Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Budget Fair Queueing (BFQ) I/O scheduler. |
| 3 | * |
| 4 | * Based on ideas and code from CFQ: |
| 5 | * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> |
| 6 | * |
| 7 | * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> |
| 8 | * Paolo Valente <paolo.valente@unimore.it> |
| 9 | * |
| 10 | * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> |
| 11 | * Arianna Avanzini <avanzini@google.com> |
| 12 | * |
| 13 | * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License as |
| 17 | * published by the Free Software Foundation; either version 2 of the |
| 18 | * License, or (at your option) any later version. |
| 19 | * |
| 20 | * This program is distributed in the hope that it will be useful, |
| 21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | * General Public License for more details. |
| 24 | * |
| 25 | * BFQ is a proportional-share I/O scheduler, with some extra |
| 26 | * low-latency capabilities. BFQ also supports full hierarchical |
| 27 | * scheduling through cgroups. Next paragraphs provide an introduction |
| 28 | * on BFQ inner workings. Details on BFQ benefits, usage and |
| 29 | * limitations can be found in Documentation/block/bfq-iosched.txt. |
| 30 | * |
| 31 | * BFQ is a proportional-share storage-I/O scheduling algorithm based |
| 32 | * on the slice-by-slice service scheme of CFQ. But BFQ assigns |
| 33 | * budgets, measured in number of sectors, to processes instead of |
| 34 | * time slices. The device is not granted to the in-service process |
| 35 | * for a given time slice, but until it has exhausted its assigned |
| 36 | * budget. This change from the time to the service domain enables BFQ |
| 37 | * to distribute the device throughput among processes as desired, |
| 38 | * without any distortion due to throughput fluctuations, or to device |
| 39 | * internal queueing. BFQ uses an ad hoc internal scheduler, called |
| 40 | * B-WF2Q+, to schedule processes according to their budgets. More |
| 41 | * precisely, BFQ schedules queues associated with processes. Each |
| 42 | * process/queue is assigned a user-configurable weight, and B-WF2Q+ |
| 43 | * guarantees that each queue receives a fraction of the throughput |
| 44 | * proportional to its weight. Thanks to the accurate policy of |
| 45 | * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound |
| 46 | * processes issuing sequential requests (to boost the throughput), |
| 47 | * and yet guarantee a low latency to interactive and soft real-time |
| 48 | * applications. |
| 49 | * |
| 50 | * In particular, to provide these low-latency guarantees, BFQ |
| 51 | * explicitly privileges the I/O of two classes of time-sensitive |
| 52 | * applications: interactive and soft real-time. This feature enables |
| 53 | * BFQ to provide applications in these classes with a very low |
| 54 | * latency. Finally, BFQ also features additional heuristics for |
| 55 | * preserving both a low latency and a high throughput on NCQ-capable, |
| 56 | * rotational or flash-based devices, and to get the job done quickly |
| 57 | * for applications consisting in many I/O-bound processes. |
| 58 | * |
| 59 | * BFQ is described in [1], where also a reference to the initial, more |
| 60 | * theoretical paper on BFQ can be found. The interested reader can find |
| 61 | * in the latter paper full details on the main algorithm, as well as |
| 62 | * formulas of the guarantees and formal proofs of all the properties. |
| 63 | * With respect to the version of BFQ presented in these papers, this |
| 64 | * implementation adds a few more heuristics, such as the one that |
| 65 | * guarantees a low latency to soft real-time applications, and a |
| 66 | * hierarchical extension based on H-WF2Q+. |
| 67 | * |
| 68 | * B-WF2Q+ is based on WF2Q+, which is described in [2], together with |
| 69 | * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ |
| 70 | * with O(log N) complexity derives from the one introduced with EEVDF |
| 71 | * in [3]. |
| 72 | * |
| 73 | * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O |
| 74 | * Scheduler", Proceedings of the First Workshop on Mobile System |
| 75 | * Technologies (MST-2015), May 2015. |
| 76 | * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf |
| 77 | * |
| 78 | * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing |
| 79 | * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, |
| 80 | * Oct 1997. |
| 81 | * |
| 82 | * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz |
| 83 | * |
| 84 | * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline |
| 85 | * First: A Flexible and Accurate Mechanism for Proportional Share |
| 86 | * Resource Allocation", technical report. |
| 87 | * |
| 88 | * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf |
| 89 | */ |
| 90 | #include <linux/module.h> |
| 91 | #include <linux/slab.h> |
| 92 | #include <linux/blkdev.h> |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 93 | #include <linux/cgroup.h> |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 94 | #include <linux/elevator.h> |
| 95 | #include <linux/ktime.h> |
| 96 | #include <linux/rbtree.h> |
| 97 | #include <linux/ioprio.h> |
| 98 | #include <linux/sbitmap.h> |
| 99 | #include <linux/delay.h> |
| 100 | |
| 101 | #include "blk.h" |
| 102 | #include "blk-mq.h" |
| 103 | #include "blk-mq-tag.h" |
| 104 | #include "blk-mq-sched.h" |
| 105 | #include <linux/blktrace_api.h> |
| 106 | #include <linux/hrtimer.h> |
| 107 | #include <linux/blk-cgroup.h> |
| 108 | |
| 109 | #define BFQ_IOPRIO_CLASSES 3 |
| 110 | #define BFQ_CL_IDLE_TIMEOUT (HZ/5) |
| 111 | |
| 112 | #define BFQ_MIN_WEIGHT 1 |
| 113 | #define BFQ_MAX_WEIGHT 1000 |
| 114 | #define BFQ_WEIGHT_CONVERSION_COEFF 10 |
| 115 | |
| 116 | #define BFQ_DEFAULT_QUEUE_IOPRIO 4 |
| 117 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 118 | #define BFQ_WEIGHT_LEGACY_DFL 100 |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 119 | #define BFQ_DEFAULT_GRP_IOPRIO 0 |
| 120 | #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE |
| 121 | |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 122 | /* |
| 123 | * Soft real-time applications are extremely more latency sensitive |
| 124 | * than interactive ones. Over-raise the weight of the former to |
| 125 | * privilege them against the latter. |
| 126 | */ |
| 127 | #define BFQ_SOFTRT_WEIGHT_FACTOR 100 |
| 128 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 129 | struct bfq_entity; |
| 130 | |
| 131 | /** |
| 132 | * struct bfq_service_tree - per ioprio_class service tree. |
| 133 | * |
| 134 | * Each service tree represents a B-WF2Q+ scheduler on its own. Each |
| 135 | * ioprio_class has its own independent scheduler, and so its own |
| 136 | * bfq_service_tree. All the fields are protected by the queue lock |
| 137 | * of the containing bfqd. |
| 138 | */ |
| 139 | struct bfq_service_tree { |
| 140 | /* tree for active entities (i.e., those backlogged) */ |
| 141 | struct rb_root active; |
| 142 | /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/ |
| 143 | struct rb_root idle; |
| 144 | |
| 145 | /* idle entity with minimum F_i */ |
| 146 | struct bfq_entity *first_idle; |
| 147 | /* idle entity with maximum F_i */ |
| 148 | struct bfq_entity *last_idle; |
| 149 | |
| 150 | /* scheduler virtual time */ |
| 151 | u64 vtime; |
| 152 | /* scheduler weight sum; active and idle entities contribute to it */ |
| 153 | unsigned long wsum; |
| 154 | }; |
| 155 | |
| 156 | /** |
| 157 | * struct bfq_sched_data - multi-class scheduler. |
| 158 | * |
| 159 | * bfq_sched_data is the basic scheduler queue. It supports three |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 160 | * ioprio_classes, and can be used either as a toplevel queue or as an |
| 161 | * intermediate queue on a hierarchical setup. @next_in_service |
| 162 | * points to the active entity of the sched_data service trees that |
| 163 | * will be scheduled next. It is used to reduce the number of steps |
| 164 | * needed for each hierarchical-schedule update. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 165 | * |
| 166 | * The supported ioprio_classes are the same as in CFQ, in descending |
| 167 | * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. |
| 168 | * Requests from higher priority queues are served before all the |
| 169 | * requests from lower priority queues; among requests of the same |
| 170 | * queue requests are served according to B-WF2Q+. |
| 171 | * All the fields are protected by the queue lock of the containing bfqd. |
| 172 | */ |
| 173 | struct bfq_sched_data { |
| 174 | /* entity in service */ |
| 175 | struct bfq_entity *in_service_entity; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 176 | /* head-of-line entity (see comments above) */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 177 | struct bfq_entity *next_in_service; |
| 178 | /* array of service trees, one per ioprio_class */ |
| 179 | struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 180 | /* last time CLASS_IDLE was served */ |
| 181 | unsigned long bfq_class_idle_last_service; |
| 182 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 183 | }; |
| 184 | |
| 185 | /** |
| 186 | * struct bfq_entity - schedulable entity. |
| 187 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 188 | * A bfq_entity is used to represent either a bfq_queue (leaf node in the |
| 189 | * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each |
| 190 | * entity belongs to the sched_data of the parent group in the cgroup |
| 191 | * hierarchy. Non-leaf entities have also their own sched_data, stored |
| 192 | * in @my_sched_data. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 193 | * |
| 194 | * Each entity stores independently its priority values; this would |
| 195 | * allow different weights on different devices, but this |
| 196 | * functionality is not exported to userspace by now. Priorities and |
| 197 | * weights are updated lazily, first storing the new values into the |
| 198 | * new_* fields, then setting the @prio_changed flag. As soon as |
| 199 | * there is a transition in the entity state that allows the priority |
| 200 | * update to take place the effective and the requested priority |
| 201 | * values are synchronized. |
| 202 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 203 | * Unless cgroups are used, the weight value is calculated from the |
| 204 | * ioprio to export the same interface as CFQ. When dealing with |
| 205 | * ``well-behaved'' queues (i.e., queues that do not spend too much |
| 206 | * time to consume their budget and have true sequential behavior, and |
| 207 | * when there are no external factors breaking anticipation) the |
| 208 | * relative weights at each level of the cgroups hierarchy should be |
| 209 | * guaranteed. All the fields are protected by the queue lock of the |
| 210 | * containing bfqd. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 211 | */ |
| 212 | struct bfq_entity { |
| 213 | /* service_tree member */ |
| 214 | struct rb_node rb_node; |
| 215 | |
| 216 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 217 | * Flag, true if the entity is on a tree (either the active or |
| 218 | * the idle one of its service_tree) or is in service. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 219 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 220 | bool on_st; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 221 | |
| 222 | /* B-WF2Q+ start and finish timestamps [sectors/weight] */ |
| 223 | u64 start, finish; |
| 224 | |
| 225 | /* tree the entity is enqueued into; %NULL if not on a tree */ |
| 226 | struct rb_root *tree; |
| 227 | |
| 228 | /* |
| 229 | * minimum start time of the (active) subtree rooted at this |
| 230 | * entity; used for O(log N) lookups into active trees |
| 231 | */ |
| 232 | u64 min_start; |
| 233 | |
| 234 | /* amount of service received during the last service slot */ |
| 235 | int service; |
| 236 | |
| 237 | /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ |
| 238 | int budget; |
| 239 | |
| 240 | /* weight of the queue */ |
| 241 | int weight; |
| 242 | /* next weight if a change is in progress */ |
| 243 | int new_weight; |
| 244 | |
| 245 | /* original weight, used to implement weight boosting */ |
| 246 | int orig_weight; |
| 247 | |
| 248 | /* parent entity, for hierarchical scheduling */ |
| 249 | struct bfq_entity *parent; |
| 250 | |
| 251 | /* |
| 252 | * For non-leaf nodes in the hierarchy, the associated |
| 253 | * scheduler queue, %NULL on leaf nodes. |
| 254 | */ |
| 255 | struct bfq_sched_data *my_sched_data; |
| 256 | /* the scheduler queue this entity belongs to */ |
| 257 | struct bfq_sched_data *sched_data; |
| 258 | |
| 259 | /* flag, set to request a weight, ioprio or ioprio_class change */ |
| 260 | int prio_changed; |
| 261 | }; |
| 262 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 263 | struct bfq_group; |
| 264 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 265 | /** |
| 266 | * struct bfq_ttime - per process thinktime stats. |
| 267 | */ |
| 268 | struct bfq_ttime { |
| 269 | /* completion time of the last request */ |
| 270 | u64 last_end_request; |
| 271 | |
| 272 | /* total process thinktime */ |
| 273 | u64 ttime_total; |
| 274 | /* number of thinktime samples */ |
| 275 | unsigned long ttime_samples; |
| 276 | /* average process thinktime */ |
| 277 | u64 ttime_mean; |
| 278 | }; |
| 279 | |
| 280 | /** |
| 281 | * struct bfq_queue - leaf schedulable entity. |
| 282 | * |
| 283 | * A bfq_queue is a leaf request queue; it can be associated with an |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 284 | * io_context or more, if it is async. @cgroup holds a reference to |
| 285 | * the cgroup, to be sure that it does not disappear while a bfqq |
| 286 | * still references it (mostly to avoid races between request issuing |
| 287 | * and task migration followed by cgroup destruction). All the fields |
| 288 | * are protected by the queue lock of the containing bfqd. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 289 | */ |
| 290 | struct bfq_queue { |
| 291 | /* reference counter */ |
| 292 | int ref; |
| 293 | /* parent bfq_data */ |
| 294 | struct bfq_data *bfqd; |
| 295 | |
| 296 | /* current ioprio and ioprio class */ |
| 297 | unsigned short ioprio, ioprio_class; |
| 298 | /* next ioprio and ioprio class if a change is in progress */ |
| 299 | unsigned short new_ioprio, new_ioprio_class; |
| 300 | |
| 301 | /* sorted list of pending requests */ |
| 302 | struct rb_root sort_list; |
| 303 | /* if fifo isn't expired, next request to serve */ |
| 304 | struct request *next_rq; |
| 305 | /* number of sync and async requests queued */ |
| 306 | int queued[2]; |
| 307 | /* number of requests currently allocated */ |
| 308 | int allocated; |
| 309 | /* number of pending metadata requests */ |
| 310 | int meta_pending; |
| 311 | /* fifo list of requests in sort_list */ |
| 312 | struct list_head fifo; |
| 313 | |
| 314 | /* entity representing this queue in the scheduler */ |
| 315 | struct bfq_entity entity; |
| 316 | |
| 317 | /* maximum budget allowed from the feedback mechanism */ |
| 318 | int max_budget; |
| 319 | /* budget expiration (in jiffies) */ |
| 320 | unsigned long budget_timeout; |
| 321 | |
| 322 | /* number of requests on the dispatch list or inside driver */ |
| 323 | int dispatched; |
| 324 | |
| 325 | /* status flags */ |
| 326 | unsigned long flags; |
| 327 | |
| 328 | /* node for active/idle bfqq list inside parent bfqd */ |
| 329 | struct list_head bfqq_list; |
| 330 | |
| 331 | /* associated @bfq_ttime struct */ |
| 332 | struct bfq_ttime ttime; |
| 333 | |
| 334 | /* bit vector: a 1 for each seeky requests in history */ |
| 335 | u32 seek_history; |
| 336 | /* position of the last request enqueued */ |
| 337 | sector_t last_request_pos; |
| 338 | |
| 339 | /* Number of consecutive pairs of request completion and |
| 340 | * arrival, such that the queue becomes idle after the |
| 341 | * completion, but the next request arrives within an idle |
| 342 | * time slice; used only if the queue's IO_bound flag has been |
| 343 | * cleared. |
| 344 | */ |
| 345 | unsigned int requests_within_timer; |
| 346 | |
| 347 | /* pid of the process owning the queue, used for logging purposes */ |
| 348 | pid_t pid; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 349 | |
| 350 | /* current maximum weight-raising time for this queue */ |
| 351 | unsigned long wr_cur_max_time; |
| 352 | /* |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 353 | * Minimum time instant such that, only if a new request is |
| 354 | * enqueued after this time instant in an idle @bfq_queue with |
| 355 | * no outstanding requests, then the task associated with the |
| 356 | * queue it is deemed as soft real-time (see the comments on |
| 357 | * the function bfq_bfqq_softrt_next_start()) |
| 358 | */ |
| 359 | unsigned long soft_rt_next_start; |
| 360 | /* |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 361 | * Start time of the current weight-raising period if |
| 362 | * the @bfq-queue is being weight-raised, otherwise |
| 363 | * finish time of the last weight-raising period. |
| 364 | */ |
| 365 | unsigned long last_wr_start_finish; |
| 366 | /* factor by which the weight of this queue is multiplied */ |
| 367 | unsigned int wr_coeff; |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 368 | /* |
| 369 | * Time of the last transition of the @bfq_queue from idle to |
| 370 | * backlogged. |
| 371 | */ |
| 372 | unsigned long last_idle_bklogged; |
| 373 | /* |
| 374 | * Cumulative service received from the @bfq_queue since the |
| 375 | * last transition from idle to backlogged. |
| 376 | */ |
| 377 | unsigned long service_from_backlogged; |
| 378 | /* |
| 379 | * Value of wr start time when switching to soft rt |
| 380 | */ |
| 381 | unsigned long wr_start_at_switch_to_srt; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 382 | }; |
| 383 | |
| 384 | /** |
| 385 | * struct bfq_io_cq - per (request_queue, io_context) structure. |
| 386 | */ |
| 387 | struct bfq_io_cq { |
| 388 | /* associated io_cq structure */ |
| 389 | struct io_cq icq; /* must be the first member */ |
| 390 | /* array of two process queues, the sync and the async */ |
| 391 | struct bfq_queue *bfqq[2]; |
| 392 | /* per (request_queue, blkcg) ioprio */ |
| 393 | int ioprio; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 394 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 395 | uint64_t blkcg_serial_nr; /* the current blkcg serial */ |
| 396 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 397 | }; |
| 398 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 399 | enum bfq_device_speed { |
| 400 | BFQ_BFQD_FAST, |
| 401 | BFQ_BFQD_SLOW, |
| 402 | }; |
| 403 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 404 | /** |
| 405 | * struct bfq_data - per-device data structure. |
| 406 | * |
| 407 | * All the fields are protected by @lock. |
| 408 | */ |
| 409 | struct bfq_data { |
| 410 | /* device request queue */ |
| 411 | struct request_queue *queue; |
| 412 | /* dispatch queue */ |
| 413 | struct list_head dispatch; |
| 414 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 415 | /* root bfq_group for the device */ |
| 416 | struct bfq_group *root_group; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 417 | |
| 418 | /* |
| 419 | * Number of bfq_queues containing requests (including the |
| 420 | * queue in service, even if it is idling). |
| 421 | */ |
| 422 | int busy_queues; |
| 423 | /* number of queued requests */ |
| 424 | int queued; |
| 425 | /* number of requests dispatched and waiting for completion */ |
| 426 | int rq_in_driver; |
| 427 | |
| 428 | /* |
| 429 | * Maximum number of requests in driver in the last |
| 430 | * @hw_tag_samples completed requests. |
| 431 | */ |
| 432 | int max_rq_in_driver; |
| 433 | /* number of samples used to calculate hw_tag */ |
| 434 | int hw_tag_samples; |
| 435 | /* flag set to one if the driver is showing a queueing behavior */ |
| 436 | int hw_tag; |
| 437 | |
| 438 | /* number of budgets assigned */ |
| 439 | int budgets_assigned; |
| 440 | |
| 441 | /* |
| 442 | * Timer set when idling (waiting) for the next request from |
| 443 | * the queue in service. |
| 444 | */ |
| 445 | struct hrtimer idle_slice_timer; |
| 446 | |
| 447 | /* bfq_queue in service */ |
| 448 | struct bfq_queue *in_service_queue; |
| 449 | /* bfq_io_cq (bic) associated with the @in_service_queue */ |
| 450 | struct bfq_io_cq *in_service_bic; |
| 451 | |
| 452 | /* on-disk position of the last served request */ |
| 453 | sector_t last_position; |
| 454 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 455 | /* time of last request completion (ns) */ |
| 456 | u64 last_completion; |
| 457 | |
| 458 | /* time of first rq dispatch in current observation interval (ns) */ |
| 459 | u64 first_dispatch; |
| 460 | /* time of last rq dispatch in current observation interval (ns) */ |
| 461 | u64 last_dispatch; |
| 462 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 463 | /* beginning of the last budget */ |
| 464 | ktime_t last_budget_start; |
| 465 | /* beginning of the last idle slice */ |
| 466 | ktime_t last_idling_start; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 467 | |
| 468 | /* number of samples in current observation interval */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 469 | int peak_rate_samples; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 470 | /* num of samples of seq dispatches in current observation interval */ |
| 471 | u32 sequential_samples; |
| 472 | /* total num of sectors transferred in current observation interval */ |
| 473 | u64 tot_sectors_dispatched; |
| 474 | /* max rq size seen during current observation interval (sectors) */ |
| 475 | u32 last_rq_max_size; |
| 476 | /* time elapsed from first dispatch in current observ. interval (us) */ |
| 477 | u64 delta_from_first; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 478 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 479 | * Current estimate of the device peak rate, measured in |
| 480 | * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by |
| 481 | * BFQ_RATE_SHIFT is performed to increase precision in |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 482 | * fixed-point calculations. |
| 483 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 484 | u32 peak_rate; |
| 485 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 486 | /* maximum budget allotted to a bfq_queue before rescheduling */ |
| 487 | int bfq_max_budget; |
| 488 | |
| 489 | /* list of all the bfq_queues active on the device */ |
| 490 | struct list_head active_list; |
| 491 | /* list of all the bfq_queues idle on the device */ |
| 492 | struct list_head idle_list; |
| 493 | |
| 494 | /* |
| 495 | * Timeout for async/sync requests; when it fires, requests |
| 496 | * are served in fifo order. |
| 497 | */ |
| 498 | u64 bfq_fifo_expire[2]; |
| 499 | /* weight of backward seeks wrt forward ones */ |
| 500 | unsigned int bfq_back_penalty; |
| 501 | /* maximum allowed backward seek */ |
| 502 | unsigned int bfq_back_max; |
| 503 | /* maximum idling time */ |
| 504 | u32 bfq_slice_idle; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 505 | |
| 506 | /* user-configured max budget value (0 for auto-tuning) */ |
| 507 | int bfq_user_max_budget; |
| 508 | /* |
| 509 | * Timeout for bfq_queues to consume their budget; used to |
| 510 | * prevent seeky queues from imposing long latencies to |
| 511 | * sequential or quasi-sequential ones (this also implies that |
| 512 | * seeky queues cannot receive guarantees in the service |
| 513 | * domain; after a timeout they are charged for the time they |
| 514 | * have been in service, to preserve fairness among them, but |
| 515 | * without service-domain guarantees). |
| 516 | */ |
| 517 | unsigned int bfq_timeout; |
| 518 | |
| 519 | /* |
| 520 | * Number of consecutive requests that must be issued within |
| 521 | * the idle time slice to set again idling to a queue which |
| 522 | * was marked as non-I/O-bound (see the definition of the |
| 523 | * IO_bound flag for further details). |
| 524 | */ |
| 525 | unsigned int bfq_requests_within_timer; |
| 526 | |
| 527 | /* |
| 528 | * Force device idling whenever needed to provide accurate |
| 529 | * service guarantees, without caring about throughput |
| 530 | * issues. CAVEAT: this may even increase latencies, in case |
| 531 | * of useless idling for processes that did stop doing I/O. |
| 532 | */ |
| 533 | bool strict_guarantees; |
| 534 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 535 | /* if set to true, low-latency heuristics are enabled */ |
| 536 | bool low_latency; |
| 537 | /* |
| 538 | * Maximum factor by which the weight of a weight-raised queue |
| 539 | * is multiplied. |
| 540 | */ |
| 541 | unsigned int bfq_wr_coeff; |
| 542 | /* maximum duration of a weight-raising period (jiffies) */ |
| 543 | unsigned int bfq_wr_max_time; |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 544 | |
| 545 | /* Maximum weight-raising duration for soft real-time processes */ |
| 546 | unsigned int bfq_wr_rt_max_time; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 547 | /* |
| 548 | * Minimum idle period after which weight-raising may be |
| 549 | * reactivated for a queue (in jiffies). |
| 550 | */ |
| 551 | unsigned int bfq_wr_min_idle_time; |
| 552 | /* |
| 553 | * Minimum period between request arrivals after which |
| 554 | * weight-raising may be reactivated for an already busy async |
| 555 | * queue (in jiffies). |
| 556 | */ |
| 557 | unsigned long bfq_wr_min_inter_arr_async; |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 558 | |
| 559 | /* Max service-rate for a soft real-time queue, in sectors/sec */ |
| 560 | unsigned int bfq_wr_max_softrt_rate; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 561 | /* |
| 562 | * Cached value of the product R*T, used for computing the |
| 563 | * maximum duration of weight raising automatically. |
| 564 | */ |
| 565 | u64 RT_prod; |
| 566 | /* device-speed class for the low-latency heuristic */ |
| 567 | enum bfq_device_speed device_speed; |
| 568 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 569 | /* fallback dummy bfqq for extreme OOM conditions */ |
| 570 | struct bfq_queue oom_bfqq; |
| 571 | |
| 572 | spinlock_t lock; |
| 573 | |
| 574 | /* |
| 575 | * bic associated with the task issuing current bio for |
| 576 | * merging. This and the next field are used as a support to |
| 577 | * be able to perform the bic lookup, needed by bio-merge |
| 578 | * functions, before the scheduler lock is taken, and thus |
| 579 | * avoid taking the request-queue lock while the scheduler |
| 580 | * lock is being held. |
| 581 | */ |
| 582 | struct bfq_io_cq *bio_bic; |
| 583 | /* bfqq associated with the task issuing current bio for merging */ |
| 584 | struct bfq_queue *bio_bfqq; |
| 585 | }; |
| 586 | |
| 587 | enum bfqq_state_flags { |
| 588 | BFQQF_busy = 0, /* has requests or is in service */ |
| 589 | BFQQF_wait_request, /* waiting for a request */ |
| 590 | BFQQF_non_blocking_wait_rq, /* |
| 591 | * waiting for a request |
| 592 | * without idling the device |
| 593 | */ |
| 594 | BFQQF_fifo_expire, /* FIFO checked in this slice */ |
| 595 | BFQQF_idle_window, /* slice idling enabled */ |
| 596 | BFQQF_sync, /* synchronous queue */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 597 | BFQQF_IO_bound, /* |
| 598 | * bfqq has timed-out at least once |
| 599 | * having consumed at most 2/10 of |
| 600 | * its budget |
| 601 | */ |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 602 | BFQQF_softrt_update, /* |
| 603 | * may need softrt-next-start |
| 604 | * update |
| 605 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 606 | }; |
| 607 | |
| 608 | #define BFQ_BFQQ_FNS(name) \ |
| 609 | static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ |
| 610 | { \ |
| 611 | __set_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 612 | } \ |
| 613 | static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ |
| 614 | { \ |
| 615 | __clear_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 616 | } \ |
| 617 | static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ |
| 618 | { \ |
| 619 | return test_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 620 | } |
| 621 | |
| 622 | BFQ_BFQQ_FNS(busy); |
| 623 | BFQ_BFQQ_FNS(wait_request); |
| 624 | BFQ_BFQQ_FNS(non_blocking_wait_rq); |
| 625 | BFQ_BFQQ_FNS(fifo_expire); |
| 626 | BFQ_BFQQ_FNS(idle_window); |
| 627 | BFQ_BFQQ_FNS(sync); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 628 | BFQ_BFQQ_FNS(IO_bound); |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 629 | BFQ_BFQQ_FNS(softrt_update); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 630 | #undef BFQ_BFQQ_FNS |
| 631 | |
| 632 | /* Logging facilities. */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 633 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 634 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); |
| 635 | static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); |
| 636 | |
| 637 | #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ |
| 638 | char __pbuf[128]; \ |
| 639 | \ |
| 640 | blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \ |
| 641 | blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \ |
| 642 | bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ |
| 643 | __pbuf, ##args); \ |
| 644 | } while (0) |
| 645 | |
| 646 | #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ |
| 647 | char __pbuf[128]; \ |
| 648 | \ |
| 649 | blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \ |
| 650 | blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \ |
| 651 | } while (0) |
| 652 | |
| 653 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 654 | |
| 655 | #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ |
| 656 | blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \ |
| 657 | bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ |
| 658 | ##args) |
| 659 | #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) |
| 660 | |
| 661 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 662 | |
| 663 | #define bfq_log(bfqd, fmt, args...) \ |
| 664 | blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) |
| 665 | |
| 666 | /* Expiration reasons. */ |
| 667 | enum bfqq_expiration { |
| 668 | BFQQE_TOO_IDLE = 0, /* |
| 669 | * queue has been idling for |
| 670 | * too long |
| 671 | */ |
| 672 | BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ |
| 673 | BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ |
| 674 | BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ |
| 675 | BFQQE_PREEMPTED /* preemption in progress */ |
| 676 | }; |
| 677 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 678 | struct bfqg_stats { |
| 679 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 680 | /* number of ios merged */ |
| 681 | struct blkg_rwstat merged; |
| 682 | /* total time spent on device in ns, may not be accurate w/ queueing */ |
| 683 | struct blkg_rwstat service_time; |
| 684 | /* total time spent waiting in scheduler queue in ns */ |
| 685 | struct blkg_rwstat wait_time; |
| 686 | /* number of IOs queued up */ |
| 687 | struct blkg_rwstat queued; |
| 688 | /* total disk time and nr sectors dispatched by this group */ |
| 689 | struct blkg_stat time; |
| 690 | /* sum of number of ios queued across all samples */ |
| 691 | struct blkg_stat avg_queue_size_sum; |
| 692 | /* count of samples taken for average */ |
| 693 | struct blkg_stat avg_queue_size_samples; |
| 694 | /* how many times this group has been removed from service tree */ |
| 695 | struct blkg_stat dequeue; |
| 696 | /* total time spent waiting for it to be assigned a timeslice. */ |
| 697 | struct blkg_stat group_wait_time; |
| 698 | /* time spent idling for this blkcg_gq */ |
| 699 | struct blkg_stat idle_time; |
| 700 | /* total time with empty current active q with other requests queued */ |
| 701 | struct blkg_stat empty_time; |
| 702 | /* fields after this shouldn't be cleared on stat reset */ |
| 703 | uint64_t start_group_wait_time; |
| 704 | uint64_t start_idle_time; |
| 705 | uint64_t start_empty_time; |
| 706 | uint16_t flags; |
| 707 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 708 | }; |
| 709 | |
| 710 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 711 | |
| 712 | /* |
| 713 | * struct bfq_group_data - per-blkcg storage for the blkio subsystem. |
| 714 | * |
| 715 | * @ps: @blkcg_policy_storage that this structure inherits |
| 716 | * @weight: weight of the bfq_group |
| 717 | */ |
| 718 | struct bfq_group_data { |
| 719 | /* must be the first member */ |
| 720 | struct blkcg_policy_data pd; |
| 721 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 722 | unsigned int weight; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 723 | }; |
| 724 | |
| 725 | /** |
| 726 | * struct bfq_group - per (device, cgroup) data structure. |
| 727 | * @entity: schedulable entity to insert into the parent group sched_data. |
| 728 | * @sched_data: own sched_data, to contain child entities (they may be |
| 729 | * both bfq_queues and bfq_groups). |
| 730 | * @bfqd: the bfq_data for the device this group acts upon. |
| 731 | * @async_bfqq: array of async queues for all the tasks belonging to |
| 732 | * the group, one queue per ioprio value per ioprio_class, |
| 733 | * except for the idle class that has only one queue. |
| 734 | * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). |
| 735 | * @my_entity: pointer to @entity, %NULL for the toplevel group; used |
| 736 | * to avoid too many special cases during group creation/ |
| 737 | * migration. |
| 738 | * @stats: stats for this bfqg. |
| 739 | * |
| 740 | * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup |
| 741 | * there is a set of bfq_groups, each one collecting the lower-level |
| 742 | * entities belonging to the group that are acting on the same device. |
| 743 | * |
| 744 | * Locking works as follows: |
| 745 | * o @bfqd is protected by the queue lock, RCU is used to access it |
| 746 | * from the readers. |
| 747 | * o All the other fields are protected by the @bfqd queue lock. |
| 748 | */ |
| 749 | struct bfq_group { |
| 750 | /* must be the first member */ |
| 751 | struct blkg_policy_data pd; |
| 752 | |
| 753 | struct bfq_entity entity; |
| 754 | struct bfq_sched_data sched_data; |
| 755 | |
| 756 | void *bfqd; |
| 757 | |
| 758 | struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| 759 | struct bfq_queue *async_idle_bfqq; |
| 760 | |
| 761 | struct bfq_entity *my_entity; |
| 762 | |
| 763 | struct bfqg_stats stats; |
| 764 | }; |
| 765 | |
| 766 | #else |
| 767 | struct bfq_group { |
| 768 | struct bfq_sched_data sched_data; |
| 769 | |
| 770 | struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| 771 | struct bfq_queue *async_idle_bfqq; |
| 772 | |
| 773 | struct rb_root rq_pos_tree; |
| 774 | }; |
| 775 | #endif |
| 776 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 777 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); |
| 778 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 779 | static unsigned int bfq_class_idx(struct bfq_entity *entity) |
| 780 | { |
| 781 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 782 | |
| 783 | return bfqq ? bfqq->ioprio_class - 1 : |
| 784 | BFQ_DEFAULT_GRP_CLASS - 1; |
| 785 | } |
| 786 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 787 | static struct bfq_service_tree * |
| 788 | bfq_entity_service_tree(struct bfq_entity *entity) |
| 789 | { |
| 790 | struct bfq_sched_data *sched_data = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 791 | unsigned int idx = bfq_class_idx(entity); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 792 | |
| 793 | return sched_data->service_tree + idx; |
| 794 | } |
| 795 | |
| 796 | static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 797 | { |
| 798 | return bic->bfqq[is_sync]; |
| 799 | } |
| 800 | |
| 801 | static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, |
| 802 | bool is_sync) |
| 803 | { |
| 804 | bic->bfqq[is_sync] = bfqq; |
| 805 | } |
| 806 | |
| 807 | static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) |
| 808 | { |
| 809 | return bic->icq.q->elevator->elevator_data; |
| 810 | } |
| 811 | |
| 812 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio); |
| 813 | static void bfq_put_queue(struct bfq_queue *bfqq); |
| 814 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 815 | struct bio *bio, bool is_sync, |
| 816 | struct bfq_io_cq *bic); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 817 | static void bfq_end_wr_async_queues(struct bfq_data *bfqd, |
| 818 | struct bfq_group *bfqg); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 819 | static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 820 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); |
| 821 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 822 | /* Expiration time of sync (0) and async (1) requests, in ns. */ |
| 823 | static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; |
| 824 | |
| 825 | /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ |
| 826 | static const int bfq_back_max = 16 * 1024; |
| 827 | |
| 828 | /* Penalty of a backwards seek, in number of sectors. */ |
| 829 | static const int bfq_back_penalty = 2; |
| 830 | |
| 831 | /* Idling period duration, in ns. */ |
| 832 | static u64 bfq_slice_idle = NSEC_PER_SEC / 125; |
| 833 | |
| 834 | /* Minimum number of assigned budgets for which stats are safe to compute. */ |
| 835 | static const int bfq_stats_min_budgets = 194; |
| 836 | |
| 837 | /* Default maximum budget values, in sectors and number of requests. */ |
| 838 | static const int bfq_default_max_budget = 16 * 1024; |
| 839 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 840 | /* |
| 841 | * Async to sync throughput distribution is controlled as follows: |
| 842 | * when an async request is served, the entity is charged the number |
| 843 | * of sectors of the request, multiplied by the factor below |
| 844 | */ |
| 845 | static const int bfq_async_charge_factor = 10; |
| 846 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 847 | /* Default timeout values, in jiffies, approximating CFQ defaults. */ |
| 848 | static const int bfq_timeout = HZ / 8; |
| 849 | |
| 850 | static struct kmem_cache *bfq_pool; |
| 851 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 852 | /* Below this threshold (in ns), we consider thinktime immediate. */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 853 | #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) |
| 854 | |
| 855 | /* hw_tag detection: parallel requests threshold and min samples needed. */ |
| 856 | #define BFQ_HW_QUEUE_THRESHOLD 4 |
| 857 | #define BFQ_HW_QUEUE_SAMPLES 32 |
| 858 | |
| 859 | #define BFQQ_SEEK_THR (sector_t)(8 * 100) |
| 860 | #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) |
| 861 | #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) |
| 862 | #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) |
| 863 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 864 | /* Min number of samples required to perform peak-rate update */ |
| 865 | #define BFQ_RATE_MIN_SAMPLES 32 |
| 866 | /* Min observation time interval required to perform a peak-rate update (ns) */ |
| 867 | #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) |
| 868 | /* Target observation time interval for a peak-rate update (ns) */ |
| 869 | #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 870 | |
| 871 | /* Shift used for peak rate fixed precision calculations. */ |
| 872 | #define BFQ_RATE_SHIFT 16 |
| 873 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 874 | /* |
| 875 | * By default, BFQ computes the duration of the weight raising for |
| 876 | * interactive applications automatically, using the following formula: |
| 877 | * duration = (R / r) * T, where r is the peak rate of the device, and |
| 878 | * R and T are two reference parameters. |
| 879 | * In particular, R is the peak rate of the reference device (see below), |
| 880 | * and T is a reference time: given the systems that are likely to be |
| 881 | * installed on the reference device according to its speed class, T is |
| 882 | * about the maximum time needed, under BFQ and while reading two files in |
| 883 | * parallel, to load typical large applications on these systems. |
| 884 | * In practice, the slower/faster the device at hand is, the more/less it |
| 885 | * takes to load applications with respect to the reference device. |
| 886 | * Accordingly, the longer/shorter BFQ grants weight raising to interactive |
| 887 | * applications. |
| 888 | * |
| 889 | * BFQ uses four different reference pairs (R, T), depending on: |
| 890 | * . whether the device is rotational or non-rotational; |
| 891 | * . whether the device is slow, such as old or portable HDDs, as well as |
| 892 | * SD cards, or fast, such as newer HDDs and SSDs. |
| 893 | * |
| 894 | * The device's speed class is dynamically (re)detected in |
| 895 | * bfq_update_peak_rate() every time the estimated peak rate is updated. |
| 896 | * |
| 897 | * In the following definitions, R_slow[0]/R_fast[0] and |
| 898 | * T_slow[0]/T_fast[0] are the reference values for a slow/fast |
| 899 | * rotational device, whereas R_slow[1]/R_fast[1] and |
| 900 | * T_slow[1]/T_fast[1] are the reference values for a slow/fast |
| 901 | * non-rotational device. Finally, device_speed_thresh are the |
| 902 | * thresholds used to switch between speed classes. The reference |
| 903 | * rates are not the actual peak rates of the devices used as a |
| 904 | * reference, but slightly lower values. The reason for using these |
| 905 | * slightly lower values is that the peak-rate estimator tends to |
| 906 | * yield slightly lower values than the actual peak rate (it can yield |
| 907 | * the actual peak rate only if there is only one process doing I/O, |
| 908 | * and the process does sequential I/O). |
| 909 | * |
| 910 | * Both the reference peak rates and the thresholds are measured in |
| 911 | * sectors/usec, left-shifted by BFQ_RATE_SHIFT. |
| 912 | */ |
| 913 | static int R_slow[2] = {1000, 10700}; |
| 914 | static int R_fast[2] = {14000, 33000}; |
| 915 | /* |
| 916 | * To improve readability, a conversion function is used to initialize the |
| 917 | * following arrays, which entails that they can be initialized only in a |
| 918 | * function. |
| 919 | */ |
| 920 | static int T_slow[2]; |
| 921 | static int T_fast[2]; |
| 922 | static int device_speed_thresh[2]; |
| 923 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 924 | #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ |
| 925 | { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) |
| 926 | |
| 927 | #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) |
| 928 | #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) |
| 929 | |
| 930 | /** |
| 931 | * icq_to_bic - convert iocontext queue structure to bfq_io_cq. |
| 932 | * @icq: the iocontext queue. |
| 933 | */ |
| 934 | static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) |
| 935 | { |
| 936 | /* bic->icq is the first member, %NULL will convert to %NULL */ |
| 937 | return container_of(icq, struct bfq_io_cq, icq); |
| 938 | } |
| 939 | |
| 940 | /** |
| 941 | * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. |
| 942 | * @bfqd: the lookup key. |
| 943 | * @ioc: the io_context of the process doing I/O. |
| 944 | * @q: the request queue. |
| 945 | */ |
| 946 | static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, |
| 947 | struct io_context *ioc, |
| 948 | struct request_queue *q) |
| 949 | { |
| 950 | if (ioc) { |
| 951 | unsigned long flags; |
| 952 | struct bfq_io_cq *icq; |
| 953 | |
| 954 | spin_lock_irqsave(q->queue_lock, flags); |
| 955 | icq = icq_to_bic(ioc_lookup_icq(ioc, q)); |
| 956 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 957 | |
| 958 | return icq; |
| 959 | } |
| 960 | |
| 961 | return NULL; |
| 962 | } |
| 963 | |
| 964 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 965 | * Scheduler run of queue, if there are requests pending and no one in the |
| 966 | * driver that will restart queueing. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 967 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 968 | static void bfq_schedule_dispatch(struct bfq_data *bfqd) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 969 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 970 | if (bfqd->queued != 0) { |
| 971 | bfq_log(bfqd, "schedule dispatch"); |
| 972 | blk_mq_run_hw_queues(bfqd->queue, true); |
| 973 | } |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 974 | } |
| 975 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 976 | /** |
| 977 | * bfq_gt - compare two timestamps. |
| 978 | * @a: first ts. |
| 979 | * @b: second ts. |
| 980 | * |
| 981 | * Return @a > @b, dealing with wrapping correctly. |
| 982 | */ |
| 983 | static int bfq_gt(u64 a, u64 b) |
| 984 | { |
| 985 | return (s64)(a - b) > 0; |
| 986 | } |
| 987 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 988 | static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree) |
| 989 | { |
| 990 | struct rb_node *node = tree->rb_node; |
| 991 | |
| 992 | return rb_entry(node, struct bfq_entity, rb_node); |
| 993 | } |
| 994 | |
| 995 | static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd); |
| 996 | |
| 997 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service); |
| 998 | |
| 999 | /** |
| 1000 | * bfq_update_next_in_service - update sd->next_in_service |
| 1001 | * @sd: sched_data for which to perform the update. |
| 1002 | * @new_entity: if not NULL, pointer to the entity whose activation, |
| 1003 | * requeueing or repositionig triggered the invocation of |
| 1004 | * this function. |
| 1005 | * |
| 1006 | * This function is called to update sd->next_in_service, which, in |
| 1007 | * its turn, may change as a consequence of the insertion or |
| 1008 | * extraction of an entity into/from one of the active trees of |
| 1009 | * sd. These insertions/extractions occur as a consequence of |
| 1010 | * activations/deactivations of entities, with some activations being |
| 1011 | * 'true' activations, and other activations being requeueings (i.e., |
| 1012 | * implementing the second, requeueing phase of the mechanism used to |
| 1013 | * reposition an entity in its active tree; see comments on |
| 1014 | * __bfq_activate_entity and __bfq_requeue_entity for details). In |
| 1015 | * both the last two activation sub-cases, new_entity points to the |
| 1016 | * just activated or requeued entity. |
| 1017 | * |
| 1018 | * Returns true if sd->next_in_service changes in such a way that |
| 1019 | * entity->parent may become the next_in_service for its parent |
| 1020 | * entity. |
| 1021 | */ |
| 1022 | static bool bfq_update_next_in_service(struct bfq_sched_data *sd, |
| 1023 | struct bfq_entity *new_entity) |
| 1024 | { |
| 1025 | struct bfq_entity *next_in_service = sd->next_in_service; |
| 1026 | bool parent_sched_may_change = false; |
| 1027 | |
| 1028 | /* |
| 1029 | * If this update is triggered by the activation, requeueing |
| 1030 | * or repositiong of an entity that does not coincide with |
| 1031 | * sd->next_in_service, then a full lookup in the active tree |
| 1032 | * can be avoided. In fact, it is enough to check whether the |
| 1033 | * just-modified entity has a higher priority than |
| 1034 | * sd->next_in_service, or, even if it has the same priority |
| 1035 | * as sd->next_in_service, is eligible and has a lower virtual |
| 1036 | * finish time than sd->next_in_service. If this compound |
| 1037 | * condition holds, then the new entity becomes the new |
| 1038 | * next_in_service. Otherwise no change is needed. |
| 1039 | */ |
| 1040 | if (new_entity && new_entity != sd->next_in_service) { |
| 1041 | /* |
| 1042 | * Flag used to decide whether to replace |
| 1043 | * sd->next_in_service with new_entity. Tentatively |
| 1044 | * set to true, and left as true if |
| 1045 | * sd->next_in_service is NULL. |
| 1046 | */ |
| 1047 | bool replace_next = true; |
| 1048 | |
| 1049 | /* |
| 1050 | * If there is already a next_in_service candidate |
| 1051 | * entity, then compare class priorities or timestamps |
| 1052 | * to decide whether to replace sd->service_tree with |
| 1053 | * new_entity. |
| 1054 | */ |
| 1055 | if (next_in_service) { |
| 1056 | unsigned int new_entity_class_idx = |
| 1057 | bfq_class_idx(new_entity); |
| 1058 | struct bfq_service_tree *st = |
| 1059 | sd->service_tree + new_entity_class_idx; |
| 1060 | |
| 1061 | /* |
| 1062 | * For efficiency, evaluate the most likely |
| 1063 | * sub-condition first. |
| 1064 | */ |
| 1065 | replace_next = |
| 1066 | (new_entity_class_idx == |
| 1067 | bfq_class_idx(next_in_service) |
| 1068 | && |
| 1069 | !bfq_gt(new_entity->start, st->vtime) |
| 1070 | && |
| 1071 | bfq_gt(next_in_service->finish, |
| 1072 | new_entity->finish)) |
| 1073 | || |
| 1074 | new_entity_class_idx < |
| 1075 | bfq_class_idx(next_in_service); |
| 1076 | } |
| 1077 | |
| 1078 | if (replace_next) |
| 1079 | next_in_service = new_entity; |
| 1080 | } else /* invoked because of a deactivation: lookup needed */ |
| 1081 | next_in_service = bfq_lookup_next_entity(sd); |
| 1082 | |
| 1083 | if (next_in_service) { |
| 1084 | parent_sched_may_change = !sd->next_in_service || |
| 1085 | bfq_update_parent_budget(next_in_service); |
| 1086 | } |
| 1087 | |
| 1088 | sd->next_in_service = next_in_service; |
| 1089 | |
| 1090 | if (!next_in_service) |
| 1091 | return parent_sched_may_change; |
| 1092 | |
| 1093 | return parent_sched_may_change; |
| 1094 | } |
| 1095 | |
| 1096 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1097 | /* both next loops stop at one of the child entities of the root group */ |
| 1098 | #define for_each_entity(entity) \ |
| 1099 | for (; entity ; entity = entity->parent) |
| 1100 | |
| 1101 | /* |
| 1102 | * For each iteration, compute parent in advance, so as to be safe if |
| 1103 | * entity is deallocated during the iteration. Such a deallocation may |
| 1104 | * happen as a consequence of a bfq_put_queue that frees the bfq_queue |
| 1105 | * containing entity. |
| 1106 | */ |
| 1107 | #define for_each_entity_safe(entity, parent) \ |
| 1108 | for (; entity && ({ parent = entity->parent; 1; }); entity = parent) |
| 1109 | |
| 1110 | /* |
| 1111 | * Returns true if this budget changes may let next_in_service->parent |
| 1112 | * become the next_in_service entity for its parent entity. |
| 1113 | */ |
| 1114 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) |
| 1115 | { |
| 1116 | struct bfq_entity *bfqg_entity; |
| 1117 | struct bfq_group *bfqg; |
| 1118 | struct bfq_sched_data *group_sd; |
| 1119 | bool ret = false; |
| 1120 | |
| 1121 | group_sd = next_in_service->sched_data; |
| 1122 | |
| 1123 | bfqg = container_of(group_sd, struct bfq_group, sched_data); |
| 1124 | /* |
| 1125 | * bfq_group's my_entity field is not NULL only if the group |
| 1126 | * is not the root group. We must not touch the root entity |
| 1127 | * as it must never become an in-service entity. |
| 1128 | */ |
| 1129 | bfqg_entity = bfqg->my_entity; |
| 1130 | if (bfqg_entity) { |
| 1131 | if (bfqg_entity->budget > next_in_service->budget) |
| 1132 | ret = true; |
| 1133 | bfqg_entity->budget = next_in_service->budget; |
| 1134 | } |
| 1135 | |
| 1136 | return ret; |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * This function tells whether entity stops being a candidate for next |
| 1141 | * service, according to the following logic. |
| 1142 | * |
| 1143 | * This function is invoked for an entity that is about to be set in |
| 1144 | * service. If such an entity is a queue, then the entity is no longer |
| 1145 | * a candidate for next service (i.e, a candidate entity to serve |
| 1146 | * after the in-service entity is expired). The function then returns |
| 1147 | * true. |
| 1148 | */ |
| 1149 | static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) |
| 1150 | { |
| 1151 | if (bfq_entity_to_bfqq(entity)) |
| 1152 | return true; |
| 1153 | |
| 1154 | return false; |
| 1155 | } |
| 1156 | |
| 1157 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 1158 | /* |
| 1159 | * Next two macros are fake loops when cgroups support is not |
| 1160 | * enabled. I fact, in such a case, there is only one level to go up |
| 1161 | * (to reach the root group). |
| 1162 | */ |
| 1163 | #define for_each_entity(entity) \ |
| 1164 | for (; entity ; entity = NULL) |
| 1165 | |
| 1166 | #define for_each_entity_safe(entity, parent) \ |
| 1167 | for (parent = NULL; entity ; entity = parent) |
| 1168 | |
| 1169 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) |
| 1170 | { |
| 1171 | return false; |
| 1172 | } |
| 1173 | |
| 1174 | static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) |
| 1175 | { |
| 1176 | return true; |
| 1177 | } |
| 1178 | |
| 1179 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 1180 | |
| 1181 | /* |
| 1182 | * Shift for timestamp calculations. This actually limits the maximum |
| 1183 | * service allowed in one timestamp delta (small shift values increase it), |
| 1184 | * the maximum total weight that can be used for the queues in the system |
| 1185 | * (big shift values increase it), and the period of virtual time |
| 1186 | * wraparounds. |
| 1187 | */ |
| 1188 | #define WFQ_SERVICE_SHIFT 22 |
| 1189 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1190 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) |
| 1191 | { |
| 1192 | struct bfq_queue *bfqq = NULL; |
| 1193 | |
| 1194 | if (!entity->my_sched_data) |
| 1195 | bfqq = container_of(entity, struct bfq_queue, entity); |
| 1196 | |
| 1197 | return bfqq; |
| 1198 | } |
| 1199 | |
| 1200 | |
| 1201 | /** |
| 1202 | * bfq_delta - map service into the virtual time domain. |
| 1203 | * @service: amount of service. |
| 1204 | * @weight: scale factor (weight of an entity or weight sum). |
| 1205 | */ |
| 1206 | static u64 bfq_delta(unsigned long service, unsigned long weight) |
| 1207 | { |
| 1208 | u64 d = (u64)service << WFQ_SERVICE_SHIFT; |
| 1209 | |
| 1210 | do_div(d, weight); |
| 1211 | return d; |
| 1212 | } |
| 1213 | |
| 1214 | /** |
| 1215 | * bfq_calc_finish - assign the finish time to an entity. |
| 1216 | * @entity: the entity to act upon. |
| 1217 | * @service: the service to be charged to the entity. |
| 1218 | */ |
| 1219 | static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) |
| 1220 | { |
| 1221 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1222 | |
| 1223 | entity->finish = entity->start + |
| 1224 | bfq_delta(service, entity->weight); |
| 1225 | |
| 1226 | if (bfqq) { |
| 1227 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 1228 | "calc_finish: serv %lu, w %d", |
| 1229 | service, entity->weight); |
| 1230 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 1231 | "calc_finish: start %llu, finish %llu, delta %llu", |
| 1232 | entity->start, entity->finish, |
| 1233 | bfq_delta(service, entity->weight)); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | /** |
| 1238 | * bfq_entity_of - get an entity from a node. |
| 1239 | * @node: the node field of the entity. |
| 1240 | * |
| 1241 | * Convert a node pointer to the relative entity. This is used only |
| 1242 | * to simplify the logic of some functions and not as the generic |
| 1243 | * conversion mechanism because, e.g., in the tree walking functions, |
| 1244 | * the check for a %NULL value would be redundant. |
| 1245 | */ |
| 1246 | static struct bfq_entity *bfq_entity_of(struct rb_node *node) |
| 1247 | { |
| 1248 | struct bfq_entity *entity = NULL; |
| 1249 | |
| 1250 | if (node) |
| 1251 | entity = rb_entry(node, struct bfq_entity, rb_node); |
| 1252 | |
| 1253 | return entity; |
| 1254 | } |
| 1255 | |
| 1256 | /** |
| 1257 | * bfq_extract - remove an entity from a tree. |
| 1258 | * @root: the tree root. |
| 1259 | * @entity: the entity to remove. |
| 1260 | */ |
| 1261 | static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) |
| 1262 | { |
| 1263 | entity->tree = NULL; |
| 1264 | rb_erase(&entity->rb_node, root); |
| 1265 | } |
| 1266 | |
| 1267 | /** |
| 1268 | * bfq_idle_extract - extract an entity from the idle tree. |
| 1269 | * @st: the service tree of the owning @entity. |
| 1270 | * @entity: the entity being removed. |
| 1271 | */ |
| 1272 | static void bfq_idle_extract(struct bfq_service_tree *st, |
| 1273 | struct bfq_entity *entity) |
| 1274 | { |
| 1275 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1276 | struct rb_node *next; |
| 1277 | |
| 1278 | if (entity == st->first_idle) { |
| 1279 | next = rb_next(&entity->rb_node); |
| 1280 | st->first_idle = bfq_entity_of(next); |
| 1281 | } |
| 1282 | |
| 1283 | if (entity == st->last_idle) { |
| 1284 | next = rb_prev(&entity->rb_node); |
| 1285 | st->last_idle = bfq_entity_of(next); |
| 1286 | } |
| 1287 | |
| 1288 | bfq_extract(&st->idle, entity); |
| 1289 | |
| 1290 | if (bfqq) |
| 1291 | list_del(&bfqq->bfqq_list); |
| 1292 | } |
| 1293 | |
| 1294 | /** |
| 1295 | * bfq_insert - generic tree insertion. |
| 1296 | * @root: tree root. |
| 1297 | * @entity: entity to insert. |
| 1298 | * |
| 1299 | * This is used for the idle and the active tree, since they are both |
| 1300 | * ordered by finish time. |
| 1301 | */ |
| 1302 | static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) |
| 1303 | { |
| 1304 | struct bfq_entity *entry; |
| 1305 | struct rb_node **node = &root->rb_node; |
| 1306 | struct rb_node *parent = NULL; |
| 1307 | |
| 1308 | while (*node) { |
| 1309 | parent = *node; |
| 1310 | entry = rb_entry(parent, struct bfq_entity, rb_node); |
| 1311 | |
| 1312 | if (bfq_gt(entry->finish, entity->finish)) |
| 1313 | node = &parent->rb_left; |
| 1314 | else |
| 1315 | node = &parent->rb_right; |
| 1316 | } |
| 1317 | |
| 1318 | rb_link_node(&entity->rb_node, parent, node); |
| 1319 | rb_insert_color(&entity->rb_node, root); |
| 1320 | |
| 1321 | entity->tree = root; |
| 1322 | } |
| 1323 | |
| 1324 | /** |
| 1325 | * bfq_update_min - update the min_start field of a entity. |
| 1326 | * @entity: the entity to update. |
| 1327 | * @node: one of its children. |
| 1328 | * |
| 1329 | * This function is called when @entity may store an invalid value for |
| 1330 | * min_start due to updates to the active tree. The function assumes |
| 1331 | * that the subtree rooted at @node (which may be its left or its right |
| 1332 | * child) has a valid min_start value. |
| 1333 | */ |
| 1334 | static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) |
| 1335 | { |
| 1336 | struct bfq_entity *child; |
| 1337 | |
| 1338 | if (node) { |
| 1339 | child = rb_entry(node, struct bfq_entity, rb_node); |
| 1340 | if (bfq_gt(entity->min_start, child->min_start)) |
| 1341 | entity->min_start = child->min_start; |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | /** |
| 1346 | * bfq_update_active_node - recalculate min_start. |
| 1347 | * @node: the node to update. |
| 1348 | * |
| 1349 | * @node may have changed position or one of its children may have moved, |
| 1350 | * this function updates its min_start value. The left and right subtrees |
| 1351 | * are assumed to hold a correct min_start value. |
| 1352 | */ |
| 1353 | static void bfq_update_active_node(struct rb_node *node) |
| 1354 | { |
| 1355 | struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); |
| 1356 | |
| 1357 | entity->min_start = entity->start; |
| 1358 | bfq_update_min(entity, node->rb_right); |
| 1359 | bfq_update_min(entity, node->rb_left); |
| 1360 | } |
| 1361 | |
| 1362 | /** |
| 1363 | * bfq_update_active_tree - update min_start for the whole active tree. |
| 1364 | * @node: the starting node. |
| 1365 | * |
| 1366 | * @node must be the deepest modified node after an update. This function |
| 1367 | * updates its min_start using the values held by its children, assuming |
| 1368 | * that they did not change, and then updates all the nodes that may have |
| 1369 | * changed in the path to the root. The only nodes that may have changed |
| 1370 | * are the ones in the path or their siblings. |
| 1371 | */ |
| 1372 | static void bfq_update_active_tree(struct rb_node *node) |
| 1373 | { |
| 1374 | struct rb_node *parent; |
| 1375 | |
| 1376 | up: |
| 1377 | bfq_update_active_node(node); |
| 1378 | |
| 1379 | parent = rb_parent(node); |
| 1380 | if (!parent) |
| 1381 | return; |
| 1382 | |
| 1383 | if (node == parent->rb_left && parent->rb_right) |
| 1384 | bfq_update_active_node(parent->rb_right); |
| 1385 | else if (parent->rb_left) |
| 1386 | bfq_update_active_node(parent->rb_left); |
| 1387 | |
| 1388 | node = parent; |
| 1389 | goto up; |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * bfq_active_insert - insert an entity in the active tree of its |
| 1394 | * group/device. |
| 1395 | * @st: the service tree of the entity. |
| 1396 | * @entity: the entity being inserted. |
| 1397 | * |
| 1398 | * The active tree is ordered by finish time, but an extra key is kept |
| 1399 | * per each node, containing the minimum value for the start times of |
| 1400 | * its children (and the node itself), so it's possible to search for |
| 1401 | * the eligible node with the lowest finish time in logarithmic time. |
| 1402 | */ |
| 1403 | static void bfq_active_insert(struct bfq_service_tree *st, |
| 1404 | struct bfq_entity *entity) |
| 1405 | { |
| 1406 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1407 | struct rb_node *node = &entity->rb_node; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1408 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1409 | struct bfq_sched_data *sd = NULL; |
| 1410 | struct bfq_group *bfqg = NULL; |
| 1411 | struct bfq_data *bfqd = NULL; |
| 1412 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1413 | |
| 1414 | bfq_insert(&st->active, entity); |
| 1415 | |
| 1416 | if (node->rb_left) |
| 1417 | node = node->rb_left; |
| 1418 | else if (node->rb_right) |
| 1419 | node = node->rb_right; |
| 1420 | |
| 1421 | bfq_update_active_tree(node); |
| 1422 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1423 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1424 | sd = entity->sched_data; |
| 1425 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1426 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1427 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1428 | if (bfqq) |
| 1429 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); |
| 1430 | } |
| 1431 | |
| 1432 | /** |
| 1433 | * bfq_ioprio_to_weight - calc a weight from an ioprio. |
| 1434 | * @ioprio: the ioprio value to convert. |
| 1435 | */ |
| 1436 | static unsigned short bfq_ioprio_to_weight(int ioprio) |
| 1437 | { |
| 1438 | return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; |
| 1439 | } |
| 1440 | |
| 1441 | /** |
| 1442 | * bfq_weight_to_ioprio - calc an ioprio from a weight. |
| 1443 | * @weight: the weight value to convert. |
| 1444 | * |
| 1445 | * To preserve as much as possible the old only-ioprio user interface, |
| 1446 | * 0 is used as an escape ioprio value for weights (numerically) equal or |
| 1447 | * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. |
| 1448 | */ |
| 1449 | static unsigned short bfq_weight_to_ioprio(int weight) |
| 1450 | { |
| 1451 | return max_t(int, 0, |
| 1452 | IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight); |
| 1453 | } |
| 1454 | |
| 1455 | static void bfq_get_entity(struct bfq_entity *entity) |
| 1456 | { |
| 1457 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1458 | |
| 1459 | if (bfqq) { |
| 1460 | bfqq->ref++; |
| 1461 | bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", |
| 1462 | bfqq, bfqq->ref); |
| 1463 | } |
| 1464 | } |
| 1465 | |
| 1466 | /** |
| 1467 | * bfq_find_deepest - find the deepest node that an extraction can modify. |
| 1468 | * @node: the node being removed. |
| 1469 | * |
| 1470 | * Do the first step of an extraction in an rb tree, looking for the |
| 1471 | * node that will replace @node, and returning the deepest node that |
| 1472 | * the following modifications to the tree can touch. If @node is the |
| 1473 | * last node in the tree return %NULL. |
| 1474 | */ |
| 1475 | static struct rb_node *bfq_find_deepest(struct rb_node *node) |
| 1476 | { |
| 1477 | struct rb_node *deepest; |
| 1478 | |
| 1479 | if (!node->rb_right && !node->rb_left) |
| 1480 | deepest = rb_parent(node); |
| 1481 | else if (!node->rb_right) |
| 1482 | deepest = node->rb_left; |
| 1483 | else if (!node->rb_left) |
| 1484 | deepest = node->rb_right; |
| 1485 | else { |
| 1486 | deepest = rb_next(node); |
| 1487 | if (deepest->rb_right) |
| 1488 | deepest = deepest->rb_right; |
| 1489 | else if (rb_parent(deepest) != node) |
| 1490 | deepest = rb_parent(deepest); |
| 1491 | } |
| 1492 | |
| 1493 | return deepest; |
| 1494 | } |
| 1495 | |
| 1496 | /** |
| 1497 | * bfq_active_extract - remove an entity from the active tree. |
| 1498 | * @st: the service_tree containing the tree. |
| 1499 | * @entity: the entity being removed. |
| 1500 | */ |
| 1501 | static void bfq_active_extract(struct bfq_service_tree *st, |
| 1502 | struct bfq_entity *entity) |
| 1503 | { |
| 1504 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1505 | struct rb_node *node; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1506 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1507 | struct bfq_sched_data *sd = NULL; |
| 1508 | struct bfq_group *bfqg = NULL; |
| 1509 | struct bfq_data *bfqd = NULL; |
| 1510 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1511 | |
| 1512 | node = bfq_find_deepest(&entity->rb_node); |
| 1513 | bfq_extract(&st->active, entity); |
| 1514 | |
| 1515 | if (node) |
| 1516 | bfq_update_active_tree(node); |
| 1517 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1518 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1519 | sd = entity->sched_data; |
| 1520 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1521 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1522 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1523 | if (bfqq) |
| 1524 | list_del(&bfqq->bfqq_list); |
| 1525 | } |
| 1526 | |
| 1527 | /** |
| 1528 | * bfq_idle_insert - insert an entity into the idle tree. |
| 1529 | * @st: the service tree containing the tree. |
| 1530 | * @entity: the entity to insert. |
| 1531 | */ |
| 1532 | static void bfq_idle_insert(struct bfq_service_tree *st, |
| 1533 | struct bfq_entity *entity) |
| 1534 | { |
| 1535 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1536 | struct bfq_entity *first_idle = st->first_idle; |
| 1537 | struct bfq_entity *last_idle = st->last_idle; |
| 1538 | |
| 1539 | if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) |
| 1540 | st->first_idle = entity; |
| 1541 | if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) |
| 1542 | st->last_idle = entity; |
| 1543 | |
| 1544 | bfq_insert(&st->idle, entity); |
| 1545 | |
| 1546 | if (bfqq) |
| 1547 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); |
| 1548 | } |
| 1549 | |
| 1550 | /** |
| 1551 | * bfq_forget_entity - do not consider entity any longer for scheduling |
| 1552 | * @st: the service tree. |
| 1553 | * @entity: the entity being removed. |
| 1554 | * @is_in_service: true if entity is currently the in-service entity. |
| 1555 | * |
| 1556 | * Forget everything about @entity. In addition, if entity represents |
| 1557 | * a queue, and the latter is not in service, then release the service |
| 1558 | * reference to the queue (the one taken through bfq_get_entity). In |
| 1559 | * fact, in this case, there is really no more service reference to |
| 1560 | * the queue, as the latter is also outside any service tree. If, |
| 1561 | * instead, the queue is in service, then __bfq_bfqd_reset_in_service |
| 1562 | * will take care of putting the reference when the queue finally |
| 1563 | * stops being served. |
| 1564 | */ |
| 1565 | static void bfq_forget_entity(struct bfq_service_tree *st, |
| 1566 | struct bfq_entity *entity, |
| 1567 | bool is_in_service) |
| 1568 | { |
| 1569 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1570 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1571 | entity->on_st = false; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1572 | st->wsum -= entity->weight; |
| 1573 | if (bfqq && !is_in_service) |
| 1574 | bfq_put_queue(bfqq); |
| 1575 | } |
| 1576 | |
| 1577 | /** |
| 1578 | * bfq_put_idle_entity - release the idle tree ref of an entity. |
| 1579 | * @st: service tree for the entity. |
| 1580 | * @entity: the entity being released. |
| 1581 | */ |
| 1582 | static void bfq_put_idle_entity(struct bfq_service_tree *st, |
| 1583 | struct bfq_entity *entity) |
| 1584 | { |
| 1585 | bfq_idle_extract(st, entity); |
| 1586 | bfq_forget_entity(st, entity, |
| 1587 | entity == entity->sched_data->in_service_entity); |
| 1588 | } |
| 1589 | |
| 1590 | /** |
| 1591 | * bfq_forget_idle - update the idle tree if necessary. |
| 1592 | * @st: the service tree to act upon. |
| 1593 | * |
| 1594 | * To preserve the global O(log N) complexity we only remove one entry here; |
| 1595 | * as the idle tree will not grow indefinitely this can be done safely. |
| 1596 | */ |
| 1597 | static void bfq_forget_idle(struct bfq_service_tree *st) |
| 1598 | { |
| 1599 | struct bfq_entity *first_idle = st->first_idle; |
| 1600 | struct bfq_entity *last_idle = st->last_idle; |
| 1601 | |
| 1602 | if (RB_EMPTY_ROOT(&st->active) && last_idle && |
| 1603 | !bfq_gt(last_idle->finish, st->vtime)) { |
| 1604 | /* |
| 1605 | * Forget the whole idle tree, increasing the vtime past |
| 1606 | * the last finish time of idle entities. |
| 1607 | */ |
| 1608 | st->vtime = last_idle->finish; |
| 1609 | } |
| 1610 | |
| 1611 | if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) |
| 1612 | bfq_put_idle_entity(st, first_idle); |
| 1613 | } |
| 1614 | |
| 1615 | static struct bfq_service_tree * |
| 1616 | __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1617 | struct bfq_entity *entity) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1618 | { |
| 1619 | struct bfq_service_tree *new_st = old_st; |
| 1620 | |
| 1621 | if (entity->prio_changed) { |
| 1622 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 1623 | unsigned int prev_weight, new_weight; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1624 | struct bfq_data *bfqd = NULL; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1625 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1626 | struct bfq_sched_data *sd; |
| 1627 | struct bfq_group *bfqg; |
| 1628 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1629 | |
| 1630 | if (bfqq) |
| 1631 | bfqd = bfqq->bfqd; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1632 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1633 | else { |
| 1634 | sd = entity->my_sched_data; |
| 1635 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1636 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1637 | } |
| 1638 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1639 | |
| 1640 | old_st->wsum -= entity->weight; |
| 1641 | |
| 1642 | if (entity->new_weight != entity->orig_weight) { |
| 1643 | if (entity->new_weight < BFQ_MIN_WEIGHT || |
| 1644 | entity->new_weight > BFQ_MAX_WEIGHT) { |
| 1645 | pr_crit("update_weight_prio: new_weight %d\n", |
| 1646 | entity->new_weight); |
| 1647 | if (entity->new_weight < BFQ_MIN_WEIGHT) |
| 1648 | entity->new_weight = BFQ_MIN_WEIGHT; |
| 1649 | else |
| 1650 | entity->new_weight = BFQ_MAX_WEIGHT; |
| 1651 | } |
| 1652 | entity->orig_weight = entity->new_weight; |
| 1653 | if (bfqq) |
| 1654 | bfqq->ioprio = |
| 1655 | bfq_weight_to_ioprio(entity->orig_weight); |
| 1656 | } |
| 1657 | |
| 1658 | if (bfqq) |
| 1659 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 1660 | entity->prio_changed = 0; |
| 1661 | |
| 1662 | /* |
| 1663 | * NOTE: here we may be changing the weight too early, |
| 1664 | * this will cause unfairness. The correct approach |
| 1665 | * would have required additional complexity to defer |
| 1666 | * weight changes to the proper time instants (i.e., |
| 1667 | * when entity->finish <= old_st->vtime). |
| 1668 | */ |
| 1669 | new_st = bfq_entity_service_tree(entity); |
| 1670 | |
| 1671 | prev_weight = entity->weight; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 1672 | new_weight = entity->orig_weight * |
| 1673 | (bfqq ? bfqq->wr_coeff : 1); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1674 | entity->weight = new_weight; |
| 1675 | |
| 1676 | new_st->wsum += entity->weight; |
| 1677 | |
| 1678 | if (new_st != old_st) |
| 1679 | entity->start = new_st->vtime; |
| 1680 | } |
| 1681 | |
| 1682 | return new_st; |
| 1683 | } |
| 1684 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1685 | static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); |
| 1686 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); |
| 1687 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1688 | /** |
| 1689 | * bfq_bfqq_served - update the scheduler status after selection for |
| 1690 | * service. |
| 1691 | * @bfqq: the queue being served. |
| 1692 | * @served: bytes to transfer. |
| 1693 | * |
| 1694 | * NOTE: this can be optimized, as the timestamps of upper level entities |
| 1695 | * are synchronized every time a new bfqq is selected for service. By now, |
| 1696 | * we keep it to better check consistency. |
| 1697 | */ |
| 1698 | static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) |
| 1699 | { |
| 1700 | struct bfq_entity *entity = &bfqq->entity; |
| 1701 | struct bfq_service_tree *st; |
| 1702 | |
| 1703 | for_each_entity(entity) { |
| 1704 | st = bfq_entity_service_tree(entity); |
| 1705 | |
| 1706 | entity->service += served; |
| 1707 | |
| 1708 | st->vtime += bfq_delta(served, st->wsum); |
| 1709 | bfq_forget_idle(st); |
| 1710 | } |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1711 | bfqg_stats_set_start_empty_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1712 | bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served); |
| 1713 | } |
| 1714 | |
| 1715 | /** |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1716 | * bfq_bfqq_charge_time - charge an amount of service equivalent to the length |
| 1717 | * of the time interval during which bfqq has been in |
| 1718 | * service. |
| 1719 | * @bfqd: the device |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1720 | * @bfqq: the queue that needs a service update. |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1721 | * @time_ms: the amount of time during which the queue has received service |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1722 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1723 | * If a queue does not consume its budget fast enough, then providing |
| 1724 | * the queue with service fairness may impair throughput, more or less |
| 1725 | * severely. For this reason, queues that consume their budget slowly |
| 1726 | * are provided with time fairness instead of service fairness. This |
| 1727 | * goal is achieved through the BFQ scheduling engine, even if such an |
| 1728 | * engine works in the service, and not in the time domain. The trick |
| 1729 | * is charging these queues with an inflated amount of service, equal |
| 1730 | * to the amount of service that they would have received during their |
| 1731 | * service slot if they had been fast, i.e., if their requests had |
| 1732 | * been dispatched at a rate equal to the estimated peak rate. |
| 1733 | * |
| 1734 | * It is worth noting that time fairness can cause important |
| 1735 | * distortions in terms of bandwidth distribution, on devices with |
| 1736 | * internal queueing. The reason is that I/O requests dispatched |
| 1737 | * during the service slot of a queue may be served after that service |
| 1738 | * slot is finished, and may have a total processing time loosely |
| 1739 | * correlated with the duration of the service slot. This is |
| 1740 | * especially true for short service slots. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1741 | */ |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1742 | static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 1743 | unsigned long time_ms) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1744 | { |
| 1745 | struct bfq_entity *entity = &bfqq->entity; |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1746 | int tot_serv_to_charge = entity->service; |
| 1747 | unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1748 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1749 | if (time_ms > 0 && time_ms < timeout_ms) |
| 1750 | tot_serv_to_charge = |
| 1751 | (bfqd->bfq_max_budget * time_ms) / timeout_ms; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1752 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 1753 | if (tot_serv_to_charge < entity->service) |
| 1754 | tot_serv_to_charge = entity->service; |
| 1755 | |
| 1756 | /* Increase budget to avoid inconsistencies */ |
| 1757 | if (tot_serv_to_charge > entity->budget) |
| 1758 | entity->budget = tot_serv_to_charge; |
| 1759 | |
| 1760 | bfq_bfqq_served(bfqq, |
| 1761 | max_t(int, 0, tot_serv_to_charge - entity->service)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1762 | } |
| 1763 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1764 | static void bfq_update_fin_time_enqueue(struct bfq_entity *entity, |
| 1765 | struct bfq_service_tree *st, |
| 1766 | bool backshifted) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1767 | { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 1768 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1769 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1770 | st = __bfq_entity_update_weight_prio(st, entity); |
| 1771 | bfq_calc_finish(entity, entity->budget); |
| 1772 | |
| 1773 | /* |
| 1774 | * If some queues enjoy backshifting for a while, then their |
| 1775 | * (virtual) finish timestamps may happen to become lower and |
| 1776 | * lower than the system virtual time. In particular, if |
| 1777 | * these queues often happen to be idle for short time |
| 1778 | * periods, and during such time periods other queues with |
| 1779 | * higher timestamps happen to be busy, then the backshifted |
| 1780 | * timestamps of the former queues can become much lower than |
| 1781 | * the system virtual time. In fact, to serve the queues with |
| 1782 | * higher timestamps while the ones with lower timestamps are |
| 1783 | * idle, the system virtual time may be pushed-up to much |
| 1784 | * higher values than the finish timestamps of the idle |
| 1785 | * queues. As a consequence, the finish timestamps of all new |
| 1786 | * or newly activated queues may end up being much larger than |
| 1787 | * those of lucky queues with backshifted timestamps. The |
| 1788 | * latter queues may then monopolize the device for a lot of |
| 1789 | * time. This would simply break service guarantees. |
| 1790 | * |
| 1791 | * To reduce this problem, push up a little bit the |
| 1792 | * backshifted timestamps of the queue associated with this |
| 1793 | * entity (only a queue can happen to have the backshifted |
| 1794 | * flag set): just enough to let the finish timestamp of the |
| 1795 | * queue be equal to the current value of the system virtual |
| 1796 | * time. This may introduce a little unfairness among queues |
| 1797 | * with backshifted timestamps, but it does not break |
| 1798 | * worst-case fairness guarantees. |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 1799 | * |
| 1800 | * As a special case, if bfqq is weight-raised, push up |
| 1801 | * timestamps much less, to keep very low the probability that |
| 1802 | * this push up causes the backshifted finish timestamps of |
| 1803 | * weight-raised queues to become higher than the backshifted |
| 1804 | * finish timestamps of non weight-raised queues. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1805 | */ |
| 1806 | if (backshifted && bfq_gt(st->vtime, entity->finish)) { |
| 1807 | unsigned long delta = st->vtime - entity->finish; |
| 1808 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 1809 | if (bfqq) |
| 1810 | delta /= bfqq->wr_coeff; |
| 1811 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1812 | entity->start += delta; |
| 1813 | entity->finish += delta; |
| 1814 | } |
| 1815 | |
| 1816 | bfq_active_insert(st, entity); |
| 1817 | } |
| 1818 | |
| 1819 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1820 | * __bfq_activate_entity - handle activation of entity. |
| 1821 | * @entity: the entity being activated. |
| 1822 | * @non_blocking_wait_rq: true if entity was waiting for a request |
| 1823 | * |
| 1824 | * Called for a 'true' activation, i.e., if entity is not active and |
| 1825 | * one of its children receives a new request. |
| 1826 | * |
| 1827 | * Basically, this function updates the timestamps of entity and |
| 1828 | * inserts entity into its active tree, ater possible extracting it |
| 1829 | * from its idle tree. |
| 1830 | */ |
| 1831 | static void __bfq_activate_entity(struct bfq_entity *entity, |
| 1832 | bool non_blocking_wait_rq) |
| 1833 | { |
| 1834 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1835 | bool backshifted = false; |
| 1836 | unsigned long long min_vstart; |
| 1837 | |
| 1838 | /* See comments on bfq_fqq_update_budg_for_activation */ |
| 1839 | if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { |
| 1840 | backshifted = true; |
| 1841 | min_vstart = entity->finish; |
| 1842 | } else |
| 1843 | min_vstart = st->vtime; |
| 1844 | |
| 1845 | if (entity->tree == &st->idle) { |
| 1846 | /* |
| 1847 | * Must be on the idle tree, bfq_idle_extract() will |
| 1848 | * check for that. |
| 1849 | */ |
| 1850 | bfq_idle_extract(st, entity); |
| 1851 | entity->start = bfq_gt(min_vstart, entity->finish) ? |
| 1852 | min_vstart : entity->finish; |
| 1853 | } else { |
| 1854 | /* |
| 1855 | * The finish time of the entity may be invalid, and |
| 1856 | * it is in the past for sure, otherwise the queue |
| 1857 | * would have been on the idle tree. |
| 1858 | */ |
| 1859 | entity->start = min_vstart; |
| 1860 | st->wsum += entity->weight; |
| 1861 | /* |
| 1862 | * entity is about to be inserted into a service tree, |
| 1863 | * and then set in service: get a reference to make |
| 1864 | * sure entity does not disappear until it is no |
| 1865 | * longer in service or scheduled for service. |
| 1866 | */ |
| 1867 | bfq_get_entity(entity); |
| 1868 | |
| 1869 | entity->on_st = true; |
| 1870 | } |
| 1871 | |
| 1872 | bfq_update_fin_time_enqueue(entity, st, backshifted); |
| 1873 | } |
| 1874 | |
| 1875 | /** |
| 1876 | * __bfq_requeue_entity - handle requeueing or repositioning of an entity. |
| 1877 | * @entity: the entity being requeued or repositioned. |
| 1878 | * |
| 1879 | * Requeueing is needed if this entity stops being served, which |
| 1880 | * happens if a leaf descendant entity has expired. On the other hand, |
| 1881 | * repositioning is needed if the next_inservice_entity for the child |
| 1882 | * entity has changed. See the comments inside the function for |
| 1883 | * details. |
| 1884 | * |
| 1885 | * Basically, this function: 1) removes entity from its active tree if |
| 1886 | * present there, 2) updates the timestamps of entity and 3) inserts |
| 1887 | * entity back into its active tree (in the new, right position for |
| 1888 | * the new values of the timestamps). |
| 1889 | */ |
| 1890 | static void __bfq_requeue_entity(struct bfq_entity *entity) |
| 1891 | { |
| 1892 | struct bfq_sched_data *sd = entity->sched_data; |
| 1893 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1894 | |
| 1895 | if (entity == sd->in_service_entity) { |
| 1896 | /* |
| 1897 | * We are requeueing the current in-service entity, |
| 1898 | * which may have to be done for one of the following |
| 1899 | * reasons: |
| 1900 | * - entity represents the in-service queue, and the |
| 1901 | * in-service queue is being requeued after an |
| 1902 | * expiration; |
| 1903 | * - entity represents a group, and its budget has |
| 1904 | * changed because one of its child entities has |
| 1905 | * just been either activated or requeued for some |
| 1906 | * reason; the timestamps of the entity need then to |
| 1907 | * be updated, and the entity needs to be enqueued |
| 1908 | * or repositioned accordingly. |
| 1909 | * |
| 1910 | * In particular, before requeueing, the start time of |
| 1911 | * the entity must be moved forward to account for the |
| 1912 | * service that the entity has received while in |
| 1913 | * service. This is done by the next instructions. The |
| 1914 | * finish time will then be updated according to this |
| 1915 | * new value of the start time, and to the budget of |
| 1916 | * the entity. |
| 1917 | */ |
| 1918 | bfq_calc_finish(entity, entity->service); |
| 1919 | entity->start = entity->finish; |
| 1920 | /* |
| 1921 | * In addition, if the entity had more than one child |
| 1922 | * when set in service, then was not extracted from |
| 1923 | * the active tree. This implies that the position of |
| 1924 | * the entity in the active tree may need to be |
| 1925 | * changed now, because we have just updated the start |
| 1926 | * time of the entity, and we will update its finish |
| 1927 | * time in a moment (the requeueing is then, more |
| 1928 | * precisely, a repositioning in this case). To |
| 1929 | * implement this repositioning, we: 1) dequeue the |
| 1930 | * entity here, 2) update the finish time and |
| 1931 | * requeue the entity according to the new |
| 1932 | * timestamps below. |
| 1933 | */ |
| 1934 | if (entity->tree) |
| 1935 | bfq_active_extract(st, entity); |
| 1936 | } else { /* The entity is already active, and not in service */ |
| 1937 | /* |
| 1938 | * In this case, this function gets called only if the |
| 1939 | * next_in_service entity below this entity has |
| 1940 | * changed, and this change has caused the budget of |
| 1941 | * this entity to change, which, finally implies that |
| 1942 | * the finish time of this entity must be |
| 1943 | * updated. Such an update may cause the scheduling, |
| 1944 | * i.e., the position in the active tree, of this |
| 1945 | * entity to change. We handle this change by: 1) |
| 1946 | * dequeueing the entity here, 2) updating the finish |
| 1947 | * time and requeueing the entity according to the new |
| 1948 | * timestamps below. This is the same approach as the |
| 1949 | * non-extracted-entity sub-case above. |
| 1950 | */ |
| 1951 | bfq_active_extract(st, entity); |
| 1952 | } |
| 1953 | |
| 1954 | bfq_update_fin_time_enqueue(entity, st, false); |
| 1955 | } |
| 1956 | |
| 1957 | static void __bfq_activate_requeue_entity(struct bfq_entity *entity, |
| 1958 | struct bfq_sched_data *sd, |
| 1959 | bool non_blocking_wait_rq) |
| 1960 | { |
| 1961 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1962 | |
| 1963 | if (sd->in_service_entity == entity || entity->tree == &st->active) |
| 1964 | /* |
| 1965 | * in service or already queued on the active tree, |
| 1966 | * requeue or reposition |
| 1967 | */ |
| 1968 | __bfq_requeue_entity(entity); |
| 1969 | else |
| 1970 | /* |
| 1971 | * Not in service and not queued on its active tree: |
| 1972 | * the activity is idle and this is a true activation. |
| 1973 | */ |
| 1974 | __bfq_activate_entity(entity, non_blocking_wait_rq); |
| 1975 | } |
| 1976 | |
| 1977 | |
| 1978 | /** |
| 1979 | * bfq_activate_entity - activate or requeue an entity representing a bfq_queue, |
| 1980 | * and activate, requeue or reposition all ancestors |
| 1981 | * for which such an update becomes necessary. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1982 | * @entity: the entity to activate. |
| 1983 | * @non_blocking_wait_rq: true if this entity was waiting for a request |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1984 | * @requeue: true if this is a requeue, which implies that bfqq is |
| 1985 | * being expired; thus ALL its ancestors stop being served and must |
| 1986 | * therefore be requeued |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1987 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1988 | static void bfq_activate_requeue_entity(struct bfq_entity *entity, |
| 1989 | bool non_blocking_wait_rq, |
| 1990 | bool requeue) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1991 | { |
| 1992 | struct bfq_sched_data *sd; |
| 1993 | |
| 1994 | for_each_entity(entity) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1995 | sd = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1996 | __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq); |
| 1997 | |
| 1998 | if (!bfq_update_next_in_service(sd, entity) && !requeue) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1999 | break; |
| 2000 | } |
| 2001 | } |
| 2002 | |
| 2003 | /** |
| 2004 | * __bfq_deactivate_entity - deactivate an entity from its service tree. |
| 2005 | * @entity: the entity to deactivate. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2006 | * @ins_into_idle_tree: if false, the entity will not be put into the |
| 2007 | * idle tree. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2008 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2009 | * Deactivates an entity, independently from its previous state. Must |
| 2010 | * be invoked only if entity is on a service tree. Extracts the entity |
| 2011 | * from that tree, and if necessary and allowed, puts it on the idle |
| 2012 | * tree. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2013 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2014 | static bool __bfq_deactivate_entity(struct bfq_entity *entity, |
| 2015 | bool ins_into_idle_tree) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2016 | { |
| 2017 | struct bfq_sched_data *sd = entity->sched_data; |
| 2018 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 2019 | int is_in_service = entity == sd->in_service_entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2020 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2021 | if (!entity->on_st) /* entity never activated, or already inactive */ |
| 2022 | return false; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2023 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2024 | if (is_in_service) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2025 | bfq_calc_finish(entity, entity->service); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2026 | |
| 2027 | if (entity->tree == &st->active) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2028 | bfq_active_extract(st, entity); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2029 | else if (!is_in_service && entity->tree == &st->idle) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2030 | bfq_idle_extract(st, entity); |
| 2031 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2032 | if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2033 | bfq_forget_entity(st, entity, is_in_service); |
| 2034 | else |
| 2035 | bfq_idle_insert(st, entity); |
| 2036 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2037 | return true; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2038 | } |
| 2039 | |
| 2040 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2041 | * bfq_deactivate_entity - deactivate an entity representing a bfq_queue. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2042 | * @entity: the entity to deactivate. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2043 | * @ins_into_idle_tree: true if the entity can be put on the idle tree |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2044 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2045 | static void bfq_deactivate_entity(struct bfq_entity *entity, |
| 2046 | bool ins_into_idle_tree, |
| 2047 | bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2048 | { |
| 2049 | struct bfq_sched_data *sd; |
| 2050 | struct bfq_entity *parent = NULL; |
| 2051 | |
| 2052 | for_each_entity_safe(entity, parent) { |
| 2053 | sd = entity->sched_data; |
| 2054 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2055 | if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2056 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2057 | * entity is not in any tree any more, so |
| 2058 | * this deactivation is a no-op, and there is |
| 2059 | * nothing to change for upper-level entities |
| 2060 | * (in case of expiration, this can never |
| 2061 | * happen). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2062 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2063 | return; |
| 2064 | } |
| 2065 | |
| 2066 | if (sd->next_in_service == entity) |
| 2067 | /* |
| 2068 | * entity was the next_in_service entity, |
| 2069 | * then, since entity has just been |
| 2070 | * deactivated, a new one must be found. |
| 2071 | */ |
| 2072 | bfq_update_next_in_service(sd, NULL); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2073 | |
| 2074 | if (sd->next_in_service) |
| 2075 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2076 | * The parent entity is still backlogged, |
| 2077 | * because next_in_service is not NULL. So, no |
| 2078 | * further upwards deactivation must be |
| 2079 | * performed. Yet, next_in_service has |
| 2080 | * changed. Then the schedule does need to be |
| 2081 | * updated upwards. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2082 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2083 | break; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2084 | |
| 2085 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2086 | * If we get here, then the parent is no more |
| 2087 | * backlogged and we need to propagate the |
| 2088 | * deactivation upwards. Thus let the loop go on. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2089 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2090 | |
| 2091 | /* |
| 2092 | * Also let parent be queued into the idle tree on |
| 2093 | * deactivation, to preserve service guarantees, and |
| 2094 | * assuming that who invoked this function does not |
| 2095 | * need parent entities too to be removed completely. |
| 2096 | */ |
| 2097 | ins_into_idle_tree = true; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2098 | } |
| 2099 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2100 | /* |
| 2101 | * If the deactivation loop is fully executed, then there are |
| 2102 | * no more entities to touch and next loop is not executed at |
| 2103 | * all. Otherwise, requeue remaining entities if they are |
| 2104 | * about to stop receiving service, or reposition them if this |
| 2105 | * is not the case. |
| 2106 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2107 | entity = parent; |
| 2108 | for_each_entity(entity) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2109 | /* |
| 2110 | * Invoke __bfq_requeue_entity on entity, even if |
| 2111 | * already active, to requeue/reposition it in the |
| 2112 | * active tree (because sd->next_in_service has |
| 2113 | * changed) |
| 2114 | */ |
| 2115 | __bfq_requeue_entity(entity); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2116 | |
| 2117 | sd = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2118 | if (!bfq_update_next_in_service(sd, entity) && |
| 2119 | !expiration) |
| 2120 | /* |
| 2121 | * next_in_service unchanged or not causing |
| 2122 | * any change in entity->parent->sd, and no |
| 2123 | * requeueing needed for expiration: stop |
| 2124 | * here. |
| 2125 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2126 | break; |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2131 | * bfq_calc_vtime_jump - compute the value to which the vtime should jump, |
| 2132 | * if needed, to have at least one entity eligible. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2133 | * @st: the service tree to act upon. |
| 2134 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2135 | * Assumes that st is not empty. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2136 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2137 | static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2138 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2139 | struct bfq_entity *root_entity = bfq_root_active_entity(&st->active); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2140 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2141 | if (bfq_gt(root_entity->min_start, st->vtime)) |
| 2142 | return root_entity->min_start; |
| 2143 | |
| 2144 | return st->vtime; |
| 2145 | } |
| 2146 | |
| 2147 | static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value) |
| 2148 | { |
| 2149 | if (new_value > st->vtime) { |
| 2150 | st->vtime = new_value; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2151 | bfq_forget_idle(st); |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | /** |
| 2156 | * bfq_first_active_entity - find the eligible entity with |
| 2157 | * the smallest finish time |
| 2158 | * @st: the service tree to select from. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2159 | * @vtime: the system virtual to use as a reference for eligibility |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2160 | * |
| 2161 | * This function searches the first schedulable entity, starting from the |
| 2162 | * root of the tree and going on the left every time on this side there is |
| 2163 | * a subtree with at least one eligible (start >= vtime) entity. The path on |
| 2164 | * the right is followed only if a) the left subtree contains no eligible |
| 2165 | * entities and b) no eligible entity has been found yet. |
| 2166 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2167 | static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st, |
| 2168 | u64 vtime) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2169 | { |
| 2170 | struct bfq_entity *entry, *first = NULL; |
| 2171 | struct rb_node *node = st->active.rb_node; |
| 2172 | |
| 2173 | while (node) { |
| 2174 | entry = rb_entry(node, struct bfq_entity, rb_node); |
| 2175 | left: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2176 | if (!bfq_gt(entry->start, vtime)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2177 | first = entry; |
| 2178 | |
| 2179 | if (node->rb_left) { |
| 2180 | entry = rb_entry(node->rb_left, |
| 2181 | struct bfq_entity, rb_node); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2182 | if (!bfq_gt(entry->min_start, vtime)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2183 | node = node->rb_left; |
| 2184 | goto left; |
| 2185 | } |
| 2186 | } |
| 2187 | if (first) |
| 2188 | break; |
| 2189 | node = node->rb_right; |
| 2190 | } |
| 2191 | |
| 2192 | return first; |
| 2193 | } |
| 2194 | |
| 2195 | /** |
| 2196 | * __bfq_lookup_next_entity - return the first eligible entity in @st. |
| 2197 | * @st: the service tree. |
| 2198 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2199 | * If there is no in-service entity for the sched_data st belongs to, |
| 2200 | * then return the entity that will be set in service if: |
| 2201 | * 1) the parent entity this st belongs to is set in service; |
| 2202 | * 2) no entity belonging to such parent entity undergoes a state change |
| 2203 | * that would influence the timestamps of the entity (e.g., becomes idle, |
| 2204 | * becomes backlogged, changes its budget, ...). |
| 2205 | * |
| 2206 | * In this first case, update the virtual time in @st too (see the |
| 2207 | * comments on this update inside the function). |
| 2208 | * |
| 2209 | * In constrast, if there is an in-service entity, then return the |
| 2210 | * entity that would be set in service if not only the above |
| 2211 | * conditions, but also the next one held true: the currently |
| 2212 | * in-service entity, on expiration, |
| 2213 | * 1) gets a finish time equal to the current one, or |
| 2214 | * 2) is not eligible any more, or |
| 2215 | * 3) is idle. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2216 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2217 | static struct bfq_entity * |
| 2218 | __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2219 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2220 | struct bfq_entity *entity; |
| 2221 | u64 new_vtime; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2222 | |
| 2223 | if (RB_EMPTY_ROOT(&st->active)) |
| 2224 | return NULL; |
| 2225 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2226 | /* |
| 2227 | * Get the value of the system virtual time for which at |
| 2228 | * least one entity is eligible. |
| 2229 | */ |
| 2230 | new_vtime = bfq_calc_vtime_jump(st); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2231 | |
| 2232 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2233 | * If there is no in-service entity for the sched_data this |
| 2234 | * active tree belongs to, then push the system virtual time |
| 2235 | * up to the value that guarantees that at least one entity is |
| 2236 | * eligible. If, instead, there is an in-service entity, then |
| 2237 | * do not make any such update, because there is already an |
| 2238 | * eligible entity, namely the in-service one (even if the |
| 2239 | * entity is not on st, because it was extracted when set in |
| 2240 | * service). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2241 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2242 | if (!in_service) |
| 2243 | bfq_update_vtime(st, new_vtime); |
| 2244 | |
| 2245 | entity = bfq_first_active_entity(st, new_vtime); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2246 | |
| 2247 | return entity; |
| 2248 | } |
| 2249 | |
| 2250 | /** |
| 2251 | * bfq_lookup_next_entity - return the first eligible entity in @sd. |
| 2252 | * @sd: the sched_data. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2253 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2254 | * This function is invoked when there has been a change in the trees |
| 2255 | * for sd, and we need know what is the new next entity after this |
| 2256 | * change. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2257 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2258 | static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2259 | { |
| 2260 | struct bfq_service_tree *st = sd->service_tree; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2261 | struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1); |
| 2262 | struct bfq_entity *entity = NULL; |
| 2263 | int class_idx = 0; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2264 | |
| 2265 | /* |
| 2266 | * Choose from idle class, if needed to guarantee a minimum |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2267 | * bandwidth to this class (and if there is some active entity |
| 2268 | * in idle class). This should also mitigate |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2269 | * priority-inversion problems in case a low priority task is |
| 2270 | * holding file system resources. |
| 2271 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2272 | if (time_is_before_jiffies(sd->bfq_class_idle_last_service + |
| 2273 | BFQ_CL_IDLE_TIMEOUT)) { |
| 2274 | if (!RB_EMPTY_ROOT(&idle_class_st->active)) |
| 2275 | class_idx = BFQ_IOPRIO_CLASSES - 1; |
| 2276 | /* About to be served if backlogged, or not yet backlogged */ |
| 2277 | sd->bfq_class_idle_last_service = jiffies; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2278 | } |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2279 | |
| 2280 | /* |
| 2281 | * Find the next entity to serve for the highest-priority |
| 2282 | * class, unless the idle class needs to be served. |
| 2283 | */ |
| 2284 | for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) { |
| 2285 | entity = __bfq_lookup_next_entity(st + class_idx, |
| 2286 | sd->in_service_entity); |
| 2287 | |
| 2288 | if (entity) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2289 | break; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2290 | } |
| 2291 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2292 | if (!entity) |
| 2293 | return NULL; |
| 2294 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2295 | return entity; |
| 2296 | } |
| 2297 | |
| 2298 | static bool next_queue_may_preempt(struct bfq_data *bfqd) |
| 2299 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2300 | struct bfq_sched_data *sd = &bfqd->root_group->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2301 | |
| 2302 | return sd->next_in_service != sd->in_service_entity; |
| 2303 | } |
| 2304 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2305 | /* |
| 2306 | * Get next queue for service. |
| 2307 | */ |
| 2308 | static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) |
| 2309 | { |
| 2310 | struct bfq_entity *entity = NULL; |
| 2311 | struct bfq_sched_data *sd; |
| 2312 | struct bfq_queue *bfqq; |
| 2313 | |
| 2314 | if (bfqd->busy_queues == 0) |
| 2315 | return NULL; |
| 2316 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2317 | /* |
| 2318 | * Traverse the path from the root to the leaf entity to |
| 2319 | * serve. Set in service all the entities visited along the |
| 2320 | * way. |
| 2321 | */ |
| 2322 | sd = &bfqd->root_group->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2323 | for (; sd ; sd = entity->my_sched_data) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2324 | /* |
| 2325 | * WARNING. We are about to set the in-service entity |
| 2326 | * to sd->next_in_service, i.e., to the (cached) value |
| 2327 | * returned by bfq_lookup_next_entity(sd) the last |
| 2328 | * time it was invoked, i.e., the last time when the |
| 2329 | * service order in sd changed as a consequence of the |
| 2330 | * activation or deactivation of an entity. In this |
| 2331 | * respect, if we execute bfq_lookup_next_entity(sd) |
| 2332 | * in this very moment, it may, although with low |
| 2333 | * probability, yield a different entity than that |
| 2334 | * pointed to by sd->next_in_service. This rare event |
| 2335 | * happens in case there was no CLASS_IDLE entity to |
| 2336 | * serve for sd when bfq_lookup_next_entity(sd) was |
| 2337 | * invoked for the last time, while there is now one |
| 2338 | * such entity. |
| 2339 | * |
| 2340 | * If the above event happens, then the scheduling of |
| 2341 | * such entity in CLASS_IDLE is postponed until the |
| 2342 | * service of the sd->next_in_service entity |
| 2343 | * finishes. In fact, when the latter is expired, |
| 2344 | * bfq_lookup_next_entity(sd) gets called again, |
| 2345 | * exactly to update sd->next_in_service. |
| 2346 | */ |
| 2347 | |
| 2348 | /* Make next_in_service entity become in_service_entity */ |
| 2349 | entity = sd->next_in_service; |
| 2350 | sd->in_service_entity = entity; |
| 2351 | |
| 2352 | /* |
| 2353 | * Reset the accumulator of the amount of service that |
| 2354 | * the entity is about to receive. |
| 2355 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2356 | entity->service = 0; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2357 | |
| 2358 | /* |
| 2359 | * If entity is no longer a candidate for next |
| 2360 | * service, then we extract it from its active tree, |
| 2361 | * for the following reason. To further boost the |
| 2362 | * throughput in some special case, BFQ needs to know |
| 2363 | * which is the next candidate entity to serve, while |
| 2364 | * there is already an entity in service. In this |
| 2365 | * respect, to make it easy to compute/update the next |
| 2366 | * candidate entity to serve after the current |
| 2367 | * candidate has been set in service, there is a case |
| 2368 | * where it is necessary to extract the current |
| 2369 | * candidate from its service tree. Such a case is |
| 2370 | * when the entity just set in service cannot be also |
| 2371 | * a candidate for next service. Details about when |
| 2372 | * this conditions holds are reported in the comments |
| 2373 | * on the function bfq_no_longer_next_in_service() |
| 2374 | * invoked below. |
| 2375 | */ |
| 2376 | if (bfq_no_longer_next_in_service(entity)) |
| 2377 | bfq_active_extract(bfq_entity_service_tree(entity), |
| 2378 | entity); |
| 2379 | |
| 2380 | /* |
| 2381 | * For the same reason why we may have just extracted |
| 2382 | * entity from its active tree, we may need to update |
| 2383 | * next_in_service for the sched_data of entity too, |
| 2384 | * regardless of whether entity has been extracted. |
| 2385 | * In fact, even if entity has not been extracted, a |
| 2386 | * descendant entity may get extracted. Such an event |
| 2387 | * would cause a change in next_in_service for the |
| 2388 | * level of the descendant entity, and thus possibly |
| 2389 | * back to upper levels. |
| 2390 | * |
| 2391 | * We cannot perform the resulting needed update |
| 2392 | * before the end of this loop, because, to know which |
| 2393 | * is the correct next-to-serve candidate entity for |
| 2394 | * each level, we need first to find the leaf entity |
| 2395 | * to set in service. In fact, only after we know |
| 2396 | * which is the next-to-serve leaf entity, we can |
| 2397 | * discover whether the parent entity of the leaf |
| 2398 | * entity becomes the next-to-serve, and so on. |
| 2399 | */ |
| 2400 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2401 | } |
| 2402 | |
| 2403 | bfqq = bfq_entity_to_bfqq(entity); |
| 2404 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2405 | /* |
| 2406 | * We can finally update all next-to-serve entities along the |
| 2407 | * path from the leaf entity just set in service to the root. |
| 2408 | */ |
| 2409 | for_each_entity(entity) { |
| 2410 | struct bfq_sched_data *sd = entity->sched_data; |
| 2411 | |
| 2412 | if (!bfq_update_next_in_service(sd, NULL)) |
| 2413 | break; |
| 2414 | } |
| 2415 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2416 | return bfqq; |
| 2417 | } |
| 2418 | |
| 2419 | static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) |
| 2420 | { |
| 2421 | struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue; |
| 2422 | struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2423 | struct bfq_entity *entity = in_serv_entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2424 | |
| 2425 | if (bfqd->in_service_bic) { |
| 2426 | put_io_context(bfqd->in_service_bic->icq.ioc); |
| 2427 | bfqd->in_service_bic = NULL; |
| 2428 | } |
| 2429 | |
| 2430 | bfq_clear_bfqq_wait_request(in_serv_bfqq); |
| 2431 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| 2432 | bfqd->in_service_queue = NULL; |
| 2433 | |
| 2434 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2435 | * When this function is called, all in-service entities have |
| 2436 | * been properly deactivated or requeued, so we can safely |
| 2437 | * execute the final step: reset in_service_entity along the |
| 2438 | * path from entity to the root. |
| 2439 | */ |
| 2440 | for_each_entity(entity) |
| 2441 | entity->sched_data->in_service_entity = NULL; |
| 2442 | |
| 2443 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2444 | * in_serv_entity is no longer in service, so, if it is in no |
| 2445 | * service tree either, then release the service reference to |
| 2446 | * the queue it represents (taken with bfq_get_entity). |
| 2447 | */ |
| 2448 | if (!in_serv_entity->on_st) |
| 2449 | bfq_put_queue(in_serv_bfqq); |
| 2450 | } |
| 2451 | |
| 2452 | static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2453 | bool ins_into_idle_tree, bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2454 | { |
| 2455 | struct bfq_entity *entity = &bfqq->entity; |
| 2456 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2457 | bfq_deactivate_entity(entity, ins_into_idle_tree, expiration); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2458 | } |
| 2459 | |
| 2460 | static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2461 | { |
| 2462 | struct bfq_entity *entity = &bfqq->entity; |
| 2463 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2464 | bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq), |
| 2465 | false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2466 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| 2467 | } |
| 2468 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2469 | static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2470 | { |
| 2471 | struct bfq_entity *entity = &bfqq->entity; |
| 2472 | |
| 2473 | bfq_activate_requeue_entity(entity, false, |
| 2474 | bfqq == bfqd->in_service_queue); |
| 2475 | } |
| 2476 | |
| 2477 | static void bfqg_stats_update_dequeue(struct bfq_group *bfqg); |
| 2478 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2479 | /* |
| 2480 | * Called when the bfqq no longer has requests pending, remove it from |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2481 | * the service tree. As a special case, it can be invoked during an |
| 2482 | * expiration. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2483 | */ |
| 2484 | static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2485 | bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2486 | { |
| 2487 | bfq_log_bfqq(bfqd, bfqq, "del from busy"); |
| 2488 | |
| 2489 | bfq_clear_bfqq_busy(bfqq); |
| 2490 | |
| 2491 | bfqd->busy_queues--; |
| 2492 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2493 | bfqg_stats_update_dequeue(bfqq_group(bfqq)); |
| 2494 | |
| 2495 | bfq_deactivate_bfqq(bfqd, bfqq, true, expiration); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2496 | } |
| 2497 | |
| 2498 | /* |
| 2499 | * Called when an inactive queue receives a new request. |
| 2500 | */ |
| 2501 | static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2502 | { |
| 2503 | bfq_log_bfqq(bfqd, bfqq, "add to busy"); |
| 2504 | |
| 2505 | bfq_activate_bfqq(bfqd, bfqq); |
| 2506 | |
| 2507 | bfq_mark_bfqq_busy(bfqq); |
| 2508 | bfqd->busy_queues++; |
| 2509 | } |
| 2510 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2511 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 2512 | |
| 2513 | /* bfqg stats flags */ |
| 2514 | enum bfqg_stats_flags { |
| 2515 | BFQG_stats_waiting = 0, |
| 2516 | BFQG_stats_idling, |
| 2517 | BFQG_stats_empty, |
| 2518 | }; |
| 2519 | |
| 2520 | #define BFQG_FLAG_FNS(name) \ |
| 2521 | static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \ |
| 2522 | { \ |
| 2523 | stats->flags |= (1 << BFQG_stats_##name); \ |
| 2524 | } \ |
| 2525 | static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \ |
| 2526 | { \ |
| 2527 | stats->flags &= ~(1 << BFQG_stats_##name); \ |
| 2528 | } \ |
| 2529 | static int bfqg_stats_##name(struct bfqg_stats *stats) \ |
| 2530 | { \ |
| 2531 | return (stats->flags & (1 << BFQG_stats_##name)) != 0; \ |
| 2532 | } \ |
| 2533 | |
| 2534 | BFQG_FLAG_FNS(waiting) |
| 2535 | BFQG_FLAG_FNS(idling) |
| 2536 | BFQG_FLAG_FNS(empty) |
| 2537 | #undef BFQG_FLAG_FNS |
| 2538 | |
| 2539 | /* This should be called with the queue_lock held. */ |
| 2540 | static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats) |
| 2541 | { |
| 2542 | unsigned long long now; |
| 2543 | |
| 2544 | if (!bfqg_stats_waiting(stats)) |
| 2545 | return; |
| 2546 | |
| 2547 | now = sched_clock(); |
| 2548 | if (time_after64(now, stats->start_group_wait_time)) |
| 2549 | blkg_stat_add(&stats->group_wait_time, |
| 2550 | now - stats->start_group_wait_time); |
| 2551 | bfqg_stats_clear_waiting(stats); |
| 2552 | } |
| 2553 | |
| 2554 | /* This should be called with the queue_lock held. */ |
| 2555 | static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, |
| 2556 | struct bfq_group *curr_bfqg) |
| 2557 | { |
| 2558 | struct bfqg_stats *stats = &bfqg->stats; |
| 2559 | |
| 2560 | if (bfqg_stats_waiting(stats)) |
| 2561 | return; |
| 2562 | if (bfqg == curr_bfqg) |
| 2563 | return; |
| 2564 | stats->start_group_wait_time = sched_clock(); |
| 2565 | bfqg_stats_mark_waiting(stats); |
| 2566 | } |
| 2567 | |
| 2568 | /* This should be called with the queue_lock held. */ |
| 2569 | static void bfqg_stats_end_empty_time(struct bfqg_stats *stats) |
| 2570 | { |
| 2571 | unsigned long long now; |
| 2572 | |
| 2573 | if (!bfqg_stats_empty(stats)) |
| 2574 | return; |
| 2575 | |
| 2576 | now = sched_clock(); |
| 2577 | if (time_after64(now, stats->start_empty_time)) |
| 2578 | blkg_stat_add(&stats->empty_time, |
| 2579 | now - stats->start_empty_time); |
| 2580 | bfqg_stats_clear_empty(stats); |
| 2581 | } |
| 2582 | |
| 2583 | static void bfqg_stats_update_dequeue(struct bfq_group *bfqg) |
| 2584 | { |
| 2585 | blkg_stat_add(&bfqg->stats.dequeue, 1); |
| 2586 | } |
| 2587 | |
| 2588 | static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) |
| 2589 | { |
| 2590 | struct bfqg_stats *stats = &bfqg->stats; |
| 2591 | |
| 2592 | if (blkg_rwstat_total(&stats->queued)) |
| 2593 | return; |
| 2594 | |
| 2595 | /* |
| 2596 | * group is already marked empty. This can happen if bfqq got new |
| 2597 | * request in parent group and moved to this group while being added |
| 2598 | * to service tree. Just ignore the event and move on. |
| 2599 | */ |
| 2600 | if (bfqg_stats_empty(stats)) |
| 2601 | return; |
| 2602 | |
| 2603 | stats->start_empty_time = sched_clock(); |
| 2604 | bfqg_stats_mark_empty(stats); |
| 2605 | } |
| 2606 | |
| 2607 | static void bfqg_stats_update_idle_time(struct bfq_group *bfqg) |
| 2608 | { |
| 2609 | struct bfqg_stats *stats = &bfqg->stats; |
| 2610 | |
| 2611 | if (bfqg_stats_idling(stats)) { |
| 2612 | unsigned long long now = sched_clock(); |
| 2613 | |
| 2614 | if (time_after64(now, stats->start_idle_time)) |
| 2615 | blkg_stat_add(&stats->idle_time, |
| 2616 | now - stats->start_idle_time); |
| 2617 | bfqg_stats_clear_idling(stats); |
| 2618 | } |
| 2619 | } |
| 2620 | |
| 2621 | static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) |
| 2622 | { |
| 2623 | struct bfqg_stats *stats = &bfqg->stats; |
| 2624 | |
| 2625 | stats->start_idle_time = sched_clock(); |
| 2626 | bfqg_stats_mark_idling(stats); |
| 2627 | } |
| 2628 | |
| 2629 | static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) |
| 2630 | { |
| 2631 | struct bfqg_stats *stats = &bfqg->stats; |
| 2632 | |
| 2633 | blkg_stat_add(&stats->avg_queue_size_sum, |
| 2634 | blkg_rwstat_total(&stats->queued)); |
| 2635 | blkg_stat_add(&stats->avg_queue_size_samples, 1); |
| 2636 | bfqg_stats_update_group_wait_time(stats); |
| 2637 | } |
| 2638 | |
| 2639 | /* |
| 2640 | * blk-cgroup policy-related handlers |
| 2641 | * The following functions help in converting between blk-cgroup |
| 2642 | * internal structures and BFQ-specific structures. |
| 2643 | */ |
| 2644 | |
| 2645 | static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd) |
| 2646 | { |
| 2647 | return pd ? container_of(pd, struct bfq_group, pd) : NULL; |
| 2648 | } |
| 2649 | |
| 2650 | static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg) |
| 2651 | { |
| 2652 | return pd_to_blkg(&bfqg->pd); |
| 2653 | } |
| 2654 | |
| 2655 | static struct blkcg_policy blkcg_policy_bfq; |
| 2656 | |
| 2657 | static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg) |
| 2658 | { |
| 2659 | return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq)); |
| 2660 | } |
| 2661 | |
| 2662 | /* |
| 2663 | * bfq_group handlers |
| 2664 | * The following functions help in navigating the bfq_group hierarchy |
| 2665 | * by allowing to find the parent of a bfq_group or the bfq_group |
| 2666 | * associated to a bfq_queue. |
| 2667 | */ |
| 2668 | |
| 2669 | static struct bfq_group *bfqg_parent(struct bfq_group *bfqg) |
| 2670 | { |
| 2671 | struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent; |
| 2672 | |
| 2673 | return pblkg ? blkg_to_bfqg(pblkg) : NULL; |
| 2674 | } |
| 2675 | |
| 2676 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) |
| 2677 | { |
| 2678 | struct bfq_entity *group_entity = bfqq->entity.parent; |
| 2679 | |
| 2680 | return group_entity ? container_of(group_entity, struct bfq_group, |
| 2681 | entity) : |
| 2682 | bfqq->bfqd->root_group; |
| 2683 | } |
| 2684 | |
| 2685 | /* |
| 2686 | * The following two functions handle get and put of a bfq_group by |
| 2687 | * wrapping the related blk-cgroup hooks. |
| 2688 | */ |
| 2689 | |
| 2690 | static void bfqg_get(struct bfq_group *bfqg) |
| 2691 | { |
| 2692 | return blkg_get(bfqg_to_blkg(bfqg)); |
| 2693 | } |
| 2694 | |
| 2695 | static void bfqg_put(struct bfq_group *bfqg) |
| 2696 | { |
| 2697 | return blkg_put(bfqg_to_blkg(bfqg)); |
| 2698 | } |
| 2699 | |
| 2700 | static void bfqg_stats_update_io_add(struct bfq_group *bfqg, |
| 2701 | struct bfq_queue *bfqq, |
| 2702 | unsigned int op) |
| 2703 | { |
| 2704 | blkg_rwstat_add(&bfqg->stats.queued, op, 1); |
| 2705 | bfqg_stats_end_empty_time(&bfqg->stats); |
| 2706 | if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue)) |
| 2707 | bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq)); |
| 2708 | } |
| 2709 | |
| 2710 | static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) |
| 2711 | { |
| 2712 | blkg_rwstat_add(&bfqg->stats.queued, op, -1); |
| 2713 | } |
| 2714 | |
| 2715 | static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) |
| 2716 | { |
| 2717 | blkg_rwstat_add(&bfqg->stats.merged, op, 1); |
| 2718 | } |
| 2719 | |
| 2720 | static void bfqg_stats_update_completion(struct bfq_group *bfqg, |
| 2721 | uint64_t start_time, uint64_t io_start_time, |
| 2722 | unsigned int op) |
| 2723 | { |
| 2724 | struct bfqg_stats *stats = &bfqg->stats; |
| 2725 | unsigned long long now = sched_clock(); |
| 2726 | |
| 2727 | if (time_after64(now, io_start_time)) |
| 2728 | blkg_rwstat_add(&stats->service_time, op, |
| 2729 | now - io_start_time); |
| 2730 | if (time_after64(io_start_time, start_time)) |
| 2731 | blkg_rwstat_add(&stats->wait_time, op, |
| 2732 | io_start_time - start_time); |
| 2733 | } |
| 2734 | |
| 2735 | /* @stats = 0 */ |
| 2736 | static void bfqg_stats_reset(struct bfqg_stats *stats) |
| 2737 | { |
| 2738 | /* queued stats shouldn't be cleared */ |
| 2739 | blkg_rwstat_reset(&stats->merged); |
| 2740 | blkg_rwstat_reset(&stats->service_time); |
| 2741 | blkg_rwstat_reset(&stats->wait_time); |
| 2742 | blkg_stat_reset(&stats->time); |
| 2743 | blkg_stat_reset(&stats->avg_queue_size_sum); |
| 2744 | blkg_stat_reset(&stats->avg_queue_size_samples); |
| 2745 | blkg_stat_reset(&stats->dequeue); |
| 2746 | blkg_stat_reset(&stats->group_wait_time); |
| 2747 | blkg_stat_reset(&stats->idle_time); |
| 2748 | blkg_stat_reset(&stats->empty_time); |
| 2749 | } |
| 2750 | |
| 2751 | /* @to += @from */ |
| 2752 | static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from) |
| 2753 | { |
| 2754 | if (!to || !from) |
| 2755 | return; |
| 2756 | |
| 2757 | /* queued stats shouldn't be cleared */ |
| 2758 | blkg_rwstat_add_aux(&to->merged, &from->merged); |
| 2759 | blkg_rwstat_add_aux(&to->service_time, &from->service_time); |
| 2760 | blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); |
| 2761 | blkg_stat_add_aux(&from->time, &from->time); |
| 2762 | blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); |
| 2763 | blkg_stat_add_aux(&to->avg_queue_size_samples, |
| 2764 | &from->avg_queue_size_samples); |
| 2765 | blkg_stat_add_aux(&to->dequeue, &from->dequeue); |
| 2766 | blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); |
| 2767 | blkg_stat_add_aux(&to->idle_time, &from->idle_time); |
| 2768 | blkg_stat_add_aux(&to->empty_time, &from->empty_time); |
| 2769 | } |
| 2770 | |
| 2771 | /* |
| 2772 | * Transfer @bfqg's stats to its parent's aux counts so that the ancestors' |
| 2773 | * recursive stats can still account for the amount used by this bfqg after |
| 2774 | * it's gone. |
| 2775 | */ |
| 2776 | static void bfqg_stats_xfer_dead(struct bfq_group *bfqg) |
| 2777 | { |
| 2778 | struct bfq_group *parent; |
| 2779 | |
| 2780 | if (!bfqg) /* root_group */ |
| 2781 | return; |
| 2782 | |
| 2783 | parent = bfqg_parent(bfqg); |
| 2784 | |
| 2785 | lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock); |
| 2786 | |
| 2787 | if (unlikely(!parent)) |
| 2788 | return; |
| 2789 | |
| 2790 | bfqg_stats_add_aux(&parent->stats, &bfqg->stats); |
| 2791 | bfqg_stats_reset(&bfqg->stats); |
| 2792 | } |
| 2793 | |
| 2794 | static void bfq_init_entity(struct bfq_entity *entity, |
| 2795 | struct bfq_group *bfqg) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2796 | { |
| 2797 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 2798 | |
| 2799 | entity->weight = entity->new_weight; |
| 2800 | entity->orig_weight = entity->new_weight; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2801 | if (bfqq) { |
| 2802 | bfqq->ioprio = bfqq->new_ioprio; |
| 2803 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 2804 | bfqg_get(bfqg); |
| 2805 | } |
| 2806 | entity->parent = bfqg->my_entity; /* NULL for root group */ |
| 2807 | entity->sched_data = &bfqg->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2808 | } |
| 2809 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2810 | static void bfqg_stats_exit(struct bfqg_stats *stats) |
| 2811 | { |
| 2812 | blkg_rwstat_exit(&stats->merged); |
| 2813 | blkg_rwstat_exit(&stats->service_time); |
| 2814 | blkg_rwstat_exit(&stats->wait_time); |
| 2815 | blkg_rwstat_exit(&stats->queued); |
| 2816 | blkg_stat_exit(&stats->time); |
| 2817 | blkg_stat_exit(&stats->avg_queue_size_sum); |
| 2818 | blkg_stat_exit(&stats->avg_queue_size_samples); |
| 2819 | blkg_stat_exit(&stats->dequeue); |
| 2820 | blkg_stat_exit(&stats->group_wait_time); |
| 2821 | blkg_stat_exit(&stats->idle_time); |
| 2822 | blkg_stat_exit(&stats->empty_time); |
| 2823 | } |
| 2824 | |
| 2825 | static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp) |
| 2826 | { |
| 2827 | if (blkg_rwstat_init(&stats->merged, gfp) || |
| 2828 | blkg_rwstat_init(&stats->service_time, gfp) || |
| 2829 | blkg_rwstat_init(&stats->wait_time, gfp) || |
| 2830 | blkg_rwstat_init(&stats->queued, gfp) || |
| 2831 | blkg_stat_init(&stats->time, gfp) || |
| 2832 | blkg_stat_init(&stats->avg_queue_size_sum, gfp) || |
| 2833 | blkg_stat_init(&stats->avg_queue_size_samples, gfp) || |
| 2834 | blkg_stat_init(&stats->dequeue, gfp) || |
| 2835 | blkg_stat_init(&stats->group_wait_time, gfp) || |
| 2836 | blkg_stat_init(&stats->idle_time, gfp) || |
| 2837 | blkg_stat_init(&stats->empty_time, gfp)) { |
| 2838 | bfqg_stats_exit(stats); |
| 2839 | return -ENOMEM; |
| 2840 | } |
| 2841 | |
| 2842 | return 0; |
| 2843 | } |
| 2844 | |
| 2845 | static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd) |
| 2846 | { |
| 2847 | return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL; |
| 2848 | } |
| 2849 | |
| 2850 | static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg) |
| 2851 | { |
| 2852 | return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq)); |
| 2853 | } |
| 2854 | |
| 2855 | static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp) |
| 2856 | { |
| 2857 | struct bfq_group_data *bgd; |
| 2858 | |
| 2859 | bgd = kzalloc(sizeof(*bgd), gfp); |
| 2860 | if (!bgd) |
| 2861 | return NULL; |
| 2862 | return &bgd->pd; |
| 2863 | } |
| 2864 | |
| 2865 | static void bfq_cpd_init(struct blkcg_policy_data *cpd) |
| 2866 | { |
| 2867 | struct bfq_group_data *d = cpd_to_bfqgd(cpd); |
| 2868 | |
| 2869 | d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? |
| 2870 | CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL; |
| 2871 | } |
| 2872 | |
| 2873 | static void bfq_cpd_free(struct blkcg_policy_data *cpd) |
| 2874 | { |
| 2875 | kfree(cpd_to_bfqgd(cpd)); |
| 2876 | } |
| 2877 | |
| 2878 | static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node) |
| 2879 | { |
| 2880 | struct bfq_group *bfqg; |
| 2881 | |
| 2882 | bfqg = kzalloc_node(sizeof(*bfqg), gfp, node); |
| 2883 | if (!bfqg) |
| 2884 | return NULL; |
| 2885 | |
| 2886 | if (bfqg_stats_init(&bfqg->stats, gfp)) { |
| 2887 | kfree(bfqg); |
| 2888 | return NULL; |
| 2889 | } |
| 2890 | |
| 2891 | return &bfqg->pd; |
| 2892 | } |
| 2893 | |
| 2894 | static void bfq_pd_init(struct blkg_policy_data *pd) |
| 2895 | { |
| 2896 | struct blkcg_gq *blkg = pd_to_blkg(pd); |
| 2897 | struct bfq_group *bfqg = blkg_to_bfqg(blkg); |
| 2898 | struct bfq_data *bfqd = blkg->q->elevator->elevator_data; |
| 2899 | struct bfq_entity *entity = &bfqg->entity; |
| 2900 | struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg); |
| 2901 | |
| 2902 | entity->orig_weight = entity->weight = entity->new_weight = d->weight; |
| 2903 | entity->my_sched_data = &bfqg->sched_data; |
| 2904 | bfqg->my_entity = entity; /* |
| 2905 | * the root_group's will be set to NULL |
| 2906 | * in bfq_init_queue() |
| 2907 | */ |
| 2908 | bfqg->bfqd = bfqd; |
| 2909 | } |
| 2910 | |
| 2911 | static void bfq_pd_free(struct blkg_policy_data *pd) |
| 2912 | { |
| 2913 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 2914 | |
| 2915 | bfqg_stats_exit(&bfqg->stats); |
| 2916 | return kfree(bfqg); |
| 2917 | } |
| 2918 | |
| 2919 | static void bfq_pd_reset_stats(struct blkg_policy_data *pd) |
| 2920 | { |
| 2921 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 2922 | |
| 2923 | bfqg_stats_reset(&bfqg->stats); |
| 2924 | } |
| 2925 | |
| 2926 | static void bfq_group_set_parent(struct bfq_group *bfqg, |
| 2927 | struct bfq_group *parent) |
| 2928 | { |
| 2929 | struct bfq_entity *entity; |
| 2930 | |
| 2931 | entity = &bfqg->entity; |
| 2932 | entity->parent = parent->my_entity; |
| 2933 | entity->sched_data = &parent->sched_data; |
| 2934 | } |
| 2935 | |
| 2936 | static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd, |
| 2937 | struct blkcg *blkcg) |
| 2938 | { |
| 2939 | struct blkcg_gq *blkg; |
| 2940 | |
| 2941 | blkg = blkg_lookup(blkcg, bfqd->queue); |
| 2942 | if (likely(blkg)) |
| 2943 | return blkg_to_bfqg(blkg); |
| 2944 | return NULL; |
| 2945 | } |
| 2946 | |
| 2947 | static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, |
| 2948 | struct blkcg *blkcg) |
| 2949 | { |
| 2950 | struct bfq_group *bfqg, *parent; |
| 2951 | struct bfq_entity *entity; |
| 2952 | |
| 2953 | bfqg = bfq_lookup_bfqg(bfqd, blkcg); |
| 2954 | |
| 2955 | if (unlikely(!bfqg)) |
| 2956 | return NULL; |
| 2957 | |
| 2958 | /* |
| 2959 | * Update chain of bfq_groups as we might be handling a leaf group |
| 2960 | * which, along with some of its relatives, has not been hooked yet |
| 2961 | * to the private hierarchy of BFQ. |
| 2962 | */ |
| 2963 | entity = &bfqg->entity; |
| 2964 | for_each_entity(entity) { |
| 2965 | bfqg = container_of(entity, struct bfq_group, entity); |
| 2966 | if (bfqg != bfqd->root_group) { |
| 2967 | parent = bfqg_parent(bfqg); |
| 2968 | if (!parent) |
| 2969 | parent = bfqd->root_group; |
| 2970 | bfq_group_set_parent(bfqg, parent); |
| 2971 | } |
| 2972 | } |
| 2973 | |
| 2974 | return bfqg; |
| 2975 | } |
| 2976 | |
| 2977 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 2978 | struct bfq_queue *bfqq, |
| 2979 | bool compensate, |
| 2980 | enum bfqq_expiration reason); |
| 2981 | |
| 2982 | /** |
| 2983 | * bfq_bfqq_move - migrate @bfqq to @bfqg. |
| 2984 | * @bfqd: queue descriptor. |
| 2985 | * @bfqq: the queue to move. |
| 2986 | * @bfqg: the group to move to. |
| 2987 | * |
| 2988 | * Move @bfqq to @bfqg, deactivating it from its old group and reactivating |
| 2989 | * it on the new one. Avoid putting the entity on the old group idle tree. |
| 2990 | * |
| 2991 | * Must be called under the queue lock; the cgroup owning @bfqg must |
| 2992 | * not disappear (by now this just means that we are called under |
| 2993 | * rcu_read_lock()). |
| 2994 | */ |
| 2995 | static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 2996 | struct bfq_group *bfqg) |
| 2997 | { |
| 2998 | struct bfq_entity *entity = &bfqq->entity; |
| 2999 | |
| 3000 | /* If bfqq is empty, then bfq_bfqq_expire also invokes |
| 3001 | * bfq_del_bfqq_busy, thereby removing bfqq and its entity |
| 3002 | * from data structures related to current group. Otherwise we |
| 3003 | * need to remove bfqq explicitly with bfq_deactivate_bfqq, as |
| 3004 | * we do below. |
| 3005 | */ |
| 3006 | if (bfqq == bfqd->in_service_queue) |
| 3007 | bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| 3008 | false, BFQQE_PREEMPTED); |
| 3009 | |
| 3010 | if (bfq_bfqq_busy(bfqq)) |
| 3011 | bfq_deactivate_bfqq(bfqd, bfqq, false, false); |
| 3012 | else if (entity->on_st) |
| 3013 | bfq_put_idle_entity(bfq_entity_service_tree(entity), entity); |
| 3014 | bfqg_put(bfqq_group(bfqq)); |
| 3015 | |
| 3016 | /* |
| 3017 | * Here we use a reference to bfqg. We don't need a refcounter |
| 3018 | * as the cgroup reference will not be dropped, so that its |
| 3019 | * destroy() callback will not be invoked. |
| 3020 | */ |
| 3021 | entity->parent = bfqg->my_entity; |
| 3022 | entity->sched_data = &bfqg->sched_data; |
| 3023 | bfqg_get(bfqg); |
| 3024 | |
| 3025 | if (bfq_bfqq_busy(bfqq)) |
| 3026 | bfq_activate_bfqq(bfqd, bfqq); |
| 3027 | |
| 3028 | if (!bfqd->in_service_queue && !bfqd->rq_in_driver) |
| 3029 | bfq_schedule_dispatch(bfqd); |
| 3030 | } |
| 3031 | |
| 3032 | /** |
| 3033 | * __bfq_bic_change_cgroup - move @bic to @cgroup. |
| 3034 | * @bfqd: the queue descriptor. |
| 3035 | * @bic: the bic to move. |
| 3036 | * @blkcg: the blk-cgroup to move to. |
| 3037 | * |
| 3038 | * Move bic to blkcg, assuming that bfqd->queue is locked; the caller |
| 3039 | * has to make sure that the reference to cgroup is valid across the call. |
| 3040 | * |
| 3041 | * NOTE: an alternative approach might have been to store the current |
| 3042 | * cgroup in bfqq and getting a reference to it, reducing the lookup |
| 3043 | * time here, at the price of slightly more complex code. |
| 3044 | */ |
| 3045 | static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd, |
| 3046 | struct bfq_io_cq *bic, |
| 3047 | struct blkcg *blkcg) |
| 3048 | { |
| 3049 | struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0); |
| 3050 | struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1); |
| 3051 | struct bfq_group *bfqg; |
| 3052 | struct bfq_entity *entity; |
| 3053 | |
| 3054 | bfqg = bfq_find_set_group(bfqd, blkcg); |
| 3055 | |
| 3056 | if (unlikely(!bfqg)) |
| 3057 | bfqg = bfqd->root_group; |
| 3058 | |
| 3059 | if (async_bfqq) { |
| 3060 | entity = &async_bfqq->entity; |
| 3061 | |
| 3062 | if (entity->sched_data != &bfqg->sched_data) { |
| 3063 | bic_set_bfqq(bic, NULL, 0); |
| 3064 | bfq_log_bfqq(bfqd, async_bfqq, |
| 3065 | "bic_change_group: %p %d", |
| 3066 | async_bfqq, |
| 3067 | async_bfqq->ref); |
| 3068 | bfq_put_queue(async_bfqq); |
| 3069 | } |
| 3070 | } |
| 3071 | |
| 3072 | if (sync_bfqq) { |
| 3073 | entity = &sync_bfqq->entity; |
| 3074 | if (entity->sched_data != &bfqg->sched_data) |
| 3075 | bfq_bfqq_move(bfqd, sync_bfqq, bfqg); |
| 3076 | } |
| 3077 | |
| 3078 | return bfqg; |
| 3079 | } |
| 3080 | |
| 3081 | static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) |
| 3082 | { |
| 3083 | struct bfq_data *bfqd = bic_to_bfqd(bic); |
| 3084 | struct bfq_group *bfqg = NULL; |
| 3085 | uint64_t serial_nr; |
| 3086 | |
| 3087 | rcu_read_lock(); |
| 3088 | serial_nr = bio_blkcg(bio)->css.serial_nr; |
| 3089 | |
| 3090 | /* |
| 3091 | * Check whether blkcg has changed. The condition may trigger |
| 3092 | * spuriously on a newly created cic but there's no harm. |
| 3093 | */ |
| 3094 | if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr)) |
| 3095 | goto out; |
| 3096 | |
| 3097 | bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio)); |
| 3098 | bic->blkcg_serial_nr = serial_nr; |
| 3099 | out: |
| 3100 | rcu_read_unlock(); |
| 3101 | } |
| 3102 | |
| 3103 | /** |
| 3104 | * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st. |
| 3105 | * @st: the service tree being flushed. |
| 3106 | */ |
| 3107 | static void bfq_flush_idle_tree(struct bfq_service_tree *st) |
| 3108 | { |
| 3109 | struct bfq_entity *entity = st->first_idle; |
| 3110 | |
| 3111 | for (; entity ; entity = st->first_idle) |
| 3112 | __bfq_deactivate_entity(entity, false); |
| 3113 | } |
| 3114 | |
| 3115 | /** |
| 3116 | * bfq_reparent_leaf_entity - move leaf entity to the root_group. |
| 3117 | * @bfqd: the device data structure with the root group. |
| 3118 | * @entity: the entity to move. |
| 3119 | */ |
| 3120 | static void bfq_reparent_leaf_entity(struct bfq_data *bfqd, |
| 3121 | struct bfq_entity *entity) |
| 3122 | { |
| 3123 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 3124 | |
| 3125 | bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); |
| 3126 | } |
| 3127 | |
| 3128 | /** |
| 3129 | * bfq_reparent_active_entities - move to the root group all active |
| 3130 | * entities. |
| 3131 | * @bfqd: the device data structure with the root group. |
| 3132 | * @bfqg: the group to move from. |
| 3133 | * @st: the service tree with the entities. |
| 3134 | * |
| 3135 | * Needs queue_lock to be taken and reference to be valid over the call. |
| 3136 | */ |
| 3137 | static void bfq_reparent_active_entities(struct bfq_data *bfqd, |
| 3138 | struct bfq_group *bfqg, |
| 3139 | struct bfq_service_tree *st) |
| 3140 | { |
| 3141 | struct rb_root *active = &st->active; |
| 3142 | struct bfq_entity *entity = NULL; |
| 3143 | |
| 3144 | if (!RB_EMPTY_ROOT(&st->active)) |
| 3145 | entity = bfq_entity_of(rb_first(active)); |
| 3146 | |
| 3147 | for (; entity ; entity = bfq_entity_of(rb_first(active))) |
| 3148 | bfq_reparent_leaf_entity(bfqd, entity); |
| 3149 | |
| 3150 | if (bfqg->sched_data.in_service_entity) |
| 3151 | bfq_reparent_leaf_entity(bfqd, |
| 3152 | bfqg->sched_data.in_service_entity); |
| 3153 | } |
| 3154 | |
| 3155 | /** |
| 3156 | * bfq_pd_offline - deactivate the entity associated with @pd, |
| 3157 | * and reparent its children entities. |
| 3158 | * @pd: descriptor of the policy going offline. |
| 3159 | * |
| 3160 | * blkio already grabs the queue_lock for us, so no need to use |
| 3161 | * RCU-based magic |
| 3162 | */ |
| 3163 | static void bfq_pd_offline(struct blkg_policy_data *pd) |
| 3164 | { |
| 3165 | struct bfq_service_tree *st; |
| 3166 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 3167 | struct bfq_data *bfqd = bfqg->bfqd; |
| 3168 | struct bfq_entity *entity = bfqg->my_entity; |
| 3169 | unsigned long flags; |
| 3170 | int i; |
| 3171 | |
| 3172 | if (!entity) /* root group */ |
| 3173 | return; |
| 3174 | |
| 3175 | spin_lock_irqsave(&bfqd->lock, flags); |
| 3176 | /* |
| 3177 | * Empty all service_trees belonging to this group before |
| 3178 | * deactivating the group itself. |
| 3179 | */ |
| 3180 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) { |
| 3181 | st = bfqg->sched_data.service_tree + i; |
| 3182 | |
| 3183 | /* |
| 3184 | * The idle tree may still contain bfq_queues belonging |
| 3185 | * to exited task because they never migrated to a different |
| 3186 | * cgroup from the one being destroyed now. No one else |
| 3187 | * can access them so it's safe to act without any lock. |
| 3188 | */ |
| 3189 | bfq_flush_idle_tree(st); |
| 3190 | |
| 3191 | /* |
| 3192 | * It may happen that some queues are still active |
| 3193 | * (busy) upon group destruction (if the corresponding |
| 3194 | * processes have been forced to terminate). We move |
| 3195 | * all the leaf entities corresponding to these queues |
| 3196 | * to the root_group. |
| 3197 | * Also, it may happen that the group has an entity |
| 3198 | * in service, which is disconnected from the active |
| 3199 | * tree: it must be moved, too. |
| 3200 | * There is no need to put the sync queues, as the |
| 3201 | * scheduler has taken no reference. |
| 3202 | */ |
| 3203 | bfq_reparent_active_entities(bfqd, bfqg, st); |
| 3204 | } |
| 3205 | |
| 3206 | __bfq_deactivate_entity(entity, false); |
| 3207 | bfq_put_async_queues(bfqd, bfqg); |
| 3208 | |
| 3209 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 3210 | /* |
| 3211 | * @blkg is going offline and will be ignored by |
| 3212 | * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so |
| 3213 | * that they don't get lost. If IOs complete after this point, the |
| 3214 | * stats for them will be lost. Oh well... |
| 3215 | */ |
| 3216 | bfqg_stats_xfer_dead(bfqg); |
| 3217 | } |
| 3218 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3219 | static void bfq_end_wr_async(struct bfq_data *bfqd) |
| 3220 | { |
| 3221 | struct blkcg_gq *blkg; |
| 3222 | |
| 3223 | list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) { |
| 3224 | struct bfq_group *bfqg = blkg_to_bfqg(blkg); |
| 3225 | |
| 3226 | bfq_end_wr_async_queues(bfqd, bfqg); |
| 3227 | } |
| 3228 | bfq_end_wr_async_queues(bfqd, bfqd->root_group); |
| 3229 | } |
| 3230 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3231 | static int bfq_io_show_weight(struct seq_file *sf, void *v) |
| 3232 | { |
| 3233 | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); |
| 3234 | struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); |
| 3235 | unsigned int val = 0; |
| 3236 | |
| 3237 | if (bfqgd) |
| 3238 | val = bfqgd->weight; |
| 3239 | |
| 3240 | seq_printf(sf, "%u\n", val); |
| 3241 | |
| 3242 | return 0; |
| 3243 | } |
| 3244 | |
| 3245 | static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css, |
| 3246 | struct cftype *cftype, |
| 3247 | u64 val) |
| 3248 | { |
| 3249 | struct blkcg *blkcg = css_to_blkcg(css); |
| 3250 | struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); |
| 3251 | struct blkcg_gq *blkg; |
| 3252 | int ret = -ERANGE; |
| 3253 | |
| 3254 | if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT) |
| 3255 | return ret; |
| 3256 | |
| 3257 | ret = 0; |
| 3258 | spin_lock_irq(&blkcg->lock); |
| 3259 | bfqgd->weight = (unsigned short)val; |
| 3260 | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { |
| 3261 | struct bfq_group *bfqg = blkg_to_bfqg(blkg); |
| 3262 | |
| 3263 | if (!bfqg) |
| 3264 | continue; |
| 3265 | /* |
| 3266 | * Setting the prio_changed flag of the entity |
| 3267 | * to 1 with new_weight == weight would re-set |
| 3268 | * the value of the weight to its ioprio mapping. |
| 3269 | * Set the flag only if necessary. |
| 3270 | */ |
| 3271 | if ((unsigned short)val != bfqg->entity.new_weight) { |
| 3272 | bfqg->entity.new_weight = (unsigned short)val; |
| 3273 | /* |
| 3274 | * Make sure that the above new value has been |
| 3275 | * stored in bfqg->entity.new_weight before |
| 3276 | * setting the prio_changed flag. In fact, |
| 3277 | * this flag may be read asynchronously (in |
| 3278 | * critical sections protected by a different |
| 3279 | * lock than that held here), and finding this |
| 3280 | * flag set may cause the execution of the code |
| 3281 | * for updating parameters whose value may |
| 3282 | * depend also on bfqg->entity.new_weight (in |
| 3283 | * __bfq_entity_update_weight_prio). |
| 3284 | * This barrier makes sure that the new value |
| 3285 | * of bfqg->entity.new_weight is correctly |
| 3286 | * seen in that code. |
| 3287 | */ |
| 3288 | smp_wmb(); |
| 3289 | bfqg->entity.prio_changed = 1; |
| 3290 | } |
| 3291 | } |
| 3292 | spin_unlock_irq(&blkcg->lock); |
| 3293 | |
| 3294 | return ret; |
| 3295 | } |
| 3296 | |
| 3297 | static ssize_t bfq_io_set_weight(struct kernfs_open_file *of, |
| 3298 | char *buf, size_t nbytes, |
| 3299 | loff_t off) |
| 3300 | { |
| 3301 | u64 weight; |
| 3302 | /* First unsigned long found in the file is used */ |
| 3303 | int ret = kstrtoull(strim(buf), 0, &weight); |
| 3304 | |
| 3305 | if (ret) |
| 3306 | return ret; |
| 3307 | |
| 3308 | return bfq_io_set_weight_legacy(of_css(of), NULL, weight); |
| 3309 | } |
| 3310 | |
| 3311 | static int bfqg_print_stat(struct seq_file *sf, void *v) |
| 3312 | { |
| 3313 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, |
| 3314 | &blkcg_policy_bfq, seq_cft(sf)->private, false); |
| 3315 | return 0; |
| 3316 | } |
| 3317 | |
| 3318 | static int bfqg_print_rwstat(struct seq_file *sf, void *v) |
| 3319 | { |
| 3320 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, |
| 3321 | &blkcg_policy_bfq, seq_cft(sf)->private, true); |
| 3322 | return 0; |
| 3323 | } |
| 3324 | |
| 3325 | static u64 bfqg_prfill_stat_recursive(struct seq_file *sf, |
| 3326 | struct blkg_policy_data *pd, int off) |
| 3327 | { |
| 3328 | u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), |
| 3329 | &blkcg_policy_bfq, off); |
| 3330 | return __blkg_prfill_u64(sf, pd, sum); |
| 3331 | } |
| 3332 | |
| 3333 | static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf, |
| 3334 | struct blkg_policy_data *pd, int off) |
| 3335 | { |
| 3336 | struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), |
| 3337 | &blkcg_policy_bfq, |
| 3338 | off); |
| 3339 | return __blkg_prfill_rwstat(sf, pd, &sum); |
| 3340 | } |
| 3341 | |
| 3342 | static int bfqg_print_stat_recursive(struct seq_file *sf, void *v) |
| 3343 | { |
| 3344 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3345 | bfqg_prfill_stat_recursive, &blkcg_policy_bfq, |
| 3346 | seq_cft(sf)->private, false); |
| 3347 | return 0; |
| 3348 | } |
| 3349 | |
| 3350 | static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v) |
| 3351 | { |
| 3352 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3353 | bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq, |
| 3354 | seq_cft(sf)->private, true); |
| 3355 | return 0; |
| 3356 | } |
| 3357 | |
| 3358 | static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, |
| 3359 | int off) |
| 3360 | { |
| 3361 | u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); |
| 3362 | |
| 3363 | return __blkg_prfill_u64(sf, pd, sum >> 9); |
| 3364 | } |
| 3365 | |
| 3366 | static int bfqg_print_stat_sectors(struct seq_file *sf, void *v) |
| 3367 | { |
| 3368 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3369 | bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false); |
| 3370 | return 0; |
| 3371 | } |
| 3372 | |
| 3373 | static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf, |
| 3374 | struct blkg_policy_data *pd, int off) |
| 3375 | { |
| 3376 | struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, |
| 3377 | offsetof(struct blkcg_gq, stat_bytes)); |
| 3378 | u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + |
| 3379 | atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); |
| 3380 | |
| 3381 | return __blkg_prfill_u64(sf, pd, sum >> 9); |
| 3382 | } |
| 3383 | |
| 3384 | static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) |
| 3385 | { |
| 3386 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3387 | bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0, |
| 3388 | false); |
| 3389 | return 0; |
| 3390 | } |
| 3391 | |
| 3392 | static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf, |
| 3393 | struct blkg_policy_data *pd, int off) |
| 3394 | { |
| 3395 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 3396 | u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples); |
| 3397 | u64 v = 0; |
| 3398 | |
| 3399 | if (samples) { |
| 3400 | v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum); |
| 3401 | v = div64_u64(v, samples); |
| 3402 | } |
| 3403 | __blkg_prfill_u64(sf, pd, v); |
| 3404 | return 0; |
| 3405 | } |
| 3406 | |
| 3407 | /* print avg_queue_size */ |
| 3408 | static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v) |
| 3409 | { |
| 3410 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3411 | bfqg_prfill_avg_queue_size, &blkcg_policy_bfq, |
| 3412 | 0, false); |
| 3413 | return 0; |
| 3414 | } |
| 3415 | |
| 3416 | static struct bfq_group * |
| 3417 | bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) |
| 3418 | { |
| 3419 | int ret; |
| 3420 | |
| 3421 | ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq); |
| 3422 | if (ret) |
| 3423 | return NULL; |
| 3424 | |
| 3425 | return blkg_to_bfqg(bfqd->queue->root_blkg); |
| 3426 | } |
| 3427 | |
| 3428 | static struct cftype bfq_blkcg_legacy_files[] = { |
| 3429 | { |
| 3430 | .name = "bfq.weight", |
| 3431 | .flags = CFTYPE_NOT_ON_ROOT, |
| 3432 | .seq_show = bfq_io_show_weight, |
| 3433 | .write_u64 = bfq_io_set_weight_legacy, |
| 3434 | }, |
| 3435 | |
| 3436 | /* statistics, covers only the tasks in the bfqg */ |
| 3437 | { |
| 3438 | .name = "bfq.time", |
| 3439 | .private = offsetof(struct bfq_group, stats.time), |
| 3440 | .seq_show = bfqg_print_stat, |
| 3441 | }, |
| 3442 | { |
| 3443 | .name = "bfq.sectors", |
| 3444 | .seq_show = bfqg_print_stat_sectors, |
| 3445 | }, |
| 3446 | { |
| 3447 | .name = "bfq.io_service_bytes", |
| 3448 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3449 | .seq_show = blkg_print_stat_bytes, |
| 3450 | }, |
| 3451 | { |
| 3452 | .name = "bfq.io_serviced", |
| 3453 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3454 | .seq_show = blkg_print_stat_ios, |
| 3455 | }, |
| 3456 | { |
| 3457 | .name = "bfq.io_service_time", |
| 3458 | .private = offsetof(struct bfq_group, stats.service_time), |
| 3459 | .seq_show = bfqg_print_rwstat, |
| 3460 | }, |
| 3461 | { |
| 3462 | .name = "bfq.io_wait_time", |
| 3463 | .private = offsetof(struct bfq_group, stats.wait_time), |
| 3464 | .seq_show = bfqg_print_rwstat, |
| 3465 | }, |
| 3466 | { |
| 3467 | .name = "bfq.io_merged", |
| 3468 | .private = offsetof(struct bfq_group, stats.merged), |
| 3469 | .seq_show = bfqg_print_rwstat, |
| 3470 | }, |
| 3471 | { |
| 3472 | .name = "bfq.io_queued", |
| 3473 | .private = offsetof(struct bfq_group, stats.queued), |
| 3474 | .seq_show = bfqg_print_rwstat, |
| 3475 | }, |
| 3476 | |
| 3477 | /* the same statictics which cover the bfqg and its descendants */ |
| 3478 | { |
| 3479 | .name = "bfq.time_recursive", |
| 3480 | .private = offsetof(struct bfq_group, stats.time), |
| 3481 | .seq_show = bfqg_print_stat_recursive, |
| 3482 | }, |
| 3483 | { |
| 3484 | .name = "bfq.sectors_recursive", |
| 3485 | .seq_show = bfqg_print_stat_sectors_recursive, |
| 3486 | }, |
| 3487 | { |
| 3488 | .name = "bfq.io_service_bytes_recursive", |
| 3489 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3490 | .seq_show = blkg_print_stat_bytes_recursive, |
| 3491 | }, |
| 3492 | { |
| 3493 | .name = "bfq.io_serviced_recursive", |
| 3494 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3495 | .seq_show = blkg_print_stat_ios_recursive, |
| 3496 | }, |
| 3497 | { |
| 3498 | .name = "bfq.io_service_time_recursive", |
| 3499 | .private = offsetof(struct bfq_group, stats.service_time), |
| 3500 | .seq_show = bfqg_print_rwstat_recursive, |
| 3501 | }, |
| 3502 | { |
| 3503 | .name = "bfq.io_wait_time_recursive", |
| 3504 | .private = offsetof(struct bfq_group, stats.wait_time), |
| 3505 | .seq_show = bfqg_print_rwstat_recursive, |
| 3506 | }, |
| 3507 | { |
| 3508 | .name = "bfq.io_merged_recursive", |
| 3509 | .private = offsetof(struct bfq_group, stats.merged), |
| 3510 | .seq_show = bfqg_print_rwstat_recursive, |
| 3511 | }, |
| 3512 | { |
| 3513 | .name = "bfq.io_queued_recursive", |
| 3514 | .private = offsetof(struct bfq_group, stats.queued), |
| 3515 | .seq_show = bfqg_print_rwstat_recursive, |
| 3516 | }, |
| 3517 | { |
| 3518 | .name = "bfq.avg_queue_size", |
| 3519 | .seq_show = bfqg_print_avg_queue_size, |
| 3520 | }, |
| 3521 | { |
| 3522 | .name = "bfq.group_wait_time", |
| 3523 | .private = offsetof(struct bfq_group, stats.group_wait_time), |
| 3524 | .seq_show = bfqg_print_stat, |
| 3525 | }, |
| 3526 | { |
| 3527 | .name = "bfq.idle_time", |
| 3528 | .private = offsetof(struct bfq_group, stats.idle_time), |
| 3529 | .seq_show = bfqg_print_stat, |
| 3530 | }, |
| 3531 | { |
| 3532 | .name = "bfq.empty_time", |
| 3533 | .private = offsetof(struct bfq_group, stats.empty_time), |
| 3534 | .seq_show = bfqg_print_stat, |
| 3535 | }, |
| 3536 | { |
| 3537 | .name = "bfq.dequeue", |
| 3538 | .private = offsetof(struct bfq_group, stats.dequeue), |
| 3539 | .seq_show = bfqg_print_stat, |
| 3540 | }, |
| 3541 | { } /* terminate */ |
| 3542 | }; |
| 3543 | |
| 3544 | static struct cftype bfq_blkg_files[] = { |
| 3545 | { |
| 3546 | .name = "bfq.weight", |
| 3547 | .flags = CFTYPE_NOT_ON_ROOT, |
| 3548 | .seq_show = bfq_io_show_weight, |
| 3549 | .write = bfq_io_set_weight, |
| 3550 | }, |
| 3551 | {} /* terminate */ |
| 3552 | }; |
| 3553 | |
| 3554 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 3555 | |
| 3556 | static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg, |
| 3557 | struct bfq_queue *bfqq, unsigned int op) { } |
| 3558 | static inline void |
| 3559 | bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { } |
| 3560 | static inline void |
| 3561 | bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { } |
| 3562 | static inline void bfqg_stats_update_completion(struct bfq_group *bfqg, |
| 3563 | uint64_t start_time, uint64_t io_start_time, |
| 3564 | unsigned int op) { } |
| 3565 | static inline void |
| 3566 | bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, |
| 3567 | struct bfq_group *curr_bfqg) { } |
| 3568 | static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { } |
| 3569 | static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { } |
| 3570 | static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { } |
| 3571 | static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { } |
| 3572 | static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { } |
| 3573 | static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { } |
| 3574 | |
| 3575 | static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 3576 | struct bfq_group *bfqg) {} |
| 3577 | |
| 3578 | static void bfq_init_entity(struct bfq_entity *entity, |
| 3579 | struct bfq_group *bfqg) |
| 3580 | { |
| 3581 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 3582 | |
| 3583 | entity->weight = entity->new_weight; |
| 3584 | entity->orig_weight = entity->new_weight; |
| 3585 | if (bfqq) { |
| 3586 | bfqq->ioprio = bfqq->new_ioprio; |
| 3587 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 3588 | } |
| 3589 | entity->sched_data = &bfqg->sched_data; |
| 3590 | } |
| 3591 | |
| 3592 | static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {} |
| 3593 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3594 | static void bfq_end_wr_async(struct bfq_data *bfqd) |
| 3595 | { |
| 3596 | bfq_end_wr_async_queues(bfqd, bfqd->root_group); |
| 3597 | } |
| 3598 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3599 | static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, |
| 3600 | struct blkcg *blkcg) |
| 3601 | { |
| 3602 | return bfqd->root_group; |
| 3603 | } |
| 3604 | |
| 3605 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) |
| 3606 | { |
| 3607 | return bfqq->bfqd->root_group; |
| 3608 | } |
| 3609 | |
| 3610 | static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, |
| 3611 | int node) |
| 3612 | { |
| 3613 | struct bfq_group *bfqg; |
| 3614 | int i; |
| 3615 | |
| 3616 | bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node); |
| 3617 | if (!bfqg) |
| 3618 | return NULL; |
| 3619 | |
| 3620 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| 3621 | bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| 3622 | |
| 3623 | return bfqg; |
| 3624 | } |
| 3625 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 3626 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3627 | #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) |
| 3628 | #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) |
| 3629 | |
| 3630 | #define bfq_sample_valid(samples) ((samples) > 80) |
| 3631 | |
| 3632 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3633 | * Lifted from AS - choose which of rq1 and rq2 that is best served now. |
| 3634 | * We choose the request that is closesr to the head right now. Distance |
| 3635 | * behind the head is penalized and only allowed to a certain extent. |
| 3636 | */ |
| 3637 | static struct request *bfq_choose_req(struct bfq_data *bfqd, |
| 3638 | struct request *rq1, |
| 3639 | struct request *rq2, |
| 3640 | sector_t last) |
| 3641 | { |
| 3642 | sector_t s1, s2, d1 = 0, d2 = 0; |
| 3643 | unsigned long back_max; |
| 3644 | #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ |
| 3645 | #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ |
| 3646 | unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ |
| 3647 | |
| 3648 | if (!rq1 || rq1 == rq2) |
| 3649 | return rq2; |
| 3650 | if (!rq2) |
| 3651 | return rq1; |
| 3652 | |
| 3653 | if (rq_is_sync(rq1) && !rq_is_sync(rq2)) |
| 3654 | return rq1; |
| 3655 | else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) |
| 3656 | return rq2; |
| 3657 | if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) |
| 3658 | return rq1; |
| 3659 | else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) |
| 3660 | return rq2; |
| 3661 | |
| 3662 | s1 = blk_rq_pos(rq1); |
| 3663 | s2 = blk_rq_pos(rq2); |
| 3664 | |
| 3665 | /* |
| 3666 | * By definition, 1KiB is 2 sectors. |
| 3667 | */ |
| 3668 | back_max = bfqd->bfq_back_max * 2; |
| 3669 | |
| 3670 | /* |
| 3671 | * Strict one way elevator _except_ in the case where we allow |
| 3672 | * short backward seeks which are biased as twice the cost of a |
| 3673 | * similar forward seek. |
| 3674 | */ |
| 3675 | if (s1 >= last) |
| 3676 | d1 = s1 - last; |
| 3677 | else if (s1 + back_max >= last) |
| 3678 | d1 = (last - s1) * bfqd->bfq_back_penalty; |
| 3679 | else |
| 3680 | wrap |= BFQ_RQ1_WRAP; |
| 3681 | |
| 3682 | if (s2 >= last) |
| 3683 | d2 = s2 - last; |
| 3684 | else if (s2 + back_max >= last) |
| 3685 | d2 = (last - s2) * bfqd->bfq_back_penalty; |
| 3686 | else |
| 3687 | wrap |= BFQ_RQ2_WRAP; |
| 3688 | |
| 3689 | /* Found required data */ |
| 3690 | |
| 3691 | /* |
| 3692 | * By doing switch() on the bit mask "wrap" we avoid having to |
| 3693 | * check two variables for all permutations: --> faster! |
| 3694 | */ |
| 3695 | switch (wrap) { |
| 3696 | case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ |
| 3697 | if (d1 < d2) |
| 3698 | return rq1; |
| 3699 | else if (d2 < d1) |
| 3700 | return rq2; |
| 3701 | |
| 3702 | if (s1 >= s2) |
| 3703 | return rq1; |
| 3704 | else |
| 3705 | return rq2; |
| 3706 | |
| 3707 | case BFQ_RQ2_WRAP: |
| 3708 | return rq1; |
| 3709 | case BFQ_RQ1_WRAP: |
| 3710 | return rq2; |
| 3711 | case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ |
| 3712 | default: |
| 3713 | /* |
| 3714 | * Since both rqs are wrapped, |
| 3715 | * start with the one that's further behind head |
| 3716 | * (--> only *one* back seek required), |
| 3717 | * since back seek takes more time than forward. |
| 3718 | */ |
| 3719 | if (s1 <= s2) |
| 3720 | return rq1; |
| 3721 | else |
| 3722 | return rq2; |
| 3723 | } |
| 3724 | } |
| 3725 | |
| 3726 | /* |
| 3727 | * Return expired entry, or NULL to just start from scratch in rbtree. |
| 3728 | */ |
| 3729 | static struct request *bfq_check_fifo(struct bfq_queue *bfqq, |
| 3730 | struct request *last) |
| 3731 | { |
| 3732 | struct request *rq; |
| 3733 | |
| 3734 | if (bfq_bfqq_fifo_expire(bfqq)) |
| 3735 | return NULL; |
| 3736 | |
| 3737 | bfq_mark_bfqq_fifo_expire(bfqq); |
| 3738 | |
| 3739 | rq = rq_entry_fifo(bfqq->fifo.next); |
| 3740 | |
| 3741 | if (rq == last || ktime_get_ns() < rq->fifo_time) |
| 3742 | return NULL; |
| 3743 | |
| 3744 | bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); |
| 3745 | return rq; |
| 3746 | } |
| 3747 | |
| 3748 | static struct request *bfq_find_next_rq(struct bfq_data *bfqd, |
| 3749 | struct bfq_queue *bfqq, |
| 3750 | struct request *last) |
| 3751 | { |
| 3752 | struct rb_node *rbnext = rb_next(&last->rb_node); |
| 3753 | struct rb_node *rbprev = rb_prev(&last->rb_node); |
| 3754 | struct request *next, *prev = NULL; |
| 3755 | |
| 3756 | /* Follow expired path, else get first next available. */ |
| 3757 | next = bfq_check_fifo(bfqq, last); |
| 3758 | if (next) |
| 3759 | return next; |
| 3760 | |
| 3761 | if (rbprev) |
| 3762 | prev = rb_entry_rq(rbprev); |
| 3763 | |
| 3764 | if (rbnext) |
| 3765 | next = rb_entry_rq(rbnext); |
| 3766 | else { |
| 3767 | rbnext = rb_first(&bfqq->sort_list); |
| 3768 | if (rbnext && rbnext != &last->rb_node) |
| 3769 | next = rb_entry_rq(rbnext); |
| 3770 | } |
| 3771 | |
| 3772 | return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); |
| 3773 | } |
| 3774 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 3775 | /* see the definition of bfq_async_charge_factor for details */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3776 | static unsigned long bfq_serv_to_charge(struct request *rq, |
| 3777 | struct bfq_queue *bfqq) |
| 3778 | { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3779 | if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1) |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 3780 | return blk_rq_sectors(rq); |
| 3781 | |
| 3782 | return blk_rq_sectors(rq) * bfq_async_charge_factor; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3783 | } |
| 3784 | |
| 3785 | /** |
| 3786 | * bfq_updated_next_req - update the queue after a new next_rq selection. |
| 3787 | * @bfqd: the device data the queue belongs to. |
| 3788 | * @bfqq: the queue to update. |
| 3789 | * |
| 3790 | * If the first request of a queue changes we make sure that the queue |
| 3791 | * has enough budget to serve at least its first request (if the |
| 3792 | * request has grown). We do this because if the queue has not enough |
| 3793 | * budget for its first request, it has to go through two dispatch |
| 3794 | * rounds to actually get it dispatched. |
| 3795 | */ |
| 3796 | static void bfq_updated_next_req(struct bfq_data *bfqd, |
| 3797 | struct bfq_queue *bfqq) |
| 3798 | { |
| 3799 | struct bfq_entity *entity = &bfqq->entity; |
| 3800 | struct request *next_rq = bfqq->next_rq; |
| 3801 | unsigned long new_budget; |
| 3802 | |
| 3803 | if (!next_rq) |
| 3804 | return; |
| 3805 | |
| 3806 | if (bfqq == bfqd->in_service_queue) |
| 3807 | /* |
| 3808 | * In order not to break guarantees, budgets cannot be |
| 3809 | * changed after an entity has been selected. |
| 3810 | */ |
| 3811 | return; |
| 3812 | |
| 3813 | new_budget = max_t(unsigned long, bfqq->max_budget, |
| 3814 | bfq_serv_to_charge(next_rq, bfqq)); |
| 3815 | if (entity->budget != new_budget) { |
| 3816 | entity->budget = new_budget; |
| 3817 | bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", |
| 3818 | new_budget); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3819 | bfq_requeue_bfqq(bfqd, bfqq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3820 | } |
| 3821 | } |
| 3822 | |
| 3823 | static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) |
| 3824 | { |
| 3825 | struct bfq_entity *entity = &bfqq->entity; |
| 3826 | |
| 3827 | return entity->budget - entity->service; |
| 3828 | } |
| 3829 | |
| 3830 | /* |
| 3831 | * If enough samples have been computed, return the current max budget |
| 3832 | * stored in bfqd, which is dynamically updated according to the |
| 3833 | * estimated disk peak rate; otherwise return the default max budget |
| 3834 | */ |
| 3835 | static int bfq_max_budget(struct bfq_data *bfqd) |
| 3836 | { |
| 3837 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 3838 | return bfq_default_max_budget; |
| 3839 | else |
| 3840 | return bfqd->bfq_max_budget; |
| 3841 | } |
| 3842 | |
| 3843 | /* |
| 3844 | * Return min budget, which is a fraction of the current or default |
| 3845 | * max budget (trying with 1/32) |
| 3846 | */ |
| 3847 | static int bfq_min_budget(struct bfq_data *bfqd) |
| 3848 | { |
| 3849 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 3850 | return bfq_default_max_budget / 32; |
| 3851 | else |
| 3852 | return bfqd->bfq_max_budget / 32; |
| 3853 | } |
| 3854 | |
| 3855 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 3856 | struct bfq_queue *bfqq, |
| 3857 | bool compensate, |
| 3858 | enum bfqq_expiration reason); |
| 3859 | |
| 3860 | /* |
| 3861 | * The next function, invoked after the input queue bfqq switches from |
| 3862 | * idle to busy, updates the budget of bfqq. The function also tells |
| 3863 | * whether the in-service queue should be expired, by returning |
| 3864 | * true. The purpose of expiring the in-service queue is to give bfqq |
| 3865 | * the chance to possibly preempt the in-service queue, and the reason |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3866 | * for preempting the in-service queue is to achieve one of the two |
| 3867 | * goals below. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3868 | * |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3869 | * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has |
| 3870 | * expired because it has remained idle. In particular, bfqq may have |
| 3871 | * expired for one of the following two reasons: |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3872 | * |
| 3873 | * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling |
| 3874 | * and did not make it to issue a new request before its last |
| 3875 | * request was served; |
| 3876 | * |
| 3877 | * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue |
| 3878 | * a new request before the expiration of the idling-time. |
| 3879 | * |
| 3880 | * Even if bfqq has expired for one of the above reasons, the process |
| 3881 | * associated with the queue may be however issuing requests greedily, |
| 3882 | * and thus be sensitive to the bandwidth it receives (bfqq may have |
| 3883 | * remained idle for other reasons: CPU high load, bfqq not enjoying |
| 3884 | * idling, I/O throttling somewhere in the path from the process to |
| 3885 | * the I/O scheduler, ...). But if, after every expiration for one of |
| 3886 | * the above two reasons, bfqq has to wait for the service of at least |
| 3887 | * one full budget of another queue before being served again, then |
| 3888 | * bfqq is likely to get a much lower bandwidth or resource time than |
| 3889 | * its reserved ones. To address this issue, two countermeasures need |
| 3890 | * to be taken. |
| 3891 | * |
| 3892 | * First, the budget and the timestamps of bfqq need to be updated in |
| 3893 | * a special way on bfqq reactivation: they need to be updated as if |
| 3894 | * bfqq did not remain idle and did not expire. In fact, if they are |
| 3895 | * computed as if bfqq expired and remained idle until reactivation, |
| 3896 | * then the process associated with bfqq is treated as if, instead of |
| 3897 | * being greedy, it stopped issuing requests when bfqq remained idle, |
| 3898 | * and restarts issuing requests only on this reactivation. In other |
| 3899 | * words, the scheduler does not help the process recover the "service |
| 3900 | * hole" between bfqq expiration and reactivation. As a consequence, |
| 3901 | * the process receives a lower bandwidth than its reserved one. In |
| 3902 | * contrast, to recover this hole, the budget must be updated as if |
| 3903 | * bfqq was not expired at all before this reactivation, i.e., it must |
| 3904 | * be set to the value of the remaining budget when bfqq was |
| 3905 | * expired. Along the same line, timestamps need to be assigned the |
| 3906 | * value they had the last time bfqq was selected for service, i.e., |
| 3907 | * before last expiration. Thus timestamps need to be back-shifted |
| 3908 | * with respect to their normal computation (see [1] for more details |
| 3909 | * on this tricky aspect). |
| 3910 | * |
| 3911 | * Secondly, to allow the process to recover the hole, the in-service |
| 3912 | * queue must be expired too, to give bfqq the chance to preempt it |
| 3913 | * immediately. In fact, if bfqq has to wait for a full budget of the |
| 3914 | * in-service queue to be completed, then it may become impossible to |
| 3915 | * let the process recover the hole, even if the back-shifted |
| 3916 | * timestamps of bfqq are lower than those of the in-service queue. If |
| 3917 | * this happens for most or all of the holes, then the process may not |
| 3918 | * receive its reserved bandwidth. In this respect, it is worth noting |
| 3919 | * that, being the service of outstanding requests unpreemptible, a |
| 3920 | * little fraction of the holes may however be unrecoverable, thereby |
| 3921 | * causing a little loss of bandwidth. |
| 3922 | * |
| 3923 | * The last important point is detecting whether bfqq does need this |
| 3924 | * bandwidth recovery. In this respect, the next function deems the |
| 3925 | * process associated with bfqq greedy, and thus allows it to recover |
| 3926 | * the hole, if: 1) the process is waiting for the arrival of a new |
| 3927 | * request (which implies that bfqq expired for one of the above two |
| 3928 | * reasons), and 2) such a request has arrived soon. The first |
| 3929 | * condition is controlled through the flag non_blocking_wait_rq, |
| 3930 | * while the second through the flag arrived_in_time. If both |
| 3931 | * conditions hold, then the function computes the budget in the |
| 3932 | * above-described special way, and signals that the in-service queue |
| 3933 | * should be expired. Timestamp back-shifting is done later in |
| 3934 | * __bfq_activate_entity. |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3935 | * |
| 3936 | * 2. Reduce latency. Even if timestamps are not backshifted to let |
| 3937 | * the process associated with bfqq recover a service hole, bfqq may |
| 3938 | * however happen to have, after being (re)activated, a lower finish |
| 3939 | * timestamp than the in-service queue. That is, the next budget of |
| 3940 | * bfqq may have to be completed before the one of the in-service |
| 3941 | * queue. If this is the case, then preempting the in-service queue |
| 3942 | * allows this goal to be achieved, apart from the unpreemptible, |
| 3943 | * outstanding requests mentioned above. |
| 3944 | * |
| 3945 | * Unfortunately, regardless of which of the above two goals one wants |
| 3946 | * to achieve, service trees need first to be updated to know whether |
| 3947 | * the in-service queue must be preempted. To have service trees |
| 3948 | * correctly updated, the in-service queue must be expired and |
| 3949 | * rescheduled, and bfqq must be scheduled too. This is one of the |
| 3950 | * most costly operations (in future versions, the scheduling |
| 3951 | * mechanism may be re-designed in such a way to make it possible to |
| 3952 | * know whether preemption is needed without needing to update service |
| 3953 | * trees). In addition, queue preemptions almost always cause random |
| 3954 | * I/O, and thus loss of throughput. Because of these facts, the next |
| 3955 | * function adopts the following simple scheme to avoid both costly |
| 3956 | * operations and too frequent preemptions: it requests the expiration |
| 3957 | * of the in-service queue (unconditionally) only for queues that need |
| 3958 | * to recover a hole, or that either are weight-raised or deserve to |
| 3959 | * be weight-raised. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3960 | */ |
| 3961 | static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, |
| 3962 | struct bfq_queue *bfqq, |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3963 | bool arrived_in_time, |
| 3964 | bool wr_or_deserves_wr) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3965 | { |
| 3966 | struct bfq_entity *entity = &bfqq->entity; |
| 3967 | |
| 3968 | if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { |
| 3969 | /* |
| 3970 | * We do not clear the flag non_blocking_wait_rq here, as |
| 3971 | * the latter is used in bfq_activate_bfqq to signal |
| 3972 | * that timestamps need to be back-shifted (and is |
| 3973 | * cleared right after). |
| 3974 | */ |
| 3975 | |
| 3976 | /* |
| 3977 | * In next assignment we rely on that either |
| 3978 | * entity->service or entity->budget are not updated |
| 3979 | * on expiration if bfqq is empty (see |
| 3980 | * __bfq_bfqq_recalc_budget). Thus both quantities |
| 3981 | * remain unchanged after such an expiration, and the |
| 3982 | * following statement therefore assigns to |
| 3983 | * entity->budget the remaining budget on such an |
| 3984 | * expiration. For clarity, entity->service is not |
| 3985 | * updated on expiration in any case, and, in normal |
| 3986 | * operation, is reset only when bfqq is selected for |
| 3987 | * service (see bfq_get_next_queue). |
| 3988 | */ |
| 3989 | entity->budget = min_t(unsigned long, |
| 3990 | bfq_bfqq_budget_left(bfqq), |
| 3991 | bfqq->max_budget); |
| 3992 | |
| 3993 | return true; |
| 3994 | } |
| 3995 | |
| 3996 | entity->budget = max_t(unsigned long, bfqq->max_budget, |
| 3997 | bfq_serv_to_charge(bfqq->next_rq, bfqq)); |
| 3998 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 3999 | return wr_or_deserves_wr; |
| 4000 | } |
| 4001 | |
| 4002 | static unsigned int bfq_wr_duration(struct bfq_data *bfqd) |
| 4003 | { |
| 4004 | u64 dur; |
| 4005 | |
| 4006 | if (bfqd->bfq_wr_max_time > 0) |
| 4007 | return bfqd->bfq_wr_max_time; |
| 4008 | |
| 4009 | dur = bfqd->RT_prod; |
| 4010 | do_div(dur, bfqd->peak_rate); |
| 4011 | |
| 4012 | /* |
| 4013 | * Limit duration between 3 and 13 seconds. Tests show that |
| 4014 | * higher values than 13 seconds often yield the opposite of |
| 4015 | * the desired result, i.e., worsen responsiveness by letting |
| 4016 | * non-interactive and non-soft-real-time applications |
| 4017 | * preserve weight raising for a too long time interval. |
| 4018 | * |
| 4019 | * On the other end, lower values than 3 seconds make it |
| 4020 | * difficult for most interactive tasks to complete their jobs |
| 4021 | * before weight-raising finishes. |
| 4022 | */ |
| 4023 | if (dur > msecs_to_jiffies(13000)) |
| 4024 | dur = msecs_to_jiffies(13000); |
| 4025 | else if (dur < msecs_to_jiffies(3000)) |
| 4026 | dur = msecs_to_jiffies(3000); |
| 4027 | |
| 4028 | return dur; |
| 4029 | } |
| 4030 | |
| 4031 | static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, |
| 4032 | struct bfq_queue *bfqq, |
| 4033 | unsigned int old_wr_coeff, |
| 4034 | bool wr_or_deserves_wr, |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4035 | bool interactive, |
| 4036 | bool soft_rt) |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4037 | { |
| 4038 | if (old_wr_coeff == 1 && wr_or_deserves_wr) { |
| 4039 | /* start a weight-raising period */ |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4040 | if (interactive) { |
| 4041 | bfqq->wr_coeff = bfqd->bfq_wr_coeff; |
| 4042 | bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); |
| 4043 | } else { |
| 4044 | bfqq->wr_start_at_switch_to_srt = jiffies; |
| 4045 | bfqq->wr_coeff = bfqd->bfq_wr_coeff * |
| 4046 | BFQ_SOFTRT_WEIGHT_FACTOR; |
| 4047 | bfqq->wr_cur_max_time = |
| 4048 | bfqd->bfq_wr_rt_max_time; |
| 4049 | } |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4050 | |
| 4051 | /* |
| 4052 | * If needed, further reduce budget to make sure it is |
| 4053 | * close to bfqq's backlog, so as to reduce the |
| 4054 | * scheduling-error component due to a too large |
| 4055 | * budget. Do not care about throughput consequences, |
| 4056 | * but only about latency. Finally, do not assign a |
| 4057 | * too small budget either, to avoid increasing |
| 4058 | * latency by causing too frequent expirations. |
| 4059 | */ |
| 4060 | bfqq->entity.budget = min_t(unsigned long, |
| 4061 | bfqq->entity.budget, |
| 4062 | 2 * bfq_min_budget(bfqd)); |
| 4063 | } else if (old_wr_coeff > 1) { |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4064 | if (interactive) { /* update wr coeff and duration */ |
| 4065 | bfqq->wr_coeff = bfqd->bfq_wr_coeff; |
| 4066 | bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); |
| 4067 | } else if (soft_rt) { |
| 4068 | /* |
| 4069 | * The application is now or still meeting the |
| 4070 | * requirements for being deemed soft rt. We |
| 4071 | * can then correctly and safely (re)charge |
| 4072 | * the weight-raising duration for the |
| 4073 | * application with the weight-raising |
| 4074 | * duration for soft rt applications. |
| 4075 | * |
| 4076 | * In particular, doing this recharge now, i.e., |
| 4077 | * before the weight-raising period for the |
| 4078 | * application finishes, reduces the probability |
| 4079 | * of the following negative scenario: |
| 4080 | * 1) the weight of a soft rt application is |
| 4081 | * raised at startup (as for any newly |
| 4082 | * created application), |
| 4083 | * 2) since the application is not interactive, |
| 4084 | * at a certain time weight-raising is |
| 4085 | * stopped for the application, |
| 4086 | * 3) at that time the application happens to |
| 4087 | * still have pending requests, and hence |
| 4088 | * is destined to not have a chance to be |
| 4089 | * deemed soft rt before these requests are |
| 4090 | * completed (see the comments to the |
| 4091 | * function bfq_bfqq_softrt_next_start() |
| 4092 | * for details on soft rt detection), |
| 4093 | * 4) these pending requests experience a high |
| 4094 | * latency because the application is not |
| 4095 | * weight-raised while they are pending. |
| 4096 | */ |
| 4097 | if (bfqq->wr_cur_max_time != |
| 4098 | bfqd->bfq_wr_rt_max_time) { |
| 4099 | bfqq->wr_start_at_switch_to_srt = |
| 4100 | bfqq->last_wr_start_finish; |
| 4101 | |
| 4102 | bfqq->wr_cur_max_time = |
| 4103 | bfqd->bfq_wr_rt_max_time; |
| 4104 | bfqq->wr_coeff = bfqd->bfq_wr_coeff * |
| 4105 | BFQ_SOFTRT_WEIGHT_FACTOR; |
| 4106 | } |
| 4107 | bfqq->last_wr_start_finish = jiffies; |
| 4108 | } |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, |
| 4113 | struct bfq_queue *bfqq) |
| 4114 | { |
| 4115 | return bfqq->dispatched == 0 && |
| 4116 | time_is_before_jiffies( |
| 4117 | bfqq->budget_timeout + |
| 4118 | bfqd->bfq_wr_min_idle_time); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4119 | } |
| 4120 | |
| 4121 | static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, |
| 4122 | struct bfq_queue *bfqq, |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4123 | int old_wr_coeff, |
| 4124 | struct request *rq, |
| 4125 | bool *interactive) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4126 | { |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4127 | bool soft_rt, wr_or_deserves_wr, bfqq_wants_to_preempt, |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4128 | idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4129 | /* |
| 4130 | * See the comments on |
| 4131 | * bfq_bfqq_update_budg_for_activation for |
| 4132 | * details on the usage of the next variable. |
| 4133 | */ |
| 4134 | arrived_in_time = ktime_get_ns() <= |
| 4135 | bfqq->ttime.last_end_request + |
| 4136 | bfqd->bfq_slice_idle * 3; |
| 4137 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4138 | bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); |
| 4139 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4140 | /* |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4141 | * bfqq deserves to be weight-raised if: |
| 4142 | * - it is sync, |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4143 | * - it has been idle for enough time or is soft real-time. |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4144 | */ |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4145 | soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && |
| 4146 | time_is_before_jiffies(bfqq->soft_rt_next_start); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4147 | *interactive = idle_for_long_time; |
| 4148 | wr_or_deserves_wr = bfqd->low_latency && |
| 4149 | (bfqq->wr_coeff > 1 || |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4150 | (bfq_bfqq_sync(bfqq) && (*interactive || soft_rt))); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4151 | |
| 4152 | /* |
| 4153 | * Using the last flag, update budget and check whether bfqq |
| 4154 | * may want to preempt the in-service queue. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4155 | */ |
| 4156 | bfqq_wants_to_preempt = |
| 4157 | bfq_bfqq_update_budg_for_activation(bfqd, bfqq, |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4158 | arrived_in_time, |
| 4159 | wr_or_deserves_wr); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4160 | |
| 4161 | if (!bfq_bfqq_IO_bound(bfqq)) { |
| 4162 | if (arrived_in_time) { |
| 4163 | bfqq->requests_within_timer++; |
| 4164 | if (bfqq->requests_within_timer >= |
| 4165 | bfqd->bfq_requests_within_timer) |
| 4166 | bfq_mark_bfqq_IO_bound(bfqq); |
| 4167 | } else |
| 4168 | bfqq->requests_within_timer = 0; |
| 4169 | } |
| 4170 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4171 | if (bfqd->low_latency) { |
| 4172 | bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, |
| 4173 | old_wr_coeff, |
| 4174 | wr_or_deserves_wr, |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4175 | *interactive, |
| 4176 | soft_rt); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4177 | |
| 4178 | if (old_wr_coeff != bfqq->wr_coeff) |
| 4179 | bfqq->entity.prio_changed = 1; |
| 4180 | } |
| 4181 | |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4182 | bfqq->last_idle_bklogged = jiffies; |
| 4183 | bfqq->service_from_backlogged = 0; |
| 4184 | bfq_clear_bfqq_softrt_update(bfqq); |
| 4185 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4186 | bfq_add_bfqq_busy(bfqd, bfqq); |
| 4187 | |
| 4188 | /* |
| 4189 | * Expire in-service queue only if preemption may be needed |
| 4190 | * for guarantees. In this respect, the function |
| 4191 | * next_queue_may_preempt just checks a simple, necessary |
| 4192 | * condition, and not a sufficient condition based on |
| 4193 | * timestamps. In fact, for the latter condition to be |
| 4194 | * evaluated, timestamps would need first to be updated, and |
| 4195 | * this operation is quite costly (see the comments on the |
| 4196 | * function bfq_bfqq_update_budg_for_activation). |
| 4197 | */ |
| 4198 | if (bfqd->in_service_queue && bfqq_wants_to_preempt && |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4199 | bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff && |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4200 | next_queue_may_preempt(bfqd)) |
| 4201 | bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| 4202 | false, BFQQE_PREEMPTED); |
| 4203 | } |
| 4204 | |
| 4205 | static void bfq_add_request(struct request *rq) |
| 4206 | { |
| 4207 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 4208 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4209 | struct request *next_rq, *prev; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4210 | unsigned int old_wr_coeff = bfqq->wr_coeff; |
| 4211 | bool interactive = false; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4212 | |
| 4213 | bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); |
| 4214 | bfqq->queued[rq_is_sync(rq)]++; |
| 4215 | bfqd->queued++; |
| 4216 | |
| 4217 | elv_rb_add(&bfqq->sort_list, rq); |
| 4218 | |
| 4219 | /* |
| 4220 | * Check if this request is a better next-serve candidate. |
| 4221 | */ |
| 4222 | prev = bfqq->next_rq; |
| 4223 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); |
| 4224 | bfqq->next_rq = next_rq; |
| 4225 | |
| 4226 | if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4227 | bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, |
| 4228 | rq, &interactive); |
| 4229 | else { |
| 4230 | if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && |
| 4231 | time_is_before_jiffies( |
| 4232 | bfqq->last_wr_start_finish + |
| 4233 | bfqd->bfq_wr_min_inter_arr_async)) { |
| 4234 | bfqq->wr_coeff = bfqd->bfq_wr_coeff; |
| 4235 | bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); |
| 4236 | |
| 4237 | bfqq->entity.prio_changed = 1; |
| 4238 | } |
| 4239 | if (prev != bfqq->next_rq) |
| 4240 | bfq_updated_next_req(bfqd, bfqq); |
| 4241 | } |
| 4242 | |
| 4243 | /* |
| 4244 | * Assign jiffies to last_wr_start_finish in the following |
| 4245 | * cases: |
| 4246 | * |
| 4247 | * . if bfqq is not going to be weight-raised, because, for |
| 4248 | * non weight-raised queues, last_wr_start_finish stores the |
| 4249 | * arrival time of the last request; as of now, this piece |
| 4250 | * of information is used only for deciding whether to |
| 4251 | * weight-raise async queues |
| 4252 | * |
| 4253 | * . if bfqq is not weight-raised, because, if bfqq is now |
| 4254 | * switching to weight-raised, then last_wr_start_finish |
| 4255 | * stores the time when weight-raising starts |
| 4256 | * |
| 4257 | * . if bfqq is interactive, because, regardless of whether |
| 4258 | * bfqq is currently weight-raised, the weight-raising |
| 4259 | * period must start or restart (this case is considered |
| 4260 | * separately because it is not detected by the above |
| 4261 | * conditions, if bfqq is already weight-raised) |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4262 | * |
| 4263 | * last_wr_start_finish has to be updated also if bfqq is soft |
| 4264 | * real-time, because the weight-raising period is constantly |
| 4265 | * restarted on idle-to-busy transitions for these queues, but |
| 4266 | * this is already done in bfq_bfqq_handle_idle_busy_switch if |
| 4267 | * needed. |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4268 | */ |
| 4269 | if (bfqd->low_latency && |
| 4270 | (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) |
| 4271 | bfqq->last_wr_start_finish = jiffies; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4272 | } |
| 4273 | |
| 4274 | static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, |
| 4275 | struct bio *bio, |
| 4276 | struct request_queue *q) |
| 4277 | { |
| 4278 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 4279 | |
| 4280 | |
| 4281 | if (bfqq) |
| 4282 | return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); |
| 4283 | |
| 4284 | return NULL; |
| 4285 | } |
| 4286 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4287 | static sector_t get_sdist(sector_t last_pos, struct request *rq) |
| 4288 | { |
| 4289 | if (last_pos) |
| 4290 | return abs(blk_rq_pos(rq) - last_pos); |
| 4291 | |
| 4292 | return 0; |
| 4293 | } |
| 4294 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4295 | #if 0 /* Still not clear if we can do without next two functions */ |
| 4296 | static void bfq_activate_request(struct request_queue *q, struct request *rq) |
| 4297 | { |
| 4298 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4299 | |
| 4300 | bfqd->rq_in_driver++; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4301 | } |
| 4302 | |
| 4303 | static void bfq_deactivate_request(struct request_queue *q, struct request *rq) |
| 4304 | { |
| 4305 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4306 | |
| 4307 | bfqd->rq_in_driver--; |
| 4308 | } |
| 4309 | #endif |
| 4310 | |
| 4311 | static void bfq_remove_request(struct request_queue *q, |
| 4312 | struct request *rq) |
| 4313 | { |
| 4314 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 4315 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4316 | const int sync = rq_is_sync(rq); |
| 4317 | |
| 4318 | if (bfqq->next_rq == rq) { |
| 4319 | bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); |
| 4320 | bfq_updated_next_req(bfqd, bfqq); |
| 4321 | } |
| 4322 | |
| 4323 | if (rq->queuelist.prev != &rq->queuelist) |
| 4324 | list_del_init(&rq->queuelist); |
| 4325 | bfqq->queued[sync]--; |
| 4326 | bfqd->queued--; |
| 4327 | elv_rb_del(&bfqq->sort_list, rq); |
| 4328 | |
| 4329 | elv_rqhash_del(q, rq); |
| 4330 | if (q->last_merge == rq) |
| 4331 | q->last_merge = NULL; |
| 4332 | |
| 4333 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| 4334 | bfqq->next_rq = NULL; |
| 4335 | |
| 4336 | if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4337 | bfq_del_bfqq_busy(bfqd, bfqq, false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4338 | /* |
| 4339 | * bfqq emptied. In normal operation, when |
| 4340 | * bfqq is empty, bfqq->entity.service and |
| 4341 | * bfqq->entity.budget must contain, |
| 4342 | * respectively, the service received and the |
| 4343 | * budget used last time bfqq emptied. These |
| 4344 | * facts do not hold in this case, as at least |
| 4345 | * this last removal occurred while bfqq is |
| 4346 | * not in service. To avoid inconsistencies, |
| 4347 | * reset both bfqq->entity.service and |
| 4348 | * bfqq->entity.budget, if bfqq has still a |
| 4349 | * process that may issue I/O requests to it. |
| 4350 | */ |
| 4351 | bfqq->entity.budget = bfqq->entity.service = 0; |
| 4352 | } |
| 4353 | } |
| 4354 | |
| 4355 | if (rq->cmd_flags & REQ_META) |
| 4356 | bfqq->meta_pending--; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4357 | |
| 4358 | bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4359 | } |
| 4360 | |
| 4361 | static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) |
| 4362 | { |
| 4363 | struct request_queue *q = hctx->queue; |
| 4364 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4365 | struct request *free = NULL; |
| 4366 | /* |
| 4367 | * bfq_bic_lookup grabs the queue_lock: invoke it now and |
| 4368 | * store its return value for later use, to avoid nesting |
| 4369 | * queue_lock inside the bfqd->lock. We assume that the bic |
| 4370 | * returned by bfq_bic_lookup does not go away before |
| 4371 | * bfqd->lock is taken. |
| 4372 | */ |
| 4373 | struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); |
| 4374 | bool ret; |
| 4375 | |
| 4376 | spin_lock_irq(&bfqd->lock); |
| 4377 | |
| 4378 | if (bic) |
| 4379 | bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); |
| 4380 | else |
| 4381 | bfqd->bio_bfqq = NULL; |
| 4382 | bfqd->bio_bic = bic; |
| 4383 | |
| 4384 | ret = blk_mq_sched_try_merge(q, bio, &free); |
| 4385 | |
| 4386 | if (free) |
| 4387 | blk_mq_free_request(free); |
| 4388 | spin_unlock_irq(&bfqd->lock); |
| 4389 | |
| 4390 | return ret; |
| 4391 | } |
| 4392 | |
| 4393 | static int bfq_request_merge(struct request_queue *q, struct request **req, |
| 4394 | struct bio *bio) |
| 4395 | { |
| 4396 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4397 | struct request *__rq; |
| 4398 | |
| 4399 | __rq = bfq_find_rq_fmerge(bfqd, bio, q); |
| 4400 | if (__rq && elv_bio_merge_ok(__rq, bio)) { |
| 4401 | *req = __rq; |
| 4402 | return ELEVATOR_FRONT_MERGE; |
| 4403 | } |
| 4404 | |
| 4405 | return ELEVATOR_NO_MERGE; |
| 4406 | } |
| 4407 | |
| 4408 | static void bfq_request_merged(struct request_queue *q, struct request *req, |
| 4409 | enum elv_merge type) |
| 4410 | { |
| 4411 | if (type == ELEVATOR_FRONT_MERGE && |
| 4412 | rb_prev(&req->rb_node) && |
| 4413 | blk_rq_pos(req) < |
| 4414 | blk_rq_pos(container_of(rb_prev(&req->rb_node), |
| 4415 | struct request, rb_node))) { |
| 4416 | struct bfq_queue *bfqq = RQ_BFQQ(req); |
| 4417 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4418 | struct request *prev, *next_rq; |
| 4419 | |
| 4420 | /* Reposition request in its sort_list */ |
| 4421 | elv_rb_del(&bfqq->sort_list, req); |
| 4422 | elv_rb_add(&bfqq->sort_list, req); |
| 4423 | |
| 4424 | /* Choose next request to be served for bfqq */ |
| 4425 | prev = bfqq->next_rq; |
| 4426 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, |
| 4427 | bfqd->last_position); |
| 4428 | bfqq->next_rq = next_rq; |
| 4429 | /* |
| 4430 | * If next_rq changes, update the queue's budget to fit |
| 4431 | * the new request. |
| 4432 | */ |
| 4433 | if (prev != bfqq->next_rq) |
| 4434 | bfq_updated_next_req(bfqd, bfqq); |
| 4435 | } |
| 4436 | } |
| 4437 | |
| 4438 | static void bfq_requests_merged(struct request_queue *q, struct request *rq, |
| 4439 | struct request *next) |
| 4440 | { |
| 4441 | struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); |
| 4442 | |
| 4443 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4444 | goto end; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4445 | spin_lock_irq(&bfqq->bfqd->lock); |
| 4446 | |
| 4447 | /* |
| 4448 | * If next and rq belong to the same bfq_queue and next is older |
| 4449 | * than rq, then reposition rq in the fifo (by substituting next |
| 4450 | * with rq). Otherwise, if next and rq belong to different |
| 4451 | * bfq_queues, never reposition rq: in fact, we would have to |
| 4452 | * reposition it with respect to next's position in its own fifo, |
| 4453 | * which would most certainly be too expensive with respect to |
| 4454 | * the benefits. |
| 4455 | */ |
| 4456 | if (bfqq == next_bfqq && |
| 4457 | !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && |
| 4458 | next->fifo_time < rq->fifo_time) { |
| 4459 | list_del_init(&rq->queuelist); |
| 4460 | list_replace_init(&next->queuelist, &rq->queuelist); |
| 4461 | rq->fifo_time = next->fifo_time; |
| 4462 | } |
| 4463 | |
| 4464 | if (bfqq->next_rq == next) |
| 4465 | bfqq->next_rq = rq; |
| 4466 | |
| 4467 | bfq_remove_request(q, next); |
| 4468 | |
| 4469 | spin_unlock_irq(&bfqq->bfqd->lock); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4470 | end: |
| 4471 | bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4472 | } |
| 4473 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4474 | /* Must be called with bfqq != NULL */ |
| 4475 | static void bfq_bfqq_end_wr(struct bfq_queue *bfqq) |
| 4476 | { |
| 4477 | bfqq->wr_coeff = 1; |
| 4478 | bfqq->wr_cur_max_time = 0; |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4479 | bfqq->last_wr_start_finish = jiffies; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4480 | /* |
| 4481 | * Trigger a weight change on the next invocation of |
| 4482 | * __bfq_entity_update_weight_prio. |
| 4483 | */ |
| 4484 | bfqq->entity.prio_changed = 1; |
| 4485 | } |
| 4486 | |
| 4487 | static void bfq_end_wr_async_queues(struct bfq_data *bfqd, |
| 4488 | struct bfq_group *bfqg) |
| 4489 | { |
| 4490 | int i, j; |
| 4491 | |
| 4492 | for (i = 0; i < 2; i++) |
| 4493 | for (j = 0; j < IOPRIO_BE_NR; j++) |
| 4494 | if (bfqg->async_bfqq[i][j]) |
| 4495 | bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]); |
| 4496 | if (bfqg->async_idle_bfqq) |
| 4497 | bfq_bfqq_end_wr(bfqg->async_idle_bfqq); |
| 4498 | } |
| 4499 | |
| 4500 | static void bfq_end_wr(struct bfq_data *bfqd) |
| 4501 | { |
| 4502 | struct bfq_queue *bfqq; |
| 4503 | |
| 4504 | spin_lock_irq(&bfqd->lock); |
| 4505 | |
| 4506 | list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) |
| 4507 | bfq_bfqq_end_wr(bfqq); |
| 4508 | list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) |
| 4509 | bfq_bfqq_end_wr(bfqq); |
| 4510 | bfq_end_wr_async(bfqd); |
| 4511 | |
| 4512 | spin_unlock_irq(&bfqd->lock); |
| 4513 | } |
| 4514 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4515 | static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, |
| 4516 | struct bio *bio) |
| 4517 | { |
| 4518 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4519 | bool is_sync = op_is_sync(bio->bi_opf); |
| 4520 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 4521 | |
| 4522 | /* |
| 4523 | * Disallow merge of a sync bio into an async request. |
| 4524 | */ |
| 4525 | if (is_sync && !rq_is_sync(rq)) |
| 4526 | return false; |
| 4527 | |
| 4528 | /* |
| 4529 | * Lookup the bfqq that this bio will be queued with. Allow |
| 4530 | * merge only if rq is queued there. |
| 4531 | */ |
| 4532 | if (!bfqq) |
| 4533 | return false; |
| 4534 | |
| 4535 | return bfqq == RQ_BFQQ(rq); |
| 4536 | } |
| 4537 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4538 | /* |
| 4539 | * Set the maximum time for the in-service queue to consume its |
| 4540 | * budget. This prevents seeky processes from lowering the throughput. |
| 4541 | * In practice, a time-slice service scheme is used with seeky |
| 4542 | * processes. |
| 4543 | */ |
| 4544 | static void bfq_set_budget_timeout(struct bfq_data *bfqd, |
| 4545 | struct bfq_queue *bfqq) |
| 4546 | { |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4547 | unsigned int timeout_coeff; |
| 4548 | |
| 4549 | if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) |
| 4550 | timeout_coeff = 1; |
| 4551 | else |
| 4552 | timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; |
| 4553 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4554 | bfqd->last_budget_start = ktime_get(); |
| 4555 | |
| 4556 | bfqq->budget_timeout = jiffies + |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4557 | bfqd->bfq_timeout * timeout_coeff; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4558 | } |
| 4559 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4560 | static void __bfq_set_in_service_queue(struct bfq_data *bfqd, |
| 4561 | struct bfq_queue *bfqq) |
| 4562 | { |
| 4563 | if (bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4564 | bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4565 | bfq_clear_bfqq_fifo_expire(bfqq); |
| 4566 | |
| 4567 | bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; |
| 4568 | |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 4569 | if (time_is_before_jiffies(bfqq->last_wr_start_finish) && |
| 4570 | bfqq->wr_coeff > 1 && |
| 4571 | bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && |
| 4572 | time_is_before_jiffies(bfqq->budget_timeout)) { |
| 4573 | /* |
| 4574 | * For soft real-time queues, move the start |
| 4575 | * of the weight-raising period forward by the |
| 4576 | * time the queue has not received any |
| 4577 | * service. Otherwise, a relatively long |
| 4578 | * service delay is likely to cause the |
| 4579 | * weight-raising period of the queue to end, |
| 4580 | * because of the short duration of the |
| 4581 | * weight-raising period of a soft real-time |
| 4582 | * queue. It is worth noting that this move |
| 4583 | * is not so dangerous for the other queues, |
| 4584 | * because soft real-time queues are not |
| 4585 | * greedy. |
| 4586 | * |
| 4587 | * To not add a further variable, we use the |
| 4588 | * overloaded field budget_timeout to |
| 4589 | * determine for how long the queue has not |
| 4590 | * received service, i.e., how much time has |
| 4591 | * elapsed since the queue expired. However, |
| 4592 | * this is a little imprecise, because |
| 4593 | * budget_timeout is set to jiffies if bfqq |
| 4594 | * not only expires, but also remains with no |
| 4595 | * request. |
| 4596 | */ |
| 4597 | if (time_after(bfqq->budget_timeout, |
| 4598 | bfqq->last_wr_start_finish)) |
| 4599 | bfqq->last_wr_start_finish += |
| 4600 | jiffies - bfqq->budget_timeout; |
| 4601 | else |
| 4602 | bfqq->last_wr_start_finish = jiffies; |
| 4603 | } |
| 4604 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4605 | bfq_set_budget_timeout(bfqd, bfqq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4606 | bfq_log_bfqq(bfqd, bfqq, |
| 4607 | "set_in_service_queue, cur-budget = %d", |
| 4608 | bfqq->entity.budget); |
| 4609 | } |
| 4610 | |
| 4611 | bfqd->in_service_queue = bfqq; |
| 4612 | } |
| 4613 | |
| 4614 | /* |
| 4615 | * Get and set a new queue for service. |
| 4616 | */ |
| 4617 | static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) |
| 4618 | { |
| 4619 | struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); |
| 4620 | |
| 4621 | __bfq_set_in_service_queue(bfqd, bfqq); |
| 4622 | return bfqq; |
| 4623 | } |
| 4624 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4625 | static void bfq_arm_slice_timer(struct bfq_data *bfqd) |
| 4626 | { |
| 4627 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 4628 | struct bfq_io_cq *bic; |
| 4629 | u32 sl; |
| 4630 | |
| 4631 | /* Processes have exited, don't wait. */ |
| 4632 | bic = bfqd->in_service_bic; |
| 4633 | if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0) |
| 4634 | return; |
| 4635 | |
| 4636 | bfq_mark_bfqq_wait_request(bfqq); |
| 4637 | |
| 4638 | /* |
| 4639 | * We don't want to idle for seeks, but we do want to allow |
| 4640 | * fair distribution of slice time for a process doing back-to-back |
| 4641 | * seeks. So allow a little bit of time for him to submit a new rq. |
| 4642 | */ |
| 4643 | sl = bfqd->bfq_slice_idle; |
| 4644 | /* |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4645 | * Unless the queue is being weight-raised, grant only minimum |
| 4646 | * idle time if the queue is seeky. A long idling is preserved |
| 4647 | * for a weight-raised queue, because it is needed for |
| 4648 | * guaranteeing to the queue its reserved share of the |
| 4649 | * throughput. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4650 | */ |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4651 | if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4652 | sl = min_t(u64, sl, BFQ_MIN_TT); |
| 4653 | |
| 4654 | bfqd->last_idling_start = ktime_get(); |
| 4655 | hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), |
| 4656 | HRTIMER_MODE_REL); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4657 | bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4658 | } |
| 4659 | |
| 4660 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4661 | * In autotuning mode, max_budget is dynamically recomputed as the |
| 4662 | * amount of sectors transferred in timeout at the estimated peak |
| 4663 | * rate. This enables BFQ to utilize a full timeslice with a full |
| 4664 | * budget, even if the in-service queue is served at peak rate. And |
| 4665 | * this maximises throughput with sequential workloads. |
| 4666 | */ |
| 4667 | static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) |
| 4668 | { |
| 4669 | return (u64)bfqd->peak_rate * USEC_PER_MSEC * |
| 4670 | jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; |
| 4671 | } |
| 4672 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4673 | /* |
| 4674 | * Update parameters related to throughput and responsiveness, as a |
| 4675 | * function of the estimated peak rate. See comments on |
| 4676 | * bfq_calc_max_budget(), and on T_slow and T_fast arrays. |
| 4677 | */ |
| 4678 | static void update_thr_responsiveness_params(struct bfq_data *bfqd) |
| 4679 | { |
| 4680 | int dev_type = blk_queue_nonrot(bfqd->queue); |
| 4681 | |
| 4682 | if (bfqd->bfq_user_max_budget == 0) |
| 4683 | bfqd->bfq_max_budget = |
| 4684 | bfq_calc_max_budget(bfqd); |
| 4685 | |
| 4686 | if (bfqd->device_speed == BFQ_BFQD_FAST && |
| 4687 | bfqd->peak_rate < device_speed_thresh[dev_type]) { |
| 4688 | bfqd->device_speed = BFQ_BFQD_SLOW; |
| 4689 | bfqd->RT_prod = R_slow[dev_type] * |
| 4690 | T_slow[dev_type]; |
| 4691 | } else if (bfqd->device_speed == BFQ_BFQD_SLOW && |
| 4692 | bfqd->peak_rate > device_speed_thresh[dev_type]) { |
| 4693 | bfqd->device_speed = BFQ_BFQD_FAST; |
| 4694 | bfqd->RT_prod = R_fast[dev_type] * |
| 4695 | T_fast[dev_type]; |
| 4696 | } |
| 4697 | |
| 4698 | bfq_log(bfqd, |
| 4699 | "dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec", |
| 4700 | dev_type == 0 ? "ROT" : "NONROT", |
| 4701 | bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW", |
| 4702 | bfqd->device_speed == BFQ_BFQD_FAST ? |
| 4703 | (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT : |
| 4704 | (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT, |
| 4705 | (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>> |
| 4706 | BFQ_RATE_SHIFT); |
| 4707 | } |
| 4708 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4709 | static void bfq_reset_rate_computation(struct bfq_data *bfqd, |
| 4710 | struct request *rq) |
| 4711 | { |
| 4712 | if (rq != NULL) { /* new rq dispatch now, reset accordingly */ |
| 4713 | bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); |
| 4714 | bfqd->peak_rate_samples = 1; |
| 4715 | bfqd->sequential_samples = 0; |
| 4716 | bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = |
| 4717 | blk_rq_sectors(rq); |
| 4718 | } else /* no new rq dispatched, just reset the number of samples */ |
| 4719 | bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ |
| 4720 | |
| 4721 | bfq_log(bfqd, |
| 4722 | "reset_rate_computation at end, sample %u/%u tot_sects %llu", |
| 4723 | bfqd->peak_rate_samples, bfqd->sequential_samples, |
| 4724 | bfqd->tot_sectors_dispatched); |
| 4725 | } |
| 4726 | |
| 4727 | static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) |
| 4728 | { |
| 4729 | u32 rate, weight, divisor; |
| 4730 | |
| 4731 | /* |
| 4732 | * For the convergence property to hold (see comments on |
| 4733 | * bfq_update_peak_rate()) and for the assessment to be |
| 4734 | * reliable, a minimum number of samples must be present, and |
| 4735 | * a minimum amount of time must have elapsed. If not so, do |
| 4736 | * not compute new rate. Just reset parameters, to get ready |
| 4737 | * for a new evaluation attempt. |
| 4738 | */ |
| 4739 | if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || |
| 4740 | bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) |
| 4741 | goto reset_computation; |
| 4742 | |
| 4743 | /* |
| 4744 | * If a new request completion has occurred after last |
| 4745 | * dispatch, then, to approximate the rate at which requests |
| 4746 | * have been served by the device, it is more precise to |
| 4747 | * extend the observation interval to the last completion. |
| 4748 | */ |
| 4749 | bfqd->delta_from_first = |
| 4750 | max_t(u64, bfqd->delta_from_first, |
| 4751 | bfqd->last_completion - bfqd->first_dispatch); |
| 4752 | |
| 4753 | /* |
| 4754 | * Rate computed in sects/usec, and not sects/nsec, for |
| 4755 | * precision issues. |
| 4756 | */ |
| 4757 | rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, |
| 4758 | div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); |
| 4759 | |
| 4760 | /* |
| 4761 | * Peak rate not updated if: |
| 4762 | * - the percentage of sequential dispatches is below 3/4 of the |
| 4763 | * total, and rate is below the current estimated peak rate |
| 4764 | * - rate is unreasonably high (> 20M sectors/sec) |
| 4765 | */ |
| 4766 | if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && |
| 4767 | rate <= bfqd->peak_rate) || |
| 4768 | rate > 20<<BFQ_RATE_SHIFT) |
| 4769 | goto reset_computation; |
| 4770 | |
| 4771 | /* |
| 4772 | * We have to update the peak rate, at last! To this purpose, |
| 4773 | * we use a low-pass filter. We compute the smoothing constant |
| 4774 | * of the filter as a function of the 'weight' of the new |
| 4775 | * measured rate. |
| 4776 | * |
| 4777 | * As can be seen in next formulas, we define this weight as a |
| 4778 | * quantity proportional to how sequential the workload is, |
| 4779 | * and to how long the observation time interval is. |
| 4780 | * |
| 4781 | * The weight runs from 0 to 8. The maximum value of the |
| 4782 | * weight, 8, yields the minimum value for the smoothing |
| 4783 | * constant. At this minimum value for the smoothing constant, |
| 4784 | * the measured rate contributes for half of the next value of |
| 4785 | * the estimated peak rate. |
| 4786 | * |
| 4787 | * So, the first step is to compute the weight as a function |
| 4788 | * of how sequential the workload is. Note that the weight |
| 4789 | * cannot reach 9, because bfqd->sequential_samples cannot |
| 4790 | * become equal to bfqd->peak_rate_samples, which, in its |
| 4791 | * turn, holds true because bfqd->sequential_samples is not |
| 4792 | * incremented for the first sample. |
| 4793 | */ |
| 4794 | weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; |
| 4795 | |
| 4796 | /* |
| 4797 | * Second step: further refine the weight as a function of the |
| 4798 | * duration of the observation interval. |
| 4799 | */ |
| 4800 | weight = min_t(u32, 8, |
| 4801 | div_u64(weight * bfqd->delta_from_first, |
| 4802 | BFQ_RATE_REF_INTERVAL)); |
| 4803 | |
| 4804 | /* |
| 4805 | * Divisor ranging from 10, for minimum weight, to 2, for |
| 4806 | * maximum weight. |
| 4807 | */ |
| 4808 | divisor = 10 - weight; |
| 4809 | |
| 4810 | /* |
| 4811 | * Finally, update peak rate: |
| 4812 | * |
| 4813 | * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor |
| 4814 | */ |
| 4815 | bfqd->peak_rate *= divisor-1; |
| 4816 | bfqd->peak_rate /= divisor; |
| 4817 | rate /= divisor; /* smoothing constant alpha = 1/divisor */ |
| 4818 | |
| 4819 | bfqd->peak_rate += rate; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4820 | update_thr_responsiveness_params(bfqd); |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4821 | |
| 4822 | reset_computation: |
| 4823 | bfq_reset_rate_computation(bfqd, rq); |
| 4824 | } |
| 4825 | |
| 4826 | /* |
| 4827 | * Update the read/write peak rate (the main quantity used for |
| 4828 | * auto-tuning, see update_thr_responsiveness_params()). |
| 4829 | * |
| 4830 | * It is not trivial to estimate the peak rate (correctly): because of |
| 4831 | * the presence of sw and hw queues between the scheduler and the |
| 4832 | * device components that finally serve I/O requests, it is hard to |
| 4833 | * say exactly when a given dispatched request is served inside the |
| 4834 | * device, and for how long. As a consequence, it is hard to know |
| 4835 | * precisely at what rate a given set of requests is actually served |
| 4836 | * by the device. |
| 4837 | * |
| 4838 | * On the opposite end, the dispatch time of any request is trivially |
| 4839 | * available, and, from this piece of information, the "dispatch rate" |
| 4840 | * of requests can be immediately computed. So, the idea in the next |
| 4841 | * function is to use what is known, namely request dispatch times |
| 4842 | * (plus, when useful, request completion times), to estimate what is |
| 4843 | * unknown, namely in-device request service rate. |
| 4844 | * |
| 4845 | * The main issue is that, because of the above facts, the rate at |
| 4846 | * which a certain set of requests is dispatched over a certain time |
| 4847 | * interval can vary greatly with respect to the rate at which the |
| 4848 | * same requests are then served. But, since the size of any |
| 4849 | * intermediate queue is limited, and the service scheme is lossless |
| 4850 | * (no request is silently dropped), the following obvious convergence |
| 4851 | * property holds: the number of requests dispatched MUST become |
| 4852 | * closer and closer to the number of requests completed as the |
| 4853 | * observation interval grows. This is the key property used in |
| 4854 | * the next function to estimate the peak service rate as a function |
| 4855 | * of the observed dispatch rate. The function assumes to be invoked |
| 4856 | * on every request dispatch. |
| 4857 | */ |
| 4858 | static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) |
| 4859 | { |
| 4860 | u64 now_ns = ktime_get_ns(); |
| 4861 | |
| 4862 | if (bfqd->peak_rate_samples == 0) { /* first dispatch */ |
| 4863 | bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", |
| 4864 | bfqd->peak_rate_samples); |
| 4865 | bfq_reset_rate_computation(bfqd, rq); |
| 4866 | goto update_last_values; /* will add one sample */ |
| 4867 | } |
| 4868 | |
| 4869 | /* |
| 4870 | * Device idle for very long: the observation interval lasting |
| 4871 | * up to this dispatch cannot be a valid observation interval |
| 4872 | * for computing a new peak rate (similarly to the late- |
| 4873 | * completion event in bfq_completed_request()). Go to |
| 4874 | * update_rate_and_reset to have the following three steps |
| 4875 | * taken: |
| 4876 | * - close the observation interval at the last (previous) |
| 4877 | * request dispatch or completion |
| 4878 | * - compute rate, if possible, for that observation interval |
| 4879 | * - start a new observation interval with this dispatch |
| 4880 | */ |
| 4881 | if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && |
| 4882 | bfqd->rq_in_driver == 0) |
| 4883 | goto update_rate_and_reset; |
| 4884 | |
| 4885 | /* Update sampling information */ |
| 4886 | bfqd->peak_rate_samples++; |
| 4887 | |
| 4888 | if ((bfqd->rq_in_driver > 0 || |
| 4889 | now_ns - bfqd->last_completion < BFQ_MIN_TT) |
| 4890 | && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) |
| 4891 | bfqd->sequential_samples++; |
| 4892 | |
| 4893 | bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); |
| 4894 | |
| 4895 | /* Reset max observed rq size every 32 dispatches */ |
| 4896 | if (likely(bfqd->peak_rate_samples % 32)) |
| 4897 | bfqd->last_rq_max_size = |
| 4898 | max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); |
| 4899 | else |
| 4900 | bfqd->last_rq_max_size = blk_rq_sectors(rq); |
| 4901 | |
| 4902 | bfqd->delta_from_first = now_ns - bfqd->first_dispatch; |
| 4903 | |
| 4904 | /* Target observation interval not yet reached, go on sampling */ |
| 4905 | if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) |
| 4906 | goto update_last_values; |
| 4907 | |
| 4908 | update_rate_and_reset: |
| 4909 | bfq_update_rate_reset(bfqd, rq); |
| 4910 | update_last_values: |
| 4911 | bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 4912 | bfqd->last_dispatch = now_ns; |
| 4913 | } |
| 4914 | |
| 4915 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4916 | * Remove request from internal lists. |
| 4917 | */ |
| 4918 | static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) |
| 4919 | { |
| 4920 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 4921 | |
| 4922 | /* |
| 4923 | * For consistency, the next instruction should have been |
| 4924 | * executed after removing the request from the queue and |
| 4925 | * dispatching it. We execute instead this instruction before |
| 4926 | * bfq_remove_request() (and hence introduce a temporary |
| 4927 | * inconsistency), for efficiency. In fact, should this |
| 4928 | * dispatch occur for a non in-service bfqq, this anticipated |
| 4929 | * increment prevents two counters related to bfqq->dispatched |
| 4930 | * from risking to be, first, uselessly decremented, and then |
| 4931 | * incremented again when the (new) value of bfqq->dispatched |
| 4932 | * happens to be taken into account. |
| 4933 | */ |
| 4934 | bfqq->dispatched++; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4935 | bfq_update_peak_rate(q->elevator->elevator_data, rq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4936 | |
| 4937 | bfq_remove_request(q, rq); |
| 4938 | } |
| 4939 | |
| 4940 | static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 4941 | { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4942 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| 4943 | if (bfqq->dispatched == 0) |
| 4944 | /* |
| 4945 | * Overloading budget_timeout field to store |
| 4946 | * the time at which the queue remains with no |
| 4947 | * backlog and no outstanding request; used by |
| 4948 | * the weight-raising mechanism. |
| 4949 | */ |
| 4950 | bfqq->budget_timeout = jiffies; |
| 4951 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4952 | bfq_del_bfqq_busy(bfqd, bfqq, true); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4953 | } else |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4954 | bfq_requeue_bfqq(bfqd, bfqq); |
| 4955 | |
| 4956 | /* |
| 4957 | * All in-service entities must have been properly deactivated |
| 4958 | * or requeued before executing the next function, which |
| 4959 | * resets all in-service entites as no more in service. |
| 4960 | */ |
| 4961 | __bfq_bfqd_reset_in_service(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4962 | } |
| 4963 | |
| 4964 | /** |
| 4965 | * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. |
| 4966 | * @bfqd: device data. |
| 4967 | * @bfqq: queue to update. |
| 4968 | * @reason: reason for expiration. |
| 4969 | * |
| 4970 | * Handle the feedback on @bfqq budget at queue expiration. |
| 4971 | * See the body for detailed comments. |
| 4972 | */ |
| 4973 | static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, |
| 4974 | struct bfq_queue *bfqq, |
| 4975 | enum bfqq_expiration reason) |
| 4976 | { |
| 4977 | struct request *next_rq; |
| 4978 | int budget, min_budget; |
| 4979 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4980 | min_budget = bfq_min_budget(bfqd); |
| 4981 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4982 | if (bfqq->wr_coeff == 1) |
| 4983 | budget = bfqq->max_budget; |
| 4984 | else /* |
| 4985 | * Use a constant, low budget for weight-raised queues, |
| 4986 | * to help achieve a low latency. Keep it slightly higher |
| 4987 | * than the minimum possible budget, to cause a little |
| 4988 | * bit fewer expirations. |
| 4989 | */ |
| 4990 | budget = 2 * min_budget; |
| 4991 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4992 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", |
| 4993 | bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); |
| 4994 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", |
| 4995 | budget, bfq_min_budget(bfqd)); |
| 4996 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", |
| 4997 | bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); |
| 4998 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 4999 | if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5000 | switch (reason) { |
| 5001 | /* |
| 5002 | * Caveat: in all the following cases we trade latency |
| 5003 | * for throughput. |
| 5004 | */ |
| 5005 | case BFQQE_TOO_IDLE: |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 5006 | /* |
| 5007 | * This is the only case where we may reduce |
| 5008 | * the budget: if there is no request of the |
| 5009 | * process still waiting for completion, then |
| 5010 | * we assume (tentatively) that the timer has |
| 5011 | * expired because the batch of requests of |
| 5012 | * the process could have been served with a |
| 5013 | * smaller budget. Hence, betting that |
| 5014 | * process will behave in the same way when it |
| 5015 | * becomes backlogged again, we reduce its |
| 5016 | * next budget. As long as we guess right, |
| 5017 | * this budget cut reduces the latency |
| 5018 | * experienced by the process. |
| 5019 | * |
| 5020 | * However, if there are still outstanding |
| 5021 | * requests, then the process may have not yet |
| 5022 | * issued its next request just because it is |
| 5023 | * still waiting for the completion of some of |
| 5024 | * the still outstanding ones. So in this |
| 5025 | * subcase we do not reduce its budget, on the |
| 5026 | * contrary we increase it to possibly boost |
| 5027 | * the throughput, as discussed in the |
| 5028 | * comments to the BUDGET_TIMEOUT case. |
| 5029 | */ |
| 5030 | if (bfqq->dispatched > 0) /* still outstanding reqs */ |
| 5031 | budget = min(budget * 2, bfqd->bfq_max_budget); |
| 5032 | else { |
| 5033 | if (budget > 5 * min_budget) |
| 5034 | budget -= 4 * min_budget; |
| 5035 | else |
| 5036 | budget = min_budget; |
| 5037 | } |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5038 | break; |
| 5039 | case BFQQE_BUDGET_TIMEOUT: |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 5040 | /* |
| 5041 | * We double the budget here because it gives |
| 5042 | * the chance to boost the throughput if this |
| 5043 | * is not a seeky process (and has bumped into |
| 5044 | * this timeout because of, e.g., ZBR). |
| 5045 | */ |
| 5046 | budget = min(budget * 2, bfqd->bfq_max_budget); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5047 | break; |
| 5048 | case BFQQE_BUDGET_EXHAUSTED: |
| 5049 | /* |
| 5050 | * The process still has backlog, and did not |
| 5051 | * let either the budget timeout or the disk |
| 5052 | * idling timeout expire. Hence it is not |
| 5053 | * seeky, has a short thinktime and may be |
| 5054 | * happy with a higher budget too. So |
| 5055 | * definitely increase the budget of this good |
| 5056 | * candidate to boost the disk throughput. |
| 5057 | */ |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 5058 | budget = min(budget * 4, bfqd->bfq_max_budget); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5059 | break; |
| 5060 | case BFQQE_NO_MORE_REQUESTS: |
| 5061 | /* |
| 5062 | * For queues that expire for this reason, it |
| 5063 | * is particularly important to keep the |
| 5064 | * budget close to the actual service they |
| 5065 | * need. Doing so reduces the timestamp |
| 5066 | * misalignment problem described in the |
| 5067 | * comments in the body of |
| 5068 | * __bfq_activate_entity. In fact, suppose |
| 5069 | * that a queue systematically expires for |
| 5070 | * BFQQE_NO_MORE_REQUESTS and presents a |
| 5071 | * new request in time to enjoy timestamp |
| 5072 | * back-shifting. The larger the budget of the |
| 5073 | * queue is with respect to the service the |
| 5074 | * queue actually requests in each service |
| 5075 | * slot, the more times the queue can be |
| 5076 | * reactivated with the same virtual finish |
| 5077 | * time. It follows that, even if this finish |
| 5078 | * time is pushed to the system virtual time |
| 5079 | * to reduce the consequent timestamp |
| 5080 | * misalignment, the queue unjustly enjoys for |
| 5081 | * many re-activations a lower finish time |
| 5082 | * than all newly activated queues. |
| 5083 | * |
| 5084 | * The service needed by bfqq is measured |
| 5085 | * quite precisely by bfqq->entity.service. |
| 5086 | * Since bfqq does not enjoy device idling, |
| 5087 | * bfqq->entity.service is equal to the number |
| 5088 | * of sectors that the process associated with |
| 5089 | * bfqq requested to read/write before waiting |
| 5090 | * for request completions, or blocking for |
| 5091 | * other reasons. |
| 5092 | */ |
| 5093 | budget = max_t(int, bfqq->entity.service, min_budget); |
| 5094 | break; |
| 5095 | default: |
| 5096 | return; |
| 5097 | } |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5098 | } else if (!bfq_bfqq_sync(bfqq)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5099 | /* |
| 5100 | * Async queues get always the maximum possible |
| 5101 | * budget, as for them we do not care about latency |
| 5102 | * (in addition, their ability to dispatch is limited |
| 5103 | * by the charging factor). |
| 5104 | */ |
| 5105 | budget = bfqd->bfq_max_budget; |
| 5106 | } |
| 5107 | |
| 5108 | bfqq->max_budget = budget; |
| 5109 | |
| 5110 | if (bfqd->budgets_assigned >= bfq_stats_min_budgets && |
| 5111 | !bfqd->bfq_user_max_budget) |
| 5112 | bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); |
| 5113 | |
| 5114 | /* |
| 5115 | * If there is still backlog, then assign a new budget, making |
| 5116 | * sure that it is large enough for the next request. Since |
| 5117 | * the finish time of bfqq must be kept in sync with the |
| 5118 | * budget, be sure to call __bfq_bfqq_expire() *after* this |
| 5119 | * update. |
| 5120 | * |
| 5121 | * If there is no backlog, then no need to update the budget; |
| 5122 | * it will be updated on the arrival of a new request. |
| 5123 | */ |
| 5124 | next_rq = bfqq->next_rq; |
| 5125 | if (next_rq) |
| 5126 | bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, |
| 5127 | bfq_serv_to_charge(next_rq, bfqq)); |
| 5128 | |
| 5129 | bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", |
| 5130 | next_rq ? blk_rq_sectors(next_rq) : 0, |
| 5131 | bfqq->entity.budget); |
| 5132 | } |
| 5133 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5134 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5135 | * Return true if the process associated with bfqq is "slow". The slow |
| 5136 | * flag is used, in addition to the budget timeout, to reduce the |
| 5137 | * amount of service provided to seeky processes, and thus reduce |
| 5138 | * their chances to lower the throughput. More details in the comments |
| 5139 | * on the function bfq_bfqq_expire(). |
| 5140 | * |
| 5141 | * An important observation is in order: as discussed in the comments |
| 5142 | * on the function bfq_update_peak_rate(), with devices with internal |
| 5143 | * queues, it is hard if ever possible to know when and for how long |
| 5144 | * an I/O request is processed by the device (apart from the trivial |
| 5145 | * I/O pattern where a new request is dispatched only after the |
| 5146 | * previous one has been completed). This makes it hard to evaluate |
| 5147 | * the real rate at which the I/O requests of each bfq_queue are |
| 5148 | * served. In fact, for an I/O scheduler like BFQ, serving a |
| 5149 | * bfq_queue means just dispatching its requests during its service |
| 5150 | * slot (i.e., until the budget of the queue is exhausted, or the |
| 5151 | * queue remains idle, or, finally, a timeout fires). But, during the |
| 5152 | * service slot of a bfq_queue, around 100 ms at most, the device may |
| 5153 | * be even still processing requests of bfq_queues served in previous |
| 5154 | * service slots. On the opposite end, the requests of the in-service |
| 5155 | * bfq_queue may be completed after the service slot of the queue |
| 5156 | * finishes. |
| 5157 | * |
| 5158 | * Anyway, unless more sophisticated solutions are used |
| 5159 | * (where possible), the sum of the sizes of the requests dispatched |
| 5160 | * during the service slot of a bfq_queue is probably the only |
| 5161 | * approximation available for the service received by the bfq_queue |
| 5162 | * during its service slot. And this sum is the quantity used in this |
| 5163 | * function to evaluate the I/O speed of a process. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5164 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5165 | static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 5166 | bool compensate, enum bfqq_expiration reason, |
| 5167 | unsigned long *delta_ms) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5168 | { |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5169 | ktime_t delta_ktime; |
| 5170 | u32 delta_usecs; |
| 5171 | bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5172 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5173 | if (!bfq_bfqq_sync(bfqq)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5174 | return false; |
| 5175 | |
| 5176 | if (compensate) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5177 | delta_ktime = bfqd->last_idling_start; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5178 | else |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5179 | delta_ktime = ktime_get(); |
| 5180 | delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); |
| 5181 | delta_usecs = ktime_to_us(delta_ktime); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5182 | |
| 5183 | /* don't use too short time intervals */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5184 | if (delta_usecs < 1000) { |
| 5185 | if (blk_queue_nonrot(bfqd->queue)) |
| 5186 | /* |
| 5187 | * give same worst-case guarantees as idling |
| 5188 | * for seeky |
| 5189 | */ |
| 5190 | *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; |
| 5191 | else /* charge at least one seek */ |
| 5192 | *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5193 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5194 | return slow; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5195 | } |
| 5196 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5197 | *delta_ms = delta_usecs / USEC_PER_MSEC; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5198 | |
| 5199 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5200 | * Use only long (> 20ms) intervals to filter out excessive |
| 5201 | * spikes in service rate estimation. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5202 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5203 | if (delta_usecs > 20000) { |
| 5204 | /* |
| 5205 | * Caveat for rotational devices: processes doing I/O |
| 5206 | * in the slower disk zones tend to be slow(er) even |
| 5207 | * if not seeky. In this respect, the estimated peak |
| 5208 | * rate is likely to be an average over the disk |
| 5209 | * surface. Accordingly, to not be too harsh with |
| 5210 | * unlucky processes, a process is deemed slow only if |
| 5211 | * its rate has been lower than half of the estimated |
| 5212 | * peak rate. |
| 5213 | */ |
| 5214 | slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; |
| 5215 | } |
| 5216 | |
| 5217 | bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); |
| 5218 | |
| 5219 | return slow; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5220 | } |
| 5221 | |
| 5222 | /* |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 5223 | * To be deemed as soft real-time, an application must meet two |
| 5224 | * requirements. First, the application must not require an average |
| 5225 | * bandwidth higher than the approximate bandwidth required to playback or |
| 5226 | * record a compressed high-definition video. |
| 5227 | * The next function is invoked on the completion of the last request of a |
| 5228 | * batch, to compute the next-start time instant, soft_rt_next_start, such |
| 5229 | * that, if the next request of the application does not arrive before |
| 5230 | * soft_rt_next_start, then the above requirement on the bandwidth is met. |
| 5231 | * |
| 5232 | * The second requirement is that the request pattern of the application is |
| 5233 | * isochronous, i.e., that, after issuing a request or a batch of requests, |
| 5234 | * the application stops issuing new requests until all its pending requests |
| 5235 | * have been completed. After that, the application may issue a new batch, |
| 5236 | * and so on. |
| 5237 | * For this reason the next function is invoked to compute |
| 5238 | * soft_rt_next_start only for applications that meet this requirement, |
| 5239 | * whereas soft_rt_next_start is set to infinity for applications that do |
| 5240 | * not. |
| 5241 | * |
| 5242 | * Unfortunately, even a greedy application may happen to behave in an |
| 5243 | * isochronous way if the CPU load is high. In fact, the application may |
| 5244 | * stop issuing requests while the CPUs are busy serving other processes, |
| 5245 | * then restart, then stop again for a while, and so on. In addition, if |
| 5246 | * the disk achieves a low enough throughput with the request pattern |
| 5247 | * issued by the application (e.g., because the request pattern is random |
| 5248 | * and/or the device is slow), then the application may meet the above |
| 5249 | * bandwidth requirement too. To prevent such a greedy application to be |
| 5250 | * deemed as soft real-time, a further rule is used in the computation of |
| 5251 | * soft_rt_next_start: soft_rt_next_start must be higher than the current |
| 5252 | * time plus the maximum time for which the arrival of a request is waited |
| 5253 | * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. |
| 5254 | * This filters out greedy applications, as the latter issue instead their |
| 5255 | * next request as soon as possible after the last one has been completed |
| 5256 | * (in contrast, when a batch of requests is completed, a soft real-time |
| 5257 | * application spends some time processing data). |
| 5258 | * |
| 5259 | * Unfortunately, the last filter may easily generate false positives if |
| 5260 | * only bfqd->bfq_slice_idle is used as a reference time interval and one |
| 5261 | * or both the following cases occur: |
| 5262 | * 1) HZ is so low that the duration of a jiffy is comparable to or higher |
| 5263 | * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with |
| 5264 | * HZ=100. |
| 5265 | * 2) jiffies, instead of increasing at a constant rate, may stop increasing |
| 5266 | * for a while, then suddenly 'jump' by several units to recover the lost |
| 5267 | * increments. This seems to happen, e.g., inside virtual machines. |
| 5268 | * To address this issue, we do not use as a reference time interval just |
| 5269 | * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In |
| 5270 | * particular we add the minimum number of jiffies for which the filter |
| 5271 | * seems to be quite precise also in embedded systems and KVM/QEMU virtual |
| 5272 | * machines. |
| 5273 | */ |
| 5274 | static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, |
| 5275 | struct bfq_queue *bfqq) |
| 5276 | { |
| 5277 | return max(bfqq->last_idle_bklogged + |
| 5278 | HZ * bfqq->service_from_backlogged / |
| 5279 | bfqd->bfq_wr_max_softrt_rate, |
| 5280 | jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); |
| 5281 | } |
| 5282 | |
| 5283 | /* |
| 5284 | * Return the farthest future time instant according to jiffies |
| 5285 | * macros. |
| 5286 | */ |
| 5287 | static unsigned long bfq_greatest_from_now(void) |
| 5288 | { |
| 5289 | return jiffies + MAX_JIFFY_OFFSET; |
| 5290 | } |
| 5291 | |
| 5292 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5293 | * Return the farthest past time instant according to jiffies |
| 5294 | * macros. |
| 5295 | */ |
| 5296 | static unsigned long bfq_smallest_from_now(void) |
| 5297 | { |
| 5298 | return jiffies - MAX_JIFFY_OFFSET; |
| 5299 | } |
| 5300 | |
| 5301 | /** |
| 5302 | * bfq_bfqq_expire - expire a queue. |
| 5303 | * @bfqd: device owning the queue. |
| 5304 | * @bfqq: the queue to expire. |
| 5305 | * @compensate: if true, compensate for the time spent idling. |
| 5306 | * @reason: the reason causing the expiration. |
| 5307 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 5308 | * If the process associated with bfqq does slow I/O (e.g., because it |
| 5309 | * issues random requests), we charge bfqq with the time it has been |
| 5310 | * in service instead of the service it has received (see |
| 5311 | * bfq_bfqq_charge_time for details on how this goal is achieved). As |
| 5312 | * a consequence, bfqq will typically get higher timestamps upon |
| 5313 | * reactivation, and hence it will be rescheduled as if it had |
| 5314 | * received more service than what it has actually received. In the |
| 5315 | * end, bfqq receives less service in proportion to how slowly its |
| 5316 | * associated process consumes its budgets (and hence how seriously it |
| 5317 | * tends to lower the throughput). In addition, this time-charging |
| 5318 | * strategy guarantees time fairness among slow processes. In |
| 5319 | * contrast, if the process associated with bfqq is not slow, we |
| 5320 | * charge bfqq exactly with the service it has received. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5321 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 5322 | * Charging time to the first type of queues and the exact service to |
| 5323 | * the other has the effect of using the WF2Q+ policy to schedule the |
| 5324 | * former on a timeslice basis, without violating service domain |
| 5325 | * guarantees among the latter. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5326 | */ |
| 5327 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 5328 | struct bfq_queue *bfqq, |
| 5329 | bool compensate, |
| 5330 | enum bfqq_expiration reason) |
| 5331 | { |
| 5332 | bool slow; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5333 | unsigned long delta = 0; |
| 5334 | struct bfq_entity *entity = &bfqq->entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5335 | int ref; |
| 5336 | |
| 5337 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5338 | * Check whether the process is slow (see bfq_bfqq_is_slow). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5339 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5340 | slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5341 | |
| 5342 | /* |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 5343 | * Increase service_from_backlogged before next statement, |
| 5344 | * because the possible next invocation of |
| 5345 | * bfq_bfqq_charge_time would likely inflate |
| 5346 | * entity->service. In contrast, service_from_backlogged must |
| 5347 | * contain real service, to enable the soft real-time |
| 5348 | * heuristic to correctly compute the bandwidth consumed by |
| 5349 | * bfqq. |
| 5350 | */ |
| 5351 | bfqq->service_from_backlogged += entity->service; |
| 5352 | |
| 5353 | /* |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 5354 | * As above explained, charge slow (typically seeky) and |
| 5355 | * timed-out queues with the time and not the service |
| 5356 | * received, to favor sequential workloads. |
| 5357 | * |
| 5358 | * Processes doing I/O in the slower disk zones will tend to |
| 5359 | * be slow(er) even if not seeky. Therefore, since the |
| 5360 | * estimated peak rate is actually an average over the disk |
| 5361 | * surface, these processes may timeout just for bad luck. To |
| 5362 | * avoid punishing them, do not charge time to processes that |
| 5363 | * succeeded in consuming at least 2/3 of their budget. This |
| 5364 | * allows BFQ to preserve enough elasticity to still perform |
| 5365 | * bandwidth, and not time, distribution with little unlucky |
| 5366 | * or quasi-sequential processes. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5367 | */ |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5368 | if (bfqq->wr_coeff == 1 && |
| 5369 | (slow || |
| 5370 | (reason == BFQQE_BUDGET_TIMEOUT && |
| 5371 | bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame] | 5372 | bfq_bfqq_charge_time(bfqd, bfqq, delta); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5373 | |
| 5374 | if (reason == BFQQE_TOO_IDLE && |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5375 | entity->service <= 2 * entity->budget / 10) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5376 | bfq_clear_bfqq_IO_bound(bfqq); |
| 5377 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5378 | if (bfqd->low_latency && bfqq->wr_coeff == 1) |
| 5379 | bfqq->last_wr_start_finish = jiffies; |
| 5380 | |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 5381 | if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && |
| 5382 | RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| 5383 | /* |
| 5384 | * If we get here, and there are no outstanding |
| 5385 | * requests, then the request pattern is isochronous |
| 5386 | * (see the comments on the function |
| 5387 | * bfq_bfqq_softrt_next_start()). Thus we can compute |
| 5388 | * soft_rt_next_start. If, instead, the queue still |
| 5389 | * has outstanding requests, then we have to wait for |
| 5390 | * the completion of all the outstanding requests to |
| 5391 | * discover whether the request pattern is actually |
| 5392 | * isochronous. |
| 5393 | */ |
| 5394 | if (bfqq->dispatched == 0) |
| 5395 | bfqq->soft_rt_next_start = |
| 5396 | bfq_bfqq_softrt_next_start(bfqd, bfqq); |
| 5397 | else { |
| 5398 | /* |
| 5399 | * The application is still waiting for the |
| 5400 | * completion of one or more requests: |
| 5401 | * prevent it from possibly being incorrectly |
| 5402 | * deemed as soft real-time by setting its |
| 5403 | * soft_rt_next_start to infinity. In fact, |
| 5404 | * without this assignment, the application |
| 5405 | * would be incorrectly deemed as soft |
| 5406 | * real-time if: |
| 5407 | * 1) it issued a new request before the |
| 5408 | * completion of all its in-flight |
| 5409 | * requests, and |
| 5410 | * 2) at that time, its soft_rt_next_start |
| 5411 | * happened to be in the past. |
| 5412 | */ |
| 5413 | bfqq->soft_rt_next_start = |
| 5414 | bfq_greatest_from_now(); |
| 5415 | /* |
| 5416 | * Schedule an update of soft_rt_next_start to when |
| 5417 | * the task may be discovered to be isochronous. |
| 5418 | */ |
| 5419 | bfq_mark_bfqq_softrt_update(bfqq); |
| 5420 | } |
| 5421 | } |
| 5422 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5423 | bfq_log_bfqq(bfqd, bfqq, |
| 5424 | "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, |
| 5425 | slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); |
| 5426 | |
| 5427 | /* |
| 5428 | * Increase, decrease or leave budget unchanged according to |
| 5429 | * reason. |
| 5430 | */ |
| 5431 | __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); |
| 5432 | ref = bfqq->ref; |
| 5433 | __bfq_bfqq_expire(bfqd, bfqq); |
| 5434 | |
| 5435 | /* mark bfqq as waiting a request only if a bic still points to it */ |
| 5436 | if (ref > 1 && !bfq_bfqq_busy(bfqq) && |
| 5437 | reason != BFQQE_BUDGET_TIMEOUT && |
| 5438 | reason != BFQQE_BUDGET_EXHAUSTED) |
| 5439 | bfq_mark_bfqq_non_blocking_wait_rq(bfqq); |
| 5440 | } |
| 5441 | |
| 5442 | /* |
| 5443 | * Budget timeout is not implemented through a dedicated timer, but |
| 5444 | * just checked on request arrivals and completions, as well as on |
| 5445 | * idle timer expirations. |
| 5446 | */ |
| 5447 | static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) |
| 5448 | { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5449 | return time_is_before_eq_jiffies(bfqq->budget_timeout); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5450 | } |
| 5451 | |
| 5452 | /* |
| 5453 | * If we expire a queue that is actively waiting (i.e., with the |
| 5454 | * device idled) for the arrival of a new request, then we may incur |
| 5455 | * the timestamp misalignment problem described in the body of the |
| 5456 | * function __bfq_activate_entity. Hence we return true only if this |
| 5457 | * condition does not hold, or if the queue is slow enough to deserve |
| 5458 | * only to be kicked off for preserving a high throughput. |
| 5459 | */ |
| 5460 | static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) |
| 5461 | { |
| 5462 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 5463 | "may_budget_timeout: wait_request %d left %d timeout %d", |
| 5464 | bfq_bfqq_wait_request(bfqq), |
| 5465 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, |
| 5466 | bfq_bfqq_budget_timeout(bfqq)); |
| 5467 | |
| 5468 | return (!bfq_bfqq_wait_request(bfqq) || |
| 5469 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) |
| 5470 | && |
| 5471 | bfq_bfqq_budget_timeout(bfqq); |
| 5472 | } |
| 5473 | |
| 5474 | /* |
| 5475 | * For a queue that becomes empty, device idling is allowed only if |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5476 | * this function returns true for the queue. As a consequence, since |
| 5477 | * device idling plays a critical role in both throughput boosting and |
| 5478 | * service guarantees, the return value of this function plays a |
| 5479 | * critical role in both these aspects as well. |
| 5480 | * |
| 5481 | * In a nutshell, this function returns true only if idling is |
| 5482 | * beneficial for throughput or, even if detrimental for throughput, |
| 5483 | * idling is however necessary to preserve service guarantees (low |
| 5484 | * latency, desired throughput distribution, ...). In particular, on |
| 5485 | * NCQ-capable devices, this function tries to return false, so as to |
| 5486 | * help keep the drives' internal queues full, whenever this helps the |
| 5487 | * device boost the throughput without causing any service-guarantee |
| 5488 | * issue. |
| 5489 | * |
| 5490 | * In more detail, the return value of this function is obtained by, |
| 5491 | * first, computing a number of boolean variables that take into |
| 5492 | * account throughput and service-guarantee issues, and, then, |
| 5493 | * combining these variables in a logical expression. Most of the |
| 5494 | * issues taken into account are not trivial. We discuss these issues |
| 5495 | * individually while introducing the variables. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5496 | */ |
| 5497 | static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) |
| 5498 | { |
| 5499 | struct bfq_data *bfqd = bfqq->bfqd; |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5500 | bool idling_boosts_thr, asymmetric_scenario; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5501 | |
| 5502 | if (bfqd->strict_guarantees) |
| 5503 | return true; |
| 5504 | |
| 5505 | /* |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5506 | * The next variable takes into account the cases where idling |
| 5507 | * boosts the throughput. |
| 5508 | * |
| 5509 | * The value of the variable is computed considering that |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5510 | * idling is usually beneficial for the throughput if: |
| 5511 | * (a) the device is not NCQ-capable, or |
| 5512 | * (b) regardless of the presence of NCQ, the request pattern |
| 5513 | * for bfqq is I/O-bound (possible throughput losses |
| 5514 | * caused by granting idling to seeky queues are mitigated |
| 5515 | * by the fact that, in all scenarios where boosting |
| 5516 | * throughput is the best thing to do, i.e., in all |
| 5517 | * symmetric scenarios, only a minimal idle time is |
| 5518 | * allowed to seeky queues). |
| 5519 | */ |
| 5520 | idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq); |
| 5521 | |
| 5522 | /* |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5523 | * There is then a case where idling must be performed not for |
| 5524 | * throughput concerns, but to preserve service guarantees. To |
| 5525 | * introduce it, we can note that allowing the drive to |
| 5526 | * enqueue more than one request at a time, and hence |
| 5527 | * delegating de facto final scheduling decisions to the |
| 5528 | * drive's internal scheduler, causes loss of control on the |
| 5529 | * actual request service order. In particular, the critical |
| 5530 | * situation is when requests from different processes happens |
| 5531 | * to be present, at the same time, in the internal queue(s) |
| 5532 | * of the drive. In such a situation, the drive, by deciding |
| 5533 | * the service order of the internally-queued requests, does |
| 5534 | * determine also the actual throughput distribution among |
| 5535 | * these processes. But the drive typically has no notion or |
| 5536 | * concern about per-process throughput distribution, and |
| 5537 | * makes its decisions only on a per-request basis. Therefore, |
| 5538 | * the service distribution enforced by the drive's internal |
| 5539 | * scheduler is likely to coincide with the desired |
| 5540 | * device-throughput distribution only in a completely |
| 5541 | * symmetric scenario where: (i) each of these processes must |
| 5542 | * get the same throughput as the others; (ii) all these |
| 5543 | * processes have the same I/O pattern (either sequential or |
| 5544 | * random). In fact, in such a scenario, the drive will tend |
| 5545 | * to treat the requests of each of these processes in about |
| 5546 | * the same way as the requests of the others, and thus to |
| 5547 | * provide each of these processes with about the same |
| 5548 | * throughput (which is exactly the desired throughput |
| 5549 | * distribution). In contrast, in any asymmetric scenario, |
| 5550 | * device idling is certainly needed to guarantee that bfqq |
| 5551 | * receives its assigned fraction of the device throughput |
| 5552 | * (see [1] for details). |
| 5553 | * |
| 5554 | * As for sub-condition (i), actually we check only whether |
| 5555 | * bfqq is being weight-raised. In fact, if bfqq is not being |
| 5556 | * weight-raised, we have that: |
| 5557 | * - if the process associated with bfqq is not I/O-bound, then |
| 5558 | * it is not either latency- or throughput-critical; therefore |
| 5559 | * idling is not needed for bfqq; |
| 5560 | * - if the process asociated with bfqq is I/O-bound, then |
| 5561 | * idling is already granted with bfqq (see the comments on |
| 5562 | * idling_boosts_thr). |
| 5563 | * |
| 5564 | * We do not check sub-condition (ii) at all, i.e., the next |
| 5565 | * variable is true if and only if bfqq is being |
| 5566 | * weight-raised. We do not need to control sub-condition (ii) |
| 5567 | * for the following reason: |
| 5568 | * - if bfqq is being weight-raised, then idling is already |
| 5569 | * guaranteed to bfqq by sub-condition (i); |
| 5570 | * - if bfqq is not being weight-raised, then idling is |
| 5571 | * already guaranteed to bfqq (only) if it matters, i.e., if |
| 5572 | * bfqq is associated to a currently I/O-bound process (see |
| 5573 | * the above comment on sub-condition (i)). |
| 5574 | * |
| 5575 | * As a side note, it is worth considering that the above |
| 5576 | * device-idling countermeasures may however fail in the |
| 5577 | * following unlucky scenario: if idling is (correctly) |
| 5578 | * disabled in a time period during which the symmetry |
| 5579 | * sub-condition holds, and hence the device is allowed to |
| 5580 | * enqueue many requests, but at some later point in time some |
| 5581 | * sub-condition stops to hold, then it may become impossible |
| 5582 | * to let requests be served in the desired order until all |
| 5583 | * the requests already queued in the device have been served. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5584 | */ |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5585 | asymmetric_scenario = bfqq->wr_coeff > 1; |
| 5586 | |
| 5587 | /* |
| 5588 | * We have now all the components we need to compute the return |
| 5589 | * value of the function, which is true only if both the following |
| 5590 | * conditions hold: |
| 5591 | * 1) bfqq is sync, because idling make sense only for sync queues; |
| 5592 | * 2) idling either boosts the throughput (without issues), or |
| 5593 | * is necessary to preserve service guarantees. |
| 5594 | */ |
| 5595 | return bfq_bfqq_sync(bfqq) && |
| 5596 | (idling_boosts_thr || asymmetric_scenario); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5597 | } |
| 5598 | |
| 5599 | /* |
| 5600 | * If the in-service queue is empty but the function bfq_bfqq_may_idle |
| 5601 | * returns true, then: |
| 5602 | * 1) the queue must remain in service and cannot be expired, and |
| 5603 | * 2) the device must be idled to wait for the possible arrival of a new |
| 5604 | * request for the queue. |
| 5605 | * See the comments on the function bfq_bfqq_may_idle for the reasons |
| 5606 | * why performing device idling is the best choice to boost the throughput |
| 5607 | * and preserve service guarantees when bfq_bfqq_may_idle itself |
| 5608 | * returns true. |
| 5609 | */ |
| 5610 | static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) |
| 5611 | { |
| 5612 | struct bfq_data *bfqd = bfqq->bfqd; |
| 5613 | |
| 5614 | return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && |
| 5615 | bfq_bfqq_may_idle(bfqq); |
| 5616 | } |
| 5617 | |
| 5618 | /* |
| 5619 | * Select a queue for service. If we have a current queue in service, |
| 5620 | * check whether to continue servicing it, or retrieve and set a new one. |
| 5621 | */ |
| 5622 | static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) |
| 5623 | { |
| 5624 | struct bfq_queue *bfqq; |
| 5625 | struct request *next_rq; |
| 5626 | enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; |
| 5627 | |
| 5628 | bfqq = bfqd->in_service_queue; |
| 5629 | if (!bfqq) |
| 5630 | goto new_queue; |
| 5631 | |
| 5632 | bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); |
| 5633 | |
| 5634 | if (bfq_may_expire_for_budg_timeout(bfqq) && |
| 5635 | !bfq_bfqq_wait_request(bfqq) && |
| 5636 | !bfq_bfqq_must_idle(bfqq)) |
| 5637 | goto expire; |
| 5638 | |
| 5639 | check_queue: |
| 5640 | /* |
| 5641 | * This loop is rarely executed more than once. Even when it |
| 5642 | * happens, it is much more convenient to re-execute this loop |
| 5643 | * than to return NULL and trigger a new dispatch to get a |
| 5644 | * request served. |
| 5645 | */ |
| 5646 | next_rq = bfqq->next_rq; |
| 5647 | /* |
| 5648 | * If bfqq has requests queued and it has enough budget left to |
| 5649 | * serve them, keep the queue, otherwise expire it. |
| 5650 | */ |
| 5651 | if (next_rq) { |
| 5652 | if (bfq_serv_to_charge(next_rq, bfqq) > |
| 5653 | bfq_bfqq_budget_left(bfqq)) { |
| 5654 | /* |
| 5655 | * Expire the queue for budget exhaustion, |
| 5656 | * which makes sure that the next budget is |
| 5657 | * enough to serve the next request, even if |
| 5658 | * it comes from the fifo expired path. |
| 5659 | */ |
| 5660 | reason = BFQQE_BUDGET_EXHAUSTED; |
| 5661 | goto expire; |
| 5662 | } else { |
| 5663 | /* |
| 5664 | * The idle timer may be pending because we may |
| 5665 | * not disable disk idling even when a new request |
| 5666 | * arrives. |
| 5667 | */ |
| 5668 | if (bfq_bfqq_wait_request(bfqq)) { |
| 5669 | /* |
| 5670 | * If we get here: 1) at least a new request |
| 5671 | * has arrived but we have not disabled the |
| 5672 | * timer because the request was too small, |
| 5673 | * 2) then the block layer has unplugged |
| 5674 | * the device, causing the dispatch to be |
| 5675 | * invoked. |
| 5676 | * |
| 5677 | * Since the device is unplugged, now the |
| 5678 | * requests are probably large enough to |
| 5679 | * provide a reasonable throughput. |
| 5680 | * So we disable idling. |
| 5681 | */ |
| 5682 | bfq_clear_bfqq_wait_request(bfqq); |
| 5683 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5684 | bfqg_stats_update_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5685 | } |
| 5686 | goto keep_queue; |
| 5687 | } |
| 5688 | } |
| 5689 | |
| 5690 | /* |
| 5691 | * No requests pending. However, if the in-service queue is idling |
| 5692 | * for a new request, or has requests waiting for a completion and |
| 5693 | * may idle after their completion, then keep it anyway. |
| 5694 | */ |
| 5695 | if (bfq_bfqq_wait_request(bfqq) || |
| 5696 | (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { |
| 5697 | bfqq = NULL; |
| 5698 | goto keep_queue; |
| 5699 | } |
| 5700 | |
| 5701 | reason = BFQQE_NO_MORE_REQUESTS; |
| 5702 | expire: |
| 5703 | bfq_bfqq_expire(bfqd, bfqq, false, reason); |
| 5704 | new_queue: |
| 5705 | bfqq = bfq_set_in_service_queue(bfqd); |
| 5706 | if (bfqq) { |
| 5707 | bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); |
| 5708 | goto check_queue; |
| 5709 | } |
| 5710 | keep_queue: |
| 5711 | if (bfqq) |
| 5712 | bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); |
| 5713 | else |
| 5714 | bfq_log(bfqd, "select_queue: no queue returned"); |
| 5715 | |
| 5716 | return bfqq; |
| 5717 | } |
| 5718 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5719 | static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 5720 | { |
| 5721 | struct bfq_entity *entity = &bfqq->entity; |
| 5722 | |
| 5723 | if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ |
| 5724 | bfq_log_bfqq(bfqd, bfqq, |
| 5725 | "raising period dur %u/%u msec, old coeff %u, w %d(%d)", |
| 5726 | jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), |
| 5727 | jiffies_to_msecs(bfqq->wr_cur_max_time), |
| 5728 | bfqq->wr_coeff, |
| 5729 | bfqq->entity.weight, bfqq->entity.orig_weight); |
| 5730 | |
| 5731 | if (entity->prio_changed) |
| 5732 | bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); |
| 5733 | |
| 5734 | /* |
| 5735 | * If too much time has elapsed from the beginning of |
| 5736 | * this weight-raising period, then end weight |
| 5737 | * raising. |
| 5738 | */ |
| 5739 | if (time_is_before_jiffies(bfqq->last_wr_start_finish + |
| 5740 | bfqq->wr_cur_max_time)) { |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 5741 | if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || |
| 5742 | time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + |
| 5743 | bfq_wr_duration(bfqd))) |
| 5744 | bfq_bfqq_end_wr(bfqq); |
| 5745 | else { |
| 5746 | /* switch back to interactive wr */ |
| 5747 | bfqq->wr_coeff = bfqd->bfq_wr_coeff; |
| 5748 | bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); |
| 5749 | bfqq->last_wr_start_finish = |
| 5750 | bfqq->wr_start_at_switch_to_srt; |
| 5751 | bfqq->entity.prio_changed = 1; |
| 5752 | } |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5753 | } |
| 5754 | } |
| 5755 | /* Update weight both if it must be raised and if it must be lowered */ |
| 5756 | if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) |
| 5757 | __bfq_entity_update_weight_prio( |
| 5758 | bfq_entity_service_tree(entity), |
| 5759 | entity); |
| 5760 | } |
| 5761 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5762 | /* |
| 5763 | * Dispatch next request from bfqq. |
| 5764 | */ |
| 5765 | static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, |
| 5766 | struct bfq_queue *bfqq) |
| 5767 | { |
| 5768 | struct request *rq = bfqq->next_rq; |
| 5769 | unsigned long service_to_charge; |
| 5770 | |
| 5771 | service_to_charge = bfq_serv_to_charge(rq, bfqq); |
| 5772 | |
| 5773 | bfq_bfqq_served(bfqq, service_to_charge); |
| 5774 | |
| 5775 | bfq_dispatch_remove(bfqd->queue, rq); |
| 5776 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 5777 | /* |
| 5778 | * If weight raising has to terminate for bfqq, then next |
| 5779 | * function causes an immediate update of bfqq's weight, |
| 5780 | * without waiting for next activation. As a consequence, on |
| 5781 | * expiration, bfqq will be timestamped as if has never been |
| 5782 | * weight-raised during this service slot, even if it has |
| 5783 | * received part or even most of the service as a |
| 5784 | * weight-raised queue. This inflates bfqq's timestamps, which |
| 5785 | * is beneficial, as bfqq is then more willing to leave the |
| 5786 | * device immediately to possible other weight-raised queues. |
| 5787 | */ |
| 5788 | bfq_update_wr_data(bfqd, bfqq); |
| 5789 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5790 | if (!bfqd->in_service_bic) { |
| 5791 | atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); |
| 5792 | bfqd->in_service_bic = RQ_BIC(rq); |
| 5793 | } |
| 5794 | |
| 5795 | /* |
| 5796 | * Expire bfqq, pretending that its budget expired, if bfqq |
| 5797 | * belongs to CLASS_IDLE and other queues are waiting for |
| 5798 | * service. |
| 5799 | */ |
| 5800 | if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) |
| 5801 | goto expire; |
| 5802 | |
| 5803 | return rq; |
| 5804 | |
| 5805 | expire: |
| 5806 | bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); |
| 5807 | return rq; |
| 5808 | } |
| 5809 | |
| 5810 | static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) |
| 5811 | { |
| 5812 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5813 | |
| 5814 | /* |
| 5815 | * Avoiding lock: a race on bfqd->busy_queues should cause at |
| 5816 | * most a call to dispatch for nothing |
| 5817 | */ |
| 5818 | return !list_empty_careful(&bfqd->dispatch) || |
| 5819 | bfqd->busy_queues > 0; |
| 5820 | } |
| 5821 | |
| 5822 | static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 5823 | { |
| 5824 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5825 | struct request *rq = NULL; |
| 5826 | struct bfq_queue *bfqq = NULL; |
| 5827 | |
| 5828 | if (!list_empty(&bfqd->dispatch)) { |
| 5829 | rq = list_first_entry(&bfqd->dispatch, struct request, |
| 5830 | queuelist); |
| 5831 | list_del_init(&rq->queuelist); |
| 5832 | |
| 5833 | bfqq = RQ_BFQQ(rq); |
| 5834 | |
| 5835 | if (bfqq) { |
| 5836 | /* |
| 5837 | * Increment counters here, because this |
| 5838 | * dispatch does not follow the standard |
| 5839 | * dispatch flow (where counters are |
| 5840 | * incremented) |
| 5841 | */ |
| 5842 | bfqq->dispatched++; |
| 5843 | |
| 5844 | goto inc_in_driver_start_rq; |
| 5845 | } |
| 5846 | |
| 5847 | /* |
| 5848 | * We exploit the put_rq_private hook to decrement |
| 5849 | * rq_in_driver, but put_rq_private will not be |
| 5850 | * invoked on this request. So, to avoid unbalance, |
| 5851 | * just start this request, without incrementing |
| 5852 | * rq_in_driver. As a negative consequence, |
| 5853 | * rq_in_driver is deceptively lower than it should be |
| 5854 | * while this request is in service. This may cause |
| 5855 | * bfq_schedule_dispatch to be invoked uselessly. |
| 5856 | * |
| 5857 | * As for implementing an exact solution, the |
| 5858 | * put_request hook, if defined, is probably invoked |
| 5859 | * also on this request. So, by exploiting this hook, |
| 5860 | * we could 1) increment rq_in_driver here, and 2) |
| 5861 | * decrement it in put_request. Such a solution would |
| 5862 | * let the value of the counter be always accurate, |
| 5863 | * but it would entail using an extra interface |
| 5864 | * function. This cost seems higher than the benefit, |
| 5865 | * being the frequency of non-elevator-private |
| 5866 | * requests very low. |
| 5867 | */ |
| 5868 | goto start_rq; |
| 5869 | } |
| 5870 | |
| 5871 | bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); |
| 5872 | |
| 5873 | if (bfqd->busy_queues == 0) |
| 5874 | goto exit; |
| 5875 | |
| 5876 | /* |
| 5877 | * Force device to serve one request at a time if |
| 5878 | * strict_guarantees is true. Forcing this service scheme is |
| 5879 | * currently the ONLY way to guarantee that the request |
| 5880 | * service order enforced by the scheduler is respected by a |
| 5881 | * queueing device. Otherwise the device is free even to make |
| 5882 | * some unlucky request wait for as long as the device |
| 5883 | * wishes. |
| 5884 | * |
| 5885 | * Of course, serving one request at at time may cause loss of |
| 5886 | * throughput. |
| 5887 | */ |
| 5888 | if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) |
| 5889 | goto exit; |
| 5890 | |
| 5891 | bfqq = bfq_select_queue(bfqd); |
| 5892 | if (!bfqq) |
| 5893 | goto exit; |
| 5894 | |
| 5895 | rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); |
| 5896 | |
| 5897 | if (rq) { |
| 5898 | inc_in_driver_start_rq: |
| 5899 | bfqd->rq_in_driver++; |
| 5900 | start_rq: |
| 5901 | rq->rq_flags |= RQF_STARTED; |
| 5902 | } |
| 5903 | exit: |
| 5904 | return rq; |
| 5905 | } |
| 5906 | |
| 5907 | static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 5908 | { |
| 5909 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5910 | struct request *rq; |
| 5911 | |
| 5912 | spin_lock_irq(&bfqd->lock); |
| 5913 | rq = __bfq_dispatch_request(hctx); |
| 5914 | spin_unlock_irq(&bfqd->lock); |
| 5915 | |
| 5916 | return rq; |
| 5917 | } |
| 5918 | |
| 5919 | /* |
| 5920 | * Task holds one reference to the queue, dropped when task exits. Each rq |
| 5921 | * in-flight on this queue also holds a reference, dropped when rq is freed. |
| 5922 | * |
| 5923 | * Scheduler lock must be held here. Recall not to use bfqq after calling |
| 5924 | * this function on it. |
| 5925 | */ |
| 5926 | static void bfq_put_queue(struct bfq_queue *bfqq) |
| 5927 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5928 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5929 | struct bfq_group *bfqg = bfqq_group(bfqq); |
| 5930 | #endif |
| 5931 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5932 | if (bfqq->bfqd) |
| 5933 | bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", |
| 5934 | bfqq, bfqq->ref); |
| 5935 | |
| 5936 | bfqq->ref--; |
| 5937 | if (bfqq->ref) |
| 5938 | return; |
| 5939 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5940 | bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq); |
| 5941 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5942 | kmem_cache_free(bfq_pool, bfqq); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5943 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5944 | bfqg_put(bfqg); |
| 5945 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5946 | } |
| 5947 | |
| 5948 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 5949 | { |
| 5950 | if (bfqq == bfqd->in_service_queue) { |
| 5951 | __bfq_bfqq_expire(bfqd, bfqq); |
| 5952 | bfq_schedule_dispatch(bfqd); |
| 5953 | } |
| 5954 | |
| 5955 | bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); |
| 5956 | |
| 5957 | bfq_put_queue(bfqq); /* release process reference */ |
| 5958 | } |
| 5959 | |
| 5960 | static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 5961 | { |
| 5962 | struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); |
| 5963 | struct bfq_data *bfqd; |
| 5964 | |
| 5965 | if (bfqq) |
| 5966 | bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ |
| 5967 | |
| 5968 | if (bfqq && bfqd) { |
| 5969 | unsigned long flags; |
| 5970 | |
| 5971 | spin_lock_irqsave(&bfqd->lock, flags); |
| 5972 | bfq_exit_bfqq(bfqd, bfqq); |
| 5973 | bic_set_bfqq(bic, NULL, is_sync); |
| 5974 | spin_unlock_irq(&bfqd->lock); |
| 5975 | } |
| 5976 | } |
| 5977 | |
| 5978 | static void bfq_exit_icq(struct io_cq *icq) |
| 5979 | { |
| 5980 | struct bfq_io_cq *bic = icq_to_bic(icq); |
| 5981 | |
| 5982 | bfq_exit_icq_bfqq(bic, true); |
| 5983 | bfq_exit_icq_bfqq(bic, false); |
| 5984 | } |
| 5985 | |
| 5986 | /* |
| 5987 | * Update the entity prio values; note that the new values will not |
| 5988 | * be used until the next (re)activation. |
| 5989 | */ |
| 5990 | static void |
| 5991 | bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) |
| 5992 | { |
| 5993 | struct task_struct *tsk = current; |
| 5994 | int ioprio_class; |
| 5995 | struct bfq_data *bfqd = bfqq->bfqd; |
| 5996 | |
| 5997 | if (!bfqd) |
| 5998 | return; |
| 5999 | |
| 6000 | ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 6001 | switch (ioprio_class) { |
| 6002 | default: |
| 6003 | dev_err(bfqq->bfqd->queue->backing_dev_info->dev, |
| 6004 | "bfq: bad prio class %d\n", ioprio_class); |
| 6005 | case IOPRIO_CLASS_NONE: |
| 6006 | /* |
| 6007 | * No prio set, inherit CPU scheduling settings. |
| 6008 | */ |
| 6009 | bfqq->new_ioprio = task_nice_ioprio(tsk); |
| 6010 | bfqq->new_ioprio_class = task_nice_ioclass(tsk); |
| 6011 | break; |
| 6012 | case IOPRIO_CLASS_RT: |
| 6013 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 6014 | bfqq->new_ioprio_class = IOPRIO_CLASS_RT; |
| 6015 | break; |
| 6016 | case IOPRIO_CLASS_BE: |
| 6017 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 6018 | bfqq->new_ioprio_class = IOPRIO_CLASS_BE; |
| 6019 | break; |
| 6020 | case IOPRIO_CLASS_IDLE: |
| 6021 | bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; |
| 6022 | bfqq->new_ioprio = 7; |
| 6023 | bfq_clear_bfqq_idle_window(bfqq); |
| 6024 | break; |
| 6025 | } |
| 6026 | |
| 6027 | if (bfqq->new_ioprio >= IOPRIO_BE_NR) { |
| 6028 | pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", |
| 6029 | bfqq->new_ioprio); |
| 6030 | bfqq->new_ioprio = IOPRIO_BE_NR; |
| 6031 | } |
| 6032 | |
| 6033 | bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); |
| 6034 | bfqq->entity.prio_changed = 1; |
| 6035 | } |
| 6036 | |
| 6037 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) |
| 6038 | { |
| 6039 | struct bfq_data *bfqd = bic_to_bfqd(bic); |
| 6040 | struct bfq_queue *bfqq; |
| 6041 | int ioprio = bic->icq.ioc->ioprio; |
| 6042 | |
| 6043 | /* |
| 6044 | * This condition may trigger on a newly created bic, be sure to |
| 6045 | * drop the lock before returning. |
| 6046 | */ |
| 6047 | if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) |
| 6048 | return; |
| 6049 | |
| 6050 | bic->ioprio = ioprio; |
| 6051 | |
| 6052 | bfqq = bic_to_bfqq(bic, false); |
| 6053 | if (bfqq) { |
| 6054 | /* release process reference on this queue */ |
| 6055 | bfq_put_queue(bfqq); |
| 6056 | bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); |
| 6057 | bic_set_bfqq(bic, bfqq, false); |
| 6058 | } |
| 6059 | |
| 6060 | bfqq = bic_to_bfqq(bic, true); |
| 6061 | if (bfqq) |
| 6062 | bfq_set_next_ioprio_data(bfqq, bic); |
| 6063 | } |
| 6064 | |
| 6065 | static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 6066 | struct bfq_io_cq *bic, pid_t pid, int is_sync) |
| 6067 | { |
| 6068 | RB_CLEAR_NODE(&bfqq->entity.rb_node); |
| 6069 | INIT_LIST_HEAD(&bfqq->fifo); |
| 6070 | |
| 6071 | bfqq->ref = 0; |
| 6072 | bfqq->bfqd = bfqd; |
| 6073 | |
| 6074 | if (bic) |
| 6075 | bfq_set_next_ioprio_data(bfqq, bic); |
| 6076 | |
| 6077 | if (is_sync) { |
| 6078 | if (!bfq_class_idle(bfqq)) |
| 6079 | bfq_mark_bfqq_idle_window(bfqq); |
| 6080 | bfq_mark_bfqq_sync(bfqq); |
| 6081 | } else |
| 6082 | bfq_clear_bfqq_sync(bfqq); |
| 6083 | |
| 6084 | /* set end request to minus infinity from now */ |
| 6085 | bfqq->ttime.last_end_request = ktime_get_ns() + 1; |
| 6086 | |
| 6087 | bfq_mark_bfqq_IO_bound(bfqq); |
| 6088 | |
| 6089 | bfqq->pid = pid; |
| 6090 | |
| 6091 | /* Tentative initial value to trade off between thr and lat */ |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 6092 | bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6093 | bfqq->budget_timeout = bfq_smallest_from_now(); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6094 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6095 | bfqq->wr_coeff = 1; |
| 6096 | bfqq->last_wr_start_finish = bfq_smallest_from_now(); |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 6097 | bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); |
| 6098 | |
| 6099 | /* |
| 6100 | * Set to the value for which bfqq will not be deemed as |
| 6101 | * soft rt when it becomes backlogged. |
| 6102 | */ |
| 6103 | bfqq->soft_rt_next_start = bfq_greatest_from_now(); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6104 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6105 | /* first request is almost certainly seeky */ |
| 6106 | bfqq->seek_history = 1; |
| 6107 | } |
| 6108 | |
| 6109 | static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6110 | struct bfq_group *bfqg, |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6111 | int ioprio_class, int ioprio) |
| 6112 | { |
| 6113 | switch (ioprio_class) { |
| 6114 | case IOPRIO_CLASS_RT: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6115 | return &bfqg->async_bfqq[0][ioprio]; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6116 | case IOPRIO_CLASS_NONE: |
| 6117 | ioprio = IOPRIO_NORM; |
| 6118 | /* fall through */ |
| 6119 | case IOPRIO_CLASS_BE: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6120 | return &bfqg->async_bfqq[1][ioprio]; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6121 | case IOPRIO_CLASS_IDLE: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6122 | return &bfqg->async_idle_bfqq; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6123 | default: |
| 6124 | return NULL; |
| 6125 | } |
| 6126 | } |
| 6127 | |
| 6128 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 6129 | struct bio *bio, bool is_sync, |
| 6130 | struct bfq_io_cq *bic) |
| 6131 | { |
| 6132 | const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 6133 | const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 6134 | struct bfq_queue **async_bfqq = NULL; |
| 6135 | struct bfq_queue *bfqq; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6136 | struct bfq_group *bfqg; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6137 | |
| 6138 | rcu_read_lock(); |
| 6139 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6140 | bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); |
| 6141 | if (!bfqg) { |
| 6142 | bfqq = &bfqd->oom_bfqq; |
| 6143 | goto out; |
| 6144 | } |
| 6145 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6146 | if (!is_sync) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6147 | async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6148 | ioprio); |
| 6149 | bfqq = *async_bfqq; |
| 6150 | if (bfqq) |
| 6151 | goto out; |
| 6152 | } |
| 6153 | |
| 6154 | bfqq = kmem_cache_alloc_node(bfq_pool, |
| 6155 | GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, |
| 6156 | bfqd->queue->node); |
| 6157 | |
| 6158 | if (bfqq) { |
| 6159 | bfq_init_bfqq(bfqd, bfqq, bic, current->pid, |
| 6160 | is_sync); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6161 | bfq_init_entity(&bfqq->entity, bfqg); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6162 | bfq_log_bfqq(bfqd, bfqq, "allocated"); |
| 6163 | } else { |
| 6164 | bfqq = &bfqd->oom_bfqq; |
| 6165 | bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); |
| 6166 | goto out; |
| 6167 | } |
| 6168 | |
| 6169 | /* |
| 6170 | * Pin the queue now that it's allocated, scheduler exit will |
| 6171 | * prune it. |
| 6172 | */ |
| 6173 | if (async_bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6174 | bfqq->ref++; /* |
| 6175 | * Extra group reference, w.r.t. sync |
| 6176 | * queue. This extra reference is removed |
| 6177 | * only if bfqq->bfqg disappears, to |
| 6178 | * guarantee that this queue is not freed |
| 6179 | * until its group goes away. |
| 6180 | */ |
| 6181 | bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6182 | bfqq, bfqq->ref); |
| 6183 | *async_bfqq = bfqq; |
| 6184 | } |
| 6185 | |
| 6186 | out: |
| 6187 | bfqq->ref++; /* get a process reference to this queue */ |
| 6188 | bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); |
| 6189 | rcu_read_unlock(); |
| 6190 | return bfqq; |
| 6191 | } |
| 6192 | |
| 6193 | static void bfq_update_io_thinktime(struct bfq_data *bfqd, |
| 6194 | struct bfq_queue *bfqq) |
| 6195 | { |
| 6196 | struct bfq_ttime *ttime = &bfqq->ttime; |
| 6197 | u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; |
| 6198 | |
| 6199 | elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); |
| 6200 | |
| 6201 | ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; |
| 6202 | ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); |
| 6203 | ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, |
| 6204 | ttime->ttime_samples); |
| 6205 | } |
| 6206 | |
| 6207 | static void |
| 6208 | bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 6209 | struct request *rq) |
| 6210 | { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6211 | bfqq->seek_history <<= 1; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6212 | bfqq->seek_history |= |
| 6213 | get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6214 | (!blk_queue_nonrot(bfqd->queue) || |
| 6215 | blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); |
| 6216 | } |
| 6217 | |
| 6218 | /* |
| 6219 | * Disable idle window if the process thinks too long or seeks so much that |
| 6220 | * it doesn't matter. |
| 6221 | */ |
| 6222 | static void bfq_update_idle_window(struct bfq_data *bfqd, |
| 6223 | struct bfq_queue *bfqq, |
| 6224 | struct bfq_io_cq *bic) |
| 6225 | { |
| 6226 | int enable_idle; |
| 6227 | |
| 6228 | /* Don't idle for async or idle io prio class. */ |
| 6229 | if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) |
| 6230 | return; |
| 6231 | |
| 6232 | enable_idle = bfq_bfqq_idle_window(bfqq); |
| 6233 | |
| 6234 | if (atomic_read(&bic->icq.ioc->active_ref) == 0 || |
| 6235 | bfqd->bfq_slice_idle == 0 || |
Paolo Valente | bcd5642 | 2017-04-12 18:23:14 +0200 | [diff] [blame^] | 6236 | (bfqd->hw_tag && BFQQ_SEEKY(bfqq) && |
| 6237 | bfqq->wr_coeff == 1)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6238 | enable_idle = 0; |
| 6239 | else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6240 | if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle && |
| 6241 | bfqq->wr_coeff == 1) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6242 | enable_idle = 0; |
| 6243 | else |
| 6244 | enable_idle = 1; |
| 6245 | } |
| 6246 | bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", |
| 6247 | enable_idle); |
| 6248 | |
| 6249 | if (enable_idle) |
| 6250 | bfq_mark_bfqq_idle_window(bfqq); |
| 6251 | else |
| 6252 | bfq_clear_bfqq_idle_window(bfqq); |
| 6253 | } |
| 6254 | |
| 6255 | /* |
| 6256 | * Called when a new fs request (rq) is added to bfqq. Check if there's |
| 6257 | * something we should do about it. |
| 6258 | */ |
| 6259 | static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 6260 | struct request *rq) |
| 6261 | { |
| 6262 | struct bfq_io_cq *bic = RQ_BIC(rq); |
| 6263 | |
| 6264 | if (rq->cmd_flags & REQ_META) |
| 6265 | bfqq->meta_pending++; |
| 6266 | |
| 6267 | bfq_update_io_thinktime(bfqd, bfqq); |
| 6268 | bfq_update_io_seektime(bfqd, bfqq, rq); |
| 6269 | if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || |
| 6270 | !BFQQ_SEEKY(bfqq)) |
| 6271 | bfq_update_idle_window(bfqd, bfqq, bic); |
| 6272 | |
| 6273 | bfq_log_bfqq(bfqd, bfqq, |
| 6274 | "rq_enqueued: idle_window=%d (seeky %d)", |
| 6275 | bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); |
| 6276 | |
| 6277 | bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 6278 | |
| 6279 | if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { |
| 6280 | bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && |
| 6281 | blk_rq_sectors(rq) < 32; |
| 6282 | bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); |
| 6283 | |
| 6284 | /* |
| 6285 | * There is just this request queued: if the request |
| 6286 | * is small and the queue is not to be expired, then |
| 6287 | * just exit. |
| 6288 | * |
| 6289 | * In this way, if the device is being idled to wait |
| 6290 | * for a new request from the in-service queue, we |
| 6291 | * avoid unplugging the device and committing the |
| 6292 | * device to serve just a small request. On the |
| 6293 | * contrary, we wait for the block layer to decide |
| 6294 | * when to unplug the device: hopefully, new requests |
| 6295 | * will be merged to this one quickly, then the device |
| 6296 | * will be unplugged and larger requests will be |
| 6297 | * dispatched. |
| 6298 | */ |
| 6299 | if (small_req && !budget_timeout) |
| 6300 | return; |
| 6301 | |
| 6302 | /* |
| 6303 | * A large enough request arrived, or the queue is to |
| 6304 | * be expired: in both cases disk idling is to be |
| 6305 | * stopped, so clear wait_request flag and reset |
| 6306 | * timer. |
| 6307 | */ |
| 6308 | bfq_clear_bfqq_wait_request(bfqq); |
| 6309 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6310 | bfqg_stats_update_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6311 | |
| 6312 | /* |
| 6313 | * The queue is not empty, because a new request just |
| 6314 | * arrived. Hence we can safely expire the queue, in |
| 6315 | * case of budget timeout, without risking that the |
| 6316 | * timestamps of the queue are not updated correctly. |
| 6317 | * See [1] for more details. |
| 6318 | */ |
| 6319 | if (budget_timeout) |
| 6320 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 6321 | BFQQE_BUDGET_TIMEOUT); |
| 6322 | } |
| 6323 | } |
| 6324 | |
| 6325 | static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) |
| 6326 | { |
| 6327 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 6328 | |
| 6329 | bfq_add_request(rq); |
| 6330 | |
| 6331 | rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; |
| 6332 | list_add_tail(&rq->queuelist, &bfqq->fifo); |
| 6333 | |
| 6334 | bfq_rq_enqueued(bfqd, bfqq, rq); |
| 6335 | } |
| 6336 | |
| 6337 | static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| 6338 | bool at_head) |
| 6339 | { |
| 6340 | struct request_queue *q = hctx->queue; |
| 6341 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 6342 | |
| 6343 | spin_lock_irq(&bfqd->lock); |
| 6344 | if (blk_mq_sched_try_insert_merge(q, rq)) { |
| 6345 | spin_unlock_irq(&bfqd->lock); |
| 6346 | return; |
| 6347 | } |
| 6348 | |
| 6349 | spin_unlock_irq(&bfqd->lock); |
| 6350 | |
| 6351 | blk_mq_sched_request_inserted(rq); |
| 6352 | |
| 6353 | spin_lock_irq(&bfqd->lock); |
| 6354 | if (at_head || blk_rq_is_passthrough(rq)) { |
| 6355 | if (at_head) |
| 6356 | list_add(&rq->queuelist, &bfqd->dispatch); |
| 6357 | else |
| 6358 | list_add_tail(&rq->queuelist, &bfqd->dispatch); |
| 6359 | } else { |
| 6360 | __bfq_insert_request(bfqd, rq); |
| 6361 | |
| 6362 | if (rq_mergeable(rq)) { |
| 6363 | elv_rqhash_add(q, rq); |
| 6364 | if (!q->last_merge) |
| 6365 | q->last_merge = rq; |
| 6366 | } |
| 6367 | } |
| 6368 | |
| 6369 | spin_unlock_irq(&bfqd->lock); |
| 6370 | } |
| 6371 | |
| 6372 | static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, |
| 6373 | struct list_head *list, bool at_head) |
| 6374 | { |
| 6375 | while (!list_empty(list)) { |
| 6376 | struct request *rq; |
| 6377 | |
| 6378 | rq = list_first_entry(list, struct request, queuelist); |
| 6379 | list_del_init(&rq->queuelist); |
| 6380 | bfq_insert_request(hctx, rq, at_head); |
| 6381 | } |
| 6382 | } |
| 6383 | |
| 6384 | static void bfq_update_hw_tag(struct bfq_data *bfqd) |
| 6385 | { |
| 6386 | bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, |
| 6387 | bfqd->rq_in_driver); |
| 6388 | |
| 6389 | if (bfqd->hw_tag == 1) |
| 6390 | return; |
| 6391 | |
| 6392 | /* |
| 6393 | * This sample is valid if the number of outstanding requests |
| 6394 | * is large enough to allow a queueing behavior. Note that the |
| 6395 | * sum is not exact, as it's not taking into account deactivated |
| 6396 | * requests. |
| 6397 | */ |
| 6398 | if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) |
| 6399 | return; |
| 6400 | |
| 6401 | if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) |
| 6402 | return; |
| 6403 | |
| 6404 | bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; |
| 6405 | bfqd->max_rq_in_driver = 0; |
| 6406 | bfqd->hw_tag_samples = 0; |
| 6407 | } |
| 6408 | |
| 6409 | static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) |
| 6410 | { |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6411 | u64 now_ns; |
| 6412 | u32 delta_us; |
| 6413 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6414 | bfq_update_hw_tag(bfqd); |
| 6415 | |
| 6416 | bfqd->rq_in_driver--; |
| 6417 | bfqq->dispatched--; |
| 6418 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6419 | if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { |
| 6420 | /* |
| 6421 | * Set budget_timeout (which we overload to store the |
| 6422 | * time at which the queue remains with no backlog and |
| 6423 | * no outstanding request; used by the weight-raising |
| 6424 | * mechanism). |
| 6425 | */ |
| 6426 | bfqq->budget_timeout = jiffies; |
| 6427 | } |
| 6428 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6429 | now_ns = ktime_get_ns(); |
| 6430 | |
| 6431 | bfqq->ttime.last_end_request = now_ns; |
| 6432 | |
| 6433 | /* |
| 6434 | * Using us instead of ns, to get a reasonable precision in |
| 6435 | * computing rate in next check. |
| 6436 | */ |
| 6437 | delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); |
| 6438 | |
| 6439 | /* |
| 6440 | * If the request took rather long to complete, and, according |
| 6441 | * to the maximum request size recorded, this completion latency |
| 6442 | * implies that the request was certainly served at a very low |
| 6443 | * rate (less than 1M sectors/sec), then the whole observation |
| 6444 | * interval that lasts up to this time instant cannot be a |
| 6445 | * valid time interval for computing a new peak rate. Invoke |
| 6446 | * bfq_update_rate_reset to have the following three steps |
| 6447 | * taken: |
| 6448 | * - close the observation interval at the last (previous) |
| 6449 | * request dispatch or completion |
| 6450 | * - compute rate, if possible, for that observation interval |
| 6451 | * - reset to zero samples, which will trigger a proper |
| 6452 | * re-initialization of the observation interval on next |
| 6453 | * dispatch |
| 6454 | */ |
| 6455 | if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && |
| 6456 | (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < |
| 6457 | 1UL<<(BFQ_RATE_SHIFT - 10)) |
| 6458 | bfq_update_rate_reset(bfqd, NULL); |
| 6459 | bfqd->last_completion = now_ns; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6460 | |
| 6461 | /* |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 6462 | * If we are waiting to discover whether the request pattern |
| 6463 | * of the task associated with the queue is actually |
| 6464 | * isochronous, and both requisites for this condition to hold |
| 6465 | * are now satisfied, then compute soft_rt_next_start (see the |
| 6466 | * comments on the function bfq_bfqq_softrt_next_start()). We |
| 6467 | * schedule this delayed check when bfqq expires, if it still |
| 6468 | * has in-flight requests. |
| 6469 | */ |
| 6470 | if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && |
| 6471 | RB_EMPTY_ROOT(&bfqq->sort_list)) |
| 6472 | bfqq->soft_rt_next_start = |
| 6473 | bfq_bfqq_softrt_next_start(bfqd, bfqq); |
| 6474 | |
| 6475 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6476 | * If this is the in-service queue, check if it needs to be expired, |
| 6477 | * or if we want to idle in case it has no pending requests. |
| 6478 | */ |
| 6479 | if (bfqd->in_service_queue == bfqq) { |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6480 | if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6481 | bfq_arm_slice_timer(bfqd); |
| 6482 | return; |
| 6483 | } else if (bfq_may_expire_for_budg_timeout(bfqq)) |
| 6484 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 6485 | BFQQE_BUDGET_TIMEOUT); |
| 6486 | else if (RB_EMPTY_ROOT(&bfqq->sort_list) && |
| 6487 | (bfqq->dispatched == 0 || |
| 6488 | !bfq_bfqq_may_idle(bfqq))) |
| 6489 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 6490 | BFQQE_NO_MORE_REQUESTS); |
| 6491 | } |
| 6492 | } |
| 6493 | |
| 6494 | static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) |
| 6495 | { |
| 6496 | bfqq->allocated--; |
| 6497 | |
| 6498 | bfq_put_queue(bfqq); |
| 6499 | } |
| 6500 | |
| 6501 | static void bfq_put_rq_private(struct request_queue *q, struct request *rq) |
| 6502 | { |
| 6503 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 6504 | struct bfq_data *bfqd = bfqq->bfqd; |
| 6505 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6506 | if (rq->rq_flags & RQF_STARTED) |
| 6507 | bfqg_stats_update_completion(bfqq_group(bfqq), |
| 6508 | rq_start_time_ns(rq), |
| 6509 | rq_io_start_time_ns(rq), |
| 6510 | rq->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6511 | |
| 6512 | if (likely(rq->rq_flags & RQF_STARTED)) { |
| 6513 | unsigned long flags; |
| 6514 | |
| 6515 | spin_lock_irqsave(&bfqd->lock, flags); |
| 6516 | |
| 6517 | bfq_completed_request(bfqq, bfqd); |
| 6518 | bfq_put_rq_priv_body(bfqq); |
| 6519 | |
| 6520 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 6521 | } else { |
| 6522 | /* |
| 6523 | * Request rq may be still/already in the scheduler, |
| 6524 | * in which case we need to remove it. And we cannot |
| 6525 | * defer such a check and removal, to avoid |
| 6526 | * inconsistencies in the time interval from the end |
| 6527 | * of this function to the start of the deferred work. |
| 6528 | * This situation seems to occur only in process |
| 6529 | * context, as a consequence of a merge. In the |
| 6530 | * current version of the code, this implies that the |
| 6531 | * lock is held. |
| 6532 | */ |
| 6533 | |
| 6534 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
| 6535 | bfq_remove_request(q, rq); |
| 6536 | bfq_put_rq_priv_body(bfqq); |
| 6537 | } |
| 6538 | |
| 6539 | rq->elv.priv[0] = NULL; |
| 6540 | rq->elv.priv[1] = NULL; |
| 6541 | } |
| 6542 | |
| 6543 | /* |
| 6544 | * Allocate bfq data structures associated with this request. |
| 6545 | */ |
| 6546 | static int bfq_get_rq_private(struct request_queue *q, struct request *rq, |
| 6547 | struct bio *bio) |
| 6548 | { |
| 6549 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 6550 | struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); |
| 6551 | const int is_sync = rq_is_sync(rq); |
| 6552 | struct bfq_queue *bfqq; |
| 6553 | |
| 6554 | spin_lock_irq(&bfqd->lock); |
| 6555 | |
| 6556 | bfq_check_ioprio_change(bic, bio); |
| 6557 | |
| 6558 | if (!bic) |
| 6559 | goto queue_fail; |
| 6560 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6561 | bfq_bic_update_cgroup(bic, bio); |
| 6562 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6563 | bfqq = bic_to_bfqq(bic, is_sync); |
| 6564 | if (!bfqq || bfqq == &bfqd->oom_bfqq) { |
| 6565 | if (bfqq) |
| 6566 | bfq_put_queue(bfqq); |
| 6567 | bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); |
| 6568 | bic_set_bfqq(bic, bfqq, is_sync); |
| 6569 | } |
| 6570 | |
| 6571 | bfqq->allocated++; |
| 6572 | bfqq->ref++; |
| 6573 | bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", |
| 6574 | rq, bfqq, bfqq->ref); |
| 6575 | |
| 6576 | rq->elv.priv[0] = bic; |
| 6577 | rq->elv.priv[1] = bfqq; |
| 6578 | |
| 6579 | spin_unlock_irq(&bfqd->lock); |
| 6580 | |
| 6581 | return 0; |
| 6582 | |
| 6583 | queue_fail: |
| 6584 | spin_unlock_irq(&bfqd->lock); |
| 6585 | |
| 6586 | return 1; |
| 6587 | } |
| 6588 | |
| 6589 | static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) |
| 6590 | { |
| 6591 | struct bfq_data *bfqd = bfqq->bfqd; |
| 6592 | enum bfqq_expiration reason; |
| 6593 | unsigned long flags; |
| 6594 | |
| 6595 | spin_lock_irqsave(&bfqd->lock, flags); |
| 6596 | bfq_clear_bfqq_wait_request(bfqq); |
| 6597 | |
| 6598 | if (bfqq != bfqd->in_service_queue) { |
| 6599 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 6600 | return; |
| 6601 | } |
| 6602 | |
| 6603 | if (bfq_bfqq_budget_timeout(bfqq)) |
| 6604 | /* |
| 6605 | * Also here the queue can be safely expired |
| 6606 | * for budget timeout without wasting |
| 6607 | * guarantees |
| 6608 | */ |
| 6609 | reason = BFQQE_BUDGET_TIMEOUT; |
| 6610 | else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) |
| 6611 | /* |
| 6612 | * The queue may not be empty upon timer expiration, |
| 6613 | * because we may not disable the timer when the |
| 6614 | * first request of the in-service queue arrives |
| 6615 | * during disk idling. |
| 6616 | */ |
| 6617 | reason = BFQQE_TOO_IDLE; |
| 6618 | else |
| 6619 | goto schedule_dispatch; |
| 6620 | |
| 6621 | bfq_bfqq_expire(bfqd, bfqq, true, reason); |
| 6622 | |
| 6623 | schedule_dispatch: |
| 6624 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 6625 | bfq_schedule_dispatch(bfqd); |
| 6626 | } |
| 6627 | |
| 6628 | /* |
| 6629 | * Handler of the expiration of the timer running if the in-service queue |
| 6630 | * is idling inside its time slice. |
| 6631 | */ |
| 6632 | static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) |
| 6633 | { |
| 6634 | struct bfq_data *bfqd = container_of(timer, struct bfq_data, |
| 6635 | idle_slice_timer); |
| 6636 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 6637 | |
| 6638 | /* |
| 6639 | * Theoretical race here: the in-service queue can be NULL or |
| 6640 | * different from the queue that was idling if a new request |
| 6641 | * arrives for the current queue and there is a full dispatch |
| 6642 | * cycle that changes the in-service queue. This can hardly |
| 6643 | * happen, but in the worst case we just expire a queue too |
| 6644 | * early. |
| 6645 | */ |
| 6646 | if (bfqq) |
| 6647 | bfq_idle_slice_timer_body(bfqq); |
| 6648 | |
| 6649 | return HRTIMER_NORESTART; |
| 6650 | } |
| 6651 | |
| 6652 | static void __bfq_put_async_bfqq(struct bfq_data *bfqd, |
| 6653 | struct bfq_queue **bfqq_ptr) |
| 6654 | { |
| 6655 | struct bfq_queue *bfqq = *bfqq_ptr; |
| 6656 | |
| 6657 | bfq_log(bfqd, "put_async_bfqq: %p", bfqq); |
| 6658 | if (bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6659 | bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); |
| 6660 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6661 | bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", |
| 6662 | bfqq, bfqq->ref); |
| 6663 | bfq_put_queue(bfqq); |
| 6664 | *bfqq_ptr = NULL; |
| 6665 | } |
| 6666 | } |
| 6667 | |
| 6668 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6669 | * Release all the bfqg references to its async queues. If we are |
| 6670 | * deallocating the group these queues may still contain requests, so |
| 6671 | * we reparent them to the root cgroup (i.e., the only one that will |
| 6672 | * exist for sure until all the requests on a device are gone). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6673 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6674 | static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6675 | { |
| 6676 | int i, j; |
| 6677 | |
| 6678 | for (i = 0; i < 2; i++) |
| 6679 | for (j = 0; j < IOPRIO_BE_NR; j++) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6680 | __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6681 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6682 | __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6683 | } |
| 6684 | |
| 6685 | static void bfq_exit_queue(struct elevator_queue *e) |
| 6686 | { |
| 6687 | struct bfq_data *bfqd = e->elevator_data; |
| 6688 | struct bfq_queue *bfqq, *n; |
| 6689 | |
| 6690 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 6691 | |
| 6692 | spin_lock_irq(&bfqd->lock); |
| 6693 | list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6694 | bfq_deactivate_bfqq(bfqd, bfqq, false, false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6695 | spin_unlock_irq(&bfqd->lock); |
| 6696 | |
| 6697 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 6698 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6699 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6700 | blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); |
| 6701 | #else |
| 6702 | spin_lock_irq(&bfqd->lock); |
| 6703 | bfq_put_async_queues(bfqd, bfqd->root_group); |
| 6704 | kfree(bfqd->root_group); |
| 6705 | spin_unlock_irq(&bfqd->lock); |
| 6706 | #endif |
| 6707 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6708 | kfree(bfqd); |
| 6709 | } |
| 6710 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6711 | static void bfq_init_root_group(struct bfq_group *root_group, |
| 6712 | struct bfq_data *bfqd) |
| 6713 | { |
| 6714 | int i; |
| 6715 | |
| 6716 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6717 | root_group->entity.parent = NULL; |
| 6718 | root_group->my_entity = NULL; |
| 6719 | root_group->bfqd = bfqd; |
| 6720 | #endif |
| 6721 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| 6722 | root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| 6723 | root_group->sched_data.bfq_class_idle_last_service = jiffies; |
| 6724 | } |
| 6725 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6726 | static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) |
| 6727 | { |
| 6728 | struct bfq_data *bfqd; |
| 6729 | struct elevator_queue *eq; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6730 | |
| 6731 | eq = elevator_alloc(q, e); |
| 6732 | if (!eq) |
| 6733 | return -ENOMEM; |
| 6734 | |
| 6735 | bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); |
| 6736 | if (!bfqd) { |
| 6737 | kobject_put(&eq->kobj); |
| 6738 | return -ENOMEM; |
| 6739 | } |
| 6740 | eq->elevator_data = bfqd; |
| 6741 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6742 | spin_lock_irq(q->queue_lock); |
| 6743 | q->elevator = eq; |
| 6744 | spin_unlock_irq(q->queue_lock); |
| 6745 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6746 | /* |
| 6747 | * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. |
| 6748 | * Grab a permanent reference to it, so that the normal code flow |
| 6749 | * will not attempt to free it. |
| 6750 | */ |
| 6751 | bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); |
| 6752 | bfqd->oom_bfqq.ref++; |
| 6753 | bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; |
| 6754 | bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; |
| 6755 | bfqd->oom_bfqq.entity.new_weight = |
| 6756 | bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); |
| 6757 | /* |
| 6758 | * Trigger weight initialization, according to ioprio, at the |
| 6759 | * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio |
| 6760 | * class won't be changed any more. |
| 6761 | */ |
| 6762 | bfqd->oom_bfqq.entity.prio_changed = 1; |
| 6763 | |
| 6764 | bfqd->queue = q; |
| 6765 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6766 | INIT_LIST_HEAD(&bfqd->dispatch); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6767 | |
| 6768 | hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, |
| 6769 | HRTIMER_MODE_REL); |
| 6770 | bfqd->idle_slice_timer.function = bfq_idle_slice_timer; |
| 6771 | |
| 6772 | INIT_LIST_HEAD(&bfqd->active_list); |
| 6773 | INIT_LIST_HEAD(&bfqd->idle_list); |
| 6774 | |
| 6775 | bfqd->hw_tag = -1; |
| 6776 | |
| 6777 | bfqd->bfq_max_budget = bfq_default_max_budget; |
| 6778 | |
| 6779 | bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; |
| 6780 | bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; |
| 6781 | bfqd->bfq_back_max = bfq_back_max; |
| 6782 | bfqd->bfq_back_penalty = bfq_back_penalty; |
| 6783 | bfqd->bfq_slice_idle = bfq_slice_idle; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6784 | bfqd->bfq_timeout = bfq_timeout; |
| 6785 | |
| 6786 | bfqd->bfq_requests_within_timer = 120; |
| 6787 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6788 | bfqd->low_latency = true; |
| 6789 | |
| 6790 | /* |
| 6791 | * Trade-off between responsiveness and fairness. |
| 6792 | */ |
| 6793 | bfqd->bfq_wr_coeff = 30; |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 6794 | bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6795 | bfqd->bfq_wr_max_time = 0; |
| 6796 | bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); |
| 6797 | bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); |
Paolo Valente | 77b7dce | 2017-04-12 18:23:13 +0200 | [diff] [blame] | 6798 | bfqd->bfq_wr_max_softrt_rate = 7000; /* |
| 6799 | * Approximate rate required |
| 6800 | * to playback or record a |
| 6801 | * high-definition compressed |
| 6802 | * video. |
| 6803 | */ |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6804 | |
| 6805 | /* |
| 6806 | * Begin by assuming, optimistically, that the device is a |
| 6807 | * high-speed one, and that its peak rate is equal to 2/3 of |
| 6808 | * the highest reference rate. |
| 6809 | */ |
| 6810 | bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] * |
| 6811 | T_fast[blk_queue_nonrot(bfqd->queue)]; |
| 6812 | bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3; |
| 6813 | bfqd->device_speed = BFQ_BFQD_FAST; |
| 6814 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6815 | spin_lock_init(&bfqd->lock); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6816 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6817 | /* |
| 6818 | * The invocation of the next bfq_create_group_hierarchy |
| 6819 | * function is the head of a chain of function calls |
| 6820 | * (bfq_create_group_hierarchy->blkcg_activate_policy-> |
| 6821 | * blk_mq_freeze_queue) that may lead to the invocation of the |
| 6822 | * has_work hook function. For this reason, |
| 6823 | * bfq_create_group_hierarchy is invoked only after all |
| 6824 | * scheduler data has been initialized, apart from the fields |
| 6825 | * that can be initialized only after invoking |
| 6826 | * bfq_create_group_hierarchy. This, in particular, enables |
| 6827 | * has_work to correctly return false. Of course, to avoid |
| 6828 | * other inconsistencies, the blk-mq stack must then refrain |
| 6829 | * from invoking further scheduler hooks before this init |
| 6830 | * function is finished. |
| 6831 | */ |
| 6832 | bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); |
| 6833 | if (!bfqd->root_group) |
| 6834 | goto out_free; |
| 6835 | bfq_init_root_group(bfqd->root_group, bfqd); |
| 6836 | bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); |
| 6837 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6838 | |
| 6839 | return 0; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6840 | |
| 6841 | out_free: |
| 6842 | kfree(bfqd); |
| 6843 | kobject_put(&eq->kobj); |
| 6844 | return -ENOMEM; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6845 | } |
| 6846 | |
| 6847 | static void bfq_slab_kill(void) |
| 6848 | { |
| 6849 | kmem_cache_destroy(bfq_pool); |
| 6850 | } |
| 6851 | |
| 6852 | static int __init bfq_slab_setup(void) |
| 6853 | { |
| 6854 | bfq_pool = KMEM_CACHE(bfq_queue, 0); |
| 6855 | if (!bfq_pool) |
| 6856 | return -ENOMEM; |
| 6857 | return 0; |
| 6858 | } |
| 6859 | |
| 6860 | static ssize_t bfq_var_show(unsigned int var, char *page) |
| 6861 | { |
| 6862 | return sprintf(page, "%u\n", var); |
| 6863 | } |
| 6864 | |
| 6865 | static ssize_t bfq_var_store(unsigned long *var, const char *page, |
| 6866 | size_t count) |
| 6867 | { |
| 6868 | unsigned long new_val; |
| 6869 | int ret = kstrtoul(page, 10, &new_val); |
| 6870 | |
| 6871 | if (ret == 0) |
| 6872 | *var = new_val; |
| 6873 | |
| 6874 | return count; |
| 6875 | } |
| 6876 | |
| 6877 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ |
| 6878 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 6879 | { \ |
| 6880 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6881 | u64 __data = __VAR; \ |
| 6882 | if (__CONV == 1) \ |
| 6883 | __data = jiffies_to_msecs(__data); \ |
| 6884 | else if (__CONV == 2) \ |
| 6885 | __data = div_u64(__data, NSEC_PER_MSEC); \ |
| 6886 | return bfq_var_show(__data, (page)); \ |
| 6887 | } |
| 6888 | SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); |
| 6889 | SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); |
| 6890 | SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); |
| 6891 | SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); |
| 6892 | SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); |
| 6893 | SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); |
| 6894 | SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); |
| 6895 | SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 6896 | SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6897 | #undef SHOW_FUNCTION |
| 6898 | |
| 6899 | #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ |
| 6900 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 6901 | { \ |
| 6902 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6903 | u64 __data = __VAR; \ |
| 6904 | __data = div_u64(__data, NSEC_PER_USEC); \ |
| 6905 | return bfq_var_show(__data, (page)); \ |
| 6906 | } |
| 6907 | USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); |
| 6908 | #undef USEC_SHOW_FUNCTION |
| 6909 | |
| 6910 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ |
| 6911 | static ssize_t \ |
| 6912 | __FUNC(struct elevator_queue *e, const char *page, size_t count) \ |
| 6913 | { \ |
| 6914 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6915 | unsigned long uninitialized_var(__data); \ |
| 6916 | int ret = bfq_var_store(&__data, (page), count); \ |
| 6917 | if (__data < (MIN)) \ |
| 6918 | __data = (MIN); \ |
| 6919 | else if (__data > (MAX)) \ |
| 6920 | __data = (MAX); \ |
| 6921 | if (__CONV == 1) \ |
| 6922 | *(__PTR) = msecs_to_jiffies(__data); \ |
| 6923 | else if (__CONV == 2) \ |
| 6924 | *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ |
| 6925 | else \ |
| 6926 | *(__PTR) = __data; \ |
| 6927 | return ret; \ |
| 6928 | } |
| 6929 | STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, |
| 6930 | INT_MAX, 2); |
| 6931 | STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, |
| 6932 | INT_MAX, 2); |
| 6933 | STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); |
| 6934 | STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, |
| 6935 | INT_MAX, 0); |
| 6936 | STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); |
| 6937 | #undef STORE_FUNCTION |
| 6938 | |
| 6939 | #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ |
| 6940 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ |
| 6941 | { \ |
| 6942 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6943 | unsigned long uninitialized_var(__data); \ |
| 6944 | int ret = bfq_var_store(&__data, (page), count); \ |
| 6945 | if (__data < (MIN)) \ |
| 6946 | __data = (MIN); \ |
| 6947 | else if (__data > (MAX)) \ |
| 6948 | __data = (MAX); \ |
| 6949 | *(__PTR) = (u64)__data * NSEC_PER_USEC; \ |
| 6950 | return ret; \ |
| 6951 | } |
| 6952 | USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, |
| 6953 | UINT_MAX); |
| 6954 | #undef USEC_STORE_FUNCTION |
| 6955 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6956 | static ssize_t bfq_max_budget_store(struct elevator_queue *e, |
| 6957 | const char *page, size_t count) |
| 6958 | { |
| 6959 | struct bfq_data *bfqd = e->elevator_data; |
| 6960 | unsigned long uninitialized_var(__data); |
| 6961 | int ret = bfq_var_store(&__data, (page), count); |
| 6962 | |
| 6963 | if (__data == 0) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6964 | bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6965 | else { |
| 6966 | if (__data > INT_MAX) |
| 6967 | __data = INT_MAX; |
| 6968 | bfqd->bfq_max_budget = __data; |
| 6969 | } |
| 6970 | |
| 6971 | bfqd->bfq_user_max_budget = __data; |
| 6972 | |
| 6973 | return ret; |
| 6974 | } |
| 6975 | |
| 6976 | /* |
| 6977 | * Leaving this name to preserve name compatibility with cfq |
| 6978 | * parameters, but this timeout is used for both sync and async. |
| 6979 | */ |
| 6980 | static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, |
| 6981 | const char *page, size_t count) |
| 6982 | { |
| 6983 | struct bfq_data *bfqd = e->elevator_data; |
| 6984 | unsigned long uninitialized_var(__data); |
| 6985 | int ret = bfq_var_store(&__data, (page), count); |
| 6986 | |
| 6987 | if (__data < 1) |
| 6988 | __data = 1; |
| 6989 | else if (__data > INT_MAX) |
| 6990 | __data = INT_MAX; |
| 6991 | |
| 6992 | bfqd->bfq_timeout = msecs_to_jiffies(__data); |
| 6993 | if (bfqd->bfq_user_max_budget == 0) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6994 | bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6995 | |
| 6996 | return ret; |
| 6997 | } |
| 6998 | |
| 6999 | static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, |
| 7000 | const char *page, size_t count) |
| 7001 | { |
| 7002 | struct bfq_data *bfqd = e->elevator_data; |
| 7003 | unsigned long uninitialized_var(__data); |
| 7004 | int ret = bfq_var_store(&__data, (page), count); |
| 7005 | |
| 7006 | if (__data > 1) |
| 7007 | __data = 1; |
| 7008 | if (!bfqd->strict_guarantees && __data == 1 |
| 7009 | && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) |
| 7010 | bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; |
| 7011 | |
| 7012 | bfqd->strict_guarantees = __data; |
| 7013 | |
| 7014 | return ret; |
| 7015 | } |
| 7016 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 7017 | static ssize_t bfq_low_latency_store(struct elevator_queue *e, |
| 7018 | const char *page, size_t count) |
| 7019 | { |
| 7020 | struct bfq_data *bfqd = e->elevator_data; |
| 7021 | unsigned long uninitialized_var(__data); |
| 7022 | int ret = bfq_var_store(&__data, (page), count); |
| 7023 | |
| 7024 | if (__data > 1) |
| 7025 | __data = 1; |
| 7026 | if (__data == 0 && bfqd->low_latency != 0) |
| 7027 | bfq_end_wr(bfqd); |
| 7028 | bfqd->low_latency = __data; |
| 7029 | |
| 7030 | return ret; |
| 7031 | } |
| 7032 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7033 | #define BFQ_ATTR(name) \ |
| 7034 | __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) |
| 7035 | |
| 7036 | static struct elv_fs_entry bfq_attrs[] = { |
| 7037 | BFQ_ATTR(fifo_expire_sync), |
| 7038 | BFQ_ATTR(fifo_expire_async), |
| 7039 | BFQ_ATTR(back_seek_max), |
| 7040 | BFQ_ATTR(back_seek_penalty), |
| 7041 | BFQ_ATTR(slice_idle), |
| 7042 | BFQ_ATTR(slice_idle_us), |
| 7043 | BFQ_ATTR(max_budget), |
| 7044 | BFQ_ATTR(timeout_sync), |
| 7045 | BFQ_ATTR(strict_guarantees), |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 7046 | BFQ_ATTR(low_latency), |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7047 | __ATTR_NULL |
| 7048 | }; |
| 7049 | |
| 7050 | static struct elevator_type iosched_bfq_mq = { |
| 7051 | .ops.mq = { |
| 7052 | .get_rq_priv = bfq_get_rq_private, |
| 7053 | .put_rq_priv = bfq_put_rq_private, |
| 7054 | .exit_icq = bfq_exit_icq, |
| 7055 | .insert_requests = bfq_insert_requests, |
| 7056 | .dispatch_request = bfq_dispatch_request, |
| 7057 | .next_request = elv_rb_latter_request, |
| 7058 | .former_request = elv_rb_former_request, |
| 7059 | .allow_merge = bfq_allow_bio_merge, |
| 7060 | .bio_merge = bfq_bio_merge, |
| 7061 | .request_merge = bfq_request_merge, |
| 7062 | .requests_merged = bfq_requests_merged, |
| 7063 | .request_merged = bfq_request_merged, |
| 7064 | .has_work = bfq_has_work, |
| 7065 | .init_sched = bfq_init_queue, |
| 7066 | .exit_sched = bfq_exit_queue, |
| 7067 | }, |
| 7068 | |
| 7069 | .uses_mq = true, |
| 7070 | .icq_size = sizeof(struct bfq_io_cq), |
| 7071 | .icq_align = __alignof__(struct bfq_io_cq), |
| 7072 | .elevator_attrs = bfq_attrs, |
| 7073 | .elevator_name = "bfq", |
| 7074 | .elevator_owner = THIS_MODULE, |
| 7075 | }; |
| 7076 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 7077 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 7078 | static struct blkcg_policy blkcg_policy_bfq = { |
| 7079 | .dfl_cftypes = bfq_blkg_files, |
| 7080 | .legacy_cftypes = bfq_blkcg_legacy_files, |
| 7081 | |
| 7082 | .cpd_alloc_fn = bfq_cpd_alloc, |
| 7083 | .cpd_init_fn = bfq_cpd_init, |
| 7084 | .cpd_bind_fn = bfq_cpd_init, |
| 7085 | .cpd_free_fn = bfq_cpd_free, |
| 7086 | |
| 7087 | .pd_alloc_fn = bfq_pd_alloc, |
| 7088 | .pd_init_fn = bfq_pd_init, |
| 7089 | .pd_offline_fn = bfq_pd_offline, |
| 7090 | .pd_free_fn = bfq_pd_free, |
| 7091 | .pd_reset_stats_fn = bfq_pd_reset_stats, |
| 7092 | }; |
| 7093 | #endif |
| 7094 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7095 | static int __init bfq_init(void) |
| 7096 | { |
| 7097 | int ret; |
| 7098 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 7099 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 7100 | ret = blkcg_policy_register(&blkcg_policy_bfq); |
| 7101 | if (ret) |
| 7102 | return ret; |
| 7103 | #endif |
| 7104 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7105 | ret = -ENOMEM; |
| 7106 | if (bfq_slab_setup()) |
| 7107 | goto err_pol_unreg; |
| 7108 | |
Paolo Valente | 44e44a1 | 2017-04-12 18:23:12 +0200 | [diff] [blame] | 7109 | /* |
| 7110 | * Times to load large popular applications for the typical |
| 7111 | * systems installed on the reference devices (see the |
| 7112 | * comments before the definitions of the next two |
| 7113 | * arrays). Actually, we use slightly slower values, as the |
| 7114 | * estimated peak rate tends to be smaller than the actual |
| 7115 | * peak rate. The reason for this last fact is that estimates |
| 7116 | * are computed over much shorter time intervals than the long |
| 7117 | * intervals typically used for benchmarking. Why? First, to |
| 7118 | * adapt more quickly to variations. Second, because an I/O |
| 7119 | * scheduler cannot rely on a peak-rate-evaluation workload to |
| 7120 | * be run for a long time. |
| 7121 | */ |
| 7122 | T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */ |
| 7123 | T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */ |
| 7124 | T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */ |
| 7125 | T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */ |
| 7126 | |
| 7127 | /* |
| 7128 | * Thresholds that determine the switch between speed classes |
| 7129 | * (see the comments before the definition of the array |
| 7130 | * device_speed_thresh). These thresholds are biased towards |
| 7131 | * transitions to the fast class. This is safer than the |
| 7132 | * opposite bias. In fact, a wrong transition to the slow |
| 7133 | * class results in short weight-raising periods, because the |
| 7134 | * speed of the device then tends to be higher that the |
| 7135 | * reference peak rate. On the opposite end, a wrong |
| 7136 | * transition to the fast class tends to increase |
| 7137 | * weight-raising periods, because of the opposite reason. |
| 7138 | */ |
| 7139 | device_speed_thresh[0] = (4 * R_slow[0]) / 3; |
| 7140 | device_speed_thresh[1] = (4 * R_slow[1]) / 3; |
| 7141 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7142 | ret = elv_register(&iosched_bfq_mq); |
| 7143 | if (ret) |
| 7144 | goto err_pol_unreg; |
| 7145 | |
| 7146 | return 0; |
| 7147 | |
| 7148 | err_pol_unreg: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 7149 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 7150 | blkcg_policy_unregister(&blkcg_policy_bfq); |
| 7151 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7152 | return ret; |
| 7153 | } |
| 7154 | |
| 7155 | static void __exit bfq_exit(void) |
| 7156 | { |
| 7157 | elv_unregister(&iosched_bfq_mq); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 7158 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 7159 | blkcg_policy_unregister(&blkcg_policy_bfq); |
| 7160 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 7161 | bfq_slab_kill(); |
| 7162 | } |
| 7163 | |
| 7164 | module_init(bfq_init); |
| 7165 | module_exit(bfq_exit); |
| 7166 | |
| 7167 | MODULE_AUTHOR("Paolo Valente"); |
| 7168 | MODULE_LICENSE("GPL"); |
| 7169 | MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); |