24 16:40:15 +02001485
14864.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001487
1488Capability: KVM_CAP_IOEVENTFD
1489Architectures: all
1490Type: vm ioctl
1491Parameters: struct kvm_ioeventfd (in)
1492Returns: 0 on success, !0 on error
1493
1494This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1495within the guest. A guest write in the registered address will signal the
1496provided event instead of triggering an exit.
1497
1498struct kvm_ioeventfd {
1499 __u64 datamatch;
1500 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001501 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001502 __s32 fd;
1503 __u32 flags;
1504 __u8 pad[36];
1505};
1506
Cornelia Huck2b834512013-02-28 12:33:20 +01001507For the special case of virtio-ccw devices on s390, the ioevent is matched
1508to a subchannel/virtqueue tuple instead.
1509
Sasha Levin55399a02011-05-28 14:12:30 +03001510The following flags are defined:
1511
1512#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1513#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1514#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001515#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1516 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001517
1518If datamatch flag is set, the event will be signaled only if the written value
1519to the registered address is equal to datamatch in struct kvm_ioeventfd.
1520
Cornelia Huck2b834512013-02-28 12:33:20 +01001521For virtio-ccw devices, addr contains the subchannel id and datamatch the
1522virtqueue index.
1523
Jason Wange9ea5062015-09-15 14:41:59 +08001524With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1525the kernel will ignore the length of guest write and may get a faster vmexit.
1526The speedup may only apply to specific architectures, but the ioeventfd will
1527work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001528
15294.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001530
1531Capability: KVM_CAP_SW_TLB
1532Architectures: ppc
1533Type: vcpu ioctl
1534Parameters: struct kvm_dirty_tlb (in)
1535Returns: 0 on success, -1 on error
1536
1537struct kvm_dirty_tlb {
1538 __u64 bitmap;
1539 __u32 num_dirty;
1540};
1541
1542This must be called whenever userspace has changed an entry in the shared
1543TLB, prior to calling KVM_RUN on the associated vcpu.
1544
1545The "bitmap" field is the userspace address of an array. This array
1546consists of a number of bits, equal to the total number of TLB entries as
1547determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1548nearest multiple of 64.
1549
1550Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1551array.
1552
1553The array is little-endian: the bit 0 is the least significant bit of the
1554first byte, bit 8 is the least significant bit of the second byte, etc.
1555This avoids any complications with differing word sizes.
1556
1557The "num_dirty" field is a performance hint for KVM to determine whether it
1558should skip processing the bitmap and just invalidate everything. It must
1559be set to the number of set bits in the bitmap.
1560
Jan Kiszka414fa982012-04-24 16:40:15 +02001561
David Gibson54738c02011-06-29 00:22:41 +000015624.62 KVM_CREATE_SPAPR_TCE
1563
1564Capability: KVM_CAP_SPAPR_TCE
1565Architectures: powerpc
1566Type: vm ioctl
1567Parameters: struct kvm_create_spapr_tce (in)
1568Returns: file descriptor for manipulating the created TCE table
1569
1570This creates a virtual TCE (translation control entry) table, which
1571is an IOMMU for PAPR-style virtual I/O. It is used to translate
1572logical addresses used in virtual I/O into guest physical addresses,
1573and provides a scatter/gather capability for PAPR virtual I/O.
1574
1575/* for KVM_CAP_SPAPR_TCE */
1576struct kvm_create_spapr_tce {
1577 __u64 liobn;
1578 __u32 window_size;
1579};
1580
1581The liobn field gives the logical IO bus number for which to create a
1582TCE table. The window_size field specifies the size of the DMA window
1583which this TCE table will translate - the table will contain one 64
1584bit TCE entry for every 4kiB of the DMA window.
1585
1586When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1587table has been created using this ioctl(), the kernel will handle it
1588in real mode, updating the TCE table. H_PUT_TCE calls for other
1589liobns will cause a vm exit and must be handled by userspace.
1590
1591The return value is a file descriptor which can be passed to mmap(2)
1592to map the created TCE table into userspace. This lets userspace read
1593the entries written by kernel-handled H_PUT_TCE calls, and also lets
1594userspace update the TCE table directly which is useful in some
1595circumstances.
1596
Jan Kiszka414fa982012-04-24 16:40:15 +02001597
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000015984.63 KVM_ALLOCATE_RMA
1599
1600Capability: KVM_CAP_PPC_RMA
1601Architectures: powerpc
1602Type: vm ioctl
1603Parameters: struct kvm_allocate_rma (out)
1604Returns: file descriptor for mapping the allocated RMA
1605
1606This allocates a Real Mode Area (RMA) from the pool allocated at boot
1607time by the kernel. An RMA is a physically-contiguous, aligned region
1608of memory used on older POWER processors to provide the memory which
1609will be accessed by real-mode (MMU off) accesses in a KVM guest.
1610POWER processors support a set of sizes for the RMA that usually
1611includes 64MB, 128MB, 256MB and some larger powers of two.
1612
1613/* for KVM_ALLOCATE_RMA */
1614struct kvm_allocate_rma {
1615 __u64 rma_size;
1616};
1617
1618The return value is a file descriptor which can be passed to mmap(2)
1619to map the allocated RMA into userspace. The mapped area can then be
1620passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1621RMA for a virtual machine. The size of the RMA in bytes (which is
1622fixed at host kernel boot time) is returned in the rma_size field of
1623the argument structure.
1624
1625The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1626is supported; 2 if the processor requires all virtual machines to have
1627an RMA, or 1 if the processor can use an RMA but doesn't require it,
1628because it supports the Virtual RMA (VRMA) facility.
1629
Jan Kiszka414fa982012-04-24 16:40:15 +02001630
Avi Kivity3f745f12011-12-07 12:42:47 +020016314.64 KVM_NMI
1632
1633Capability: KVM_CAP_USER_NMI
1634Architectures: x86
1635Type: vcpu ioctl
1636Parameters: none
1637Returns: 0 on success, -1 on error
1638
1639Queues an NMI on the thread's vcpu. Note this is well defined only
1640when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1641between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1642has been called, this interface is completely emulated within the kernel.
1643
1644To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1645following algorithm:
1646
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001647 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001648 - read the local APIC's state (KVM_GET_LAPIC)
1649 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1650 - if so, issue KVM_NMI
1651 - resume the vcpu
1652
1653Some guests configure the LINT1 NMI input to cause a panic, aiding in
1654debugging.
1655
Jan Kiszka414fa982012-04-24 16:40:15 +02001656
Alexander Grafe24ed812011-09-14 10:02:41 +020016574.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001658
1659Capability: KVM_CAP_S390_UCONTROL
1660Architectures: s390
1661Type: vcpu ioctl
1662Parameters: struct kvm_s390_ucas_mapping (in)
1663Returns: 0 in case of success
1664
1665The parameter is defined like this:
1666 struct kvm_s390_ucas_mapping {
1667 __u64 user_addr;
1668 __u64 vcpu_addr;
1669 __u64 length;
1670 };
1671
1672This ioctl maps the memory at "user_addr" with the length "length" to
1673the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001674be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001675
Jan Kiszka414fa982012-04-24 16:40:15 +02001676
Alexander Grafe24ed812011-09-14 10:02:41 +020016774.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001678
1679Capability: KVM_CAP_S390_UCONTROL
1680Architectures: s390
1681Type: vcpu ioctl
1682Parameters: struct kvm_s390_ucas_mapping (in)
1683Returns: 0 in case of success
1684
1685The parameter is defined like this:
1686 struct kvm_s390_ucas_mapping {
1687 __u64 user_addr;
1688 __u64 vcpu_addr;
1689 __u64 length;
1690 };
1691
1692This ioctl unmaps the memory in the vcpu's address space starting at
1693"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001694All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001695
Jan Kiszka414fa982012-04-24 16:40:15 +02001696
Alexander Grafe24ed812011-09-14 10:02:41 +020016974.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001698
1699Capability: KVM_CAP_S390_UCONTROL
1700Architectures: s390
1701Type: vcpu ioctl
1702Parameters: vcpu absolute address (in)
1703Returns: 0 in case of success
1704
1705This call creates a page table entry on the virtual cpu's address space
1706(for user controlled virtual machines) or the virtual machine's address
1707space (for regular virtual machines). This only works for minor faults,
1708thus it's recommended to access subject memory page via the user page
1709table upfront. This is useful to handle validity intercepts for user
1710controlled virtual machines to fault in the virtual cpu's lowcore pages
1711prior to calling the KVM_RUN ioctl.
1712
Jan Kiszka414fa982012-04-24 16:40:15 +02001713
Alexander Grafe24ed812011-09-14 10:02:41 +020017144.68 KVM_SET_ONE_REG
1715
1716Capability: KVM_CAP_ONE_REG
1717Architectures: all
1718Type: vcpu ioctl
1719Parameters: struct kvm_one_reg (in)
1720Returns: 0 on success, negative value on failure
1721
1722struct kvm_one_reg {
1723 __u64 id;
1724 __u64 addr;
1725};
1726
1727Using this ioctl, a single vcpu register can be set to a specific value
1728defined by user space with the passed in struct kvm_one_reg, where id
1729refers to the register identifier as described below and addr is a pointer
1730to a variable with the respective size. There can be architecture agnostic
1731and architecture specific registers. Each have their own range of operation
1732and their own constants and width. To keep track of the implemented
1733registers, find a list below:
1734
James Hoganbf5590f2014-07-04 15:11:34 +01001735 Arch | Register | Width (bits)
1736 | |
1737 PPC | KVM_REG_PPC_HIOR | 64
1738 PPC | KVM_REG_PPC_IAC1 | 64
1739 PPC | KVM_REG_PPC_IAC2 | 64
1740 PPC | KVM_REG_PPC_IAC3 | 64
1741 PPC | KVM_REG_PPC_IAC4 | 64
1742 PPC | KVM_REG_PPC_DAC1 | 64
1743 PPC | KVM_REG_PPC_DAC2 | 64
1744 PPC | KVM_REG_PPC_DABR | 64
1745 PPC | KVM_REG_PPC_DSCR | 64
1746 PPC | KVM_REG_PPC_PURR | 64
1747 PPC | KVM_REG_PPC_SPURR | 64
1748 PPC | KVM_REG_PPC_DAR | 64
1749 PPC | KVM_REG_PPC_DSISR | 32
1750 PPC | KVM_REG_PPC_AMR | 64
1751 PPC | KVM_REG_PPC_UAMOR | 64
1752 PPC | KVM_REG_PPC_MMCR0 | 64
1753 PPC | KVM_REG_PPC_MMCR1 | 64
1754 PPC | KVM_REG_PPC_MMCRA | 64
1755 PPC | KVM_REG_PPC_MMCR2 | 64
1756 PPC | KVM_REG_PPC_MMCRS | 64
1757 PPC | KVM_REG_PPC_SIAR | 64
1758 PPC | KVM_REG_PPC_SDAR | 64
1759 PPC | KVM_REG_PPC_SIER | 64
1760 PPC | KVM_REG_PPC_PMC1 | 32
1761 PPC | KVM_REG_PPC_PMC2 | 32
1762 PPC | KVM_REG_PPC_PMC3 | 32
1763 PPC | KVM_REG_PPC_PMC4 | 32
1764 PPC | KVM_REG_PPC_PMC5 | 32
1765 PPC | KVM_REG_PPC_PMC6 | 32
1766 PPC | KVM_REG_PPC_PMC7 | 32
1767 PPC | KVM_REG_PPC_PMC8 | 32
1768 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001769 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001770 PPC | KVM_REG_PPC_FPR31 | 64
1771 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001772 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001773 PPC | KVM_REG_PPC_VR31 | 128
1774 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001775 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001776 PPC | KVM_REG_PPC_VSR31 | 128
1777 PPC | KVM_REG_PPC_FPSCR | 64
1778 PPC | KVM_REG_PPC_VSCR | 32
1779 PPC | KVM_REG_PPC_VPA_ADDR | 64
1780 PPC | KVM_REG_PPC_VPA_SLB | 128
1781 PPC | KVM_REG_PPC_VPA_DTL | 128
1782 PPC | KVM_REG_PPC_EPCR | 32
1783 PPC | KVM_REG_PPC_EPR | 32
1784 PPC | KVM_REG_PPC_TCR | 32
1785 PPC | KVM_REG_PPC_TSR | 32
1786 PPC | KVM_REG_PPC_OR_TSR | 32
1787 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1788 PPC | KVM_REG_PPC_MAS0 | 32
1789 PPC | KVM_REG_PPC_MAS1 | 32
1790 PPC | KVM_REG_PPC_MAS2 | 64
1791 PPC | KVM_REG_PPC_MAS7_3 | 64
1792 PPC | KVM_REG_PPC_MAS4 | 32
1793 PPC | KVM_REG_PPC_MAS6 | 32
1794 PPC | KVM_REG_PPC_MMUCFG | 32
1795 PPC | KVM_REG_PPC_TLB0CFG | 32
1796 PPC | KVM_REG_PPC_TLB1CFG | 32
1797 PPC | KVM_REG_PPC_TLB2CFG | 32
1798 PPC | KVM_REG_PPC_TLB3CFG | 32
1799 PPC | KVM_REG_PPC_TLB0PS | 32
1800 PPC | KVM_REG_PPC_TLB1PS | 32
1801 PPC | KVM_REG_PPC_TLB2PS | 32
1802 PPC | KVM_REG_PPC_TLB3PS | 32
1803 PPC | KVM_REG_PPC_EPTCFG | 32
1804 PPC | KVM_REG_PPC_ICP_STATE | 64
1805 PPC | KVM_REG_PPC_TB_OFFSET | 64
1806 PPC | KVM_REG_PPC_SPMC1 | 32
1807 PPC | KVM_REG_PPC_SPMC2 | 32
1808 PPC | KVM_REG_PPC_IAMR | 64
1809 PPC | KVM_REG_PPC_TFHAR | 64
1810 PPC | KVM_REG_PPC_TFIAR | 64
1811 PPC | KVM_REG_PPC_TEXASR | 64
1812 PPC | KVM_REG_PPC_FSCR | 64
1813 PPC | KVM_REG_PPC_PSPB | 32
1814 PPC | KVM_REG_PPC_EBBHR | 64
1815 PPC | KVM_REG_PPC_EBBRR | 64
1816 PPC | KVM_REG_PPC_BESCR | 64
1817 PPC | KVM_REG_PPC_TAR | 64
1818 PPC | KVM_REG_PPC_DPDES | 64
1819 PPC | KVM_REG_PPC_DAWR | 64
1820 PPC | KVM_REG_PPC_DAWRX | 64
1821 PPC | KVM_REG_PPC_CIABR | 64
1822 PPC | KVM_REG_PPC_IC | 64
1823 PPC | KVM_REG_PPC_VTB | 64
1824 PPC | KVM_REG_PPC_CSIGR | 64
1825 PPC | KVM_REG_PPC_TACR | 64
1826 PPC | KVM_REG_PPC_TCSCR | 64
1827 PPC | KVM_REG_PPC_PID | 64
1828 PPC | KVM_REG_PPC_ACOP | 64
1829 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02001830 PPC | KVM_REG_PPC_LPCR | 32
1831 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001832 PPC | KVM_REG_PPC_PPR | 64
1833 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1834 PPC | KVM_REG_PPC_DABRX | 32
1835 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05301836 PPC | KVM_REG_PPC_SPRG9 | 64
1837 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11001838 PPC | KVM_REG_PPC_TIDR | 64
1839 PPC | KVM_REG_PPC_PSSCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001840 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10001841 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001842 PPC | KVM_REG_PPC_TM_GPR31 | 64
1843 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10001844 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001845 PPC | KVM_REG_PPC_TM_VSR63 | 128
1846 PPC | KVM_REG_PPC_TM_CR | 64
1847 PPC | KVM_REG_PPC_TM_LR | 64
1848 PPC | KVM_REG_PPC_TM_CTR | 64
1849 PPC | KVM_REG_PPC_TM_FPSCR | 64
1850 PPC | KVM_REG_PPC_TM_AMR | 64
1851 PPC | KVM_REG_PPC_TM_PPR | 64
1852 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1853 PPC | KVM_REG_PPC_TM_VSCR | 32
1854 PPC | KVM_REG_PPC_TM_DSCR | 64
1855 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11001856 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001857 | |
1858 MIPS | KVM_REG_MIPS_R0 | 64
1859 ...
1860 MIPS | KVM_REG_MIPS_R31 | 64
1861 MIPS | KVM_REG_MIPS_HI | 64
1862 MIPS | KVM_REG_MIPS_LO | 64
1863 MIPS | KVM_REG_MIPS_PC | 64
1864 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00001865 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
1866 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001867 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00001868 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01001869 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00001870 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01001871 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001872 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00001873 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
1874 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
1875 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hogan5a2f3522017-03-14 10:15:36 +00001876 MIPS | KVM_REG_MIPS_CP0_PWBASE | 64
1877 MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64
1878 MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001879 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
James Hogan5a2f3522017-03-14 10:15:36 +00001880 MIPS | KVM_REG_MIPS_CP0_PWCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001881 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1882 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00001883 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
1884 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001885 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1886 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1887 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1888 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00001889 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001890 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1891 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01001892 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00001893 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001894 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1895 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1896 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1897 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01001898 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
1899 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001900 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001901 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001902 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01001903 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
1904 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
1905 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
1906 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
1907 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
1908 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hogand42a0082017-03-14 10:15:38 +00001909 MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001910 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1911 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1912 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00001913 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
1914 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00001915 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00001916 MIPS | KVM_REG_MIPS_FCR_IR | 32
1917 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00001918 MIPS | KVM_REG_MIPS_MSA_IR | 32
1919 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02001920
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001921ARM registers are mapped using the lower 32 bits. The upper 16 of that
1922is the register group type, or coprocessor number:
1923
1924ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001925 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001926
Christoffer Dall11382452013-01-20 18:28:10 -05001927ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001928 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05001929
1930ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001931 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001932
Christoffer Dallc27581e2013-01-20 18:28:10 -05001933ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001934 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001935
Rusty Russell4fe21e42013-01-20 18:28:11 -05001936ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001937 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001938
1939ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001940 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001941
Marc Zyngier379e04c72013-04-02 17:46:31 +01001942
1943arm64 registers are mapped using the lower 32 bits. The upper 16 of
1944that is the register group type, or coprocessor number:
1945
1946arm64 core/FP-SIMD registers have the following id bit patterns. Note
1947that the size of the access is variable, as the kvm_regs structure
1948contains elements ranging from 32 to 128 bits. The index is a 32bit
1949value in the kvm_regs structure seen as a 32bit array.
1950 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1951
1952arm64 CCSIDR registers are demultiplexed by CSSELR value:
1953 0x6020 0000 0011 00 <csselr:8>
1954
1955arm64 system registers have the following id bit patterns:
1956 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1957
James Hoganc2d2c212014-07-04 15:11:35 +01001958
1959MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
1960the register group type:
1961
1962MIPS core registers (see above) have the following id bit patterns:
1963 0x7030 0000 0000 <reg:16>
1964
1965MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
1966patterns depending on whether they're 32-bit or 64-bit registers:
1967 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
1968 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
1969
James Hogan013044c2016-12-07 17:16:37 +00001970Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
1971versions of the EntryLo registers regardless of the word size of the host
1972hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
1973with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
1974the PFNX field starting at bit 30.
1975
James Hogand42a0082017-03-14 10:15:38 +00001976MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
1977patterns:
1978 0x7030 0000 0001 01 <reg:8>
1979
James Hoganc2d2c212014-07-04 15:11:35 +01001980MIPS KVM control registers (see above) have the following id bit patterns:
1981 0x7030 0000 0002 <reg:16>
1982
James Hogan379245c2014-12-02 15:48:24 +00001983MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
1984id bit patterns depending on the size of the register being accessed. They are
1985always accessed according to the current guest FPU mode (Status.FR and
1986Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00001987if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
1988registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
1989overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00001990 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
1991 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00001992 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00001993
1994MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
1995following id bit patterns:
1996 0x7020 0000 0003 01 <0:3> <reg:5>
1997
James Hoganab86bd62014-12-02 15:48:24 +00001998MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
1999following id bit patterns:
2000 0x7020 0000 0003 02 <0:3> <reg:5>
2001
James Hoganc2d2c212014-07-04 15:11:35 +01002002
Alexander Grafe24ed812011-09-14 10:02:41 +020020034.69 KVM_GET_ONE_REG
2004
2005Capability: KVM_CAP_ONE_REG
2006Architectures: all
2007Type: vcpu ioctl
2008Parameters: struct kvm_one_reg (in and out)
2009Returns: 0 on success, negative value on failure
2010
2011This ioctl allows to receive the value of a single register implemented
2012in a vcpu. The register to read is indicated by the "id" field of the
2013kvm_one_reg struct passed in. On success, the register value can be found
2014at the memory location pointed to by "addr".
2015
2016The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002017list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002018
Jan Kiszka414fa982012-04-24 16:40:15 +02002019
Eric B Munson1c0b28c2012-03-10 14:37:27 -050020204.70 KVM_KVMCLOCK_CTRL
2021
2022Capability: KVM_CAP_KVMCLOCK_CTRL
2023Architectures: Any that implement pvclocks (currently x86 only)
2024Type: vcpu ioctl
2025Parameters: None
2026Returns: 0 on success, -1 on error
2027
2028This signals to the host kernel that the specified guest is being paused by
2029userspace. The host will set a flag in the pvclock structure that is checked
2030from the soft lockup watchdog. The flag is part of the pvclock structure that
2031is shared between guest and host, specifically the second bit of the flags
2032field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2033the host and read/cleared exclusively by the guest. The guest operation of
2034checking and clearing the flag must an atomic operation so
2035load-link/store-conditional, or equivalent must be used. There are two cases
2036where the guest will clear the flag: when the soft lockup watchdog timer resets
2037itself or when a soft lockup is detected. This ioctl can be called any time
2038after pausing the vcpu, but before it is resumed.
2039
Jan Kiszka414fa982012-04-24 16:40:15 +02002040
Jan Kiszka07975ad2012-03-29 21:14:12 +020020414.71 KVM_SIGNAL_MSI
2042
2043Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002044Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002045Type: vm ioctl
2046Parameters: struct kvm_msi (in)
2047Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2048
2049Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2050MSI messages.
2051
2052struct kvm_msi {
2053 __u32 address_lo;
2054 __u32 address_hi;
2055 __u32 data;
2056 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002057 __u32 devid;
2058 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002059};
2060
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002061flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2062 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2063 the device ID. If this capability is not available, userspace
2064 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002065
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002066If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2067for the device that wrote the MSI message. For PCI, this is usually a
2068BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002069
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002070On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2071feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2072address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2073address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002074
Jan Kiszka414fa982012-04-24 16:40:15 +02002075
Jan Kiszka0589ff62012-04-24 16:40:16 +020020764.71 KVM_CREATE_PIT2
2077
2078Capability: KVM_CAP_PIT2
2079Architectures: x86
2080Type: vm ioctl
2081Parameters: struct kvm_pit_config (in)
2082Returns: 0 on success, -1 on error
2083
2084Creates an in-kernel device model for the i8254 PIT. This call is only valid
2085after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2086parameters have to be passed:
2087
2088struct kvm_pit_config {
2089 __u32 flags;
2090 __u32 pad[15];
2091};
2092
2093Valid flags are:
2094
2095#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2096
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002097PIT timer interrupts may use a per-VM kernel thread for injection. If it
2098exists, this thread will have a name of the following pattern:
2099
2100kvm-pit/<owner-process-pid>
2101
2102When running a guest with elevated priorities, the scheduling parameters of
2103this thread may have to be adjusted accordingly.
2104
Jan Kiszka0589ff62012-04-24 16:40:16 +02002105This IOCTL replaces the obsolete KVM_CREATE_PIT.
2106
2107
21084.72 KVM_GET_PIT2
2109
2110Capability: KVM_CAP_PIT_STATE2
2111Architectures: x86
2112Type: vm ioctl
2113Parameters: struct kvm_pit_state2 (out)
2114Returns: 0 on success, -1 on error
2115
2116Retrieves the state of the in-kernel PIT model. Only valid after
2117KVM_CREATE_PIT2. The state is returned in the following structure:
2118
2119struct kvm_pit_state2 {
2120 struct kvm_pit_channel_state channels[3];
2121 __u32 flags;
2122 __u32 reserved[9];
2123};
2124
2125Valid flags are:
2126
2127/* disable PIT in HPET legacy mode */
2128#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2129
2130This IOCTL replaces the obsolete KVM_GET_PIT.
2131
2132
21334.73 KVM_SET_PIT2
2134
2135Capability: KVM_CAP_PIT_STATE2
2136Architectures: x86
2137Type: vm ioctl
2138Parameters: struct kvm_pit_state2 (in)
2139Returns: 0 on success, -1 on error
2140
2141Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2142See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2143
2144This IOCTL replaces the obsolete KVM_SET_PIT.
2145
2146
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000021474.74 KVM_PPC_GET_SMMU_INFO
2148
2149Capability: KVM_CAP_PPC_GET_SMMU_INFO
2150Architectures: powerpc
2151Type: vm ioctl
2152Parameters: None
2153Returns: 0 on success, -1 on error
2154
2155This populates and returns a structure describing the features of
2156the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002157This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002158device-tree properties for the guest operating system.
2159
Carlos Garciac98be0c2014-04-04 22:31:00 -04002160The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002161array of supported segment page sizes:
2162
2163 struct kvm_ppc_smmu_info {
2164 __u64 flags;
2165 __u32 slb_size;
2166 __u32 pad;
2167 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2168 };
2169
2170The supported flags are:
2171
2172 - KVM_PPC_PAGE_SIZES_REAL:
2173 When that flag is set, guest page sizes must "fit" the backing
2174 store page sizes. When not set, any page size in the list can
2175 be used regardless of how they are backed by userspace.
2176
2177 - KVM_PPC_1T_SEGMENTS
2178 The emulated MMU supports 1T segments in addition to the
2179 standard 256M ones.
2180
2181The "slb_size" field indicates how many SLB entries are supported
2182
2183The "sps" array contains 8 entries indicating the supported base
2184page sizes for a segment in increasing order. Each entry is defined
2185as follow:
2186
2187 struct kvm_ppc_one_seg_page_size {
2188 __u32 page_shift; /* Base page shift of segment (or 0) */
2189 __u32 slb_enc; /* SLB encoding for BookS */
2190 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2191 };
2192
2193An entry with a "page_shift" of 0 is unused. Because the array is
2194organized in increasing order, a lookup can stop when encoutering
2195such an entry.
2196
2197The "slb_enc" field provides the encoding to use in the SLB for the
2198page size. The bits are in positions such as the value can directly
2199be OR'ed into the "vsid" argument of the slbmte instruction.
2200
2201The "enc" array is a list which for each of those segment base page
2202size provides the list of supported actual page sizes (which can be
2203only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002204corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000022058 entries sorted by increasing sizes and an entry with a "0" shift
2206is an empty entry and a terminator:
2207
2208 struct kvm_ppc_one_page_size {
2209 __u32 page_shift; /* Page shift (or 0) */
2210 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2211 };
2212
2213The "pte_enc" field provides a value that can OR'ed into the hash
2214PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2215into the hash PTE second double word).
2216
Alex Williamsonf36992e2012-06-29 09:56:16 -060022174.75 KVM_IRQFD
2218
2219Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002220Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002221Type: vm ioctl
2222Parameters: struct kvm_irqfd (in)
2223Returns: 0 on success, -1 on error
2224
2225Allows setting an eventfd to directly trigger a guest interrupt.
2226kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2227kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002228an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002229the guest using the specified gsi pin. The irqfd is removed using
2230the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2231and kvm_irqfd.gsi.
2232
Alex Williamson7a844282012-09-21 11:58:03 -06002233With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2234mechanism allowing emulation of level-triggered, irqfd-based
2235interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2236additional eventfd in the kvm_irqfd.resamplefd field. When operating
2237in resample mode, posting of an interrupt through kvm_irq.fd asserts
2238the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002239as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002240kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2241the interrupt if the device making use of it still requires service.
2242Note that closing the resamplefd is not sufficient to disable the
2243irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2244and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2245
Eric Auger180ae7b2016-07-22 16:20:41 +00002246On arm/arm64, gsi routing being supported, the following can happen:
2247- in case no routing entry is associated to this gsi, injection fails
2248- in case the gsi is associated to an irqchip routing entry,
2249 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002250- in case the gsi is associated to an MSI routing entry, the MSI
2251 message and device ID are translated into an LPI (support restricted
2252 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002253
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070022544.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002255
2256Capability: KVM_CAP_PPC_ALLOC_HTAB
2257Architectures: powerpc
2258Type: vm ioctl
2259Parameters: Pointer to u32 containing hash table order (in/out)
2260Returns: 0 on success, -1 on error
2261
2262This requests the host kernel to allocate an MMU hash table for a
2263guest using the PAPR paravirtualization interface. This only does
2264anything if the kernel is configured to use the Book 3S HV style of
2265virtualization. Otherwise the capability doesn't exist and the ioctl
2266returns an ENOTTY error. The rest of this description assumes Book 3S
2267HV.
2268
2269There must be no vcpus running when this ioctl is called; if there
2270are, it will do nothing and return an EBUSY error.
2271
2272The parameter is a pointer to a 32-bit unsigned integer variable
2273containing the order (log base 2) of the desired size of the hash
2274table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002275ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002276
2277If no hash table has been allocated when any vcpu is asked to run
2278(with the KVM_RUN ioctl), the host kernel will allocate a
2279default-sized hash table (16 MB).
2280
2281If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002282with a different order from the existing hash table, the existing hash
2283table will be freed and a new one allocated. If this is ioctl is
2284called when a hash table has already been allocated of the same order
2285as specified, the kernel will clear out the existing hash table (zero
2286all HPTEs). In either case, if the guest is using the virtualized
2287real-mode area (VRMA) facility, the kernel will re-create the VMRA
2288HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002289
Cornelia Huck416ad652012-10-02 16:25:37 +020022904.77 KVM_S390_INTERRUPT
2291
2292Capability: basic
2293Architectures: s390
2294Type: vm ioctl, vcpu ioctl
2295Parameters: struct kvm_s390_interrupt (in)
2296Returns: 0 on success, -1 on error
2297
2298Allows to inject an interrupt to the guest. Interrupts can be floating
2299(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2300
2301Interrupt parameters are passed via kvm_s390_interrupt:
2302
2303struct kvm_s390_interrupt {
2304 __u32 type;
2305 __u32 parm;
2306 __u64 parm64;
2307};
2308
2309type can be one of the following:
2310
David Hildenbrand28225452014-10-15 16:48:16 +02002311KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002312KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2313KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2314KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002315KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2316KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002317KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2318 parameters in parm and parm64
2319KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2320KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2321KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002322KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2323 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2324 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2325 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002326KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2327 machine check interrupt code in parm64 (note that
2328 machine checks needing further payload are not
2329 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002330
2331Note that the vcpu ioctl is asynchronous to vcpu execution.
2332
Paul Mackerrasa2932922012-11-19 22:57:20 +000023334.78 KVM_PPC_GET_HTAB_FD
2334
2335Capability: KVM_CAP_PPC_HTAB_FD
2336Architectures: powerpc
2337Type: vm ioctl
2338Parameters: Pointer to struct kvm_get_htab_fd (in)
2339Returns: file descriptor number (>= 0) on success, -1 on error
2340
2341This returns a file descriptor that can be used either to read out the
2342entries in the guest's hashed page table (HPT), or to write entries to
2343initialize the HPT. The returned fd can only be written to if the
2344KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2345can only be read if that bit is clear. The argument struct looks like
2346this:
2347
2348/* For KVM_PPC_GET_HTAB_FD */
2349struct kvm_get_htab_fd {
2350 __u64 flags;
2351 __u64 start_index;
2352 __u64 reserved[2];
2353};
2354
2355/* Values for kvm_get_htab_fd.flags */
2356#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2357#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2358
2359The `start_index' field gives the index in the HPT of the entry at
2360which to start reading. It is ignored when writing.
2361
2362Reads on the fd will initially supply information about all
2363"interesting" HPT entries. Interesting entries are those with the
2364bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2365all entries. When the end of the HPT is reached, the read() will
2366return. If read() is called again on the fd, it will start again from
2367the beginning of the HPT, but will only return HPT entries that have
2368changed since they were last read.
2369
2370Data read or written is structured as a header (8 bytes) followed by a
2371series of valid HPT entries (16 bytes) each. The header indicates how
2372many valid HPT entries there are and how many invalid entries follow
2373the valid entries. The invalid entries are not represented explicitly
2374in the stream. The header format is:
2375
2376struct kvm_get_htab_header {
2377 __u32 index;
2378 __u16 n_valid;
2379 __u16 n_invalid;
2380};
2381
2382Writes to the fd create HPT entries starting at the index given in the
2383header; first `n_valid' valid entries with contents from the data
2384written, then `n_invalid' invalid entries, invalidating any previously
2385valid entries found.
2386
Scott Wood852b6d52013-04-12 14:08:42 +000023874.79 KVM_CREATE_DEVICE
2388
2389Capability: KVM_CAP_DEVICE_CTRL
2390Type: vm ioctl
2391Parameters: struct kvm_create_device (in/out)
2392Returns: 0 on success, -1 on error
2393Errors:
2394 ENODEV: The device type is unknown or unsupported
2395 EEXIST: Device already created, and this type of device may not
2396 be instantiated multiple times
2397
2398 Other error conditions may be defined by individual device types or
2399 have their standard meanings.
2400
2401Creates an emulated device in the kernel. The file descriptor returned
2402in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2403
2404If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2405device type is supported (not necessarily whether it can be created
2406in the current vm).
2407
2408Individual devices should not define flags. Attributes should be used
2409for specifying any behavior that is not implied by the device type
2410number.
2411
2412struct kvm_create_device {
2413 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2414 __u32 fd; /* out: device handle */
2415 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2416};
2417
24184.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2419
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002420Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2421 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2422Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002423Parameters: struct kvm_device_attr
2424Returns: 0 on success, -1 on error
2425Errors:
2426 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002427 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002428 EPERM: The attribute cannot (currently) be accessed this way
2429 (e.g. read-only attribute, or attribute that only makes
2430 sense when the device is in a different state)
2431
2432 Other error conditions may be defined by individual device types.
2433
2434Gets/sets a specified piece of device configuration and/or state. The
2435semantics are device-specific. See individual device documentation in
2436the "devices" directory. As with ONE_REG, the size of the data
2437transferred is defined by the particular attribute.
2438
2439struct kvm_device_attr {
2440 __u32 flags; /* no flags currently defined */
2441 __u32 group; /* device-defined */
2442 __u64 attr; /* group-defined */
2443 __u64 addr; /* userspace address of attr data */
2444};
2445
24464.81 KVM_HAS_DEVICE_ATTR
2447
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002448Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2449 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2450Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002451Parameters: struct kvm_device_attr
2452Returns: 0 on success, -1 on error
2453Errors:
2454 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002455 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002456
2457Tests whether a device supports a particular attribute. A successful
2458return indicates the attribute is implemented. It does not necessarily
2459indicate that the attribute can be read or written in the device's
2460current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002461
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100024624.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002463
2464Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +01002465Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002466Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302467Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002468Returns: 0 on success; -1 on error
2469Errors:
2470  EINVAL:    the target is unknown, or the combination of features is invalid.
2471  ENOENT:    a features bit specified is unknown.
2472
2473This tells KVM what type of CPU to present to the guest, and what
2474optional features it should have.  This will cause a reset of the cpu
2475registers to their initial values.  If this is not called, KVM_RUN will
2476return ENOEXEC for that vcpu.
2477
2478Note that because some registers reflect machine topology, all vcpus
2479should be created before this ioctl is invoked.
2480
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002481Userspace can call this function multiple times for a given vcpu, including
2482after the vcpu has been run. This will reset the vcpu to its initial
2483state. All calls to this function after the initial call must use the same
2484target and same set of feature flags, otherwise EINVAL will be returned.
2485
Marc Zyngieraa024c22013-01-20 18:28:13 -05002486Possible features:
2487 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002488 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2489 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c72013-04-02 17:46:31 +01002490 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2491 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Anup Patel50bb0c92014-04-29 11:24:17 +05302492 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2493 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002494 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2495 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002496
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002497
Anup Patel740edfc2013-09-30 14:20:08 +053024984.83 KVM_ARM_PREFERRED_TARGET
2499
2500Capability: basic
2501Architectures: arm, arm64
2502Type: vm ioctl
2503Parameters: struct struct kvm_vcpu_init (out)
2504Returns: 0 on success; -1 on error
2505Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002506 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302507
2508This queries KVM for preferred CPU target type which can be emulated
2509by KVM on underlying host.
2510
2511The ioctl returns struct kvm_vcpu_init instance containing information
2512about preferred CPU target type and recommended features for it. The
2513kvm_vcpu_init->features bitmap returned will have feature bits set if
2514the preferred target recommends setting these features, but this is
2515not mandatory.
2516
2517The information returned by this ioctl can be used to prepare an instance
2518of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2519in VCPU matching underlying host.
2520
2521
25224.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002523
2524Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002525Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002526Type: vcpu ioctl
2527Parameters: struct kvm_reg_list (in/out)
2528Returns: 0 on success; -1 on error
2529Errors:
2530  E2BIG:     the reg index list is too big to fit in the array specified by
2531             the user (the number required will be written into n).
2532
2533struct kvm_reg_list {
2534 __u64 n; /* number of registers in reg[] */
2535 __u64 reg[0];
2536};
2537
2538This ioctl returns the guest registers that are supported for the
2539KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2540
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002541
25424.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002543
2544Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c72013-04-02 17:46:31 +01002545Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002546Type: vm ioctl
2547Parameters: struct kvm_arm_device_address (in)
2548Returns: 0 on success, -1 on error
2549Errors:
2550 ENODEV: The device id is unknown
2551 ENXIO: Device not supported on current system
2552 EEXIST: Address already set
2553 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002554 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002555
2556struct kvm_arm_device_addr {
2557 __u64 id;
2558 __u64 addr;
2559};
2560
2561Specify a device address in the guest's physical address space where guests
2562can access emulated or directly exposed devices, which the host kernel needs
2563to know about. The id field is an architecture specific identifier for a
2564specific device.
2565
Marc Zyngier379e04c72013-04-02 17:46:31 +01002566ARM/arm64 divides the id field into two parts, a device id and an
2567address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002568
2569  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2570 field: | 0x00000000 | device id | addr type id |
2571
Marc Zyngier379e04c72013-04-02 17:46:31 +01002572ARM/arm64 currently only require this when using the in-kernel GIC
2573support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2574as the device id. When setting the base address for the guest's
2575mapping of the VGIC virtual CPU and distributor interface, the ioctl
2576must be called after calling KVM_CREATE_IRQCHIP, but before calling
2577KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2578base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002579
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002580Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2581should be used instead.
2582
2583
Anup Patel740edfc2013-09-30 14:20:08 +053025844.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002585
2586Capability: KVM_CAP_PPC_RTAS
2587Architectures: ppc
2588Type: vm ioctl
2589Parameters: struct kvm_rtas_token_args
2590Returns: 0 on success, -1 on error
2591
2592Defines a token value for a RTAS (Run Time Abstraction Services)
2593service in order to allow it to be handled in the kernel. The
2594argument struct gives the name of the service, which must be the name
2595of a service that has a kernel-side implementation. If the token
2596value is non-zero, it will be associated with that service, and
2597subsequent RTAS calls by the guest specifying that token will be
2598handled by the kernel. If the token value is 0, then any token
2599associated with the service will be forgotten, and subsequent RTAS
2600calls by the guest for that service will be passed to userspace to be
2601handled.
2602
Alex Bennée4bd9d342014-09-09 17:27:18 +010026034.87 KVM_SET_GUEST_DEBUG
2604
2605Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002606Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002607Type: vcpu ioctl
2608Parameters: struct kvm_guest_debug (in)
2609Returns: 0 on success; -1 on error
2610
2611struct kvm_guest_debug {
2612 __u32 control;
2613 __u32 pad;
2614 struct kvm_guest_debug_arch arch;
2615};
2616
2617Set up the processor specific debug registers and configure vcpu for
2618handling guest debug events. There are two parts to the structure, the
2619first a control bitfield indicates the type of debug events to handle
2620when running. Common control bits are:
2621
2622 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2623 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2624
2625The top 16 bits of the control field are architecture specific control
2626flags which can include the following:
2627
Alex Bennée4bd611c2015-07-07 17:29:57 +01002628 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002629 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002630 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2631 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2632 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2633
2634For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2635are enabled in memory so we need to ensure breakpoint exceptions are
2636correctly trapped and the KVM run loop exits at the breakpoint and not
2637running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2638we need to ensure the guest vCPUs architecture specific registers are
2639updated to the correct (supplied) values.
2640
2641The second part of the structure is architecture specific and
2642typically contains a set of debug registers.
2643
Alex Bennée834bf882015-07-07 17:30:02 +01002644For arm64 the number of debug registers is implementation defined and
2645can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2646KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2647indicating the number of supported registers.
2648
Alex Bennée4bd9d342014-09-09 17:27:18 +01002649When debug events exit the main run loop with the reason
2650KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2651structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002652
Alex Bennée209cf192014-09-09 17:27:19 +010026534.88 KVM_GET_EMULATED_CPUID
2654
2655Capability: KVM_CAP_EXT_EMUL_CPUID
2656Architectures: x86
2657Type: system ioctl
2658Parameters: struct kvm_cpuid2 (in/out)
2659Returns: 0 on success, -1 on error
2660
2661struct kvm_cpuid2 {
2662 __u32 nent;
2663 __u32 flags;
2664 struct kvm_cpuid_entry2 entries[0];
2665};
2666
2667The member 'flags' is used for passing flags from userspace.
2668
2669#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2670#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2671#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2672
2673struct kvm_cpuid_entry2 {
2674 __u32 function;
2675 __u32 index;
2676 __u32 flags;
2677 __u32 eax;
2678 __u32 ebx;
2679 __u32 ecx;
2680 __u32 edx;
2681 __u32 padding[3];
2682};
2683
2684This ioctl returns x86 cpuid features which are emulated by
2685kvm.Userspace can use the information returned by this ioctl to query
2686which features are emulated by kvm instead of being present natively.
2687
2688Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2689structure with the 'nent' field indicating the number of entries in
2690the variable-size array 'entries'. If the number of entries is too low
2691to describe the cpu capabilities, an error (E2BIG) is returned. If the
2692number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2693is returned. If the number is just right, the 'nent' field is adjusted
2694to the number of valid entries in the 'entries' array, which is then
2695filled.
2696
2697The entries returned are the set CPUID bits of the respective features
2698which kvm emulates, as returned by the CPUID instruction, with unknown
2699or unsupported feature bits cleared.
2700
2701Features like x2apic, for example, may not be present in the host cpu
2702but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2703emulated efficiently and thus not included here.
2704
2705The fields in each entry are defined as follows:
2706
2707 function: the eax value used to obtain the entry
2708 index: the ecx value used to obtain the entry (for entries that are
2709 affected by ecx)
2710 flags: an OR of zero or more of the following:
2711 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2712 if the index field is valid
2713 KVM_CPUID_FLAG_STATEFUL_FUNC:
2714 if cpuid for this function returns different values for successive
2715 invocations; there will be several entries with the same function,
2716 all with this flag set
2717 KVM_CPUID_FLAG_STATE_READ_NEXT:
2718 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2719 the first entry to be read by a cpu
2720 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2721 this function/index combination
2722
Thomas Huth41408c282015-02-06 15:01:21 +010027234.89 KVM_S390_MEM_OP
2724
2725Capability: KVM_CAP_S390_MEM_OP
2726Architectures: s390
2727Type: vcpu ioctl
2728Parameters: struct kvm_s390_mem_op (in)
2729Returns: = 0 on success,
2730 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2731 > 0 if an exception occurred while walking the page tables
2732
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002733Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c282015-02-06 15:01:21 +01002734
2735Parameters are specified via the following structure:
2736
2737struct kvm_s390_mem_op {
2738 __u64 gaddr; /* the guest address */
2739 __u64 flags; /* flags */
2740 __u32 size; /* amount of bytes */
2741 __u32 op; /* type of operation */
2742 __u64 buf; /* buffer in userspace */
2743 __u8 ar; /* the access register number */
2744 __u8 reserved[31]; /* should be set to 0 */
2745};
2746
2747The type of operation is specified in the "op" field. It is either
2748KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2749KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2750KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2751whether the corresponding memory access would create an access exception
2752(without touching the data in the memory at the destination). In case an
2753access exception occurred while walking the MMU tables of the guest, the
2754ioctl returns a positive error number to indicate the type of exception.
2755This exception is also raised directly at the corresponding VCPU if the
2756flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2757
2758The start address of the memory region has to be specified in the "gaddr"
2759field, and the length of the region in the "size" field. "buf" is the buffer
2760supplied by the userspace application where the read data should be written
2761to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2762is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2763when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2764register number to be used.
2765
2766The "reserved" field is meant for future extensions. It is not used by
2767KVM with the currently defined set of flags.
2768
Jason J. Herne30ee2a92014-09-23 09:23:01 -040027694.90 KVM_S390_GET_SKEYS
2770
2771Capability: KVM_CAP_S390_SKEYS
2772Architectures: s390
2773Type: vm ioctl
2774Parameters: struct kvm_s390_skeys
2775Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2776 keys, negative value on error
2777
2778This ioctl is used to get guest storage key values on the s390
2779architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2780
2781struct kvm_s390_skeys {
2782 __u64 start_gfn;
2783 __u64 count;
2784 __u64 skeydata_addr;
2785 __u32 flags;
2786 __u32 reserved[9];
2787};
2788
2789The start_gfn field is the number of the first guest frame whose storage keys
2790you want to get.
2791
2792The count field is the number of consecutive frames (starting from start_gfn)
2793whose storage keys to get. The count field must be at least 1 and the maximum
2794allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2795will cause the ioctl to return -EINVAL.
2796
2797The skeydata_addr field is the address to a buffer large enough to hold count
2798bytes. This buffer will be filled with storage key data by the ioctl.
2799
28004.91 KVM_S390_SET_SKEYS
2801
2802Capability: KVM_CAP_S390_SKEYS
2803Architectures: s390
2804Type: vm ioctl
2805Parameters: struct kvm_s390_skeys
2806Returns: 0 on success, negative value on error
2807
2808This ioctl is used to set guest storage key values on the s390
2809architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2810See section on KVM_S390_GET_SKEYS for struct definition.
2811
2812The start_gfn field is the number of the first guest frame whose storage keys
2813you want to set.
2814
2815The count field is the number of consecutive frames (starting from start_gfn)
2816whose storage keys to get. The count field must be at least 1 and the maximum
2817allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2818will cause the ioctl to return -EINVAL.
2819
2820The skeydata_addr field is the address to a buffer containing count bytes of
2821storage keys. Each byte in the buffer will be set as the storage key for a
2822single frame starting at start_gfn for count frames.
2823
2824Note: If any architecturally invalid key value is found in the given data then
2825the ioctl will return -EINVAL.
2826
Jens Freimann47b43c52014-11-11 20:57:06 +010028274.92 KVM_S390_IRQ
2828
2829Capability: KVM_CAP_S390_INJECT_IRQ
2830Architectures: s390
2831Type: vcpu ioctl
2832Parameters: struct kvm_s390_irq (in)
2833Returns: 0 on success, -1 on error
2834Errors:
2835 EINVAL: interrupt type is invalid
2836 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2837 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2838 than the maximum of VCPUs
2839 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2840 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2841 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2842 is already pending
2843
2844Allows to inject an interrupt to the guest.
2845
2846Using struct kvm_s390_irq as a parameter allows
2847to inject additional payload which is not
2848possible via KVM_S390_INTERRUPT.
2849
2850Interrupt parameters are passed via kvm_s390_irq:
2851
2852struct kvm_s390_irq {
2853 __u64 type;
2854 union {
2855 struct kvm_s390_io_info io;
2856 struct kvm_s390_ext_info ext;
2857 struct kvm_s390_pgm_info pgm;
2858 struct kvm_s390_emerg_info emerg;
2859 struct kvm_s390_extcall_info extcall;
2860 struct kvm_s390_prefix_info prefix;
2861 struct kvm_s390_stop_info stop;
2862 struct kvm_s390_mchk_info mchk;
2863 char reserved[64];
2864 } u;
2865};
2866
2867type can be one of the following:
2868
2869KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2870KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2871KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2872KVM_S390_RESTART - restart; no parameters
2873KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2874KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2875KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2876KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2877KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2878
2879
2880Note that the vcpu ioctl is asynchronous to vcpu execution.
2881
Jens Freimann816c7662014-11-24 17:13:46 +010028824.94 KVM_S390_GET_IRQ_STATE
2883
2884Capability: KVM_CAP_S390_IRQ_STATE
2885Architectures: s390
2886Type: vcpu ioctl
2887Parameters: struct kvm_s390_irq_state (out)
2888Returns: >= number of bytes copied into buffer,
2889 -EINVAL if buffer size is 0,
2890 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2891 -EFAULT if the buffer address was invalid
2892
2893This ioctl allows userspace to retrieve the complete state of all currently
2894pending interrupts in a single buffer. Use cases include migration
2895and introspection. The parameter structure contains the address of a
2896userspace buffer and its length:
2897
2898struct kvm_s390_irq_state {
2899 __u64 buf;
2900 __u32 flags;
2901 __u32 len;
2902 __u32 reserved[4];
2903};
2904
2905Userspace passes in the above struct and for each pending interrupt a
2906struct kvm_s390_irq is copied to the provided buffer.
2907
2908If -ENOBUFS is returned the buffer provided was too small and userspace
2909may retry with a bigger buffer.
2910
29114.95 KVM_S390_SET_IRQ_STATE
2912
2913Capability: KVM_CAP_S390_IRQ_STATE
2914Architectures: s390
2915Type: vcpu ioctl
2916Parameters: struct kvm_s390_irq_state (in)
2917Returns: 0 on success,
2918 -EFAULT if the buffer address was invalid,
2919 -EINVAL for an invalid buffer length (see below),
2920 -EBUSY if there were already interrupts pending,
2921 errors occurring when actually injecting the
2922 interrupt. See KVM_S390_IRQ.
2923
2924This ioctl allows userspace to set the complete state of all cpu-local
2925interrupts currently pending for the vcpu. It is intended for restoring
2926interrupt state after a migration. The input parameter is a userspace buffer
2927containing a struct kvm_s390_irq_state:
2928
2929struct kvm_s390_irq_state {
2930 __u64 buf;
2931 __u32 len;
2932 __u32 pad;
2933};
2934
2935The userspace memory referenced by buf contains a struct kvm_s390_irq
2936for each interrupt to be injected into the guest.
2937If one of the interrupts could not be injected for some reason the
2938ioctl aborts.
2939
2940len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2941and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2942which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01002943
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110029444.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02002945
2946Capability: KVM_CAP_X86_SMM
2947Architectures: x86
2948Type: vcpu ioctl
2949Parameters: none
2950Returns: 0 on success, -1 on error
2951
2952Queues an SMI on the thread's vcpu.
2953
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110029544.97 KVM_CAP_PPC_MULTITCE
2955
2956Capability: KVM_CAP_PPC_MULTITCE
2957Architectures: ppc
2958Type: vm
2959
2960This capability means the kernel is capable of handling hypercalls
2961H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
2962space. This significantly accelerates DMA operations for PPC KVM guests.
2963User space should expect that its handlers for these hypercalls
2964are not going to be called if user space previously registered LIOBN
2965in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
2966
2967In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
2968user space might have to advertise it for the guest. For example,
2969IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
2970present in the "ibm,hypertas-functions" device-tree property.
2971
2972The hypercalls mentioned above may or may not be processed successfully
2973in the kernel based fast path. If they can not be handled by the kernel,
2974they will get passed on to user space. So user space still has to have
2975an implementation for these despite the in kernel acceleration.
2976
2977This capability is always enabled.
2978
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110029794.98 KVM_CREATE_SPAPR_TCE_64
2980
2981Capability: KVM_CAP_SPAPR_TCE_64
2982Architectures: powerpc
2983Type: vm ioctl
2984Parameters: struct kvm_create_spapr_tce_64 (in)
2985Returns: file descriptor for manipulating the created TCE table
2986
2987This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
2988windows, described in 4.62 KVM_CREATE_SPAPR_TCE
2989
2990This capability uses extended struct in ioctl interface:
2991
2992/* for KVM_CAP_SPAPR_TCE_64 */
2993struct kvm_create_spapr_tce_64 {
2994 __u64 liobn;
2995 __u32 page_shift;
2996 __u32 flags;
2997 __u64 offset; /* in pages */
2998 __u64 size; /* in pages */
2999};
3000
3001The aim of extension is to support an additional bigger DMA window with
3002a variable page size.
3003KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3004a bus offset of the corresponding DMA window, @size and @offset are numbers
3005of IOMMU pages.
3006
3007@flags are not used at the moment.
3008
3009The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3010
David Gibsonccc4df42016-12-20 16:48:57 +110030114.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003012
3013Capability: KVM_CAP_REINJECT_CONTROL
3014Architectures: x86
3015Type: vm ioctl
3016Parameters: struct kvm_reinject_control (in)
3017Returns: 0 on success,
3018 -EFAULT if struct kvm_reinject_control cannot be read,
3019 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3020
3021i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3022where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3023vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3024interrupt whenever there isn't a pending interrupt from i8254.
3025!reinject mode injects an interrupt as soon as a tick arrives.
3026
3027struct kvm_reinject_control {
3028 __u8 pit_reinject;
3029 __u8 reserved[31];
3030};
3031
3032pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3033operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3034
David Gibsonccc4df42016-12-20 16:48:57 +110030354.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003036
3037Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3038Architectures: ppc
3039Type: vm ioctl
3040Parameters: struct kvm_ppc_mmuv3_cfg (in)
3041Returns: 0 on success,
3042 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3043 -EINVAL if the configuration is invalid
3044
3045This ioctl controls whether the guest will use radix or HPT (hashed
3046page table) translation, and sets the pointer to the process table for
3047the guest.
3048
3049struct kvm_ppc_mmuv3_cfg {
3050 __u64 flags;
3051 __u64 process_table;
3052};
3053
3054There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3055KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3056to use radix tree translation, and if clear, to use HPT translation.
3057KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3058to be able to use the global TLB and SLB invalidation instructions;
3059if clear, the guest may not use these instructions.
3060
3061The process_table field specifies the address and size of the guest
3062process table, which is in the guest's space. This field is formatted
3063as the second doubleword of the partition table entry, as defined in
3064the Power ISA V3.00, Book III section 5.7.6.1.
3065
David Gibsonccc4df42016-12-20 16:48:57 +110030664.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003067
3068Capability: KVM_CAP_PPC_RADIX_MMU
3069Architectures: ppc
3070Type: vm ioctl
3071Parameters: struct kvm_ppc_rmmu_info (out)
3072Returns: 0 on success,
3073 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3074 -EINVAL if no useful information can be returned
3075
3076This ioctl returns a structure containing two things: (a) a list
3077containing supported radix tree geometries, and (b) a list that maps
3078page sizes to put in the "AP" (actual page size) field for the tlbie
3079(TLB invalidate entry) instruction.
3080
3081struct kvm_ppc_rmmu_info {
3082 struct kvm_ppc_radix_geom {
3083 __u8 page_shift;
3084 __u8 level_bits[4];
3085 __u8 pad[3];
3086 } geometries[8];
3087 __u32 ap_encodings[8];
3088};
3089
3090The geometries[] field gives up to 8 supported geometries for the
3091radix page table, in terms of the log base 2 of the smallest page
3092size, and the number of bits indexed at each level of the tree, from
3093the PTE level up to the PGD level in that order. Any unused entries
3094will have 0 in the page_shift field.
3095
3096The ap_encodings gives the supported page sizes and their AP field
3097encodings, encoded with the AP value in the top 3 bits and the log
3098base 2 of the page size in the bottom 6 bits.
3099
David Gibsonef1ead02016-12-20 16:48:58 +110031004.102 KVM_PPC_RESIZE_HPT_PREPARE
3101
3102Capability: KVM_CAP_SPAPR_RESIZE_HPT
3103Architectures: powerpc
3104Type: vm ioctl
3105Parameters: struct kvm_ppc_resize_hpt (in)
3106Returns: 0 on successful completion,
3107 >0 if a new HPT is being prepared, the value is an estimated
3108 number of milliseconds until preparation is complete
3109 -EFAULT if struct kvm_reinject_control cannot be read,
3110 -EINVAL if the supplied shift or flags are invalid
3111 -ENOMEM if unable to allocate the new HPT
3112 -ENOSPC if there was a hash collision when moving existing
3113 HPT entries to the new HPT
3114 -EIO on other error conditions
3115
3116Used to implement the PAPR extension for runtime resizing of a guest's
3117Hashed Page Table (HPT). Specifically this starts, stops or monitors
3118the preparation of a new potential HPT for the guest, essentially
3119implementing the H_RESIZE_HPT_PREPARE hypercall.
3120
3121If called with shift > 0 when there is no pending HPT for the guest,
3122this begins preparation of a new pending HPT of size 2^(shift) bytes.
3123It then returns a positive integer with the estimated number of
3124milliseconds until preparation is complete.
3125
3126If called when there is a pending HPT whose size does not match that
3127requested in the parameters, discards the existing pending HPT and
3128creates a new one as above.
3129
3130If called when there is a pending HPT of the size requested, will:
3131 * If preparation of the pending HPT is already complete, return 0
3132 * If preparation of the pending HPT has failed, return an error
3133 code, then discard the pending HPT.
3134 * If preparation of the pending HPT is still in progress, return an
3135 estimated number of milliseconds until preparation is complete.
3136
3137If called with shift == 0, discards any currently pending HPT and
3138returns 0 (i.e. cancels any in-progress preparation).
3139
3140flags is reserved for future expansion, currently setting any bits in
3141flags will result in an -EINVAL.
3142
3143Normally this will be called repeatedly with the same parameters until
3144it returns <= 0. The first call will initiate preparation, subsequent
3145ones will monitor preparation until it completes or fails.
3146
3147struct kvm_ppc_resize_hpt {
3148 __u64 flags;
3149 __u32 shift;
3150 __u32 pad;
3151};
3152
31534.103 KVM_PPC_RESIZE_HPT_COMMIT
3154
3155Capability: KVM_CAP_SPAPR_RESIZE_HPT
3156Architectures: powerpc
3157Type: vm ioctl
3158Parameters: struct kvm_ppc_resize_hpt (in)
3159Returns: 0 on successful completion,
3160 -EFAULT if struct kvm_reinject_control cannot be read,
3161 -EINVAL if the supplied shift or flags are invalid
3162 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3163 have the requested size
3164 -EBUSY if the pending HPT is not fully prepared
3165 -ENOSPC if there was a hash collision when moving existing
3166 HPT entries to the new HPT
3167 -EIO on other error conditions
3168
3169Used to implement the PAPR extension for runtime resizing of a guest's
3170Hashed Page Table (HPT). Specifically this requests that the guest be
3171transferred to working with the new HPT, essentially implementing the
3172H_RESIZE_HPT_COMMIT hypercall.
3173
3174This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3175returned 0 with the same parameters. In other cases
3176KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3177-EBUSY, though others may be possible if the preparation was started,
3178but failed).
3179
3180This will have undefined effects on the guest if it has not already
3181placed itself in a quiescent state where no vcpu will make MMU enabled
3182memory accesses.
3183
3184On succsful completion, the pending HPT will become the guest's active
3185HPT and the previous HPT will be discarded.
3186
3187On failure, the guest will still be operating on its previous HPT.
3188
3189struct kvm_ppc_resize_hpt {
3190 __u64 flags;
3191 __u32 shift;
3192 __u32 pad;
3193};
3194
Luiz Capitulino3aa53852017-03-13 09:08:20 -040031954.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3196
3197Capability: KVM_CAP_MCE
3198Architectures: x86
3199Type: system ioctl
3200Parameters: u64 mce_cap (out)
3201Returns: 0 on success, -1 on error
3202
3203Returns supported MCE capabilities. The u64 mce_cap parameter
3204has the same format as the MSR_IA32_MCG_CAP register. Supported
3205capabilities will have the corresponding bits set.
3206
32074.105 KVM_X86_SETUP_MCE
3208
3209Capability: KVM_CAP_MCE
3210Architectures: x86
3211Type: vcpu ioctl
3212Parameters: u64 mcg_cap (in)
3213Returns: 0 on success,
3214 -EFAULT if u64 mcg_cap cannot be read,
3215 -EINVAL if the requested number of banks is invalid,
3216 -EINVAL if requested MCE capability is not supported.
3217
3218Initializes MCE support for use. The u64 mcg_cap parameter
3219has the same format as the MSR_IA32_MCG_CAP register and
3220specifies which capabilities should be enabled. The maximum
3221supported number of error-reporting banks can be retrieved when
3222checking for KVM_CAP_MCE. The supported capabilities can be
3223retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3224
32254.106 KVM_X86_SET_MCE
3226
3227Capability: KVM_CAP_MCE
3228Architectures: x86
3229Type: vcpu ioctl
3230Parameters: struct kvm_x86_mce (in)
3231Returns: 0 on success,
3232 -EFAULT if struct kvm_x86_mce cannot be read,
3233 -EINVAL if the bank number is invalid,
3234 -EINVAL if VAL bit is not set in status field.
3235
3236Inject a machine check error (MCE) into the guest. The input
3237parameter is:
3238
3239struct kvm_x86_mce {
3240 __u64 status;
3241 __u64 addr;
3242 __u64 misc;
3243 __u64 mcg_status;
3244 __u8 bank;
3245 __u8 pad1[7];
3246 __u64 pad2[3];
3247};
3248
3249If the MCE being reported is an uncorrected error, KVM will
3250inject it as an MCE exception into the guest. If the guest
3251MCG_STATUS register reports that an MCE is in progress, KVM
3252causes an KVM_EXIT_SHUTDOWN vmexit.
3253
3254Otherwise, if the MCE is a corrected error, KVM will just
3255store it in the corresponding bank (provided this bank is
3256not holding a previously reported uncorrected error).
3257
Avi Kivity9c1b96e2009-06-09 12:37:58 +030032585. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003259------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003260
3261Application code obtains a pointer to the kvm_run structure by
3262mmap()ing a vcpu fd. From that point, application code can control
3263execution by changing fields in kvm_run prior to calling the KVM_RUN
3264ioctl, and obtain information about the reason KVM_RUN returned by
3265looking up structure members.
3266
3267struct kvm_run {
3268 /* in */
3269 __u8 request_interrupt_window;
3270
3271Request that KVM_RUN return when it becomes possible to inject external
3272interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3273
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003274 __u8 immediate_exit;
3275
3276This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3277exits immediately, returning -EINTR. In the common scenario where a
3278signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3279to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3280Rather than blocking the signal outside KVM_RUN, userspace can set up
3281a signal handler that sets run->immediate_exit to a non-zero value.
3282
3283This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3284
3285 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003286
3287 /* out */
3288 __u32 exit_reason;
3289
3290When KVM_RUN has returned successfully (return value 0), this informs
3291application code why KVM_RUN has returned. Allowable values for this
3292field are detailed below.
3293
3294 __u8 ready_for_interrupt_injection;
3295
3296If request_interrupt_window has been specified, this field indicates
3297an interrupt can be injected now with KVM_INTERRUPT.
3298
3299 __u8 if_flag;
3300
3301The value of the current interrupt flag. Only valid if in-kernel
3302local APIC is not used.
3303
Paolo Bonzinif0778252015-04-01 15:06:40 +02003304 __u16 flags;
3305
3306More architecture-specific flags detailing state of the VCPU that may
3307affect the device's behavior. The only currently defined flag is
3308KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3309VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003310
3311 /* in (pre_kvm_run), out (post_kvm_run) */
3312 __u64 cr8;
3313
3314The value of the cr8 register. Only valid if in-kernel local APIC is
3315not used. Both input and output.
3316
3317 __u64 apic_base;
3318
3319The value of the APIC BASE msr. Only valid if in-kernel local
3320APIC is not used. Both input and output.
3321
3322 union {
3323 /* KVM_EXIT_UNKNOWN */
3324 struct {
3325 __u64 hardware_exit_reason;
3326 } hw;
3327
3328If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3329reasons. Further architecture-specific information is available in
3330hardware_exit_reason.
3331
3332 /* KVM_EXIT_FAIL_ENTRY */
3333 struct {
3334 __u64 hardware_entry_failure_reason;
3335 } fail_entry;
3336
3337If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3338to unknown reasons. Further architecture-specific information is
3339available in hardware_entry_failure_reason.
3340
3341 /* KVM_EXIT_EXCEPTION */
3342 struct {
3343 __u32 exception;
3344 __u32 error_code;
3345 } ex;
3346
3347Unused.
3348
3349 /* KVM_EXIT_IO */
3350 struct {
3351#define KVM_EXIT_IO_IN 0
3352#define KVM_EXIT_IO_OUT 1
3353 __u8 direction;
3354 __u8 size; /* bytes */
3355 __u16 port;
3356 __u32 count;
3357 __u64 data_offset; /* relative to kvm_run start */
3358 } io;
3359
Wu Fengguang2044892d2009-12-24 09:04:16 +08003360If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003361executed a port I/O instruction which could not be satisfied by kvm.
3362data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3363where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003364KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003365
Alex Bennée8ab30c12015-07-07 17:29:53 +01003366 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003367 struct {
3368 struct kvm_debug_exit_arch arch;
3369 } debug;
3370
Alex Bennée8ab30c12015-07-07 17:29:53 +01003371If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3372for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003373
3374 /* KVM_EXIT_MMIO */
3375 struct {
3376 __u64 phys_addr;
3377 __u8 data[8];
3378 __u32 len;
3379 __u8 is_write;
3380 } mmio;
3381
Wu Fengguang2044892d2009-12-24 09:04:16 +08003382If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003383executed a memory-mapped I/O instruction which could not be satisfied
3384by kvm. The 'data' member contains the written data if 'is_write' is
3385true, and should be filled by application code otherwise.
3386
Christoffer Dall6acdb162014-01-28 08:28:42 -08003387The 'data' member contains, in its first 'len' bytes, the value as it would
3388appear if the VCPU performed a load or store of the appropriate width directly
3389to the byte array.
3390
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003391NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003392 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003393operations are complete (and guest state is consistent) only after userspace
3394has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003395incomplete operations and then check for pending signals. Userspace
3396can re-enter the guest with an unmasked signal pending to complete
3397pending operations.
3398
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003399 /* KVM_EXIT_HYPERCALL */
3400 struct {
3401 __u64 nr;
3402 __u64 args[6];
3403 __u64 ret;
3404 __u32 longmode;
3405 __u32 pad;
3406 } hypercall;
3407
Avi Kivity647dc492010-04-01 14:39:21 +03003408Unused. This was once used for 'hypercall to userspace'. To implement
3409such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3410Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003411
3412 /* KVM_EXIT_TPR_ACCESS */
3413 struct {
3414 __u64 rip;
3415 __u32 is_write;
3416 __u32 pad;
3417 } tpr_access;
3418
3419To be documented (KVM_TPR_ACCESS_REPORTING).
3420
3421 /* KVM_EXIT_S390_SIEIC */
3422 struct {
3423 __u8 icptcode;
3424 __u64 mask; /* psw upper half */
3425 __u64 addr; /* psw lower half */
3426 __u16 ipa;
3427 __u32 ipb;
3428 } s390_sieic;
3429
3430s390 specific.
3431
3432 /* KVM_EXIT_S390_RESET */
3433#define KVM_S390_RESET_POR 1
3434#define KVM_S390_RESET_CLEAR 2
3435#define KVM_S390_RESET_SUBSYSTEM 4
3436#define KVM_S390_RESET_CPU_INIT 8
3437#define KVM_S390_RESET_IPL 16
3438 __u64 s390_reset_flags;
3439
3440s390 specific.
3441
Carsten Ottee168bf82012-01-04 10:25:22 +01003442 /* KVM_EXIT_S390_UCONTROL */
3443 struct {
3444 __u64 trans_exc_code;
3445 __u32 pgm_code;
3446 } s390_ucontrol;
3447
3448s390 specific. A page fault has occurred for a user controlled virtual
3449machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3450resolved by the kernel.
3451The program code and the translation exception code that were placed
3452in the cpu's lowcore are presented here as defined by the z Architecture
3453Principles of Operation Book in the Chapter for Dynamic Address Translation
3454(DAT)
3455
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003456 /* KVM_EXIT_DCR */
3457 struct {
3458 __u32 dcrn;
3459 __u32 data;
3460 __u8 is_write;
3461 } dcr;
3462
Alexander Grafce91ddc2014-07-28 19:29:13 +02003463Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003464
Alexander Grafad0a0482010-03-24 21:48:30 +01003465 /* KVM_EXIT_OSI */
3466 struct {
3467 __u64 gprs[32];
3468 } osi;
3469
3470MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3471hypercalls and exit with this exit struct that contains all the guest gprs.
3472
3473If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3474Userspace can now handle the hypercall and when it's done modify the gprs as
3475necessary. Upon guest entry all guest GPRs will then be replaced by the values
3476in this struct.
3477
Paul Mackerrasde56a942011-06-29 00:21:34 +00003478 /* KVM_EXIT_PAPR_HCALL */
3479 struct {
3480 __u64 nr;
3481 __u64 ret;
3482 __u64 args[9];
3483 } papr_hcall;
3484
3485This is used on 64-bit PowerPC when emulating a pSeries partition,
3486e.g. with the 'pseries' machine type in qemu. It occurs when the
3487guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3488contains the hypercall number (from the guest R3), and 'args' contains
3489the arguments (from the guest R4 - R12). Userspace should put the
3490return code in 'ret' and any extra returned values in args[].
3491The possible hypercalls are defined in the Power Architecture Platform
3492Requirements (PAPR) document available from www.power.org (free
3493developer registration required to access it).
3494
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003495 /* KVM_EXIT_S390_TSCH */
3496 struct {
3497 __u16 subchannel_id;
3498 __u16 subchannel_nr;
3499 __u32 io_int_parm;
3500 __u32 io_int_word;
3501 __u32 ipb;
3502 __u8 dequeued;
3503 } s390_tsch;
3504
3505s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3506and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3507interrupt for the target subchannel has been dequeued and subchannel_id,
3508subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3509interrupt. ipb is needed for instruction parameter decoding.
3510
Alexander Graf1c810632013-01-04 18:12:48 +01003511 /* KVM_EXIT_EPR */
3512 struct {
3513 __u32 epr;
3514 } epr;
3515
3516On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3517interrupt acknowledge path to the core. When the core successfully
3518delivers an interrupt, it automatically populates the EPR register with
3519the interrupt vector number and acknowledges the interrupt inside
3520the interrupt controller.
3521
3522In case the interrupt controller lives in user space, we need to do
3523the interrupt acknowledge cycle through it to fetch the next to be
3524delivered interrupt vector using this exit.
3525
3526It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3527external interrupt has just been delivered into the guest. User space
3528should put the acknowledged interrupt vector into the 'epr' field.
3529
Anup Patel8ad6b632014-04-29 11:24:19 +05303530 /* KVM_EXIT_SYSTEM_EVENT */
3531 struct {
3532#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3533#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003534#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05303535 __u32 type;
3536 __u64 flags;
3537 } system_event;
3538
3539If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3540a system-level event using some architecture specific mechanism (hypercall
3541or some special instruction). In case of ARM/ARM64, this is triggered using
3542HVC instruction based PSCI call from the vcpu. The 'type' field describes
3543the system-level event type. The 'flags' field describes architecture
3544specific flags for the system-level event.
3545
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003546Valid values for 'type' are:
3547 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3548 VM. Userspace is not obliged to honour this, and if it does honour
3549 this does not need to destroy the VM synchronously (ie it may call
3550 KVM_RUN again before shutdown finally occurs).
3551 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3552 As with SHUTDOWN, userspace can choose to ignore the request, or
3553 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003554 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3555 has requested a crash condition maintenance. Userspace can choose
3556 to ignore the request, or to gather VM memory core dump and/or
3557 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003558
Steve Rutherford7543a632015-07-29 23:21:41 -07003559 /* KVM_EXIT_IOAPIC_EOI */
3560 struct {
3561 __u8 vector;
3562 } eoi;
3563
3564Indicates that the VCPU's in-kernel local APIC received an EOI for a
3565level-triggered IOAPIC interrupt. This exit only triggers when the
3566IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3567the userspace IOAPIC should process the EOI and retrigger the interrupt if
3568it is still asserted. Vector is the LAPIC interrupt vector for which the
3569EOI was received.
3570
Andrey Smetanindb3975712015-11-10 15:36:35 +03003571 struct kvm_hyperv_exit {
3572#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03003573#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03003574 __u32 type;
3575 union {
3576 struct {
3577 __u32 msr;
3578 __u64 control;
3579 __u64 evt_page;
3580 __u64 msg_page;
3581 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03003582 struct {
3583 __u64 input;
3584 __u64 result;
3585 __u64 params[2];
3586 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03003587 } u;
3588 };
3589 /* KVM_EXIT_HYPERV */
3590 struct kvm_hyperv_exit hyperv;
3591Indicates that the VCPU exits into userspace to process some tasks
3592related to Hyper-V emulation.
3593Valid values for 'type' are:
3594 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3595Hyper-V SynIC state change. Notification is used to remap SynIC
3596event/message pages and to enable/disable SynIC messages/events processing
3597in userspace.
3598
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003599 /* Fix the size of the union. */
3600 char padding[256];
3601 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01003602
3603 /*
3604 * shared registers between kvm and userspace.
3605 * kvm_valid_regs specifies the register classes set by the host
3606 * kvm_dirty_regs specified the register classes dirtied by userspace
3607 * struct kvm_sync_regs is architecture specific, as well as the
3608 * bits for kvm_valid_regs and kvm_dirty_regs
3609 */
3610 __u64 kvm_valid_regs;
3611 __u64 kvm_dirty_regs;
3612 union {
3613 struct kvm_sync_regs regs;
3614 char padding[1024];
3615 } s;
3616
3617If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3618certain guest registers without having to call SET/GET_*REGS. Thus we can
3619avoid some system call overhead if userspace has to handle the exit.
3620Userspace can query the validity of the structure by checking
3621kvm_valid_regs for specific bits. These bits are architecture specific
3622and usually define the validity of a groups of registers. (e.g. one bit
3623 for general purpose registers)
3624
David Hildenbrandd8482c02014-07-29 08:19:26 +02003625Please note that the kernel is allowed to use the kvm_run structure as the
3626primary storage for certain register types. Therefore, the kernel may use the
3627values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3628
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003629};
Alexander Graf821246a2011-08-31 10:58:55 +02003630
Jan Kiszka414fa982012-04-24 16:40:15 +02003631
Borislav Petkov9c15bb12013-09-22 16:44:50 +02003632
Paul Mackerras699a0ea2014-06-02 11:02:59 +100036336. Capabilities that can be enabled on vCPUs
3634--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02003635
Cornelia Huck0907c852014-06-27 09:29:26 +02003636There are certain capabilities that change the behavior of the virtual CPU or
3637the virtual machine when enabled. To enable them, please see section 4.37.
3638Below you can find a list of capabilities and what their effect on the vCPU or
3639the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02003640
3641The following information is provided along with the description:
3642
3643 Architectures: which instruction set architectures provide this ioctl.
3644 x86 includes both i386 and x86_64.
3645
Cornelia Huck0907c852014-06-27 09:29:26 +02003646 Target: whether this is a per-vcpu or per-vm capability.
3647
Alexander Graf821246a2011-08-31 10:58:55 +02003648 Parameters: what parameters are accepted by the capability.
3649
3650 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3651 are not detailed, but errors with specific meanings are.
3652
Jan Kiszka414fa982012-04-24 16:40:15 +02003653
Alexander Graf821246a2011-08-31 10:58:55 +020036546.1 KVM_CAP_PPC_OSI
3655
3656Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003657Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003658Parameters: none
3659Returns: 0 on success; -1 on error
3660
3661This capability enables interception of OSI hypercalls that otherwise would
3662be treated as normal system calls to be injected into the guest. OSI hypercalls
3663were invented by Mac-on-Linux to have a standardized communication mechanism
3664between the guest and the host.
3665
3666When this capability is enabled, KVM_EXIT_OSI can occur.
3667
Jan Kiszka414fa982012-04-24 16:40:15 +02003668
Alexander Graf821246a2011-08-31 10:58:55 +020036696.2 KVM_CAP_PPC_PAPR
3670
3671Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003672Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003673Parameters: none
3674Returns: 0 on success; -1 on error
3675
3676This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3677done using the hypercall instruction "sc 1".
3678
3679It also sets the guest privilege level to "supervisor" mode. Usually the guest
3680runs in "hypervisor" privilege mode with a few missing features.
3681
3682In addition to the above, it changes the semantics of SDR1. In this mode, the
3683HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3684HTAB invisible to the guest.
3685
3686When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05003687
Jan Kiszka414fa982012-04-24 16:40:15 +02003688
Scott Wooddc83b8b2011-08-18 15:25:21 -050036896.3 KVM_CAP_SW_TLB
3690
3691Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003692Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05003693Parameters: args[0] is the address of a struct kvm_config_tlb
3694Returns: 0 on success; -1 on error
3695
3696struct kvm_config_tlb {
3697 __u64 params;
3698 __u64 array;
3699 __u32 mmu_type;
3700 __u32 array_len;
3701};
3702
3703Configures the virtual CPU's TLB array, establishing a shared memory area
3704between userspace and KVM. The "params" and "array" fields are userspace
3705addresses of mmu-type-specific data structures. The "array_len" field is an
3706safety mechanism, and should be set to the size in bytes of the memory that
3707userspace has reserved for the array. It must be at least the size dictated
3708by "mmu_type" and "params".
3709
3710While KVM_RUN is active, the shared region is under control of KVM. Its
3711contents are undefined, and any modification by userspace results in
3712boundedly undefined behavior.
3713
3714On return from KVM_RUN, the shared region will reflect the current state of
3715the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3716to tell KVM which entries have been changed, prior to calling KVM_RUN again
3717on this vcpu.
3718
3719For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3720 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3721 - The "array" field points to an array of type "struct
3722 kvm_book3e_206_tlb_entry".
3723 - The array consists of all entries in the first TLB, followed by all
3724 entries in the second TLB.
3725 - Within a TLB, entries are ordered first by increasing set number. Within a
3726 set, entries are ordered by way (increasing ESEL).
3727 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3728 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3729 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3730 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003731
37326.4 KVM_CAP_S390_CSS_SUPPORT
3733
3734Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02003735Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003736Parameters: none
3737Returns: 0 on success; -1 on error
3738
3739This capability enables support for handling of channel I/O instructions.
3740
3741TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3742handled in-kernel, while the other I/O instructions are passed to userspace.
3743
3744When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3745SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01003746
Cornelia Huck0907c852014-06-27 09:29:26 +02003747Note that even though this capability is enabled per-vcpu, the complete
3748virtual machine is affected.
3749
Alexander Graf1c810632013-01-04 18:12:48 +010037506.5 KVM_CAP_PPC_EPR
3751
3752Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003753Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01003754Parameters: args[0] defines whether the proxy facility is active
3755Returns: 0 on success; -1 on error
3756
3757This capability enables or disables the delivery of interrupts through the
3758external proxy facility.
3759
3760When enabled (args[0] != 0), every time the guest gets an external interrupt
3761delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3762to receive the topmost interrupt vector.
3763
3764When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3765
3766When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00003767
37686.6 KVM_CAP_IRQ_MPIC
3769
3770Architectures: ppc
3771Parameters: args[0] is the MPIC device fd
3772 args[1] is the MPIC CPU number for this vcpu
3773
3774This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003775
37766.7 KVM_CAP_IRQ_XICS
3777
3778Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003779Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003780Parameters: args[0] is the XICS device fd
3781 args[1] is the XICS CPU number (server ID) for this vcpu
3782
3783This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02003784
37856.8 KVM_CAP_S390_IRQCHIP
3786
3787Architectures: s390
3788Target: vm
3789Parameters: none
3790
3791This capability enables the in-kernel irqchip for s390. Please refer to
3792"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10003793
James Hogan5fafd8742014-12-08 23:07:56 +000037946.9 KVM_CAP_MIPS_FPU
3795
3796Architectures: mips
3797Target: vcpu
3798Parameters: args[0] is reserved for future use (should be 0).
3799
3800This capability allows the use of the host Floating Point Unit by the guest. It
3801allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3802done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3803(depending on the current guest FPU register mode), and the Status.FR,
3804Config5.FRE bits are accessible via the KVM API and also from the guest,
3805depending on them being supported by the FPU.
3806
James Hogand952bd02014-12-08 23:07:56 +000038076.10 KVM_CAP_MIPS_MSA
3808
3809Architectures: mips
3810Target: vcpu
3811Parameters: args[0] is reserved for future use (should be 0).
3812
3813This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3814It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3815Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3816accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3817the guest.
3818
Paul Mackerras699a0ea2014-06-02 11:02:59 +100038197. Capabilities that can be enabled on VMs
3820------------------------------------------
3821
3822There are certain capabilities that change the behavior of the virtual
3823machine when enabled. To enable them, please see section 4.37. Below
3824you can find a list of capabilities and what their effect on the VM
3825is when enabling them.
3826
3827The following information is provided along with the description:
3828
3829 Architectures: which instruction set architectures provide this ioctl.
3830 x86 includes both i386 and x86_64.
3831
3832 Parameters: what parameters are accepted by the capability.
3833
3834 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3835 are not detailed, but errors with specific meanings are.
3836
3837
38387.1 KVM_CAP_PPC_ENABLE_HCALL
3839
3840Architectures: ppc
3841Parameters: args[0] is the sPAPR hcall number
3842 args[1] is 0 to disable, 1 to enable in-kernel handling
3843
3844This capability controls whether individual sPAPR hypercalls (hcalls)
3845get handled by the kernel or not. Enabling or disabling in-kernel
3846handling of an hcall is effective across the VM. On creation, an
3847initial set of hcalls are enabled for in-kernel handling, which
3848consists of those hcalls for which in-kernel handlers were implemented
3849before this capability was implemented. If disabled, the kernel will
3850not to attempt to handle the hcall, but will always exit to userspace
3851to handle it. Note that it may not make sense to enable some and
3852disable others of a group of related hcalls, but KVM does not prevent
3853userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10003854
3855If the hcall number specified is not one that has an in-kernel
3856implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3857error.
David Hildenbrand2444b352014-10-09 14:10:13 +02003858
38597.2 KVM_CAP_S390_USER_SIGP
3860
3861Architectures: s390
3862Parameters: none
3863
3864This capability controls which SIGP orders will be handled completely in user
3865space. With this capability enabled, all fast orders will be handled completely
3866in the kernel:
3867- SENSE
3868- SENSE RUNNING
3869- EXTERNAL CALL
3870- EMERGENCY SIGNAL
3871- CONDITIONAL EMERGENCY SIGNAL
3872
3873All other orders will be handled completely in user space.
3874
3875Only privileged operation exceptions will be checked for in the kernel (or even
3876in the hardware prior to interception). If this capability is not enabled, the
3877old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04003878
38797.3 KVM_CAP_S390_VECTOR_REGISTERS
3880
3881Architectures: s390
3882Parameters: none
3883Returns: 0 on success, negative value on error
3884
3885Allows use of the vector registers introduced with z13 processor, and
3886provides for the synchronization between host and user space. Will
3887return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01003888
38897.4 KVM_CAP_S390_USER_STSI
3890
3891Architectures: s390
3892Parameters: none
3893
3894This capability allows post-handlers for the STSI instruction. After
3895initial handling in the kernel, KVM exits to user space with
3896KVM_EXIT_S390_STSI to allow user space to insert further data.
3897
3898Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3899vcpu->run:
3900struct {
3901 __u64 addr;
3902 __u8 ar;
3903 __u8 reserved;
3904 __u8 fc;
3905 __u8 sel1;
3906 __u16 sel2;
3907} s390_stsi;
3908
3909@addr - guest address of STSI SYSIB
3910@fc - function code
3911@sel1 - selector 1
3912@sel2 - selector 2
3913@ar - access register number
3914
3915KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11003916
Steve Rutherford49df6392015-07-29 23:21:40 -070039177.5 KVM_CAP_SPLIT_IRQCHIP
3918
3919Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07003920Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07003921Returns: 0 on success, -1 on error
3922
3923Create a local apic for each processor in the kernel. This can be used
3924instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3925IOAPIC and PIC (and also the PIT, even though this has to be enabled
3926separately).
3927
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07003928This capability also enables in kernel routing of interrupt requests;
3929when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3930used in the IRQ routing table. The first args[0] MSI routes are reserved
3931for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
3932a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07003933
3934Fails if VCPU has already been created, or if the irqchip is already in the
3935kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3936
David Hildenbrand051c87f2016-04-19 13:13:40 +020039377.6 KVM_CAP_S390_RI
3938
3939Architectures: s390
3940Parameters: none
3941
3942Allows use of runtime-instrumentation introduced with zEC12 processor.
3943Will return -EINVAL if the machine does not support runtime-instrumentation.
3944Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11003945
Radim Krčmář371313132016-07-12 22:09:27 +020039467.7 KVM_CAP_X2APIC_API
3947
3948Architectures: x86
3949Parameters: args[0] - features that should be enabled
3950Returns: 0 on success, -EINVAL when args[0] contains invalid features
3951
3952Valid feature flags in args[0] are
3953
3954#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02003955#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02003956
3957Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
3958KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
3959allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
3960respective sections.
3961
Radim Krčmářc5192652016-07-12 22:09:28 +02003962KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
3963in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
3964as a broadcast even in x2APIC mode in order to support physical x2APIC
3965without interrupt remapping. This is undesirable in logical mode,
3966where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02003967
David Hildenbrand6502a342016-06-21 14:19:51 +020039687.8 KVM_CAP_S390_USER_INSTR0
3969
3970Architectures: s390
3971Parameters: none
3972
3973With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
3974be intercepted and forwarded to user space. User space can use this
3975mechanism e.g. to realize 2-byte software breakpoints. The kernel will
3976not inject an operating exception for these instructions, user space has
3977to take care of that.
3978
3979This capability can be enabled dynamically even if VCPUs were already
3980created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02003981
Fan Zhang4e0b1ab2016-11-29 07:17:55 +010039827.9 KVM_CAP_S390_GS
3983
3984Architectures: s390
3985Parameters: none
3986Returns: 0 on success; -EINVAL if the machine does not support
3987 guarded storage; -EBUSY if a VCPU has already been created.
3988
3989Allows use of guarded storage for the KVM guest.
3990
Yi Min Zhao47a46932017-03-10 09:29:38 +010039917.10 KVM_CAP_S390_AIS
3992
3993Architectures: s390
3994Parameters: none
3995
3996Allow use of adapter-interruption suppression.
3997Returns: 0 on success; -EBUSY if a VCPU has already been created.
3998
Michael Ellermane928e9c2015-03-20 20:39:41 +110039998. Other capabilities.
4000----------------------
4001
4002This section lists capabilities that give information about other
4003features of the KVM implementation.
4004
40058.1 KVM_CAP_PPC_HWRNG
4006
4007Architectures: ppc
4008
4009This capability, if KVM_CHECK_EXTENSION indicates that it is
4010available, means that that the kernel has an implementation of the
4011H_RANDOM hypercall backed by a hardware random-number generator.
4012If present, the kernel H_RANDOM handler can be enabled for guest use
4013with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004014
40158.2 KVM_CAP_HYPERV_SYNIC
4016
4017Architectures: x86
4018This capability, if KVM_CHECK_EXTENSION indicates that it is
4019available, means that that the kernel has an implementation of the
4020Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4021used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4022
4023In order to use SynIC, it has to be activated by setting this
4024capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4025will disable the use of APIC hardware virtualization even if supported
4026by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004027
40288.3 KVM_CAP_PPC_RADIX_MMU
4029
4030Architectures: ppc
4031
4032This capability, if KVM_CHECK_EXTENSION indicates that it is
4033available, means that that the kernel can support guests using the
4034radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4035processor).
4036
40378.4 KVM_CAP_PPC_HASH_MMU_V3
4038
4039Architectures: ppc
4040
4041This capability, if KVM_CHECK_EXTENSION indicates that it is
4042available, means that that the kernel can support guests using the
4043hashed page table MMU defined in Power ISA V3.00 (as implemented in
4044the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004045
40468.5 KVM_CAP_MIPS_VZ
4047
4048Architectures: mips
4049
4050This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4051it is available, means that full hardware assisted virtualization capabilities
4052of the hardware are available for use through KVM. An appropriate
4053KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4054utilises it.
4055
4056If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4057available, it means that the VM is using full hardware assisted virtualization
4058capabilities of the hardware. This is useful to check after creating a VM with
4059KVM_VM_MIPS_DEFAULT.
4060
4061The value returned by KVM_CHECK_EXTENSION should be compared against known
4062values (see below). All other values are reserved. This is to allow for the
4063possibility of other hardware assisted virtualization implementations which
4064may be incompatible with the MIPS VZ ASE.
4065
4066 0: The trap & emulate implementation is in use to run guest code in user
4067 mode. Guest virtual memory segments are rearranged to fit the guest in the
4068 user mode address space.
4069
4070 1: The MIPS VZ ASE is in use, providing full hardware assisted
4071 virtualization, including standard guest virtual memory segments.
4072
40738.6 KVM_CAP_MIPS_TE
4074
4075Architectures: mips
4076
4077This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4078it is available, means that the trap & emulate implementation is available to
4079run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4080assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4081to KVM_CREATE_VM to create a VM which utilises it.
4082
4083If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4084available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004085
40868.7 KVM_CAP_MIPS_64BIT
4087
4088Architectures: mips
4089
4090This capability indicates the supported architecture type of the guest, i.e. the
4091supported register and address width.
4092
4093The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4094kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4095be checked specifically against known values (see below). All other values are
4096reserved.
4097
4098 0: MIPS32 or microMIPS32.
4099 Both registers and addresses are 32-bits wide.
4100 It will only be possible to run 32-bit guest code.
4101
4102 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4103 Registers are 64-bits wide, but addresses are 32-bits wide.
4104 64-bit guest code may run but cannot access MIPS64 memory segments.
4105 It will also be possible to run 32-bit guest code.
4106
4107 2: MIPS64 or microMIPS64 with access to all address segments.
4108 Both registers and addresses are 64-bits wide.
4109 It will be possible to run 64-bit or 32-bit guest code.
Michael S. Tsirkin668fffa2017-04-21 12:27:17 +02004110
41118.8 KVM_CAP_X86_GUEST_MWAIT
4112
4113Architectures: x86
4114
4115This capability indicates that guest using memory monotoring instructions
4116(MWAIT/MWAITX) to stop the virtual CPU will not cause a VM exit. As such time
4117spent while virtual CPU is halted in this way will then be accounted for as
4118guest running time on the host (as opposed to e.g. HLT).
Paolo Bonzinic24a7be2017-04-27 17:33:14 +02004119
41208.9 KVM_CAP_ARM_USER_IRQ
Alexander Graf3fe17e62016-09-27 21:08:05 +02004121
4122Architectures: arm, arm64
4123This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
4124that if userspace creates a VM without an in-kernel interrupt controller, it
4125will be notified of changes to the output level of in-kernel emulated devices,
4126which can generate virtual interrupts, presented to the VM.
4127For such VMs, on every return to userspace, the kernel
4128updates the vcpu's run->s.regs.device_irq_level field to represent the actual
4129output level of the device.
4130
4131Whenever kvm detects a change in the device output level, kvm guarantees at
4132least one return to userspace before running the VM. This exit could either
4133be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
4134userspace can always sample the device output level and re-compute the state of
4135the userspace interrupt controller. Userspace should always check the state
4136of run->s.regs.device_irq_level on every kvm exit.
4137The value in run->s.regs.device_irq_level can represent both level and edge
4138triggered interrupt signals, depending on the device. Edge triggered interrupt
4139signals will exit to userspace with the bit in run->s.regs.device_irq_level
4140set exactly once per edge signal.
4141
4142The field run->s.regs.device_irq_level is available independent of
4143run->kvm_valid_regs or run->kvm_dirty_regs bits.
4144
4145If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
4146number larger than 0 indicating the version of this capability is implemented
4147and thereby which bits in in run->s.regs.device_irq_level can signal values.
4148
4149Currently the following bits are defined for the device_irq_level bitmap:
4150
4151 KVM_CAP_ARM_USER_IRQ >= 1:
4152
4153 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
4154 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
4155 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
4156
4157Future versions of kvm may implement additional events. These will get
4158indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
4159listed above.