blob: 1071c10cf1c7e41992c946cdd8ba8d0f7372c2ef [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
Jann Hornbcb85c82017-04-24 11:16:49 +0200113The new VM has no virtual cpus and no memory.
James Hogana8a3c422017-03-14 10:15:19 +0000114You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115
116In order to create user controlled virtual machines on S390, check
117KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
118privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300119
James Hogana8a3c422017-03-14 10:15:19 +0000120To use hardware assisted virtualization on MIPS (VZ ASE) rather than
121the default trap & emulate implementation (which changes the virtual
122memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
123flag KVM_VM_MIPS_VZ.
124
Jan Kiszka414fa982012-04-24 16:40:15 +0200125
Suzuki K Poulose233a7cb2018-09-26 17:32:54 +0100126On arm64, the physical address size for a VM (IPA Size limit) is limited
127to 40bits by default. The limit can be configured if the host supports the
128extension KVM_CAP_ARM_VM_IPA_SIZE. When supported, use
129KVM_VM_TYPE_ARM_IPA_SIZE(IPA_Bits) to set the size in the machine type
130identifier, where IPA_Bits is the maximum width of any physical
131address used by the VM. The IPA_Bits is encoded in bits[7-0] of the
132machine type identifier.
133
134e.g, to configure a guest to use 48bit physical address size :
135
136 vm_fd = ioctl(dev_fd, KVM_CREATE_VM, KVM_VM_TYPE_ARM_IPA_SIZE(48));
137
138The requested size (IPA_Bits) must be :
139 0 - Implies default size, 40bits (for backward compatibility)
140
141 or
142
143 N - Implies N bits, where N is a positive integer such that,
144 32 <= N <= Host_IPA_Limit
145
146Host_IPA_Limit is the maximum possible value for IPA_Bits on the host and
147is dependent on the CPU capability and the kernel configuration. The limit can
148be retrieved using KVM_CAP_ARM_VM_IPA_SIZE of the KVM_CHECK_EXTENSION
149ioctl() at run-time.
150
151Please note that configuring the IPA size does not affect the capability
152exposed by the guest CPUs in ID_AA64MMFR0_EL1[PARange]. It only affects
153size of the address translated by the stage2 level (guest physical to
154host physical address translations).
155
156
Tom Lendacky801e4592018-02-21 13:39:51 -06001574.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300158
Tom Lendacky801e4592018-02-21 13:39:51 -0600159Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300160Architectures: x86
Tom Lendacky801e4592018-02-21 13:39:51 -0600161Type: system ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300162Parameters: struct kvm_msr_list (in/out)
163Returns: 0 on success; -1 on error
164Errors:
Tom Lendacky801e4592018-02-21 13:39:51 -0600165 EFAULT: the msr index list cannot be read from or written to
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300166 E2BIG: the msr index list is to be to fit in the array specified by
167 the user.
168
169struct kvm_msr_list {
170 __u32 nmsrs; /* number of msrs in entries */
171 __u32 indices[0];
172};
173
Tom Lendacky801e4592018-02-21 13:39:51 -0600174The user fills in the size of the indices array in nmsrs, and in return
175kvm adjusts nmsrs to reflect the actual number of msrs and fills in the
176indices array with their numbers.
177
178KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list
179varies by kvm version and host processor, but does not change otherwise.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300180
Avi Kivity2e2602c2010-07-07 14:09:39 +0300181Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
182not returned in the MSR list, as different vcpus can have a different number
183of banks, as set via the KVM_X86_SETUP_MCE ioctl.
184
Tom Lendacky801e4592018-02-21 13:39:51 -0600185KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed
186to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities
187and processor features that are exposed via MSRs (e.g., VMX capabilities).
188This list also varies by kvm version and host processor, but does not change
189otherwise.
190
Jan Kiszka414fa982012-04-24 16:40:15 +0200191
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001924.4 KVM_CHECK_EXTENSION
193
Alexander Graf92b591a2014-07-14 18:33:08 +0200194Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300195Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200196Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300197Parameters: extension identifier (KVM_CAP_*)
198Returns: 0 if unsupported; 1 (or some other positive integer) if supported
199
200The API allows the application to query about extensions to the core
201kvm API. Userspace passes an extension identifier (an integer) and
202receives an integer that describes the extension availability.
203Generally 0 means no and 1 means yes, but some extensions may report
204additional information in the integer return value.
205
Alexander Graf92b591a2014-07-14 18:33:08 +0200206Based on their initialization different VMs may have different capabilities.
207It is thus encouraged to use the vm ioctl to query for capabilities (available
208with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200209
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002104.5 KVM_GET_VCPU_MMAP_SIZE
211
212Capability: basic
213Architectures: all
214Type: system ioctl
215Parameters: none
216Returns: size of vcpu mmap area, in bytes
217
218The KVM_RUN ioctl (cf.) communicates with userspace via a shared
219memory region. This ioctl returns the size of that region. See the
220KVM_RUN documentation for details.
221
Jan Kiszka414fa982012-04-24 16:40:15 +0200222
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002234.6 KVM_SET_MEMORY_REGION
224
225Capability: basic
226Architectures: all
227Type: vm ioctl
228Parameters: struct kvm_memory_region (in)
229Returns: 0 on success, -1 on error
230
Avi Kivityb74a07b2010-06-21 11:48:05 +0300231This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300232
Jan Kiszka414fa982012-04-24 16:40:15 +0200233
Paul Bolle68ba6972011-02-15 00:05:59 +01002344.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300235
236Capability: basic
237Architectures: all
238Type: vm ioctl
239Parameters: vcpu id (apic id on x86)
240Returns: vcpu fd on success, -1 on error
241
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200242This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
243The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300244
245The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
246the KVM_CHECK_EXTENSION ioctl() at run-time.
247The maximum possible value for max_vcpus can be retrieved using the
248KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
249
Pekka Enberg76d25402011-05-09 22:48:54 +0300250If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
251cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300252If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
253same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300254
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200255The maximum possible value for max_vcpu_id can be retrieved using the
256KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
257
258If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
259is the same as the value returned from KVM_CAP_MAX_VCPUS.
260
Paul Mackerras371fefd2011-06-29 00:23:08 +0000261On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
262threads in one or more virtual CPU cores. (This is because the
263hardware requires all the hardware threads in a CPU core to be in the
264same partition.) The KVM_CAP_PPC_SMT capability indicates the number
265of vcpus per virtual core (vcore). The vcore id is obtained by
266dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
267given vcore will always be in the same physical core as each other
268(though that might be a different physical core from time to time).
269Userspace can control the threading (SMT) mode of the guest by its
270allocation of vcpu ids. For example, if userspace wants
271single-threaded guest vcpus, it should make all vcpu ids be a multiple
272of the number of vcpus per vcore.
273
Carsten Otte5b1c1492012-01-04 10:25:23 +0100274For virtual cpus that have been created with S390 user controlled virtual
275machines, the resulting vcpu fd can be memory mapped at page offset
276KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
277cpu's hardware control block.
278
Jan Kiszka414fa982012-04-24 16:40:15 +0200279
Paul Bolle68ba6972011-02-15 00:05:59 +01002804.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300281
282Capability: basic
283Architectures: x86
284Type: vm ioctl
285Parameters: struct kvm_dirty_log (in/out)
286Returns: 0 on success, -1 on error
287
288/* for KVM_GET_DIRTY_LOG */
289struct kvm_dirty_log {
290 __u32 slot;
291 __u32 padding;
292 union {
293 void __user *dirty_bitmap; /* one bit per page */
294 __u64 padding;
295 };
296};
297
298Given a memory slot, return a bitmap containing any pages dirtied
299since the last call to this ioctl. Bit 0 is the first page in the
300memory slot. Ensure the entire structure is cleared to avoid padding
301issues.
302
Paolo Bonzinif481b062015-05-17 17:30:37 +0200303If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
304the address space for which you want to return the dirty bitmap.
305They must be less than the value that KVM_CHECK_EXTENSION returns for
306the KVM_CAP_MULTI_ADDRESS_SPACE capability.
307
Jan Kiszka414fa982012-04-24 16:40:15 +0200308
Paul Bolle68ba6972011-02-15 00:05:59 +01003094.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300310
311Capability: basic
312Architectures: x86
313Type: vm ioctl
314Parameters: struct kvm_memory_alias (in)
315Returns: 0 (success), -1 (error)
316
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300317This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300318
Jan Kiszka414fa982012-04-24 16:40:15 +0200319
Paul Bolle68ba6972011-02-15 00:05:59 +01003204.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300321
322Capability: basic
323Architectures: all
324Type: vcpu ioctl
325Parameters: none
326Returns: 0 on success, -1 on error
327Errors:
328 EINTR: an unmasked signal is pending
329
330This ioctl is used to run a guest virtual cpu. While there are no
331explicit parameters, there is an implicit parameter block that can be
332obtained by mmap()ing the vcpu fd at offset 0, with the size given by
333KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
334kvm_run' (see below).
335
Jan Kiszka414fa982012-04-24 16:40:15 +0200336
Paul Bolle68ba6972011-02-15 00:05:59 +01003374.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300338
339Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100340Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300341Type: vcpu ioctl
342Parameters: struct kvm_regs (out)
343Returns: 0 on success, -1 on error
344
345Reads the general purpose registers from the vcpu.
346
347/* x86 */
348struct kvm_regs {
349 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
350 __u64 rax, rbx, rcx, rdx;
351 __u64 rsi, rdi, rsp, rbp;
352 __u64 r8, r9, r10, r11;
353 __u64 r12, r13, r14, r15;
354 __u64 rip, rflags;
355};
356
James Hoganc2d2c212014-07-04 15:11:35 +0100357/* mips */
358struct kvm_regs {
359 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
360 __u64 gpr[32];
361 __u64 hi;
362 __u64 lo;
363 __u64 pc;
364};
365
Jan Kiszka414fa982012-04-24 16:40:15 +0200366
Paul Bolle68ba6972011-02-15 00:05:59 +01003674.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368
369Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +0100370Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300371Type: vcpu ioctl
372Parameters: struct kvm_regs (in)
373Returns: 0 on success, -1 on error
374
375Writes the general purpose registers into the vcpu.
376
377See KVM_GET_REGS for the data structure.
378
Jan Kiszka414fa982012-04-24 16:40:15 +0200379
Paul Bolle68ba6972011-02-15 00:05:59 +01003804.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300381
382Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500383Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300384Type: vcpu ioctl
385Parameters: struct kvm_sregs (out)
386Returns: 0 on success, -1 on error
387
388Reads special registers from the vcpu.
389
390/* x86 */
391struct kvm_sregs {
392 struct kvm_segment cs, ds, es, fs, gs, ss;
393 struct kvm_segment tr, ldt;
394 struct kvm_dtable gdt, idt;
395 __u64 cr0, cr2, cr3, cr4, cr8;
396 __u64 efer;
397 __u64 apic_base;
398 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
399};
400
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000401/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500402
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300403interrupt_bitmap is a bitmap of pending external interrupts. At most
404one bit may be set. This interrupt has been acknowledged by the APIC
405but not yet injected into the cpu core.
406
Jan Kiszka414fa982012-04-24 16:40:15 +0200407
Paul Bolle68ba6972011-02-15 00:05:59 +01004084.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300409
410Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500411Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300412Type: vcpu ioctl
413Parameters: struct kvm_sregs (in)
414Returns: 0 on success, -1 on error
415
416Writes special registers into the vcpu. See KVM_GET_SREGS for the
417data structures.
418
Jan Kiszka414fa982012-04-24 16:40:15 +0200419
Paul Bolle68ba6972011-02-15 00:05:59 +01004204.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300421
422Capability: basic
423Architectures: x86
424Type: vcpu ioctl
425Parameters: struct kvm_translation (in/out)
426Returns: 0 on success, -1 on error
427
428Translates a virtual address according to the vcpu's current address
429translation mode.
430
431struct kvm_translation {
432 /* in */
433 __u64 linear_address;
434
435 /* out */
436 __u64 physical_address;
437 __u8 valid;
438 __u8 writeable;
439 __u8 usermode;
440 __u8 pad[5];
441};
442
Jan Kiszka414fa982012-04-24 16:40:15 +0200443
Paul Bolle68ba6972011-02-15 00:05:59 +01004444.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300445
446Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100447Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300448Type: vcpu ioctl
449Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200450Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300451
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200452Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300453
454/* for KVM_INTERRUPT */
455struct kvm_interrupt {
456 /* in */
457 __u32 irq;
458};
459
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200460X86:
461
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200462Returns: 0 on success,
463 -EEXIST if an interrupt is already enqueued
464 -EINVAL the the irq number is invalid
465 -ENXIO if the PIC is in the kernel
466 -EFAULT if the pointer is invalid
467
468Note 'irq' is an interrupt vector, not an interrupt pin or line. This
469ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300470
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200471PPC:
472
473Queues an external interrupt to be injected. This ioctl is overleaded
474with 3 different irq values:
475
476a) KVM_INTERRUPT_SET
477
478 This injects an edge type external interrupt into the guest once it's ready
479 to receive interrupts. When injected, the interrupt is done.
480
481b) KVM_INTERRUPT_UNSET
482
483 This unsets any pending interrupt.
484
485 Only available with KVM_CAP_PPC_UNSET_IRQ.
486
487c) KVM_INTERRUPT_SET_LEVEL
488
489 This injects a level type external interrupt into the guest context. The
490 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
491 is triggered.
492
493 Only available with KVM_CAP_PPC_IRQ_LEVEL.
494
495Note that any value for 'irq' other than the ones stated above is invalid
496and incurs unexpected behavior.
497
James Hoganc2d2c212014-07-04 15:11:35 +0100498MIPS:
499
500Queues an external interrupt to be injected into the virtual CPU. A negative
501interrupt number dequeues the interrupt.
502
Jan Kiszka414fa982012-04-24 16:40:15 +0200503
Paul Bolle68ba6972011-02-15 00:05:59 +01005044.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300505
506Capability: basic
507Architectures: none
508Type: vcpu ioctl
509Parameters: none)
510Returns: -1 on error
511
512Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
513
Jan Kiszka414fa982012-04-24 16:40:15 +0200514
Paul Bolle68ba6972011-02-15 00:05:59 +01005154.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300516
Tom Lendacky801e4592018-02-21 13:39:51 -0600517Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300518Architectures: x86
Tom Lendacky801e4592018-02-21 13:39:51 -0600519Type: system ioctl, vcpu ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300520Parameters: struct kvm_msrs (in/out)
Tom Lendacky801e4592018-02-21 13:39:51 -0600521Returns: number of msrs successfully returned;
522 -1 on error
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300523
Tom Lendacky801e4592018-02-21 13:39:51 -0600524When used as a system ioctl:
525Reads the values of MSR-based features that are available for the VM. This
526is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values.
527The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST
528in a system ioctl.
529
530When used as a vcpu ioctl:
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300531Reads model-specific registers from the vcpu. Supported msr indices can
Tom Lendacky801e4592018-02-21 13:39:51 -0600532be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300533
534struct kvm_msrs {
535 __u32 nmsrs; /* number of msrs in entries */
536 __u32 pad;
537
538 struct kvm_msr_entry entries[0];
539};
540
541struct kvm_msr_entry {
542 __u32 index;
543 __u32 reserved;
544 __u64 data;
545};
546
547Application code should set the 'nmsrs' member (which indicates the
548size of the entries array) and the 'index' member of each array entry.
549kvm will fill in the 'data' member.
550
Jan Kiszka414fa982012-04-24 16:40:15 +0200551
Paul Bolle68ba6972011-02-15 00:05:59 +01005524.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300553
554Capability: basic
555Architectures: x86
556Type: vcpu ioctl
557Parameters: struct kvm_msrs (in)
558Returns: 0 on success, -1 on error
559
560Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
561data structures.
562
563Application code should set the 'nmsrs' member (which indicates the
564size of the entries array), and the 'index' and 'data' members of each
565array entry.
566
Jan Kiszka414fa982012-04-24 16:40:15 +0200567
Paul Bolle68ba6972011-02-15 00:05:59 +01005684.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300569
570Capability: basic
571Architectures: x86
572Type: vcpu ioctl
573Parameters: struct kvm_cpuid (in)
574Returns: 0 on success, -1 on error
575
576Defines the vcpu responses to the cpuid instruction. Applications
577should use the KVM_SET_CPUID2 ioctl if available.
578
579
580struct kvm_cpuid_entry {
581 __u32 function;
582 __u32 eax;
583 __u32 ebx;
584 __u32 ecx;
585 __u32 edx;
586 __u32 padding;
587};
588
589/* for KVM_SET_CPUID */
590struct kvm_cpuid {
591 __u32 nent;
592 __u32 padding;
593 struct kvm_cpuid_entry entries[0];
594};
595
Jan Kiszka414fa982012-04-24 16:40:15 +0200596
Paul Bolle68ba6972011-02-15 00:05:59 +01005974.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300598
599Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100600Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300601Type: vcpu ioctl
602Parameters: struct kvm_signal_mask (in)
603Returns: 0 on success, -1 on error
604
605Defines which signals are blocked during execution of KVM_RUN. This
606signal mask temporarily overrides the threads signal mask. Any
607unblocked signal received (except SIGKILL and SIGSTOP, which retain
608their traditional behaviour) will cause KVM_RUN to return with -EINTR.
609
610Note the signal will only be delivered if not blocked by the original
611signal mask.
612
613/* for KVM_SET_SIGNAL_MASK */
614struct kvm_signal_mask {
615 __u32 len;
616 __u8 sigset[0];
617};
618
Jan Kiszka414fa982012-04-24 16:40:15 +0200619
Paul Bolle68ba6972011-02-15 00:05:59 +01006204.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300621
622Capability: basic
623Architectures: x86
624Type: vcpu ioctl
625Parameters: struct kvm_fpu (out)
626Returns: 0 on success, -1 on error
627
628Reads the floating point state from the vcpu.
629
630/* for KVM_GET_FPU and KVM_SET_FPU */
631struct kvm_fpu {
632 __u8 fpr[8][16];
633 __u16 fcw;
634 __u16 fsw;
635 __u8 ftwx; /* in fxsave format */
636 __u8 pad1;
637 __u16 last_opcode;
638 __u64 last_ip;
639 __u64 last_dp;
640 __u8 xmm[16][16];
641 __u32 mxcsr;
642 __u32 pad2;
643};
644
Jan Kiszka414fa982012-04-24 16:40:15 +0200645
Paul Bolle68ba6972011-02-15 00:05:59 +01006464.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300647
648Capability: basic
649Architectures: x86
650Type: vcpu ioctl
651Parameters: struct kvm_fpu (in)
652Returns: 0 on success, -1 on error
653
654Writes the floating point state to the vcpu.
655
656/* for KVM_GET_FPU and KVM_SET_FPU */
657struct kvm_fpu {
658 __u8 fpr[8][16];
659 __u16 fcw;
660 __u16 fsw;
661 __u8 ftwx; /* in fxsave format */
662 __u8 pad1;
663 __u16 last_opcode;
664 __u64 last_ip;
665 __u64 last_dp;
666 __u8 xmm[16][16];
667 __u32 mxcsr;
668 __u32 pad2;
669};
670
Jan Kiszka414fa982012-04-24 16:40:15 +0200671
Paul Bolle68ba6972011-02-15 00:05:59 +01006724.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300673
Cornelia Huck84223592013-07-15 13:36:01 +0200674Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100675Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300676Type: vm ioctl
677Parameters: none
678Returns: 0 on success, -1 on error
679
Andre Przywaraac3d3732014-06-03 10:26:30 +0200680Creates an interrupt controller model in the kernel.
681On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
682future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
683PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
684On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
685KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
686KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
687On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200688
689Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
690before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300691
Jan Kiszka414fa982012-04-24 16:40:15 +0200692
Paul Bolle68ba6972011-02-15 00:05:59 +01006934.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300694
695Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100696Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300697Type: vm ioctl
698Parameters: struct kvm_irq_level
699Returns: 0 on success, -1 on error
700
701Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500702On some architectures it is required that an interrupt controller model has
703been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
704interrupts require the level to be set to 1 and then back to 0.
705
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500706On real hardware, interrupt pins can be active-low or active-high. This
707does not matter for the level field of struct kvm_irq_level: 1 always
708means active (asserted), 0 means inactive (deasserted).
709
710x86 allows the operating system to program the interrupt polarity
711(active-low/active-high) for level-triggered interrupts, and KVM used
712to consider the polarity. However, due to bitrot in the handling of
713active-low interrupts, the above convention is now valid on x86 too.
714This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
715should not present interrupts to the guest as active-low unless this
716capability is present (or unless it is not using the in-kernel irqchip,
717of course).
718
719
Marc Zyngier379e04c72013-04-02 17:46:31 +0100720ARM/arm64 can signal an interrupt either at the CPU level, or at the
721in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
722use PPIs designated for specific cpus. The irq field is interpreted
723like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500724
725  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
726 field: | irq_type | vcpu_index | irq_id |
727
728The irq_type field has the following values:
729- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
730- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
731 (the vcpu_index field is ignored)
732- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
733
734(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
735
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500736In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300737
738struct kvm_irq_level {
739 union {
740 __u32 irq; /* GSI */
741 __s32 status; /* not used for KVM_IRQ_LEVEL */
742 };
743 __u32 level; /* 0 or 1 */
744};
745
Jan Kiszka414fa982012-04-24 16:40:15 +0200746
Paul Bolle68ba6972011-02-15 00:05:59 +01007474.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300748
749Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100750Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300751Type: vm ioctl
752Parameters: struct kvm_irqchip (in/out)
753Returns: 0 on success, -1 on error
754
755Reads the state of a kernel interrupt controller created with
756KVM_CREATE_IRQCHIP into a buffer provided by the caller.
757
758struct kvm_irqchip {
759 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
760 __u32 pad;
761 union {
762 char dummy[512]; /* reserving space */
763 struct kvm_pic_state pic;
764 struct kvm_ioapic_state ioapic;
765 } chip;
766};
767
Jan Kiszka414fa982012-04-24 16:40:15 +0200768
Paul Bolle68ba6972011-02-15 00:05:59 +01007694.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300770
771Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100772Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300773Type: vm ioctl
774Parameters: struct kvm_irqchip (in)
775Returns: 0 on success, -1 on error
776
777Sets the state of a kernel interrupt controller created with
778KVM_CREATE_IRQCHIP from a buffer provided by the caller.
779
780struct kvm_irqchip {
781 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
782 __u32 pad;
783 union {
784 char dummy[512]; /* reserving space */
785 struct kvm_pic_state pic;
786 struct kvm_ioapic_state ioapic;
787 } chip;
788};
789
Jan Kiszka414fa982012-04-24 16:40:15 +0200790
Paul Bolle68ba6972011-02-15 00:05:59 +01007914.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700792
793Capability: KVM_CAP_XEN_HVM
794Architectures: x86
795Type: vm ioctl
796Parameters: struct kvm_xen_hvm_config (in)
797Returns: 0 on success, -1 on error
798
799Sets the MSR that the Xen HVM guest uses to initialize its hypercall
800page, and provides the starting address and size of the hypercall
801blobs in userspace. When the guest writes the MSR, kvm copies one
802page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
803memory.
804
805struct kvm_xen_hvm_config {
806 __u32 flags;
807 __u32 msr;
808 __u64 blob_addr_32;
809 __u64 blob_addr_64;
810 __u8 blob_size_32;
811 __u8 blob_size_64;
812 __u8 pad2[30];
813};
814
Jan Kiszka414fa982012-04-24 16:40:15 +0200815
Paul Bolle68ba6972011-02-15 00:05:59 +01008164.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400817
818Capability: KVM_CAP_ADJUST_CLOCK
819Architectures: x86
820Type: vm ioctl
821Parameters: struct kvm_clock_data (out)
822Returns: 0 on success, -1 on error
823
824Gets the current timestamp of kvmclock as seen by the current guest. In
825conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
826such as migration.
827
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100828When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
829set of bits that KVM can return in struct kvm_clock_data's flag member.
830
831The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
832value is the exact kvmclock value seen by all VCPUs at the instant
833when KVM_GET_CLOCK was called. If clear, the returned value is simply
834CLOCK_MONOTONIC plus a constant offset; the offset can be modified
835with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
836but the exact value read by each VCPU could differ, because the host
837TSC is not stable.
838
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400839struct kvm_clock_data {
840 __u64 clock; /* kvmclock current value */
841 __u32 flags;
842 __u32 pad[9];
843};
844
Jan Kiszka414fa982012-04-24 16:40:15 +0200845
Paul Bolle68ba6972011-02-15 00:05:59 +01008464.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400847
848Capability: KVM_CAP_ADJUST_CLOCK
849Architectures: x86
850Type: vm ioctl
851Parameters: struct kvm_clock_data (in)
852Returns: 0 on success, -1 on error
853
Wu Fengguang2044892d2009-12-24 09:04:16 +0800854Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400855In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
856such as migration.
857
858struct kvm_clock_data {
859 __u64 clock; /* kvmclock current value */
860 __u32 flags;
861 __u32 pad[9];
862};
863
Jan Kiszka414fa982012-04-24 16:40:15 +0200864
Paul Bolle68ba6972011-02-15 00:05:59 +01008654.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100866
867Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100868Extended by: KVM_CAP_INTR_SHADOW
James Morseb0960b92018-07-19 16:24:25 +0100869Architectures: x86, arm, arm64
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100870Type: vcpu ioctl
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100871Parameters: struct kvm_vcpu_event (out)
872Returns: 0 on success, -1 on error
873
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100874X86:
875
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100876Gets currently pending exceptions, interrupts, and NMIs as well as related
877states of the vcpu.
878
879struct kvm_vcpu_events {
880 struct {
881 __u8 injected;
882 __u8 nr;
883 __u8 has_error_code;
Jim Mattson59073aa2018-10-16 14:29:20 -0700884 __u8 pending;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100885 __u32 error_code;
886 } exception;
887 struct {
888 __u8 injected;
889 __u8 nr;
890 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100891 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100892 } interrupt;
893 struct {
894 __u8 injected;
895 __u8 pending;
896 __u8 masked;
897 __u8 pad;
898 } nmi;
899 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100900 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200901 struct {
902 __u8 smm;
903 __u8 pending;
904 __u8 smm_inside_nmi;
905 __u8 latched_init;
906 } smi;
Jim Mattson59073aa2018-10-16 14:29:20 -0700907 __u8 reserved[27];
908 __u8 exception_has_payload;
909 __u64 exception_payload;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100910};
911
Jim Mattson59073aa2018-10-16 14:29:20 -0700912The following bits are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100913
Jim Mattson59073aa2018-10-16 14:29:20 -0700914- KVM_VCPUEVENT_VALID_SHADOW may be set to signal that
Paolo Bonzinif0778252015-04-01 15:06:40 +0200915 interrupt.shadow contains a valid state.
916
Jim Mattson59073aa2018-10-16 14:29:20 -0700917- KVM_VCPUEVENT_VALID_SMM may be set to signal that smi contains a
918 valid state.
919
920- KVM_VCPUEVENT_VALID_PAYLOAD may be set to signal that the
921 exception_has_payload, exception_payload, and exception.pending
922 fields contain a valid state. This bit will be set whenever
923 KVM_CAP_EXCEPTION_PAYLOAD is enabled.
Jan Kiszka414fa982012-04-24 16:40:15 +0200924
James Morseb0960b92018-07-19 16:24:25 +0100925ARM/ARM64:
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100926
927If the guest accesses a device that is being emulated by the host kernel in
928such a way that a real device would generate a physical SError, KVM may make
929a virtual SError pending for that VCPU. This system error interrupt remains
930pending until the guest takes the exception by unmasking PSTATE.A.
931
932Running the VCPU may cause it to take a pending SError, or make an access that
933causes an SError to become pending. The event's description is only valid while
934the VPCU is not running.
935
936This API provides a way to read and write the pending 'event' state that is not
937visible to the guest. To save, restore or migrate a VCPU the struct representing
938the state can be read then written using this GET/SET API, along with the other
939guest-visible registers. It is not possible to 'cancel' an SError that has been
940made pending.
941
942A device being emulated in user-space may also wish to generate an SError. To do
943this the events structure can be populated by user-space. The current state
944should be read first, to ensure no existing SError is pending. If an existing
945SError is pending, the architecture's 'Multiple SError interrupts' rules should
946be followed. (2.5.3 of DDI0587.a "ARM Reliability, Availability, and
947Serviceability (RAS) Specification").
948
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100949SError exceptions always have an ESR value. Some CPUs have the ability to
950specify what the virtual SError's ESR value should be. These systems will
Dongjiu Geng688e0582018-08-20 17:39:25 -0400951advertise KVM_CAP_ARM_INJECT_SERROR_ESR. In this case exception.has_esr will
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100952always have a non-zero value when read, and the agent making an SError pending
953should specify the ISS field in the lower 24 bits of exception.serror_esr. If
Dongjiu Geng688e0582018-08-20 17:39:25 -0400954the system supports KVM_CAP_ARM_INJECT_SERROR_ESR, but user-space sets the events
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +0100955with exception.has_esr as zero, KVM will choose an ESR.
956
957Specifying exception.has_esr on a system that does not support it will return
958-EINVAL. Setting anything other than the lower 24bits of exception.serror_esr
959will return -EINVAL.
960
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100961struct kvm_vcpu_events {
962 struct {
963 __u8 serror_pending;
964 __u8 serror_has_esr;
965 /* Align it to 8 bytes */
966 __u8 pad[6];
967 __u64 serror_esr;
968 } exception;
969 __u32 reserved[12];
970};
971
Paul Bolle68ba6972011-02-15 00:05:59 +01009724.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100973
974Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100975Extended by: KVM_CAP_INTR_SHADOW
James Morseb0960b92018-07-19 16:24:25 +0100976Architectures: x86, arm, arm64
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100977Type: vcpu ioctl
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100978Parameters: struct kvm_vcpu_event (in)
979Returns: 0 on success, -1 on error
980
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +0100981X86:
982
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100983Set pending exceptions, interrupts, and NMIs as well as related states of the
984vcpu.
985
986See KVM_GET_VCPU_EVENTS for the data structure.
987
Jan Kiszkadab4b912009-12-06 18:24:15 +0100988Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200989from the update. These fields are nmi.pending, sipi_vector, smi.smm,
990smi.pending. Keep the corresponding bits in the flags field cleared to
991suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100992
993KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
994KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200995KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100996
Jan Kiszka48005f62010-02-19 19:38:07 +0100997If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
998the flags field to signal that interrupt.shadow contains a valid state and
999shall be written into the VCPU.
1000
Paolo Bonzinif0778252015-04-01 15:06:40 +02001001KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
1002
Jim Mattson59073aa2018-10-16 14:29:20 -07001003If KVM_CAP_EXCEPTION_PAYLOAD is enabled, KVM_VCPUEVENT_VALID_PAYLOAD
1004can be set in the flags field to signal that the
1005exception_has_payload, exception_payload, and exception.pending fields
1006contain a valid state and shall be written into the VCPU.
1007
James Morseb0960b92018-07-19 16:24:25 +01001008ARM/ARM64:
Dongjiu Gengb7b27fa2018-07-19 16:24:22 +01001009
1010Set the pending SError exception state for this VCPU. It is not possible to
1011'cancel' an Serror that has been made pending.
1012
1013See KVM_GET_VCPU_EVENTS for the data structure.
1014
Jan Kiszka414fa982012-04-24 16:40:15 +02001015
Paul Bolle68ba6972011-02-15 00:05:59 +010010164.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +01001017
1018Capability: KVM_CAP_DEBUGREGS
1019Architectures: x86
1020Type: vm ioctl
1021Parameters: struct kvm_debugregs (out)
1022Returns: 0 on success, -1 on error
1023
1024Reads debug registers from the vcpu.
1025
1026struct kvm_debugregs {
1027 __u64 db[4];
1028 __u64 dr6;
1029 __u64 dr7;
1030 __u64 flags;
1031 __u64 reserved[9];
1032};
1033
Jan Kiszka414fa982012-04-24 16:40:15 +02001034
Paul Bolle68ba6972011-02-15 00:05:59 +010010354.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +01001036
1037Capability: KVM_CAP_DEBUGREGS
1038Architectures: x86
1039Type: vm ioctl
1040Parameters: struct kvm_debugregs (in)
1041Returns: 0 on success, -1 on error
1042
1043Writes debug registers into the vcpu.
1044
1045See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
1046yet and must be cleared on entry.
1047
Jan Kiszka414fa982012-04-24 16:40:15 +02001048
Paul Bolle68ba6972011-02-15 00:05:59 +010010494.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001050
1051Capability: KVM_CAP_USER_MEM
1052Architectures: all
1053Type: vm ioctl
1054Parameters: struct kvm_userspace_memory_region (in)
1055Returns: 0 on success, -1 on error
1056
1057struct kvm_userspace_memory_region {
1058 __u32 slot;
1059 __u32 flags;
1060 __u64 guest_phys_addr;
1061 __u64 memory_size; /* bytes */
1062 __u64 userspace_addr; /* start of the userspace allocated memory */
1063};
1064
1065/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +08001066#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
1067#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001068
1069This ioctl allows the user to create or modify a guest physical memory
1070slot. When changing an existing slot, it may be moved in the guest
1071physical memory space, or its flags may be modified. It may not be
1072resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +05301073Bits 0-15 of "slot" specifies the slot id and this value should be
1074less than the maximum number of user memory slots supported per VM.
1075The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
1076if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001077
Paolo Bonzinif481b062015-05-17 17:30:37 +02001078If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
1079specifies the address space which is being modified. They must be
1080less than the value that KVM_CHECK_EXTENSION returns for the
1081KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
1082are unrelated; the restriction on overlapping slots only applies within
1083each address space.
1084
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001085Memory for the region is taken starting at the address denoted by the
1086field userspace_addr, which must point at user addressable memory for
1087the entire memory slot size. Any object may back this memory, including
1088anonymous memory, ordinary files, and hugetlbfs.
1089
1090It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
1091be identical. This allows large pages in the guest to be backed by large
1092pages in the host.
1093
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +09001094The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
1095KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
1096writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
1097use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
1098to make a new slot read-only. In this case, writes to this memory will be
1099posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001100
Jan Kiszka7efd8fa2012-09-07 13:17:47 +02001101When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
1102the memory region are automatically reflected into the guest. For example, an
1103mmap() that affects the region will be made visible immediately. Another
1104example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +02001105
1106It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
1107The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
1108allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +01001109
Jan Kiszka414fa982012-04-24 16:40:15 +02001110
Paul Bolle68ba6972011-02-15 00:05:59 +010011114.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +02001112
1113Capability: KVM_CAP_SET_TSS_ADDR
1114Architectures: x86
1115Type: vm ioctl
1116Parameters: unsigned long tss_address (in)
1117Returns: 0 on success, -1 on error
1118
1119This ioctl defines the physical address of a three-page region in the guest
1120physical address space. The region must be within the first 4GB of the
1121guest physical address space and must not conflict with any memory slot
1122or any mmio address. The guest may malfunction if it accesses this memory
1123region.
1124
1125This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1126because of a quirk in the virtualization implementation (see the internals
1127documentation when it pops into existence).
1128
Jan Kiszka414fa982012-04-24 16:40:15 +02001129
Paul Bolle68ba6972011-02-15 00:05:59 +010011304.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001131
Paolo Bonzinie5d83c72017-02-16 10:40:56 +01001132Capability: KVM_CAP_ENABLE_CAP
1133Architectures: mips, ppc, s390
1134Type: vcpu ioctl
1135Parameters: struct kvm_enable_cap (in)
1136Returns: 0 on success; -1 on error
1137
1138Capability: KVM_CAP_ENABLE_CAP_VM
1139Architectures: all
1140Type: vcpu ioctl
Alexander Graf71fbfd52010-03-24 21:48:29 +01001141Parameters: struct kvm_enable_cap (in)
1142Returns: 0 on success; -1 on error
1143
1144+Not all extensions are enabled by default. Using this ioctl the application
1145can enable an extension, making it available to the guest.
1146
1147On systems that do not support this ioctl, it always fails. On systems that
1148do support it, it only works for extensions that are supported for enablement.
1149
1150To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1151be used.
1152
1153struct kvm_enable_cap {
1154 /* in */
1155 __u32 cap;
1156
1157The capability that is supposed to get enabled.
1158
1159 __u32 flags;
1160
1161A bitfield indicating future enhancements. Has to be 0 for now.
1162
1163 __u64 args[4];
1164
1165Arguments for enabling a feature. If a feature needs initial values to
1166function properly, this is the place to put them.
1167
1168 __u8 pad[64];
1169};
1170
Cornelia Huckd938dc52013-10-23 18:26:34 +02001171The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1172for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001173
Paul Bolle68ba6972011-02-15 00:05:59 +010011744.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001175
1176Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001177Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001178Type: vcpu ioctl
1179Parameters: struct kvm_mp_state (out)
1180Returns: 0 on success; -1 on error
1181
1182struct kvm_mp_state {
1183 __u32 mp_state;
1184};
1185
1186Returns the vcpu's current "multiprocessing state" (though also valid on
1187uniprocessor guests).
1188
1189Possible values are:
1190
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001191 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001192 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001193 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001194 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001195 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001196 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001197 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001198 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001199 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001200 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001201 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1202 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1203 [s390]
1204 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1205 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001206
Tiejun Chenc32a4272014-11-20 11:07:18 +01001207On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001208in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1209these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001210
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001211For arm/arm64:
1212
1213The only states that are valid are KVM_MP_STATE_STOPPED and
1214KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001215
Paul Bolle68ba6972011-02-15 00:05:59 +010012164.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001217
1218Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001219Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001220Type: vcpu ioctl
1221Parameters: struct kvm_mp_state (in)
1222Returns: 0 on success; -1 on error
1223
1224Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1225arguments.
1226
Tiejun Chenc32a4272014-11-20 11:07:18 +01001227On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001228in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1229these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001230
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001231For arm/arm64:
1232
1233The only states that are valid are KVM_MP_STATE_STOPPED and
1234KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001235
Paul Bolle68ba6972011-02-15 00:05:59 +010012364.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001237
1238Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1239Architectures: x86
1240Type: vm ioctl
1241Parameters: unsigned long identity (in)
1242Returns: 0 on success, -1 on error
1243
1244This ioctl defines the physical address of a one-page region in the guest
1245physical address space. The region must be within the first 4GB of the
1246guest physical address space and must not conflict with any memory slot
1247or any mmio address. The guest may malfunction if it accesses this memory
1248region.
1249
David Hildenbrand726b99c2017-08-24 20:51:35 +02001250Setting the address to 0 will result in resetting the address to its default
1251(0xfffbc000).
1252
Avi Kivity47dbb842010-04-29 12:08:56 +03001253This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1254because of a quirk in the virtualization implementation (see the internals
1255documentation when it pops into existence).
1256
David Hildenbrand1af1ac92017-08-24 20:51:36 +02001257Fails if any VCPU has already been created.
Jan Kiszka414fa982012-04-24 16:40:15 +02001258
Paul Bolle68ba6972011-02-15 00:05:59 +010012594.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001260
1261Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001262Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001263Type: vm ioctl
1264Parameters: unsigned long vcpu_id
1265Returns: 0 on success, -1 on error
1266
1267Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1268as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1269is vcpu 0.
1270
Jan Kiszka414fa982012-04-24 16:40:15 +02001271
Paul Bolle68ba6972011-02-15 00:05:59 +010012724.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001273
1274Capability: KVM_CAP_XSAVE
1275Architectures: x86
1276Type: vcpu ioctl
1277Parameters: struct kvm_xsave (out)
1278Returns: 0 on success, -1 on error
1279
1280struct kvm_xsave {
1281 __u32 region[1024];
1282};
1283
1284This ioctl would copy current vcpu's xsave struct to the userspace.
1285
Jan Kiszka414fa982012-04-24 16:40:15 +02001286
Paul Bolle68ba6972011-02-15 00:05:59 +010012874.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001288
1289Capability: KVM_CAP_XSAVE
1290Architectures: x86
1291Type: vcpu ioctl
1292Parameters: struct kvm_xsave (in)
1293Returns: 0 on success, -1 on error
1294
1295struct kvm_xsave {
1296 __u32 region[1024];
1297};
1298
1299This ioctl would copy userspace's xsave struct to the kernel.
1300
Jan Kiszka414fa982012-04-24 16:40:15 +02001301
Paul Bolle68ba6972011-02-15 00:05:59 +010013024.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001303
1304Capability: KVM_CAP_XCRS
1305Architectures: x86
1306Type: vcpu ioctl
1307Parameters: struct kvm_xcrs (out)
1308Returns: 0 on success, -1 on error
1309
1310struct kvm_xcr {
1311 __u32 xcr;
1312 __u32 reserved;
1313 __u64 value;
1314};
1315
1316struct kvm_xcrs {
1317 __u32 nr_xcrs;
1318 __u32 flags;
1319 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1320 __u64 padding[16];
1321};
1322
1323This ioctl would copy current vcpu's xcrs to the userspace.
1324
Jan Kiszka414fa982012-04-24 16:40:15 +02001325
Paul Bolle68ba6972011-02-15 00:05:59 +010013264.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001327
1328Capability: KVM_CAP_XCRS
1329Architectures: x86
1330Type: vcpu ioctl
1331Parameters: struct kvm_xcrs (in)
1332Returns: 0 on success, -1 on error
1333
1334struct kvm_xcr {
1335 __u32 xcr;
1336 __u32 reserved;
1337 __u64 value;
1338};
1339
1340struct kvm_xcrs {
1341 __u32 nr_xcrs;
1342 __u32 flags;
1343 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1344 __u64 padding[16];
1345};
1346
1347This ioctl would set vcpu's xcr to the value userspace specified.
1348
Jan Kiszka414fa982012-04-24 16:40:15 +02001349
Paul Bolle68ba6972011-02-15 00:05:59 +010013504.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001351
1352Capability: KVM_CAP_EXT_CPUID
1353Architectures: x86
1354Type: system ioctl
1355Parameters: struct kvm_cpuid2 (in/out)
1356Returns: 0 on success, -1 on error
1357
1358struct kvm_cpuid2 {
1359 __u32 nent;
1360 __u32 padding;
1361 struct kvm_cpuid_entry2 entries[0];
1362};
1363
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001364#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1365#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1366#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001367
1368struct kvm_cpuid_entry2 {
1369 __u32 function;
1370 __u32 index;
1371 __u32 flags;
1372 __u32 eax;
1373 __u32 ebx;
1374 __u32 ecx;
1375 __u32 edx;
1376 __u32 padding[3];
1377};
1378
Jim Mattsondf9cb9c2018-05-24 11:59:54 -07001379This ioctl returns x86 cpuid features which are supported by both the
1380hardware and kvm in its default configuration. Userspace can use the
1381information returned by this ioctl to construct cpuid information (for
1382KVM_SET_CPUID2) that is consistent with hardware, kernel, and
1383userspace capabilities, and with user requirements (for example, the
1384user may wish to constrain cpuid to emulate older hardware, or for
1385feature consistency across a cluster).
1386
1387Note that certain capabilities, such as KVM_CAP_X86_DISABLE_EXITS, may
1388expose cpuid features (e.g. MONITOR) which are not supported by kvm in
1389its default configuration. If userspace enables such capabilities, it
1390is responsible for modifying the results of this ioctl appropriately.
Avi Kivityd1535132010-07-14 09:45:21 +03001391
1392Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1393with the 'nent' field indicating the number of entries in the variable-size
1394array 'entries'. If the number of entries is too low to describe the cpu
1395capabilities, an error (E2BIG) is returned. If the number is too high,
1396the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1397number is just right, the 'nent' field is adjusted to the number of valid
1398entries in the 'entries' array, which is then filled.
1399
1400The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001401with unknown or unsupported features masked out. Some features (for example,
1402x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1403emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001404
1405 function: the eax value used to obtain the entry
1406 index: the ecx value used to obtain the entry (for entries that are
1407 affected by ecx)
1408 flags: an OR of zero or more of the following:
1409 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1410 if the index field is valid
1411 KVM_CPUID_FLAG_STATEFUL_FUNC:
1412 if cpuid for this function returns different values for successive
1413 invocations; there will be several entries with the same function,
1414 all with this flag set
1415 KVM_CPUID_FLAG_STATE_READ_NEXT:
1416 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1417 the first entry to be read by a cpu
1418 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1419 this function/index combination
1420
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001421The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1422as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1423support. Instead it is reported via
1424
1425 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1426
1427if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1428feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1429
Jan Kiszka414fa982012-04-24 16:40:15 +02001430
Paul Bolle68ba6972011-02-15 00:05:59 +010014314.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001432
1433Capability: KVM_CAP_PPC_GET_PVINFO
1434Architectures: ppc
1435Type: vm ioctl
1436Parameters: struct kvm_ppc_pvinfo (out)
1437Returns: 0 on success, !0 on error
1438
1439struct kvm_ppc_pvinfo {
1440 __u32 flags;
1441 __u32 hcall[4];
1442 __u8 pad[108];
1443};
1444
1445This ioctl fetches PV specific information that need to be passed to the guest
1446using the device tree or other means from vm context.
1447
Liu Yu-B132019202e072012-07-03 05:48:52 +00001448The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001449
1450If any additional field gets added to this structure later on, a bit for that
1451additional piece of information will be set in the flags bitmap.
1452
Liu Yu-B132019202e072012-07-03 05:48:52 +00001453The flags bitmap is defined as:
1454
1455 /* the host supports the ePAPR idle hcall
1456 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001457
Paul Bolle68ba6972011-02-15 00:05:59 +010014584.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001459
1460Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001461Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001462Type: vm ioctl
1463Parameters: struct kvm_irq_routing (in)
1464Returns: 0 on success, -1 on error
1465
1466Sets the GSI routing table entries, overwriting any previously set entries.
1467
Eric Auger180ae7b2016-07-22 16:20:41 +00001468On arm/arm64, GSI routing has the following limitation:
1469- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1470
Jan Kiszka49f48172010-11-16 22:30:07 +01001471struct kvm_irq_routing {
1472 __u32 nr;
1473 __u32 flags;
1474 struct kvm_irq_routing_entry entries[0];
1475};
1476
1477No flags are specified so far, the corresponding field must be set to zero.
1478
1479struct kvm_irq_routing_entry {
1480 __u32 gsi;
1481 __u32 type;
1482 __u32 flags;
1483 __u32 pad;
1484 union {
1485 struct kvm_irq_routing_irqchip irqchip;
1486 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001487 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001488 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001489 __u32 pad[8];
1490 } u;
1491};
1492
1493/* gsi routing entry types */
1494#define KVM_IRQ_ROUTING_IRQCHIP 1
1495#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001496#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001497#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001498
Eric Auger76a10b82016-07-22 16:20:37 +00001499flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001500- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1501 type, specifies that the devid field contains a valid value. The per-VM
1502 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1503 the device ID. If this capability is not available, userspace should
1504 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001505- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001506
1507struct kvm_irq_routing_irqchip {
1508 __u32 irqchip;
1509 __u32 pin;
1510};
1511
1512struct kvm_irq_routing_msi {
1513 __u32 address_lo;
1514 __u32 address_hi;
1515 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001516 union {
1517 __u32 pad;
1518 __u32 devid;
1519 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001520};
1521
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001522If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1523for the device that wrote the MSI message. For PCI, this is usually a
1524BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001525
Radim Krčmář371313132016-07-12 22:09:27 +02001526On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1527feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1528address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1529address_hi must be zero.
1530
Cornelia Huck84223592013-07-15 13:36:01 +02001531struct kvm_irq_routing_s390_adapter {
1532 __u64 ind_addr;
1533 __u64 summary_addr;
1534 __u64 ind_offset;
1535 __u32 summary_offset;
1536 __u32 adapter_id;
1537};
1538
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001539struct kvm_irq_routing_hv_sint {
1540 __u32 vcpu;
1541 __u32 sint;
1542};
Jan Kiszka414fa982012-04-24 16:40:15 +02001543
Jan Kiszka414fa982012-04-24 16:40:15 +02001544
15454.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001546
1547Capability: KVM_CAP_TSC_CONTROL
1548Architectures: x86
1549Type: vcpu ioctl
1550Parameters: virtual tsc_khz
1551Returns: 0 on success, -1 on error
1552
1553Specifies the tsc frequency for the virtual machine. The unit of the
1554frequency is KHz.
1555
Jan Kiszka414fa982012-04-24 16:40:15 +02001556
15574.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001558
1559Capability: KVM_CAP_GET_TSC_KHZ
1560Architectures: x86
1561Type: vcpu ioctl
1562Parameters: none
1563Returns: virtual tsc-khz on success, negative value on error
1564
1565Returns the tsc frequency of the guest. The unit of the return value is
1566KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1567error.
1568
Jan Kiszka414fa982012-04-24 16:40:15 +02001569
15704.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001571
1572Capability: KVM_CAP_IRQCHIP
1573Architectures: x86
1574Type: vcpu ioctl
1575Parameters: struct kvm_lapic_state (out)
1576Returns: 0 on success, -1 on error
1577
1578#define KVM_APIC_REG_SIZE 0x400
1579struct kvm_lapic_state {
1580 char regs[KVM_APIC_REG_SIZE];
1581};
1582
1583Reads the Local APIC registers and copies them into the input argument. The
1584data format and layout are the same as documented in the architecture manual.
1585
Radim Krčmář371313132016-07-12 22:09:27 +02001586If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1587enabled, then the format of APIC_ID register depends on the APIC mode
1588(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1589the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1590which is stored in bits 31-24 of the APIC register, or equivalently in
1591byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1592be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1593
1594If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1595always uses xAPIC format.
1596
Jan Kiszka414fa982012-04-24 16:40:15 +02001597
15984.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001599
1600Capability: KVM_CAP_IRQCHIP
1601Architectures: x86
1602Type: vcpu ioctl
1603Parameters: struct kvm_lapic_state (in)
1604Returns: 0 on success, -1 on error
1605
1606#define KVM_APIC_REG_SIZE 0x400
1607struct kvm_lapic_state {
1608 char regs[KVM_APIC_REG_SIZE];
1609};
1610
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001611Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001612and layout are the same as documented in the architecture manual.
1613
Radim Krčmář371313132016-07-12 22:09:27 +02001614The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1615regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1616See the note in KVM_GET_LAPIC.
1617
Jan Kiszka414fa982012-04-24 16:40:15 +02001618
16194.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001620
1621Capability: KVM_CAP_IOEVENTFD
1622Architectures: all
1623Type: vm ioctl
1624Parameters: struct kvm_ioeventfd (in)
1625Returns: 0 on success, !0 on error
1626
1627This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1628within the guest. A guest write in the registered address will signal the
1629provided event instead of triggering an exit.
1630
1631struct kvm_ioeventfd {
1632 __u64 datamatch;
1633 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001634 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001635 __s32 fd;
1636 __u32 flags;
1637 __u8 pad[36];
1638};
1639
Cornelia Huck2b834512013-02-28 12:33:20 +01001640For the special case of virtio-ccw devices on s390, the ioevent is matched
1641to a subchannel/virtqueue tuple instead.
1642
Sasha Levin55399a02011-05-28 14:12:30 +03001643The following flags are defined:
1644
1645#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1646#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1647#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001648#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1649 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001650
1651If datamatch flag is set, the event will be signaled only if the written value
1652to the registered address is equal to datamatch in struct kvm_ioeventfd.
1653
Cornelia Huck2b834512013-02-28 12:33:20 +01001654For virtio-ccw devices, addr contains the subchannel id and datamatch the
1655virtqueue index.
1656
Jason Wange9ea5062015-09-15 14:41:59 +08001657With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1658the kernel will ignore the length of guest write and may get a faster vmexit.
1659The speedup may only apply to specific architectures, but the ioeventfd will
1660work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001661
16624.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001663
1664Capability: KVM_CAP_SW_TLB
1665Architectures: ppc
1666Type: vcpu ioctl
1667Parameters: struct kvm_dirty_tlb (in)
1668Returns: 0 on success, -1 on error
1669
1670struct kvm_dirty_tlb {
1671 __u64 bitmap;
1672 __u32 num_dirty;
1673};
1674
1675This must be called whenever userspace has changed an entry in the shared
1676TLB, prior to calling KVM_RUN on the associated vcpu.
1677
1678The "bitmap" field is the userspace address of an array. This array
1679consists of a number of bits, equal to the total number of TLB entries as
1680determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1681nearest multiple of 64.
1682
1683Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1684array.
1685
1686The array is little-endian: the bit 0 is the least significant bit of the
1687first byte, bit 8 is the least significant bit of the second byte, etc.
1688This avoids any complications with differing word sizes.
1689
1690The "num_dirty" field is a performance hint for KVM to determine whether it
1691should skip processing the bitmap and just invalidate everything. It must
1692be set to the number of set bits in the bitmap.
1693
Jan Kiszka414fa982012-04-24 16:40:15 +02001694
David Gibson54738c02011-06-29 00:22:41 +000016954.62 KVM_CREATE_SPAPR_TCE
1696
1697Capability: KVM_CAP_SPAPR_TCE
1698Architectures: powerpc
1699Type: vm ioctl
1700Parameters: struct kvm_create_spapr_tce (in)
1701Returns: file descriptor for manipulating the created TCE table
1702
1703This creates a virtual TCE (translation control entry) table, which
1704is an IOMMU for PAPR-style virtual I/O. It is used to translate
1705logical addresses used in virtual I/O into guest physical addresses,
1706and provides a scatter/gather capability for PAPR virtual I/O.
1707
1708/* for KVM_CAP_SPAPR_TCE */
1709struct kvm_create_spapr_tce {
1710 __u64 liobn;
1711 __u32 window_size;
1712};
1713
1714The liobn field gives the logical IO bus number for which to create a
1715TCE table. The window_size field specifies the size of the DMA window
1716which this TCE table will translate - the table will contain one 64
1717bit TCE entry for every 4kiB of the DMA window.
1718
1719When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1720table has been created using this ioctl(), the kernel will handle it
1721in real mode, updating the TCE table. H_PUT_TCE calls for other
1722liobns will cause a vm exit and must be handled by userspace.
1723
1724The return value is a file descriptor which can be passed to mmap(2)
1725to map the created TCE table into userspace. This lets userspace read
1726the entries written by kernel-handled H_PUT_TCE calls, and also lets
1727userspace update the TCE table directly which is useful in some
1728circumstances.
1729
Jan Kiszka414fa982012-04-24 16:40:15 +02001730
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000017314.63 KVM_ALLOCATE_RMA
1732
1733Capability: KVM_CAP_PPC_RMA
1734Architectures: powerpc
1735Type: vm ioctl
1736Parameters: struct kvm_allocate_rma (out)
1737Returns: file descriptor for mapping the allocated RMA
1738
1739This allocates a Real Mode Area (RMA) from the pool allocated at boot
1740time by the kernel. An RMA is a physically-contiguous, aligned region
1741of memory used on older POWER processors to provide the memory which
1742will be accessed by real-mode (MMU off) accesses in a KVM guest.
1743POWER processors support a set of sizes for the RMA that usually
1744includes 64MB, 128MB, 256MB and some larger powers of two.
1745
1746/* for KVM_ALLOCATE_RMA */
1747struct kvm_allocate_rma {
1748 __u64 rma_size;
1749};
1750
1751The return value is a file descriptor which can be passed to mmap(2)
1752to map the allocated RMA into userspace. The mapped area can then be
1753passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1754RMA for a virtual machine. The size of the RMA in bytes (which is
1755fixed at host kernel boot time) is returned in the rma_size field of
1756the argument structure.
1757
1758The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1759is supported; 2 if the processor requires all virtual machines to have
1760an RMA, or 1 if the processor can use an RMA but doesn't require it,
1761because it supports the Virtual RMA (VRMA) facility.
1762
Jan Kiszka414fa982012-04-24 16:40:15 +02001763
Avi Kivity3f745f12011-12-07 12:42:47 +020017644.64 KVM_NMI
1765
1766Capability: KVM_CAP_USER_NMI
1767Architectures: x86
1768Type: vcpu ioctl
1769Parameters: none
1770Returns: 0 on success, -1 on error
1771
1772Queues an NMI on the thread's vcpu. Note this is well defined only
1773when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1774between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1775has been called, this interface is completely emulated within the kernel.
1776
1777To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1778following algorithm:
1779
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001780 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001781 - read the local APIC's state (KVM_GET_LAPIC)
1782 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1783 - if so, issue KVM_NMI
1784 - resume the vcpu
1785
1786Some guests configure the LINT1 NMI input to cause a panic, aiding in
1787debugging.
1788
Jan Kiszka414fa982012-04-24 16:40:15 +02001789
Alexander Grafe24ed812011-09-14 10:02:41 +020017904.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001791
1792Capability: KVM_CAP_S390_UCONTROL
1793Architectures: s390
1794Type: vcpu ioctl
1795Parameters: struct kvm_s390_ucas_mapping (in)
1796Returns: 0 in case of success
1797
1798The parameter is defined like this:
1799 struct kvm_s390_ucas_mapping {
1800 __u64 user_addr;
1801 __u64 vcpu_addr;
1802 __u64 length;
1803 };
1804
1805This ioctl maps the memory at "user_addr" with the length "length" to
1806the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001807be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001808
Jan Kiszka414fa982012-04-24 16:40:15 +02001809
Alexander Grafe24ed812011-09-14 10:02:41 +020018104.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001811
1812Capability: KVM_CAP_S390_UCONTROL
1813Architectures: s390
1814Type: vcpu ioctl
1815Parameters: struct kvm_s390_ucas_mapping (in)
1816Returns: 0 in case of success
1817
1818The parameter is defined like this:
1819 struct kvm_s390_ucas_mapping {
1820 __u64 user_addr;
1821 __u64 vcpu_addr;
1822 __u64 length;
1823 };
1824
1825This ioctl unmaps the memory in the vcpu's address space starting at
1826"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001827All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001828
Jan Kiszka414fa982012-04-24 16:40:15 +02001829
Alexander Grafe24ed812011-09-14 10:02:41 +020018304.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001831
1832Capability: KVM_CAP_S390_UCONTROL
1833Architectures: s390
1834Type: vcpu ioctl
1835Parameters: vcpu absolute address (in)
1836Returns: 0 in case of success
1837
1838This call creates a page table entry on the virtual cpu's address space
1839(for user controlled virtual machines) or the virtual machine's address
1840space (for regular virtual machines). This only works for minor faults,
1841thus it's recommended to access subject memory page via the user page
1842table upfront. This is useful to handle validity intercepts for user
1843controlled virtual machines to fault in the virtual cpu's lowcore pages
1844prior to calling the KVM_RUN ioctl.
1845
Jan Kiszka414fa982012-04-24 16:40:15 +02001846
Alexander Grafe24ed812011-09-14 10:02:41 +020018474.68 KVM_SET_ONE_REG
1848
1849Capability: KVM_CAP_ONE_REG
1850Architectures: all
1851Type: vcpu ioctl
1852Parameters: struct kvm_one_reg (in)
1853Returns: 0 on success, negative value on failure
1854
1855struct kvm_one_reg {
1856 __u64 id;
1857 __u64 addr;
1858};
1859
1860Using this ioctl, a single vcpu register can be set to a specific value
1861defined by user space with the passed in struct kvm_one_reg, where id
1862refers to the register identifier as described below and addr is a pointer
1863to a variable with the respective size. There can be architecture agnostic
1864and architecture specific registers. Each have their own range of operation
1865and their own constants and width. To keep track of the implemented
1866registers, find a list below:
1867
James Hoganbf5590f2014-07-04 15:11:34 +01001868 Arch | Register | Width (bits)
1869 | |
1870 PPC | KVM_REG_PPC_HIOR | 64
1871 PPC | KVM_REG_PPC_IAC1 | 64
1872 PPC | KVM_REG_PPC_IAC2 | 64
1873 PPC | KVM_REG_PPC_IAC3 | 64
1874 PPC | KVM_REG_PPC_IAC4 | 64
1875 PPC | KVM_REG_PPC_DAC1 | 64
1876 PPC | KVM_REG_PPC_DAC2 | 64
1877 PPC | KVM_REG_PPC_DABR | 64
1878 PPC | KVM_REG_PPC_DSCR | 64
1879 PPC | KVM_REG_PPC_PURR | 64
1880 PPC | KVM_REG_PPC_SPURR | 64
1881 PPC | KVM_REG_PPC_DAR | 64
1882 PPC | KVM_REG_PPC_DSISR | 32
1883 PPC | KVM_REG_PPC_AMR | 64
1884 PPC | KVM_REG_PPC_UAMOR | 64
1885 PPC | KVM_REG_PPC_MMCR0 | 64
1886 PPC | KVM_REG_PPC_MMCR1 | 64
1887 PPC | KVM_REG_PPC_MMCRA | 64
1888 PPC | KVM_REG_PPC_MMCR2 | 64
1889 PPC | KVM_REG_PPC_MMCRS | 64
1890 PPC | KVM_REG_PPC_SIAR | 64
1891 PPC | KVM_REG_PPC_SDAR | 64
1892 PPC | KVM_REG_PPC_SIER | 64
1893 PPC | KVM_REG_PPC_PMC1 | 32
1894 PPC | KVM_REG_PPC_PMC2 | 32
1895 PPC | KVM_REG_PPC_PMC3 | 32
1896 PPC | KVM_REG_PPC_PMC4 | 32
1897 PPC | KVM_REG_PPC_PMC5 | 32
1898 PPC | KVM_REG_PPC_PMC6 | 32
1899 PPC | KVM_REG_PPC_PMC7 | 32
1900 PPC | KVM_REG_PPC_PMC8 | 32
1901 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001902 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001903 PPC | KVM_REG_PPC_FPR31 | 64
1904 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001905 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001906 PPC | KVM_REG_PPC_VR31 | 128
1907 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001908 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001909 PPC | KVM_REG_PPC_VSR31 | 128
1910 PPC | KVM_REG_PPC_FPSCR | 64
1911 PPC | KVM_REG_PPC_VSCR | 32
1912 PPC | KVM_REG_PPC_VPA_ADDR | 64
1913 PPC | KVM_REG_PPC_VPA_SLB | 128
1914 PPC | KVM_REG_PPC_VPA_DTL | 128
1915 PPC | KVM_REG_PPC_EPCR | 32
1916 PPC | KVM_REG_PPC_EPR | 32
1917 PPC | KVM_REG_PPC_TCR | 32
1918 PPC | KVM_REG_PPC_TSR | 32
1919 PPC | KVM_REG_PPC_OR_TSR | 32
1920 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1921 PPC | KVM_REG_PPC_MAS0 | 32
1922 PPC | KVM_REG_PPC_MAS1 | 32
1923 PPC | KVM_REG_PPC_MAS2 | 64
1924 PPC | KVM_REG_PPC_MAS7_3 | 64
1925 PPC | KVM_REG_PPC_MAS4 | 32
1926 PPC | KVM_REG_PPC_MAS6 | 32
1927 PPC | KVM_REG_PPC_MMUCFG | 32
1928 PPC | KVM_REG_PPC_TLB0CFG | 32
1929 PPC | KVM_REG_PPC_TLB1CFG | 32
1930 PPC | KVM_REG_PPC_TLB2CFG | 32
1931 PPC | KVM_REG_PPC_TLB3CFG | 32
1932 PPC | KVM_REG_PPC_TLB0PS | 32
1933 PPC | KVM_REG_PPC_TLB1PS | 32
1934 PPC | KVM_REG_PPC_TLB2PS | 32
1935 PPC | KVM_REG_PPC_TLB3PS | 32
1936 PPC | KVM_REG_PPC_EPTCFG | 32
1937 PPC | KVM_REG_PPC_ICP_STATE | 64
1938 PPC | KVM_REG_PPC_TB_OFFSET | 64
1939 PPC | KVM_REG_PPC_SPMC1 | 32
1940 PPC | KVM_REG_PPC_SPMC2 | 32
1941 PPC | KVM_REG_PPC_IAMR | 64
1942 PPC | KVM_REG_PPC_TFHAR | 64
1943 PPC | KVM_REG_PPC_TFIAR | 64
1944 PPC | KVM_REG_PPC_TEXASR | 64
1945 PPC | KVM_REG_PPC_FSCR | 64
1946 PPC | KVM_REG_PPC_PSPB | 32
1947 PPC | KVM_REG_PPC_EBBHR | 64
1948 PPC | KVM_REG_PPC_EBBRR | 64
1949 PPC | KVM_REG_PPC_BESCR | 64
1950 PPC | KVM_REG_PPC_TAR | 64
1951 PPC | KVM_REG_PPC_DPDES | 64
1952 PPC | KVM_REG_PPC_DAWR | 64
1953 PPC | KVM_REG_PPC_DAWRX | 64
1954 PPC | KVM_REG_PPC_CIABR | 64
1955 PPC | KVM_REG_PPC_IC | 64
1956 PPC | KVM_REG_PPC_VTB | 64
1957 PPC | KVM_REG_PPC_CSIGR | 64
1958 PPC | KVM_REG_PPC_TACR | 64
1959 PPC | KVM_REG_PPC_TCSCR | 64
1960 PPC | KVM_REG_PPC_PID | 64
1961 PPC | KVM_REG_PPC_ACOP | 64
1962 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02001963 PPC | KVM_REG_PPC_LPCR | 32
1964 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001965 PPC | KVM_REG_PPC_PPR | 64
1966 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1967 PPC | KVM_REG_PPC_DABRX | 32
1968 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05301969 PPC | KVM_REG_PPC_SPRG9 | 64
1970 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11001971 PPC | KVM_REG_PPC_TIDR | 64
1972 PPC | KVM_REG_PPC_PSSCR | 64
Paul Mackerras58555642018-01-12 20:55:20 +11001973 PPC | KVM_REG_PPC_DEC_EXPIRY | 64
Paul Mackerras30323412018-10-08 16:31:13 +11001974 PPC | KVM_REG_PPC_PTCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001975 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10001976 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001977 PPC | KVM_REG_PPC_TM_GPR31 | 64
1978 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10001979 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001980 PPC | KVM_REG_PPC_TM_VSR63 | 128
1981 PPC | KVM_REG_PPC_TM_CR | 64
1982 PPC | KVM_REG_PPC_TM_LR | 64
1983 PPC | KVM_REG_PPC_TM_CTR | 64
1984 PPC | KVM_REG_PPC_TM_FPSCR | 64
1985 PPC | KVM_REG_PPC_TM_AMR | 64
1986 PPC | KVM_REG_PPC_TM_PPR | 64
1987 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1988 PPC | KVM_REG_PPC_TM_VSCR | 32
1989 PPC | KVM_REG_PPC_TM_DSCR | 64
1990 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11001991 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001992 | |
1993 MIPS | KVM_REG_MIPS_R0 | 64
1994 ...
1995 MIPS | KVM_REG_MIPS_R31 | 64
1996 MIPS | KVM_REG_MIPS_HI | 64
1997 MIPS | KVM_REG_MIPS_LO | 64
1998 MIPS | KVM_REG_MIPS_PC | 64
1999 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00002000 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
2001 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002002 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00002003 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01002004 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00002005 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01002006 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002007 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00002008 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
2009 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
2010 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hogan5a2f3522017-03-14 10:15:36 +00002011 MIPS | KVM_REG_MIPS_CP0_PWBASE | 64
2012 MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64
2013 MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002014 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
James Hogan5a2f3522017-03-14 10:15:36 +00002015 MIPS | KVM_REG_MIPS_CP0_PWCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002016 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2017 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00002018 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
2019 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002020 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2021 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2022 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2023 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00002024 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002025 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2026 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01002027 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00002028 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002029 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2030 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2031 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2032 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01002033 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2034 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01002035 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00002036 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002037 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01002038 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2039 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2040 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2041 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2042 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2043 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hogand42a0082017-03-14 10:15:38 +00002044 MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64
James Hoganc2d2c212014-07-04 15:11:35 +01002045 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2046 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2047 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00002048 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2049 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00002050 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00002051 MIPS | KVM_REG_MIPS_FCR_IR | 32
2052 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00002053 MIPS | KVM_REG_MIPS_MSA_IR | 32
2054 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02002055
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002056ARM registers are mapped using the lower 32 bits. The upper 16 of that
2057is the register group type, or coprocessor number:
2058
2059ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002060 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002061
Christoffer Dall11382452013-01-20 18:28:10 -05002062ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002063 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05002064
2065ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002066 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002067
Christoffer Dallc27581e2013-01-20 18:28:10 -05002068ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002069 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002070
Rusty Russell4fe21e42013-01-20 18:28:11 -05002071ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002072 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002073
2074ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07002075 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05002076
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002077ARM firmware pseudo-registers have the following bit pattern:
2078 0x4030 0000 0014 <regno:16>
2079
Marc Zyngier379e04c72013-04-02 17:46:31 +01002080
2081arm64 registers are mapped using the lower 32 bits. The upper 16 of
2082that is the register group type, or coprocessor number:
2083
2084arm64 core/FP-SIMD registers have the following id bit patterns. Note
2085that the size of the access is variable, as the kvm_regs structure
2086contains elements ranging from 32 to 128 bits. The index is a 32bit
2087value in the kvm_regs structure seen as a 32bit array.
2088 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2089
2090arm64 CCSIDR registers are demultiplexed by CSSELR value:
2091 0x6020 0000 0011 00 <csselr:8>
2092
2093arm64 system registers have the following id bit patterns:
2094 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2095
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002096arm64 firmware pseudo-registers have the following bit pattern:
2097 0x6030 0000 0014 <regno:16>
2098
James Hoganc2d2c212014-07-04 15:11:35 +01002099
2100MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2101the register group type:
2102
2103MIPS core registers (see above) have the following id bit patterns:
2104 0x7030 0000 0000 <reg:16>
2105
2106MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2107patterns depending on whether they're 32-bit or 64-bit registers:
2108 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2109 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2110
James Hogan013044c2016-12-07 17:16:37 +00002111Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
2112versions of the EntryLo registers regardless of the word size of the host
2113hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
2114with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
2115the PFNX field starting at bit 30.
2116
James Hogand42a0082017-03-14 10:15:38 +00002117MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
2118patterns:
2119 0x7030 0000 0001 01 <reg:8>
2120
James Hoganc2d2c212014-07-04 15:11:35 +01002121MIPS KVM control registers (see above) have the following id bit patterns:
2122 0x7030 0000 0002 <reg:16>
2123
James Hogan379245c2014-12-02 15:48:24 +00002124MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2125id bit patterns depending on the size of the register being accessed. They are
2126always accessed according to the current guest FPU mode (Status.FR and
2127Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00002128if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2129registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2130overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00002131 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2132 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00002133 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00002134
2135MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2136following id bit patterns:
2137 0x7020 0000 0003 01 <0:3> <reg:5>
2138
James Hoganab86bd62014-12-02 15:48:24 +00002139MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2140following id bit patterns:
2141 0x7020 0000 0003 02 <0:3> <reg:5>
2142
James Hoganc2d2c212014-07-04 15:11:35 +01002143
Alexander Grafe24ed812011-09-14 10:02:41 +020021444.69 KVM_GET_ONE_REG
2145
2146Capability: KVM_CAP_ONE_REG
2147Architectures: all
2148Type: vcpu ioctl
2149Parameters: struct kvm_one_reg (in and out)
2150Returns: 0 on success, negative value on failure
2151
2152This ioctl allows to receive the value of a single register implemented
2153in a vcpu. The register to read is indicated by the "id" field of the
2154kvm_one_reg struct passed in. On success, the register value can be found
2155at the memory location pointed to by "addr".
2156
2157The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002158list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002159
Jan Kiszka414fa982012-04-24 16:40:15 +02002160
Eric B Munson1c0b28c2012-03-10 14:37:27 -050021614.70 KVM_KVMCLOCK_CTRL
2162
2163Capability: KVM_CAP_KVMCLOCK_CTRL
2164Architectures: Any that implement pvclocks (currently x86 only)
2165Type: vcpu ioctl
2166Parameters: None
2167Returns: 0 on success, -1 on error
2168
2169This signals to the host kernel that the specified guest is being paused by
2170userspace. The host will set a flag in the pvclock structure that is checked
2171from the soft lockup watchdog. The flag is part of the pvclock structure that
2172is shared between guest and host, specifically the second bit of the flags
2173field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2174the host and read/cleared exclusively by the guest. The guest operation of
2175checking and clearing the flag must an atomic operation so
2176load-link/store-conditional, or equivalent must be used. There are two cases
2177where the guest will clear the flag: when the soft lockup watchdog timer resets
2178itself or when a soft lockup is detected. This ioctl can be called any time
2179after pausing the vcpu, but before it is resumed.
2180
Jan Kiszka414fa982012-04-24 16:40:15 +02002181
Jan Kiszka07975ad2012-03-29 21:14:12 +020021824.71 KVM_SIGNAL_MSI
2183
2184Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002185Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002186Type: vm ioctl
2187Parameters: struct kvm_msi (in)
2188Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2189
2190Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2191MSI messages.
2192
2193struct kvm_msi {
2194 __u32 address_lo;
2195 __u32 address_hi;
2196 __u32 data;
2197 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002198 __u32 devid;
2199 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002200};
2201
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002202flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2203 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2204 the device ID. If this capability is not available, userspace
2205 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002206
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002207If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2208for the device that wrote the MSI message. For PCI, this is usually a
2209BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002210
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002211On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2212feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2213address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2214address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002215
Jan Kiszka414fa982012-04-24 16:40:15 +02002216
Jan Kiszka0589ff62012-04-24 16:40:16 +020022174.71 KVM_CREATE_PIT2
2218
2219Capability: KVM_CAP_PIT2
2220Architectures: x86
2221Type: vm ioctl
2222Parameters: struct kvm_pit_config (in)
2223Returns: 0 on success, -1 on error
2224
2225Creates an in-kernel device model for the i8254 PIT. This call is only valid
2226after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2227parameters have to be passed:
2228
2229struct kvm_pit_config {
2230 __u32 flags;
2231 __u32 pad[15];
2232};
2233
2234Valid flags are:
2235
2236#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2237
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002238PIT timer interrupts may use a per-VM kernel thread for injection. If it
2239exists, this thread will have a name of the following pattern:
2240
2241kvm-pit/<owner-process-pid>
2242
2243When running a guest with elevated priorities, the scheduling parameters of
2244this thread may have to be adjusted accordingly.
2245
Jan Kiszka0589ff62012-04-24 16:40:16 +02002246This IOCTL replaces the obsolete KVM_CREATE_PIT.
2247
2248
22494.72 KVM_GET_PIT2
2250
2251Capability: KVM_CAP_PIT_STATE2
2252Architectures: x86
2253Type: vm ioctl
2254Parameters: struct kvm_pit_state2 (out)
2255Returns: 0 on success, -1 on error
2256
2257Retrieves the state of the in-kernel PIT model. Only valid after
2258KVM_CREATE_PIT2. The state is returned in the following structure:
2259
2260struct kvm_pit_state2 {
2261 struct kvm_pit_channel_state channels[3];
2262 __u32 flags;
2263 __u32 reserved[9];
2264};
2265
2266Valid flags are:
2267
2268/* disable PIT in HPET legacy mode */
2269#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2270
2271This IOCTL replaces the obsolete KVM_GET_PIT.
2272
2273
22744.73 KVM_SET_PIT2
2275
2276Capability: KVM_CAP_PIT_STATE2
2277Architectures: x86
2278Type: vm ioctl
2279Parameters: struct kvm_pit_state2 (in)
2280Returns: 0 on success, -1 on error
2281
2282Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2283See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2284
2285This IOCTL replaces the obsolete KVM_SET_PIT.
2286
2287
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000022884.74 KVM_PPC_GET_SMMU_INFO
2289
2290Capability: KVM_CAP_PPC_GET_SMMU_INFO
2291Architectures: powerpc
2292Type: vm ioctl
2293Parameters: None
2294Returns: 0 on success, -1 on error
2295
2296This populates and returns a structure describing the features of
2297the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002298This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002299device-tree properties for the guest operating system.
2300
Carlos Garciac98be0c2014-04-04 22:31:00 -04002301The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002302array of supported segment page sizes:
2303
2304 struct kvm_ppc_smmu_info {
2305 __u64 flags;
2306 __u32 slb_size;
2307 __u32 pad;
2308 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2309 };
2310
2311The supported flags are:
2312
2313 - KVM_PPC_PAGE_SIZES_REAL:
2314 When that flag is set, guest page sizes must "fit" the backing
2315 store page sizes. When not set, any page size in the list can
2316 be used regardless of how they are backed by userspace.
2317
2318 - KVM_PPC_1T_SEGMENTS
2319 The emulated MMU supports 1T segments in addition to the
2320 standard 256M ones.
2321
Paul Mackerras901f8c32018-10-08 14:24:30 +11002322 - KVM_PPC_NO_HASH
2323 This flag indicates that HPT guests are not supported by KVM,
2324 thus all guests must use radix MMU mode.
2325
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002326The "slb_size" field indicates how many SLB entries are supported
2327
2328The "sps" array contains 8 entries indicating the supported base
2329page sizes for a segment in increasing order. Each entry is defined
2330as follow:
2331
2332 struct kvm_ppc_one_seg_page_size {
2333 __u32 page_shift; /* Base page shift of segment (or 0) */
2334 __u32 slb_enc; /* SLB encoding for BookS */
2335 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2336 };
2337
2338An entry with a "page_shift" of 0 is unused. Because the array is
2339organized in increasing order, a lookup can stop when encoutering
2340such an entry.
2341
2342The "slb_enc" field provides the encoding to use in the SLB for the
2343page size. The bits are in positions such as the value can directly
2344be OR'ed into the "vsid" argument of the slbmte instruction.
2345
2346The "enc" array is a list which for each of those segment base page
2347size provides the list of supported actual page sizes (which can be
2348only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002349corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000023508 entries sorted by increasing sizes and an entry with a "0" shift
2351is an empty entry and a terminator:
2352
2353 struct kvm_ppc_one_page_size {
2354 __u32 page_shift; /* Page shift (or 0) */
2355 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2356 };
2357
2358The "pte_enc" field provides a value that can OR'ed into the hash
2359PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2360into the hash PTE second double word).
2361
Alex Williamsonf36992e2012-06-29 09:56:16 -060023624.75 KVM_IRQFD
2363
2364Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002365Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002366Type: vm ioctl
2367Parameters: struct kvm_irqfd (in)
2368Returns: 0 on success, -1 on error
2369
2370Allows setting an eventfd to directly trigger a guest interrupt.
2371kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2372kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002373an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002374the guest using the specified gsi pin. The irqfd is removed using
2375the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2376and kvm_irqfd.gsi.
2377
Alex Williamson7a844282012-09-21 11:58:03 -06002378With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2379mechanism allowing emulation of level-triggered, irqfd-based
2380interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2381additional eventfd in the kvm_irqfd.resamplefd field. When operating
2382in resample mode, posting of an interrupt through kvm_irq.fd asserts
2383the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002384as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002385kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2386the interrupt if the device making use of it still requires service.
2387Note that closing the resamplefd is not sufficient to disable the
2388irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2389and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2390
Eric Auger180ae7b2016-07-22 16:20:41 +00002391On arm/arm64, gsi routing being supported, the following can happen:
2392- in case no routing entry is associated to this gsi, injection fails
2393- in case the gsi is associated to an irqchip routing entry,
2394 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002395- in case the gsi is associated to an MSI routing entry, the MSI
2396 message and device ID are translated into an LPI (support restricted
2397 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002398
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070023994.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002400
2401Capability: KVM_CAP_PPC_ALLOC_HTAB
2402Architectures: powerpc
2403Type: vm ioctl
2404Parameters: Pointer to u32 containing hash table order (in/out)
2405Returns: 0 on success, -1 on error
2406
2407This requests the host kernel to allocate an MMU hash table for a
2408guest using the PAPR paravirtualization interface. This only does
2409anything if the kernel is configured to use the Book 3S HV style of
2410virtualization. Otherwise the capability doesn't exist and the ioctl
2411returns an ENOTTY error. The rest of this description assumes Book 3S
2412HV.
2413
2414There must be no vcpus running when this ioctl is called; if there
2415are, it will do nothing and return an EBUSY error.
2416
2417The parameter is a pointer to a 32-bit unsigned integer variable
2418containing the order (log base 2) of the desired size of the hash
2419table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002420ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002421
2422If no hash table has been allocated when any vcpu is asked to run
2423(with the KVM_RUN ioctl), the host kernel will allocate a
2424default-sized hash table (16 MB).
2425
2426If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002427with a different order from the existing hash table, the existing hash
2428table will be freed and a new one allocated. If this is ioctl is
2429called when a hash table has already been allocated of the same order
2430as specified, the kernel will clear out the existing hash table (zero
2431all HPTEs). In either case, if the guest is using the virtualized
2432real-mode area (VRMA) facility, the kernel will re-create the VMRA
2433HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002434
Cornelia Huck416ad652012-10-02 16:25:37 +020024354.77 KVM_S390_INTERRUPT
2436
2437Capability: basic
2438Architectures: s390
2439Type: vm ioctl, vcpu ioctl
2440Parameters: struct kvm_s390_interrupt (in)
2441Returns: 0 on success, -1 on error
2442
2443Allows to inject an interrupt to the guest. Interrupts can be floating
2444(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2445
2446Interrupt parameters are passed via kvm_s390_interrupt:
2447
2448struct kvm_s390_interrupt {
2449 __u32 type;
2450 __u32 parm;
2451 __u64 parm64;
2452};
2453
2454type can be one of the following:
2455
David Hildenbrand28225452014-10-15 16:48:16 +02002456KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002457KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2458KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2459KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002460KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2461KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002462KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2463 parameters in parm and parm64
2464KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2465KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2466KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002467KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2468 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2469 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2470 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002471KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2472 machine check interrupt code in parm64 (note that
2473 machine checks needing further payload are not
2474 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002475
2476Note that the vcpu ioctl is asynchronous to vcpu execution.
2477
Paul Mackerrasa2932922012-11-19 22:57:20 +000024784.78 KVM_PPC_GET_HTAB_FD
2479
2480Capability: KVM_CAP_PPC_HTAB_FD
2481Architectures: powerpc
2482Type: vm ioctl
2483Parameters: Pointer to struct kvm_get_htab_fd (in)
2484Returns: file descriptor number (>= 0) on success, -1 on error
2485
2486This returns a file descriptor that can be used either to read out the
2487entries in the guest's hashed page table (HPT), or to write entries to
2488initialize the HPT. The returned fd can only be written to if the
2489KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2490can only be read if that bit is clear. The argument struct looks like
2491this:
2492
2493/* For KVM_PPC_GET_HTAB_FD */
2494struct kvm_get_htab_fd {
2495 __u64 flags;
2496 __u64 start_index;
2497 __u64 reserved[2];
2498};
2499
2500/* Values for kvm_get_htab_fd.flags */
2501#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2502#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2503
2504The `start_index' field gives the index in the HPT of the entry at
2505which to start reading. It is ignored when writing.
2506
2507Reads on the fd will initially supply information about all
2508"interesting" HPT entries. Interesting entries are those with the
2509bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2510all entries. When the end of the HPT is reached, the read() will
2511return. If read() is called again on the fd, it will start again from
2512the beginning of the HPT, but will only return HPT entries that have
2513changed since they were last read.
2514
2515Data read or written is structured as a header (8 bytes) followed by a
2516series of valid HPT entries (16 bytes) each. The header indicates how
2517many valid HPT entries there are and how many invalid entries follow
2518the valid entries. The invalid entries are not represented explicitly
2519in the stream. The header format is:
2520
2521struct kvm_get_htab_header {
2522 __u32 index;
2523 __u16 n_valid;
2524 __u16 n_invalid;
2525};
2526
2527Writes to the fd create HPT entries starting at the index given in the
2528header; first `n_valid' valid entries with contents from the data
2529written, then `n_invalid' invalid entries, invalidating any previously
2530valid entries found.
2531
Scott Wood852b6d52013-04-12 14:08:42 +000025324.79 KVM_CREATE_DEVICE
2533
2534Capability: KVM_CAP_DEVICE_CTRL
2535Type: vm ioctl
2536Parameters: struct kvm_create_device (in/out)
2537Returns: 0 on success, -1 on error
2538Errors:
2539 ENODEV: The device type is unknown or unsupported
2540 EEXIST: Device already created, and this type of device may not
2541 be instantiated multiple times
2542
2543 Other error conditions may be defined by individual device types or
2544 have their standard meanings.
2545
2546Creates an emulated device in the kernel. The file descriptor returned
2547in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2548
2549If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2550device type is supported (not necessarily whether it can be created
2551in the current vm).
2552
2553Individual devices should not define flags. Attributes should be used
2554for specifying any behavior that is not implied by the device type
2555number.
2556
2557struct kvm_create_device {
2558 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2559 __u32 fd; /* out: device handle */
2560 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2561};
2562
25634.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2564
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002565Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2566 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2567Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002568Parameters: struct kvm_device_attr
2569Returns: 0 on success, -1 on error
2570Errors:
2571 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002572 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002573 EPERM: The attribute cannot (currently) be accessed this way
2574 (e.g. read-only attribute, or attribute that only makes
2575 sense when the device is in a different state)
2576
2577 Other error conditions may be defined by individual device types.
2578
2579Gets/sets a specified piece of device configuration and/or state. The
2580semantics are device-specific. See individual device documentation in
2581the "devices" directory. As with ONE_REG, the size of the data
2582transferred is defined by the particular attribute.
2583
2584struct kvm_device_attr {
2585 __u32 flags; /* no flags currently defined */
2586 __u32 group; /* device-defined */
2587 __u64 attr; /* group-defined */
2588 __u64 addr; /* userspace address of attr data */
2589};
2590
25914.81 KVM_HAS_DEVICE_ATTR
2592
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002593Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2594 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2595Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002596Parameters: struct kvm_device_attr
2597Returns: 0 on success, -1 on error
2598Errors:
2599 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002600 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002601
2602Tests whether a device supports a particular attribute. A successful
2603return indicates the attribute is implemented. It does not necessarily
2604indicate that the attribute can be read or written in the device's
2605current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002606
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100026074.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002608
2609Capability: basic
Marc Zyngier379e04c72013-04-02 17:46:31 +01002610Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002611Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302612Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002613Returns: 0 on success; -1 on error
2614Errors:
2615  EINVAL:    the target is unknown, or the combination of features is invalid.
2616  ENOENT:    a features bit specified is unknown.
2617
2618This tells KVM what type of CPU to present to the guest, and what
2619optional features it should have.  This will cause a reset of the cpu
2620registers to their initial values.  If this is not called, KVM_RUN will
2621return ENOEXEC for that vcpu.
2622
2623Note that because some registers reflect machine topology, all vcpus
2624should be created before this ioctl is invoked.
2625
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002626Userspace can call this function multiple times for a given vcpu, including
2627after the vcpu has been run. This will reset the vcpu to its initial
2628state. All calls to this function after the initial call must use the same
2629target and same set of feature flags, otherwise EINVAL will be returned.
2630
Marc Zyngieraa024c22013-01-20 18:28:13 -05002631Possible features:
2632 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002633 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2634 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c72013-04-02 17:46:31 +01002635 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2636 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Marc Zyngier85bd0ba2018-01-21 16:42:56 +00002637 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 (or a future revision
2638 backward compatible with v0.2) for the CPU.
Anup Patel50bb0c92014-04-29 11:24:17 +05302639 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002640 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2641 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002642
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002643
Anup Patel740edfc2013-09-30 14:20:08 +053026444.83 KVM_ARM_PREFERRED_TARGET
2645
2646Capability: basic
2647Architectures: arm, arm64
2648Type: vm ioctl
2649Parameters: struct struct kvm_vcpu_init (out)
2650Returns: 0 on success; -1 on error
2651Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002652 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302653
2654This queries KVM for preferred CPU target type which can be emulated
2655by KVM on underlying host.
2656
2657The ioctl returns struct kvm_vcpu_init instance containing information
2658about preferred CPU target type and recommended features for it. The
2659kvm_vcpu_init->features bitmap returned will have feature bits set if
2660the preferred target recommends setting these features, but this is
2661not mandatory.
2662
2663The information returned by this ioctl can be used to prepare an instance
2664of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2665in VCPU matching underlying host.
2666
2667
26684.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002669
2670Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002671Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002672Type: vcpu ioctl
2673Parameters: struct kvm_reg_list (in/out)
2674Returns: 0 on success; -1 on error
2675Errors:
2676  E2BIG:     the reg index list is too big to fit in the array specified by
2677             the user (the number required will be written into n).
2678
2679struct kvm_reg_list {
2680 __u64 n; /* number of registers in reg[] */
2681 __u64 reg[0];
2682};
2683
2684This ioctl returns the guest registers that are supported for the
2685KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2686
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002687
26884.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002689
2690Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c72013-04-02 17:46:31 +01002691Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002692Type: vm ioctl
2693Parameters: struct kvm_arm_device_address (in)
2694Returns: 0 on success, -1 on error
2695Errors:
2696 ENODEV: The device id is unknown
2697 ENXIO: Device not supported on current system
2698 EEXIST: Address already set
2699 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002700 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002701
2702struct kvm_arm_device_addr {
2703 __u64 id;
2704 __u64 addr;
2705};
2706
2707Specify a device address in the guest's physical address space where guests
2708can access emulated or directly exposed devices, which the host kernel needs
2709to know about. The id field is an architecture specific identifier for a
2710specific device.
2711
Marc Zyngier379e04c72013-04-02 17:46:31 +01002712ARM/arm64 divides the id field into two parts, a device id and an
2713address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002714
2715  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2716 field: | 0x00000000 | device id | addr type id |
2717
Marc Zyngier379e04c72013-04-02 17:46:31 +01002718ARM/arm64 currently only require this when using the in-kernel GIC
2719support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2720as the device id. When setting the base address for the guest's
2721mapping of the VGIC virtual CPU and distributor interface, the ioctl
2722must be called after calling KVM_CREATE_IRQCHIP, but before calling
2723KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2724base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002725
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002726Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2727should be used instead.
2728
2729
Anup Patel740edfc2013-09-30 14:20:08 +053027304.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002731
2732Capability: KVM_CAP_PPC_RTAS
2733Architectures: ppc
2734Type: vm ioctl
2735Parameters: struct kvm_rtas_token_args
2736Returns: 0 on success, -1 on error
2737
2738Defines a token value for a RTAS (Run Time Abstraction Services)
2739service in order to allow it to be handled in the kernel. The
2740argument struct gives the name of the service, which must be the name
2741of a service that has a kernel-side implementation. If the token
2742value is non-zero, it will be associated with that service, and
2743subsequent RTAS calls by the guest specifying that token will be
2744handled by the kernel. If the token value is 0, then any token
2745associated with the service will be forgotten, and subsequent RTAS
2746calls by the guest for that service will be passed to userspace to be
2747handled.
2748
Alex Bennée4bd9d342014-09-09 17:27:18 +010027494.87 KVM_SET_GUEST_DEBUG
2750
2751Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002752Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002753Type: vcpu ioctl
2754Parameters: struct kvm_guest_debug (in)
2755Returns: 0 on success; -1 on error
2756
2757struct kvm_guest_debug {
2758 __u32 control;
2759 __u32 pad;
2760 struct kvm_guest_debug_arch arch;
2761};
2762
2763Set up the processor specific debug registers and configure vcpu for
2764handling guest debug events. There are two parts to the structure, the
2765first a control bitfield indicates the type of debug events to handle
2766when running. Common control bits are:
2767
2768 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2769 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2770
2771The top 16 bits of the control field are architecture specific control
2772flags which can include the following:
2773
Alex Bennée4bd611c2015-07-07 17:29:57 +01002774 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002775 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002776 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2777 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2778 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2779
2780For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2781are enabled in memory so we need to ensure breakpoint exceptions are
2782correctly trapped and the KVM run loop exits at the breakpoint and not
2783running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2784we need to ensure the guest vCPUs architecture specific registers are
2785updated to the correct (supplied) values.
2786
2787The second part of the structure is architecture specific and
2788typically contains a set of debug registers.
2789
Alex Bennée834bf882015-07-07 17:30:02 +01002790For arm64 the number of debug registers is implementation defined and
2791can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2792KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2793indicating the number of supported registers.
2794
Alex Bennée4bd9d342014-09-09 17:27:18 +01002795When debug events exit the main run loop with the reason
2796KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2797structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002798
Alex Bennée209cf192014-09-09 17:27:19 +010027994.88 KVM_GET_EMULATED_CPUID
2800
2801Capability: KVM_CAP_EXT_EMUL_CPUID
2802Architectures: x86
2803Type: system ioctl
2804Parameters: struct kvm_cpuid2 (in/out)
2805Returns: 0 on success, -1 on error
2806
2807struct kvm_cpuid2 {
2808 __u32 nent;
2809 __u32 flags;
2810 struct kvm_cpuid_entry2 entries[0];
2811};
2812
2813The member 'flags' is used for passing flags from userspace.
2814
2815#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2816#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2817#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2818
2819struct kvm_cpuid_entry2 {
2820 __u32 function;
2821 __u32 index;
2822 __u32 flags;
2823 __u32 eax;
2824 __u32 ebx;
2825 __u32 ecx;
2826 __u32 edx;
2827 __u32 padding[3];
2828};
2829
2830This ioctl returns x86 cpuid features which are emulated by
2831kvm.Userspace can use the information returned by this ioctl to query
2832which features are emulated by kvm instead of being present natively.
2833
2834Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2835structure with the 'nent' field indicating the number of entries in
2836the variable-size array 'entries'. If the number of entries is too low
2837to describe the cpu capabilities, an error (E2BIG) is returned. If the
2838number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2839is returned. If the number is just right, the 'nent' field is adjusted
2840to the number of valid entries in the 'entries' array, which is then
2841filled.
2842
2843The entries returned are the set CPUID bits of the respective features
2844which kvm emulates, as returned by the CPUID instruction, with unknown
2845or unsupported feature bits cleared.
2846
2847Features like x2apic, for example, may not be present in the host cpu
2848but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2849emulated efficiently and thus not included here.
2850
2851The fields in each entry are defined as follows:
2852
2853 function: the eax value used to obtain the entry
2854 index: the ecx value used to obtain the entry (for entries that are
2855 affected by ecx)
2856 flags: an OR of zero or more of the following:
2857 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2858 if the index field is valid
2859 KVM_CPUID_FLAG_STATEFUL_FUNC:
2860 if cpuid for this function returns different values for successive
2861 invocations; there will be several entries with the same function,
2862 all with this flag set
2863 KVM_CPUID_FLAG_STATE_READ_NEXT:
2864 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2865 the first entry to be read by a cpu
2866 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2867 this function/index combination
2868
Thomas Huth41408c282015-02-06 15:01:21 +010028694.89 KVM_S390_MEM_OP
2870
2871Capability: KVM_CAP_S390_MEM_OP
2872Architectures: s390
2873Type: vcpu ioctl
2874Parameters: struct kvm_s390_mem_op (in)
2875Returns: = 0 on success,
2876 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2877 > 0 if an exception occurred while walking the page tables
2878
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002879Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c282015-02-06 15:01:21 +01002880
2881Parameters are specified via the following structure:
2882
2883struct kvm_s390_mem_op {
2884 __u64 gaddr; /* the guest address */
2885 __u64 flags; /* flags */
2886 __u32 size; /* amount of bytes */
2887 __u32 op; /* type of operation */
2888 __u64 buf; /* buffer in userspace */
2889 __u8 ar; /* the access register number */
2890 __u8 reserved[31]; /* should be set to 0 */
2891};
2892
2893The type of operation is specified in the "op" field. It is either
2894KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2895KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2896KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2897whether the corresponding memory access would create an access exception
2898(without touching the data in the memory at the destination). In case an
2899access exception occurred while walking the MMU tables of the guest, the
2900ioctl returns a positive error number to indicate the type of exception.
2901This exception is also raised directly at the corresponding VCPU if the
2902flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2903
2904The start address of the memory region has to be specified in the "gaddr"
2905field, and the length of the region in the "size" field. "buf" is the buffer
2906supplied by the userspace application where the read data should be written
2907to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2908is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2909when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2910register number to be used.
2911
2912The "reserved" field is meant for future extensions. It is not used by
2913KVM with the currently defined set of flags.
2914
Jason J. Herne30ee2a92014-09-23 09:23:01 -040029154.90 KVM_S390_GET_SKEYS
2916
2917Capability: KVM_CAP_S390_SKEYS
2918Architectures: s390
2919Type: vm ioctl
2920Parameters: struct kvm_s390_skeys
2921Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2922 keys, negative value on error
2923
2924This ioctl is used to get guest storage key values on the s390
2925architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2926
2927struct kvm_s390_skeys {
2928 __u64 start_gfn;
2929 __u64 count;
2930 __u64 skeydata_addr;
2931 __u32 flags;
2932 __u32 reserved[9];
2933};
2934
2935The start_gfn field is the number of the first guest frame whose storage keys
2936you want to get.
2937
2938The count field is the number of consecutive frames (starting from start_gfn)
2939whose storage keys to get. The count field must be at least 1 and the maximum
2940allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2941will cause the ioctl to return -EINVAL.
2942
2943The skeydata_addr field is the address to a buffer large enough to hold count
2944bytes. This buffer will be filled with storage key data by the ioctl.
2945
29464.91 KVM_S390_SET_SKEYS
2947
2948Capability: KVM_CAP_S390_SKEYS
2949Architectures: s390
2950Type: vm ioctl
2951Parameters: struct kvm_s390_skeys
2952Returns: 0 on success, negative value on error
2953
2954This ioctl is used to set guest storage key values on the s390
2955architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2956See section on KVM_S390_GET_SKEYS for struct definition.
2957
2958The start_gfn field is the number of the first guest frame whose storage keys
2959you want to set.
2960
2961The count field is the number of consecutive frames (starting from start_gfn)
2962whose storage keys to get. The count field must be at least 1 and the maximum
2963allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2964will cause the ioctl to return -EINVAL.
2965
2966The skeydata_addr field is the address to a buffer containing count bytes of
2967storage keys. Each byte in the buffer will be set as the storage key for a
2968single frame starting at start_gfn for count frames.
2969
2970Note: If any architecturally invalid key value is found in the given data then
2971the ioctl will return -EINVAL.
2972
Jens Freimann47b43c52014-11-11 20:57:06 +010029734.92 KVM_S390_IRQ
2974
2975Capability: KVM_CAP_S390_INJECT_IRQ
2976Architectures: s390
2977Type: vcpu ioctl
2978Parameters: struct kvm_s390_irq (in)
2979Returns: 0 on success, -1 on error
2980Errors:
2981 EINVAL: interrupt type is invalid
2982 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2983 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2984 than the maximum of VCPUs
2985 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2986 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2987 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2988 is already pending
2989
2990Allows to inject an interrupt to the guest.
2991
2992Using struct kvm_s390_irq as a parameter allows
2993to inject additional payload which is not
2994possible via KVM_S390_INTERRUPT.
2995
2996Interrupt parameters are passed via kvm_s390_irq:
2997
2998struct kvm_s390_irq {
2999 __u64 type;
3000 union {
3001 struct kvm_s390_io_info io;
3002 struct kvm_s390_ext_info ext;
3003 struct kvm_s390_pgm_info pgm;
3004 struct kvm_s390_emerg_info emerg;
3005 struct kvm_s390_extcall_info extcall;
3006 struct kvm_s390_prefix_info prefix;
3007 struct kvm_s390_stop_info stop;
3008 struct kvm_s390_mchk_info mchk;
3009 char reserved[64];
3010 } u;
3011};
3012
3013type can be one of the following:
3014
3015KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3016KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3017KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3018KVM_S390_RESTART - restart; no parameters
3019KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3020KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3021KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3022KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3023KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3024
3025
3026Note that the vcpu ioctl is asynchronous to vcpu execution.
3027
Jens Freimann816c7662014-11-24 17:13:46 +010030284.94 KVM_S390_GET_IRQ_STATE
3029
3030Capability: KVM_CAP_S390_IRQ_STATE
3031Architectures: s390
3032Type: vcpu ioctl
3033Parameters: struct kvm_s390_irq_state (out)
3034Returns: >= number of bytes copied into buffer,
3035 -EINVAL if buffer size is 0,
3036 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3037 -EFAULT if the buffer address was invalid
3038
3039This ioctl allows userspace to retrieve the complete state of all currently
3040pending interrupts in a single buffer. Use cases include migration
3041and introspection. The parameter structure contains the address of a
3042userspace buffer and its length:
3043
3044struct kvm_s390_irq_state {
3045 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003046 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003047 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003048 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003049};
3050
3051Userspace passes in the above struct and for each pending interrupt a
3052struct kvm_s390_irq is copied to the provided buffer.
3053
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003054The structure contains a flags and a reserved field for future extensions. As
3055the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
3056reserved, these fields can not be used in the future without breaking
3057compatibility.
3058
Jens Freimann816c7662014-11-24 17:13:46 +01003059If -ENOBUFS is returned the buffer provided was too small and userspace
3060may retry with a bigger buffer.
3061
30624.95 KVM_S390_SET_IRQ_STATE
3063
3064Capability: KVM_CAP_S390_IRQ_STATE
3065Architectures: s390
3066Type: vcpu ioctl
3067Parameters: struct kvm_s390_irq_state (in)
3068Returns: 0 on success,
3069 -EFAULT if the buffer address was invalid,
3070 -EINVAL for an invalid buffer length (see below),
3071 -EBUSY if there were already interrupts pending,
3072 errors occurring when actually injecting the
3073 interrupt. See KVM_S390_IRQ.
3074
3075This ioctl allows userspace to set the complete state of all cpu-local
3076interrupts currently pending for the vcpu. It is intended for restoring
3077interrupt state after a migration. The input parameter is a userspace buffer
3078containing a struct kvm_s390_irq_state:
3079
3080struct kvm_s390_irq_state {
3081 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003082 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003083 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003084 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01003085};
3086
Christian Borntraegerbb64da92017-11-21 16:02:52 +01003087The restrictions for flags and reserved apply as well.
3088(see KVM_S390_GET_IRQ_STATE)
3089
Jens Freimann816c7662014-11-24 17:13:46 +01003090The userspace memory referenced by buf contains a struct kvm_s390_irq
3091for each interrupt to be injected into the guest.
3092If one of the interrupts could not be injected for some reason the
3093ioctl aborts.
3094
3095len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3096and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3097which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01003098
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110030994.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02003100
3101Capability: KVM_CAP_X86_SMM
3102Architectures: x86
3103Type: vcpu ioctl
3104Parameters: none
3105Returns: 0 on success, -1 on error
3106
3107Queues an SMI on the thread's vcpu.
3108
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110031094.97 KVM_CAP_PPC_MULTITCE
3110
3111Capability: KVM_CAP_PPC_MULTITCE
3112Architectures: ppc
3113Type: vm
3114
3115This capability means the kernel is capable of handling hypercalls
3116H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3117space. This significantly accelerates DMA operations for PPC KVM guests.
3118User space should expect that its handlers for these hypercalls
3119are not going to be called if user space previously registered LIOBN
3120in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3121
3122In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3123user space might have to advertise it for the guest. For example,
3124IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3125present in the "ibm,hypertas-functions" device-tree property.
3126
3127The hypercalls mentioned above may or may not be processed successfully
3128in the kernel based fast path. If they can not be handled by the kernel,
3129they will get passed on to user space. So user space still has to have
3130an implementation for these despite the in kernel acceleration.
3131
3132This capability is always enabled.
3133
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110031344.98 KVM_CREATE_SPAPR_TCE_64
3135
3136Capability: KVM_CAP_SPAPR_TCE_64
3137Architectures: powerpc
3138Type: vm ioctl
3139Parameters: struct kvm_create_spapr_tce_64 (in)
3140Returns: file descriptor for manipulating the created TCE table
3141
3142This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3143windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3144
3145This capability uses extended struct in ioctl interface:
3146
3147/* for KVM_CAP_SPAPR_TCE_64 */
3148struct kvm_create_spapr_tce_64 {
3149 __u64 liobn;
3150 __u32 page_shift;
3151 __u32 flags;
3152 __u64 offset; /* in pages */
3153 __u64 size; /* in pages */
3154};
3155
3156The aim of extension is to support an additional bigger DMA window with
3157a variable page size.
3158KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3159a bus offset of the corresponding DMA window, @size and @offset are numbers
3160of IOMMU pages.
3161
3162@flags are not used at the moment.
3163
3164The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3165
David Gibsonccc4df42016-12-20 16:48:57 +110031664.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003167
3168Capability: KVM_CAP_REINJECT_CONTROL
3169Architectures: x86
3170Type: vm ioctl
3171Parameters: struct kvm_reinject_control (in)
3172Returns: 0 on success,
3173 -EFAULT if struct kvm_reinject_control cannot be read,
3174 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3175
3176i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3177where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3178vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3179interrupt whenever there isn't a pending interrupt from i8254.
3180!reinject mode injects an interrupt as soon as a tick arrives.
3181
3182struct kvm_reinject_control {
3183 __u8 pit_reinject;
3184 __u8 reserved[31];
3185};
3186
3187pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3188operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3189
David Gibsonccc4df42016-12-20 16:48:57 +110031904.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003191
3192Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3193Architectures: ppc
3194Type: vm ioctl
3195Parameters: struct kvm_ppc_mmuv3_cfg (in)
3196Returns: 0 on success,
3197 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3198 -EINVAL if the configuration is invalid
3199
3200This ioctl controls whether the guest will use radix or HPT (hashed
3201page table) translation, and sets the pointer to the process table for
3202the guest.
3203
3204struct kvm_ppc_mmuv3_cfg {
3205 __u64 flags;
3206 __u64 process_table;
3207};
3208
3209There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3210KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3211to use radix tree translation, and if clear, to use HPT translation.
3212KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3213to be able to use the global TLB and SLB invalidation instructions;
3214if clear, the guest may not use these instructions.
3215
3216The process_table field specifies the address and size of the guest
3217process table, which is in the guest's space. This field is formatted
3218as the second doubleword of the partition table entry, as defined in
3219the Power ISA V3.00, Book III section 5.7.6.1.
3220
David Gibsonccc4df42016-12-20 16:48:57 +110032214.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003222
3223Capability: KVM_CAP_PPC_RADIX_MMU
3224Architectures: ppc
3225Type: vm ioctl
3226Parameters: struct kvm_ppc_rmmu_info (out)
3227Returns: 0 on success,
3228 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3229 -EINVAL if no useful information can be returned
3230
3231This ioctl returns a structure containing two things: (a) a list
3232containing supported radix tree geometries, and (b) a list that maps
3233page sizes to put in the "AP" (actual page size) field for the tlbie
3234(TLB invalidate entry) instruction.
3235
3236struct kvm_ppc_rmmu_info {
3237 struct kvm_ppc_radix_geom {
3238 __u8 page_shift;
3239 __u8 level_bits[4];
3240 __u8 pad[3];
3241 } geometries[8];
3242 __u32 ap_encodings[8];
3243};
3244
3245The geometries[] field gives up to 8 supported geometries for the
3246radix page table, in terms of the log base 2 of the smallest page
3247size, and the number of bits indexed at each level of the tree, from
3248the PTE level up to the PGD level in that order. Any unused entries
3249will have 0 in the page_shift field.
3250
3251The ap_encodings gives the supported page sizes and their AP field
3252encodings, encoded with the AP value in the top 3 bits and the log
3253base 2 of the page size in the bottom 6 bits.
3254
David Gibsonef1ead02016-12-20 16:48:58 +110032554.102 KVM_PPC_RESIZE_HPT_PREPARE
3256
3257Capability: KVM_CAP_SPAPR_RESIZE_HPT
3258Architectures: powerpc
3259Type: vm ioctl
3260Parameters: struct kvm_ppc_resize_hpt (in)
3261Returns: 0 on successful completion,
3262 >0 if a new HPT is being prepared, the value is an estimated
3263 number of milliseconds until preparation is complete
3264 -EFAULT if struct kvm_reinject_control cannot be read,
3265 -EINVAL if the supplied shift or flags are invalid
3266 -ENOMEM if unable to allocate the new HPT
3267 -ENOSPC if there was a hash collision when moving existing
3268 HPT entries to the new HPT
3269 -EIO on other error conditions
3270
3271Used to implement the PAPR extension for runtime resizing of a guest's
3272Hashed Page Table (HPT). Specifically this starts, stops or monitors
3273the preparation of a new potential HPT for the guest, essentially
3274implementing the H_RESIZE_HPT_PREPARE hypercall.
3275
3276If called with shift > 0 when there is no pending HPT for the guest,
3277this begins preparation of a new pending HPT of size 2^(shift) bytes.
3278It then returns a positive integer with the estimated number of
3279milliseconds until preparation is complete.
3280
3281If called when there is a pending HPT whose size does not match that
3282requested in the parameters, discards the existing pending HPT and
3283creates a new one as above.
3284
3285If called when there is a pending HPT of the size requested, will:
3286 * If preparation of the pending HPT is already complete, return 0
3287 * If preparation of the pending HPT has failed, return an error
3288 code, then discard the pending HPT.
3289 * If preparation of the pending HPT is still in progress, return an
3290 estimated number of milliseconds until preparation is complete.
3291
3292If called with shift == 0, discards any currently pending HPT and
3293returns 0 (i.e. cancels any in-progress preparation).
3294
3295flags is reserved for future expansion, currently setting any bits in
3296flags will result in an -EINVAL.
3297
3298Normally this will be called repeatedly with the same parameters until
3299it returns <= 0. The first call will initiate preparation, subsequent
3300ones will monitor preparation until it completes or fails.
3301
3302struct kvm_ppc_resize_hpt {
3303 __u64 flags;
3304 __u32 shift;
3305 __u32 pad;
3306};
3307
33084.103 KVM_PPC_RESIZE_HPT_COMMIT
3309
3310Capability: KVM_CAP_SPAPR_RESIZE_HPT
3311Architectures: powerpc
3312Type: vm ioctl
3313Parameters: struct kvm_ppc_resize_hpt (in)
3314Returns: 0 on successful completion,
3315 -EFAULT if struct kvm_reinject_control cannot be read,
3316 -EINVAL if the supplied shift or flags are invalid
3317 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3318 have the requested size
3319 -EBUSY if the pending HPT is not fully prepared
3320 -ENOSPC if there was a hash collision when moving existing
3321 HPT entries to the new HPT
3322 -EIO on other error conditions
3323
3324Used to implement the PAPR extension for runtime resizing of a guest's
3325Hashed Page Table (HPT). Specifically this requests that the guest be
3326transferred to working with the new HPT, essentially implementing the
3327H_RESIZE_HPT_COMMIT hypercall.
3328
3329This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3330returned 0 with the same parameters. In other cases
3331KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3332-EBUSY, though others may be possible if the preparation was started,
3333but failed).
3334
3335This will have undefined effects on the guest if it has not already
3336placed itself in a quiescent state where no vcpu will make MMU enabled
3337memory accesses.
3338
3339On succsful completion, the pending HPT will become the guest's active
3340HPT and the previous HPT will be discarded.
3341
3342On failure, the guest will still be operating on its previous HPT.
3343
3344struct kvm_ppc_resize_hpt {
3345 __u64 flags;
3346 __u32 shift;
3347 __u32 pad;
3348};
3349
Luiz Capitulino3aa53852017-03-13 09:08:20 -040033504.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3351
3352Capability: KVM_CAP_MCE
3353Architectures: x86
3354Type: system ioctl
3355Parameters: u64 mce_cap (out)
3356Returns: 0 on success, -1 on error
3357
3358Returns supported MCE capabilities. The u64 mce_cap parameter
3359has the same format as the MSR_IA32_MCG_CAP register. Supported
3360capabilities will have the corresponding bits set.
3361
33624.105 KVM_X86_SETUP_MCE
3363
3364Capability: KVM_CAP_MCE
3365Architectures: x86
3366Type: vcpu ioctl
3367Parameters: u64 mcg_cap (in)
3368Returns: 0 on success,
3369 -EFAULT if u64 mcg_cap cannot be read,
3370 -EINVAL if the requested number of banks is invalid,
3371 -EINVAL if requested MCE capability is not supported.
3372
3373Initializes MCE support for use. The u64 mcg_cap parameter
3374has the same format as the MSR_IA32_MCG_CAP register and
3375specifies which capabilities should be enabled. The maximum
3376supported number of error-reporting banks can be retrieved when
3377checking for KVM_CAP_MCE. The supported capabilities can be
3378retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3379
33804.106 KVM_X86_SET_MCE
3381
3382Capability: KVM_CAP_MCE
3383Architectures: x86
3384Type: vcpu ioctl
3385Parameters: struct kvm_x86_mce (in)
3386Returns: 0 on success,
3387 -EFAULT if struct kvm_x86_mce cannot be read,
3388 -EINVAL if the bank number is invalid,
3389 -EINVAL if VAL bit is not set in status field.
3390
3391Inject a machine check error (MCE) into the guest. The input
3392parameter is:
3393
3394struct kvm_x86_mce {
3395 __u64 status;
3396 __u64 addr;
3397 __u64 misc;
3398 __u64 mcg_status;
3399 __u8 bank;
3400 __u8 pad1[7];
3401 __u64 pad2[3];
3402};
3403
3404If the MCE being reported is an uncorrected error, KVM will
3405inject it as an MCE exception into the guest. If the guest
3406MCG_STATUS register reports that an MCE is in progress, KVM
3407causes an KVM_EXIT_SHUTDOWN vmexit.
3408
3409Otherwise, if the MCE is a corrected error, KVM will just
3410store it in the corresponding bank (provided this bank is
3411not holding a previously reported uncorrected error).
3412
Claudio Imbrenda4036e382016-08-04 17:58:47 +020034134.107 KVM_S390_GET_CMMA_BITS
3414
3415Capability: KVM_CAP_S390_CMMA_MIGRATION
3416Architectures: s390
3417Type: vm ioctl
3418Parameters: struct kvm_s390_cmma_log (in, out)
3419Returns: 0 on success, a negative value on error
3420
3421This ioctl is used to get the values of the CMMA bits on the s390
3422architecture. It is meant to be used in two scenarios:
3423- During live migration to save the CMMA values. Live migration needs
3424 to be enabled via the KVM_REQ_START_MIGRATION VM property.
3425- To non-destructively peek at the CMMA values, with the flag
3426 KVM_S390_CMMA_PEEK set.
3427
3428The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired
3429values are written to a buffer whose location is indicated via the "values"
3430member in the kvm_s390_cmma_log struct. The values in the input struct are
3431also updated as needed.
3432Each CMMA value takes up one byte.
3433
3434struct kvm_s390_cmma_log {
3435 __u64 start_gfn;
3436 __u32 count;
3437 __u32 flags;
3438 union {
3439 __u64 remaining;
3440 __u64 mask;
3441 };
3442 __u64 values;
3443};
3444
3445start_gfn is the number of the first guest frame whose CMMA values are
3446to be retrieved,
3447
3448count is the length of the buffer in bytes,
3449
3450values points to the buffer where the result will be written to.
3451
3452If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be
3453KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with
3454other ioctls.
3455
3456The result is written in the buffer pointed to by the field values, and
3457the values of the input parameter are updated as follows.
3458
3459Depending on the flags, different actions are performed. The only
3460supported flag so far is KVM_S390_CMMA_PEEK.
3461
3462The default behaviour if KVM_S390_CMMA_PEEK is not set is:
3463start_gfn will indicate the first page frame whose CMMA bits were dirty.
3464It is not necessarily the same as the one passed as input, as clean pages
3465are skipped.
3466
3467count will indicate the number of bytes actually written in the buffer.
3468It can (and very often will) be smaller than the input value, since the
3469buffer is only filled until 16 bytes of clean values are found (which
3470are then not copied in the buffer). Since a CMMA migration block needs
3471the base address and the length, for a total of 16 bytes, we will send
3472back some clean data if there is some dirty data afterwards, as long as
3473the size of the clean data does not exceed the size of the header. This
3474allows to minimize the amount of data to be saved or transferred over
3475the network at the expense of more roundtrips to userspace. The next
3476invocation of the ioctl will skip over all the clean values, saving
3477potentially more than just the 16 bytes we found.
3478
3479If KVM_S390_CMMA_PEEK is set:
3480the existing storage attributes are read even when not in migration
3481mode, and no other action is performed;
3482
3483the output start_gfn will be equal to the input start_gfn,
3484
3485the output count will be equal to the input count, except if the end of
3486memory has been reached.
3487
3488In both cases:
3489the field "remaining" will indicate the total number of dirty CMMA values
3490still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is
3491not enabled.
3492
3493mask is unused.
3494
3495values points to the userspace buffer where the result will be stored.
3496
3497This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3498complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3499KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
3500-EFAULT if the userspace address is invalid or if no page table is
3501present for the addresses (e.g. when using hugepages).
3502
35034.108 KVM_S390_SET_CMMA_BITS
3504
3505Capability: KVM_CAP_S390_CMMA_MIGRATION
3506Architectures: s390
3507Type: vm ioctl
3508Parameters: struct kvm_s390_cmma_log (in)
3509Returns: 0 on success, a negative value on error
3510
3511This ioctl is used to set the values of the CMMA bits on the s390
3512architecture. It is meant to be used during live migration to restore
3513the CMMA values, but there are no restrictions on its use.
3514The ioctl takes parameters via the kvm_s390_cmma_values struct.
3515Each CMMA value takes up one byte.
3516
3517struct kvm_s390_cmma_log {
3518 __u64 start_gfn;
3519 __u32 count;
3520 __u32 flags;
3521 union {
3522 __u64 remaining;
3523 __u64 mask;
3524 };
3525 __u64 values;
3526};
3527
3528start_gfn indicates the starting guest frame number,
3529
3530count indicates how many values are to be considered in the buffer,
3531
3532flags is not used and must be 0.
3533
3534mask indicates which PGSTE bits are to be considered.
3535
3536remaining is not used.
3537
3538values points to the buffer in userspace where to store the values.
3539
3540This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3541complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3542the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or
3543if the flags field was not 0, with -EFAULT if the userspace address is
3544invalid, if invalid pages are written to (e.g. after the end of memory)
3545or if no page table is present for the addresses (e.g. when using
3546hugepages).
3547
Radim Krčmář7bf14c22018-02-01 15:04:17 +010035484.109 KVM_PPC_GET_CPU_CHAR
Paul Mackerras3214d012018-01-15 16:06:47 +11003549
3550Capability: KVM_CAP_PPC_GET_CPU_CHAR
3551Architectures: powerpc
3552Type: vm ioctl
3553Parameters: struct kvm_ppc_cpu_char (out)
3554Returns: 0 on successful completion
3555 -EFAULT if struct kvm_ppc_cpu_char cannot be written
3556
3557This ioctl gives userspace information about certain characteristics
3558of the CPU relating to speculative execution of instructions and
3559possible information leakage resulting from speculative execution (see
3560CVE-2017-5715, CVE-2017-5753 and CVE-2017-5754). The information is
3561returned in struct kvm_ppc_cpu_char, which looks like this:
3562
3563struct kvm_ppc_cpu_char {
3564 __u64 character; /* characteristics of the CPU */
3565 __u64 behaviour; /* recommended software behaviour */
3566 __u64 character_mask; /* valid bits in character */
3567 __u64 behaviour_mask; /* valid bits in behaviour */
3568};
3569
3570For extensibility, the character_mask and behaviour_mask fields
3571indicate which bits of character and behaviour have been filled in by
3572the kernel. If the set of defined bits is extended in future then
3573userspace will be able to tell whether it is running on a kernel that
3574knows about the new bits.
3575
3576The character field describes attributes of the CPU which can help
3577with preventing inadvertent information disclosure - specifically,
3578whether there is an instruction to flash-invalidate the L1 data cache
3579(ori 30,30,0 or mtspr SPRN_TRIG2,rN), whether the L1 data cache is set
3580to a mode where entries can only be used by the thread that created
3581them, whether the bcctr[l] instruction prevents speculation, and
3582whether a speculation barrier instruction (ori 31,31,0) is provided.
3583
3584The behaviour field describes actions that software should take to
3585prevent inadvertent information disclosure, and thus describes which
3586vulnerabilities the hardware is subject to; specifically whether the
3587L1 data cache should be flushed when returning to user mode from the
3588kernel, and whether a speculation barrier should be placed between an
3589array bounds check and the array access.
3590
3591These fields use the same bit definitions as the new
3592H_GET_CPU_CHARACTERISTICS hypercall.
3593
Radim Krčmář7bf14c22018-02-01 15:04:17 +010035944.110 KVM_MEMORY_ENCRYPT_OP
Brijesh Singh5acc5c02017-12-04 10:57:26 -06003595
3596Capability: basic
3597Architectures: x86
3598Type: system
3599Parameters: an opaque platform specific structure (in/out)
3600Returns: 0 on success; -1 on error
3601
3602If the platform supports creating encrypted VMs then this ioctl can be used
3603for issuing platform-specific memory encryption commands to manage those
3604encrypted VMs.
3605
3606Currently, this ioctl is used for issuing Secure Encrypted Virtualization
3607(SEV) commands on AMD Processors. The SEV commands are defined in
Andrew Jones21e94ac2018-03-26 14:38:02 +02003608Documentation/virtual/kvm/amd-memory-encryption.rst.
Brijesh Singh5acc5c02017-12-04 10:57:26 -06003609
Radim Krčmář7bf14c22018-02-01 15:04:17 +010036104.111 KVM_MEMORY_ENCRYPT_REG_REGION
Brijesh Singh69eaede2017-12-04 10:57:26 -06003611
3612Capability: basic
3613Architectures: x86
3614Type: system
3615Parameters: struct kvm_enc_region (in)
3616Returns: 0 on success; -1 on error
3617
3618This ioctl can be used to register a guest memory region which may
3619contain encrypted data (e.g. guest RAM, SMRAM etc).
3620
3621It is used in the SEV-enabled guest. When encryption is enabled, a guest
3622memory region may contain encrypted data. The SEV memory encryption
3623engine uses a tweak such that two identical plaintext pages, each at
3624different locations will have differing ciphertexts. So swapping or
3625moving ciphertext of those pages will not result in plaintext being
3626swapped. So relocating (or migrating) physical backing pages for the SEV
3627guest will require some additional steps.
3628
3629Note: The current SEV key management spec does not provide commands to
3630swap or migrate (move) ciphertext pages. Hence, for now we pin the guest
3631memory region registered with the ioctl.
3632
Radim Krčmář7bf14c22018-02-01 15:04:17 +010036334.112 KVM_MEMORY_ENCRYPT_UNREG_REGION
Brijesh Singh69eaede2017-12-04 10:57:26 -06003634
3635Capability: basic
3636Architectures: x86
3637Type: system
3638Parameters: struct kvm_enc_region (in)
3639Returns: 0 on success; -1 on error
3640
3641This ioctl can be used to unregister the guest memory region registered
3642with KVM_MEMORY_ENCRYPT_REG_REGION ioctl above.
3643
Roman Kaganfaeb7832018-02-01 16:48:32 +030036444.113 KVM_HYPERV_EVENTFD
3645
3646Capability: KVM_CAP_HYPERV_EVENTFD
3647Architectures: x86
3648Type: vm ioctl
3649Parameters: struct kvm_hyperv_eventfd (in)
3650
3651This ioctl (un)registers an eventfd to receive notifications from the guest on
3652the specified Hyper-V connection id through the SIGNAL_EVENT hypercall, without
3653causing a user exit. SIGNAL_EVENT hypercall with non-zero event flag number
3654(bits 24-31) still triggers a KVM_EXIT_HYPERV_HCALL user exit.
3655
3656struct kvm_hyperv_eventfd {
3657 __u32 conn_id;
3658 __s32 fd;
3659 __u32 flags;
3660 __u32 padding[3];
3661};
3662
3663The conn_id field should fit within 24 bits:
3664
3665#define KVM_HYPERV_CONN_ID_MASK 0x00ffffff
3666
3667The acceptable values for the flags field are:
3668
3669#define KVM_HYPERV_EVENTFD_DEASSIGN (1 << 0)
3670
3671Returns: 0 on success,
3672 -EINVAL if conn_id or flags is outside the allowed range
3673 -ENOENT on deassign if the conn_id isn't registered
3674 -EEXIST on assign if the conn_id is already registered
3675
Jim Mattson8fcc4b52018-07-10 11:27:20 +020036764.114 KVM_GET_NESTED_STATE
3677
3678Capability: KVM_CAP_NESTED_STATE
3679Architectures: x86
3680Type: vcpu ioctl
3681Parameters: struct kvm_nested_state (in/out)
3682Returns: 0 on success, -1 on error
3683Errors:
3684 E2BIG: the total state size (including the fixed-size part of struct
3685 kvm_nested_state) exceeds the value of 'size' specified by
3686 the user; the size required will be written into size.
3687
3688struct kvm_nested_state {
3689 __u16 flags;
3690 __u16 format;
3691 __u32 size;
3692 union {
3693 struct kvm_vmx_nested_state vmx;
3694 struct kvm_svm_nested_state svm;
3695 __u8 pad[120];
3696 };
3697 __u8 data[0];
3698};
3699
3700#define KVM_STATE_NESTED_GUEST_MODE 0x00000001
3701#define KVM_STATE_NESTED_RUN_PENDING 0x00000002
3702
3703#define KVM_STATE_NESTED_SMM_GUEST_MODE 0x00000001
3704#define KVM_STATE_NESTED_SMM_VMXON 0x00000002
3705
3706struct kvm_vmx_nested_state {
3707 __u64 vmxon_pa;
3708 __u64 vmcs_pa;
3709
3710 struct {
3711 __u16 flags;
3712 } smm;
3713};
3714
3715This ioctl copies the vcpu's nested virtualization state from the kernel to
3716userspace.
3717
3718The maximum size of the state, including the fixed-size part of struct
3719kvm_nested_state, can be retrieved by passing KVM_CAP_NESTED_STATE to
3720the KVM_CHECK_EXTENSION ioctl().
3721
37224.115 KVM_SET_NESTED_STATE
3723
3724Capability: KVM_CAP_NESTED_STATE
3725Architectures: x86
3726Type: vcpu ioctl
3727Parameters: struct kvm_nested_state (in)
3728Returns: 0 on success, -1 on error
3729
3730This copies the vcpu's kvm_nested_state struct from userspace to the kernel. For
3731the definition of struct kvm_nested_state, see KVM_GET_NESTED_STATE.
Radim Krčmář7bf14c22018-02-01 15:04:17 +01003732
Peng Hao99434502018-10-14 07:09:56 +080037334.116 KVM_(UN)REGISTER_COALESCED_MMIO
3734
Peng Hao0804c842018-10-14 07:09:55 +08003735Capability: KVM_CAP_COALESCED_MMIO (for coalesced mmio)
3736 KVM_CAP_COALESCED_PIO (for coalesced pio)
Peng Hao99434502018-10-14 07:09:56 +08003737Architectures: all
3738Type: vm ioctl
3739Parameters: struct kvm_coalesced_mmio_zone
3740Returns: 0 on success, < 0 on error
3741
Peng Hao0804c842018-10-14 07:09:55 +08003742Coalesced I/O is a performance optimization that defers hardware
Peng Hao99434502018-10-14 07:09:56 +08003743register write emulation so that userspace exits are avoided. It is
3744typically used to reduce the overhead of emulating frequently accessed
3745hardware registers.
3746
Peng Hao0804c842018-10-14 07:09:55 +08003747When a hardware register is configured for coalesced I/O, write accesses
Peng Hao99434502018-10-14 07:09:56 +08003748do not exit to userspace and their value is recorded in a ring buffer
3749that is shared between kernel and userspace.
3750
Peng Hao0804c842018-10-14 07:09:55 +08003751Coalesced I/O is used if one or more write accesses to a hardware
Peng Hao99434502018-10-14 07:09:56 +08003752register can be deferred until a read or a write to another hardware
3753register on the same device. This last access will cause a vmexit and
3754userspace will process accesses from the ring buffer before emulating
Peng Hao0804c842018-10-14 07:09:55 +08003755it. That will avoid exiting to userspace on repeated writes.
3756
3757Coalesced pio is based on coalesced mmio. There is little difference
3758between coalesced mmio and pio except that coalesced pio records accesses
3759to I/O ports.
Peng Hao99434502018-10-14 07:09:56 +08003760
Avi Kivity9c1b96e2009-06-09 12:37:58 +030037615. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003762------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003763
3764Application code obtains a pointer to the kvm_run structure by
3765mmap()ing a vcpu fd. From that point, application code can control
3766execution by changing fields in kvm_run prior to calling the KVM_RUN
3767ioctl, and obtain information about the reason KVM_RUN returned by
3768looking up structure members.
3769
3770struct kvm_run {
3771 /* in */
3772 __u8 request_interrupt_window;
3773
3774Request that KVM_RUN return when it becomes possible to inject external
3775interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3776
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003777 __u8 immediate_exit;
3778
3779This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3780exits immediately, returning -EINTR. In the common scenario where a
3781signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3782to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3783Rather than blocking the signal outside KVM_RUN, userspace can set up
3784a signal handler that sets run->immediate_exit to a non-zero value.
3785
3786This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3787
3788 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003789
3790 /* out */
3791 __u32 exit_reason;
3792
3793When KVM_RUN has returned successfully (return value 0), this informs
3794application code why KVM_RUN has returned. Allowable values for this
3795field are detailed below.
3796
3797 __u8 ready_for_interrupt_injection;
3798
3799If request_interrupt_window has been specified, this field indicates
3800an interrupt can be injected now with KVM_INTERRUPT.
3801
3802 __u8 if_flag;
3803
3804The value of the current interrupt flag. Only valid if in-kernel
3805local APIC is not used.
3806
Paolo Bonzinif0778252015-04-01 15:06:40 +02003807 __u16 flags;
3808
3809More architecture-specific flags detailing state of the VCPU that may
3810affect the device's behavior. The only currently defined flag is
3811KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3812VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003813
3814 /* in (pre_kvm_run), out (post_kvm_run) */
3815 __u64 cr8;
3816
3817The value of the cr8 register. Only valid if in-kernel local APIC is
3818not used. Both input and output.
3819
3820 __u64 apic_base;
3821
3822The value of the APIC BASE msr. Only valid if in-kernel local
3823APIC is not used. Both input and output.
3824
3825 union {
3826 /* KVM_EXIT_UNKNOWN */
3827 struct {
3828 __u64 hardware_exit_reason;
3829 } hw;
3830
3831If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3832reasons. Further architecture-specific information is available in
3833hardware_exit_reason.
3834
3835 /* KVM_EXIT_FAIL_ENTRY */
3836 struct {
3837 __u64 hardware_entry_failure_reason;
3838 } fail_entry;
3839
3840If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3841to unknown reasons. Further architecture-specific information is
3842available in hardware_entry_failure_reason.
3843
3844 /* KVM_EXIT_EXCEPTION */
3845 struct {
3846 __u32 exception;
3847 __u32 error_code;
3848 } ex;
3849
3850Unused.
3851
3852 /* KVM_EXIT_IO */
3853 struct {
3854#define KVM_EXIT_IO_IN 0
3855#define KVM_EXIT_IO_OUT 1
3856 __u8 direction;
3857 __u8 size; /* bytes */
3858 __u16 port;
3859 __u32 count;
3860 __u64 data_offset; /* relative to kvm_run start */
3861 } io;
3862
Wu Fengguang2044892d2009-12-24 09:04:16 +08003863If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003864executed a port I/O instruction which could not be satisfied by kvm.
3865data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3866where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003867KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003868
Alex Bennée8ab30c12015-07-07 17:29:53 +01003869 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003870 struct {
3871 struct kvm_debug_exit_arch arch;
3872 } debug;
3873
Alex Bennée8ab30c12015-07-07 17:29:53 +01003874If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3875for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003876
3877 /* KVM_EXIT_MMIO */
3878 struct {
3879 __u64 phys_addr;
3880 __u8 data[8];
3881 __u32 len;
3882 __u8 is_write;
3883 } mmio;
3884
Wu Fengguang2044892d2009-12-24 09:04:16 +08003885If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003886executed a memory-mapped I/O instruction which could not be satisfied
3887by kvm. The 'data' member contains the written data if 'is_write' is
3888true, and should be filled by application code otherwise.
3889
Christoffer Dall6acdb162014-01-28 08:28:42 -08003890The 'data' member contains, in its first 'len' bytes, the value as it would
3891appear if the VCPU performed a load or store of the appropriate width directly
3892to the byte array.
3893
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003894NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003895 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003896operations are complete (and guest state is consistent) only after userspace
3897has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003898incomplete operations and then check for pending signals. Userspace
3899can re-enter the guest with an unmasked signal pending to complete
3900pending operations.
3901
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003902 /* KVM_EXIT_HYPERCALL */
3903 struct {
3904 __u64 nr;
3905 __u64 args[6];
3906 __u64 ret;
3907 __u32 longmode;
3908 __u32 pad;
3909 } hypercall;
3910
Avi Kivity647dc492010-04-01 14:39:21 +03003911Unused. This was once used for 'hypercall to userspace'. To implement
3912such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3913Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003914
3915 /* KVM_EXIT_TPR_ACCESS */
3916 struct {
3917 __u64 rip;
3918 __u32 is_write;
3919 __u32 pad;
3920 } tpr_access;
3921
3922To be documented (KVM_TPR_ACCESS_REPORTING).
3923
3924 /* KVM_EXIT_S390_SIEIC */
3925 struct {
3926 __u8 icptcode;
3927 __u64 mask; /* psw upper half */
3928 __u64 addr; /* psw lower half */
3929 __u16 ipa;
3930 __u32 ipb;
3931 } s390_sieic;
3932
3933s390 specific.
3934
3935 /* KVM_EXIT_S390_RESET */
3936#define KVM_S390_RESET_POR 1
3937#define KVM_S390_RESET_CLEAR 2
3938#define KVM_S390_RESET_SUBSYSTEM 4
3939#define KVM_S390_RESET_CPU_INIT 8
3940#define KVM_S390_RESET_IPL 16
3941 __u64 s390_reset_flags;
3942
3943s390 specific.
3944
Carsten Ottee168bf82012-01-04 10:25:22 +01003945 /* KVM_EXIT_S390_UCONTROL */
3946 struct {
3947 __u64 trans_exc_code;
3948 __u32 pgm_code;
3949 } s390_ucontrol;
3950
3951s390 specific. A page fault has occurred for a user controlled virtual
3952machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3953resolved by the kernel.
3954The program code and the translation exception code that were placed
3955in the cpu's lowcore are presented here as defined by the z Architecture
3956Principles of Operation Book in the Chapter for Dynamic Address Translation
3957(DAT)
3958
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003959 /* KVM_EXIT_DCR */
3960 struct {
3961 __u32 dcrn;
3962 __u32 data;
3963 __u8 is_write;
3964 } dcr;
3965
Alexander Grafce91ddc2014-07-28 19:29:13 +02003966Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003967
Alexander Grafad0a0482010-03-24 21:48:30 +01003968 /* KVM_EXIT_OSI */
3969 struct {
3970 __u64 gprs[32];
3971 } osi;
3972
3973MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3974hypercalls and exit with this exit struct that contains all the guest gprs.
3975
3976If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3977Userspace can now handle the hypercall and when it's done modify the gprs as
3978necessary. Upon guest entry all guest GPRs will then be replaced by the values
3979in this struct.
3980
Paul Mackerrasde56a942011-06-29 00:21:34 +00003981 /* KVM_EXIT_PAPR_HCALL */
3982 struct {
3983 __u64 nr;
3984 __u64 ret;
3985 __u64 args[9];
3986 } papr_hcall;
3987
3988This is used on 64-bit PowerPC when emulating a pSeries partition,
3989e.g. with the 'pseries' machine type in qemu. It occurs when the
3990guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3991contains the hypercall number (from the guest R3), and 'args' contains
3992the arguments (from the guest R4 - R12). Userspace should put the
3993return code in 'ret' and any extra returned values in args[].
3994The possible hypercalls are defined in the Power Architecture Platform
3995Requirements (PAPR) document available from www.power.org (free
3996developer registration required to access it).
3997
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003998 /* KVM_EXIT_S390_TSCH */
3999 struct {
4000 __u16 subchannel_id;
4001 __u16 subchannel_nr;
4002 __u32 io_int_parm;
4003 __u32 io_int_word;
4004 __u32 ipb;
4005 __u8 dequeued;
4006 } s390_tsch;
4007
4008s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
4009and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
4010interrupt for the target subchannel has been dequeued and subchannel_id,
4011subchannel_nr, io_int_parm and io_int_word contain the parameters for that
4012interrupt. ipb is needed for instruction parameter decoding.
4013
Alexander Graf1c810632013-01-04 18:12:48 +01004014 /* KVM_EXIT_EPR */
4015 struct {
4016 __u32 epr;
4017 } epr;
4018
4019On FSL BookE PowerPC chips, the interrupt controller has a fast patch
4020interrupt acknowledge path to the core. When the core successfully
4021delivers an interrupt, it automatically populates the EPR register with
4022the interrupt vector number and acknowledges the interrupt inside
4023the interrupt controller.
4024
4025In case the interrupt controller lives in user space, we need to do
4026the interrupt acknowledge cycle through it to fetch the next to be
4027delivered interrupt vector using this exit.
4028
4029It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
4030external interrupt has just been delivered into the guest. User space
4031should put the acknowledged interrupt vector into the 'epr' field.
4032
Anup Patel8ad6b632014-04-29 11:24:19 +05304033 /* KVM_EXIT_SYSTEM_EVENT */
4034 struct {
4035#define KVM_SYSTEM_EVENT_SHUTDOWN 1
4036#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03004037#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05304038 __u32 type;
4039 __u64 flags;
4040 } system_event;
4041
4042If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
4043a system-level event using some architecture specific mechanism (hypercall
4044or some special instruction). In case of ARM/ARM64, this is triggered using
4045HVC instruction based PSCI call from the vcpu. The 'type' field describes
4046the system-level event type. The 'flags' field describes architecture
4047specific flags for the system-level event.
4048
Christoffer Dallcf5d31882014-10-16 17:00:18 +02004049Valid values for 'type' are:
4050 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
4051 VM. Userspace is not obliged to honour this, and if it does honour
4052 this does not need to destroy the VM synchronously (ie it may call
4053 KVM_RUN again before shutdown finally occurs).
4054 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
4055 As with SHUTDOWN, userspace can choose to ignore the request, or
4056 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03004057 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
4058 has requested a crash condition maintenance. Userspace can choose
4059 to ignore the request, or to gather VM memory core dump and/or
4060 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02004061
Steve Rutherford7543a632015-07-29 23:21:41 -07004062 /* KVM_EXIT_IOAPIC_EOI */
4063 struct {
4064 __u8 vector;
4065 } eoi;
4066
4067Indicates that the VCPU's in-kernel local APIC received an EOI for a
4068level-triggered IOAPIC interrupt. This exit only triggers when the
4069IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
4070the userspace IOAPIC should process the EOI and retrigger the interrupt if
4071it is still asserted. Vector is the LAPIC interrupt vector for which the
4072EOI was received.
4073
Andrey Smetanindb3975712015-11-10 15:36:35 +03004074 struct kvm_hyperv_exit {
4075#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03004076#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03004077 __u32 type;
4078 union {
4079 struct {
4080 __u32 msr;
4081 __u64 control;
4082 __u64 evt_page;
4083 __u64 msg_page;
4084 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03004085 struct {
4086 __u64 input;
4087 __u64 result;
4088 __u64 params[2];
4089 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03004090 } u;
4091 };
4092 /* KVM_EXIT_HYPERV */
4093 struct kvm_hyperv_exit hyperv;
4094Indicates that the VCPU exits into userspace to process some tasks
4095related to Hyper-V emulation.
4096Valid values for 'type' are:
4097 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
4098Hyper-V SynIC state change. Notification is used to remap SynIC
4099event/message pages and to enable/disable SynIC messages/events processing
4100in userspace.
4101
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004102 /* Fix the size of the union. */
4103 char padding[256];
4104 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01004105
4106 /*
4107 * shared registers between kvm and userspace.
4108 * kvm_valid_regs specifies the register classes set by the host
4109 * kvm_dirty_regs specified the register classes dirtied by userspace
4110 * struct kvm_sync_regs is architecture specific, as well as the
4111 * bits for kvm_valid_regs and kvm_dirty_regs
4112 */
4113 __u64 kvm_valid_regs;
4114 __u64 kvm_dirty_regs;
4115 union {
4116 struct kvm_sync_regs regs;
Ken Hofsass7b7e3952018-01-31 16:03:35 -08004117 char padding[SYNC_REGS_SIZE_BYTES];
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01004118 } s;
4119
4120If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
4121certain guest registers without having to call SET/GET_*REGS. Thus we can
4122avoid some system call overhead if userspace has to handle the exit.
4123Userspace can query the validity of the structure by checking
4124kvm_valid_regs for specific bits. These bits are architecture specific
4125and usually define the validity of a groups of registers. (e.g. one bit
4126 for general purpose registers)
4127
David Hildenbrandd8482c02014-07-29 08:19:26 +02004128Please note that the kernel is allowed to use the kvm_run structure as the
4129primary storage for certain register types. Therefore, the kernel may use the
4130values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
4131
Avi Kivity9c1b96e2009-06-09 12:37:58 +03004132};
Alexander Graf821246a2011-08-31 10:58:55 +02004133
Jan Kiszka414fa982012-04-24 16:40:15 +02004134
Borislav Petkov9c15bb12013-09-22 16:44:50 +02004135
Paul Mackerras699a0ea2014-06-02 11:02:59 +100041366. Capabilities that can be enabled on vCPUs
4137--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02004138
Cornelia Huck0907c852014-06-27 09:29:26 +02004139There are certain capabilities that change the behavior of the virtual CPU or
4140the virtual machine when enabled. To enable them, please see section 4.37.
4141Below you can find a list of capabilities and what their effect on the vCPU or
4142the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02004143
4144The following information is provided along with the description:
4145
4146 Architectures: which instruction set architectures provide this ioctl.
4147 x86 includes both i386 and x86_64.
4148
Cornelia Huck0907c852014-06-27 09:29:26 +02004149 Target: whether this is a per-vcpu or per-vm capability.
4150
Alexander Graf821246a2011-08-31 10:58:55 +02004151 Parameters: what parameters are accepted by the capability.
4152
4153 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
4154 are not detailed, but errors with specific meanings are.
4155
Jan Kiszka414fa982012-04-24 16:40:15 +02004156
Alexander Graf821246a2011-08-31 10:58:55 +020041576.1 KVM_CAP_PPC_OSI
4158
4159Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004160Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02004161Parameters: none
4162Returns: 0 on success; -1 on error
4163
4164This capability enables interception of OSI hypercalls that otherwise would
4165be treated as normal system calls to be injected into the guest. OSI hypercalls
4166were invented by Mac-on-Linux to have a standardized communication mechanism
4167between the guest and the host.
4168
4169When this capability is enabled, KVM_EXIT_OSI can occur.
4170
Jan Kiszka414fa982012-04-24 16:40:15 +02004171
Alexander Graf821246a2011-08-31 10:58:55 +020041726.2 KVM_CAP_PPC_PAPR
4173
4174Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004175Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02004176Parameters: none
4177Returns: 0 on success; -1 on error
4178
4179This capability enables interception of PAPR hypercalls. PAPR hypercalls are
4180done using the hypercall instruction "sc 1".
4181
4182It also sets the guest privilege level to "supervisor" mode. Usually the guest
4183runs in "hypervisor" privilege mode with a few missing features.
4184
4185In addition to the above, it changes the semantics of SDR1. In this mode, the
4186HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
4187HTAB invisible to the guest.
4188
4189When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05004190
Jan Kiszka414fa982012-04-24 16:40:15 +02004191
Scott Wooddc83b8b2011-08-18 15:25:21 -050041926.3 KVM_CAP_SW_TLB
4193
4194Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004195Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05004196Parameters: args[0] is the address of a struct kvm_config_tlb
4197Returns: 0 on success; -1 on error
4198
4199struct kvm_config_tlb {
4200 __u64 params;
4201 __u64 array;
4202 __u32 mmu_type;
4203 __u32 array_len;
4204};
4205
4206Configures the virtual CPU's TLB array, establishing a shared memory area
4207between userspace and KVM. The "params" and "array" fields are userspace
4208addresses of mmu-type-specific data structures. The "array_len" field is an
4209safety mechanism, and should be set to the size in bytes of the memory that
4210userspace has reserved for the array. It must be at least the size dictated
4211by "mmu_type" and "params".
4212
4213While KVM_RUN is active, the shared region is under control of KVM. Its
4214contents are undefined, and any modification by userspace results in
4215boundedly undefined behavior.
4216
4217On return from KVM_RUN, the shared region will reflect the current state of
4218the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
4219to tell KVM which entries have been changed, prior to calling KVM_RUN again
4220on this vcpu.
4221
4222For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
4223 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
4224 - The "array" field points to an array of type "struct
4225 kvm_book3e_206_tlb_entry".
4226 - The array consists of all entries in the first TLB, followed by all
4227 entries in the second TLB.
4228 - Within a TLB, entries are ordered first by increasing set number. Within a
4229 set, entries are ordered by way (increasing ESEL).
4230 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
4231 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
4232 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
4233 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01004234
42356.4 KVM_CAP_S390_CSS_SUPPORT
4236
4237Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02004238Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01004239Parameters: none
4240Returns: 0 on success; -1 on error
4241
4242This capability enables support for handling of channel I/O instructions.
4243
4244TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
4245handled in-kernel, while the other I/O instructions are passed to userspace.
4246
4247When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
4248SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01004249
Cornelia Huck0907c852014-06-27 09:29:26 +02004250Note that even though this capability is enabled per-vcpu, the complete
4251virtual machine is affected.
4252
Alexander Graf1c810632013-01-04 18:12:48 +010042536.5 KVM_CAP_PPC_EPR
4254
4255Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004256Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01004257Parameters: args[0] defines whether the proxy facility is active
4258Returns: 0 on success; -1 on error
4259
4260This capability enables or disables the delivery of interrupts through the
4261external proxy facility.
4262
4263When enabled (args[0] != 0), every time the guest gets an external interrupt
4264delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
4265to receive the topmost interrupt vector.
4266
4267When disabled (args[0] == 0), behavior is as if this facility is unsupported.
4268
4269When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00004270
42716.6 KVM_CAP_IRQ_MPIC
4272
4273Architectures: ppc
4274Parameters: args[0] is the MPIC device fd
4275 args[1] is the MPIC CPU number for this vcpu
4276
4277This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00004278
42796.7 KVM_CAP_IRQ_XICS
4280
4281Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02004282Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00004283Parameters: args[0] is the XICS device fd
4284 args[1] is the XICS CPU number (server ID) for this vcpu
4285
4286This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02004287
42886.8 KVM_CAP_S390_IRQCHIP
4289
4290Architectures: s390
4291Target: vm
4292Parameters: none
4293
4294This capability enables the in-kernel irqchip for s390. Please refer to
4295"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10004296
James Hogan5fafd8742014-12-08 23:07:56 +000042976.9 KVM_CAP_MIPS_FPU
4298
4299Architectures: mips
4300Target: vcpu
4301Parameters: args[0] is reserved for future use (should be 0).
4302
4303This capability allows the use of the host Floating Point Unit by the guest. It
4304allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
4305done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
4306(depending on the current guest FPU register mode), and the Status.FR,
4307Config5.FRE bits are accessible via the KVM API and also from the guest,
4308depending on them being supported by the FPU.
4309
James Hogand952bd02014-12-08 23:07:56 +000043106.10 KVM_CAP_MIPS_MSA
4311
4312Architectures: mips
4313Target: vcpu
4314Parameters: args[0] is reserved for future use (should be 0).
4315
4316This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
4317It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
4318Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
4319accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
4320the guest.
4321
Ken Hofsass01643c52018-01-31 16:03:36 -080043226.74 KVM_CAP_SYNC_REGS
4323Architectures: s390, x86
4324Target: s390: always enabled, x86: vcpu
4325Parameters: none
4326Returns: x86: KVM_CHECK_EXTENSION returns a bit-array indicating which register
4327sets are supported (bitfields defined in arch/x86/include/uapi/asm/kvm.h).
4328
4329As described above in the kvm_sync_regs struct info in section 5 (kvm_run):
4330KVM_CAP_SYNC_REGS "allow[s] userspace to access certain guest registers
4331without having to call SET/GET_*REGS". This reduces overhead by eliminating
4332repeated ioctl calls for setting and/or getting register values. This is
4333particularly important when userspace is making synchronous guest state
4334modifications, e.g. when emulating and/or intercepting instructions in
4335userspace.
4336
4337For s390 specifics, please refer to the source code.
4338
4339For x86:
4340- the register sets to be copied out to kvm_run are selectable
4341 by userspace (rather that all sets being copied out for every exit).
4342- vcpu_events are available in addition to regs and sregs.
4343
4344For x86, the 'kvm_valid_regs' field of struct kvm_run is overloaded to
4345function as an input bit-array field set by userspace to indicate the
4346specific register sets to be copied out on the next exit.
4347
4348To indicate when userspace has modified values that should be copied into
4349the vCPU, the all architecture bitarray field, 'kvm_dirty_regs' must be set.
4350This is done using the same bitflags as for the 'kvm_valid_regs' field.
4351If the dirty bit is not set, then the register set values will not be copied
4352into the vCPU even if they've been modified.
4353
4354Unused bitfields in the bitarrays must be set to zero.
4355
4356struct kvm_sync_regs {
4357 struct kvm_regs regs;
4358 struct kvm_sregs sregs;
4359 struct kvm_vcpu_events events;
4360};
4361
Paul Mackerras699a0ea2014-06-02 11:02:59 +100043627. Capabilities that can be enabled on VMs
4363------------------------------------------
4364
4365There are certain capabilities that change the behavior of the virtual
4366machine when enabled. To enable them, please see section 4.37. Below
4367you can find a list of capabilities and what their effect on the VM
4368is when enabling them.
4369
4370The following information is provided along with the description:
4371
4372 Architectures: which instruction set architectures provide this ioctl.
4373 x86 includes both i386 and x86_64.
4374
4375 Parameters: what parameters are accepted by the capability.
4376
4377 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
4378 are not detailed, but errors with specific meanings are.
4379
4380
43817.1 KVM_CAP_PPC_ENABLE_HCALL
4382
4383Architectures: ppc
4384Parameters: args[0] is the sPAPR hcall number
4385 args[1] is 0 to disable, 1 to enable in-kernel handling
4386
4387This capability controls whether individual sPAPR hypercalls (hcalls)
4388get handled by the kernel or not. Enabling or disabling in-kernel
4389handling of an hcall is effective across the VM. On creation, an
4390initial set of hcalls are enabled for in-kernel handling, which
4391consists of those hcalls for which in-kernel handlers were implemented
4392before this capability was implemented. If disabled, the kernel will
4393not to attempt to handle the hcall, but will always exit to userspace
4394to handle it. Note that it may not make sense to enable some and
4395disable others of a group of related hcalls, but KVM does not prevent
4396userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10004397
4398If the hcall number specified is not one that has an in-kernel
4399implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
4400error.
David Hildenbrand2444b352014-10-09 14:10:13 +02004401
44027.2 KVM_CAP_S390_USER_SIGP
4403
4404Architectures: s390
4405Parameters: none
4406
4407This capability controls which SIGP orders will be handled completely in user
4408space. With this capability enabled, all fast orders will be handled completely
4409in the kernel:
4410- SENSE
4411- SENSE RUNNING
4412- EXTERNAL CALL
4413- EMERGENCY SIGNAL
4414- CONDITIONAL EMERGENCY SIGNAL
4415
4416All other orders will be handled completely in user space.
4417
4418Only privileged operation exceptions will be checked for in the kernel (or even
4419in the hardware prior to interception). If this capability is not enabled, the
4420old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004421
44227.3 KVM_CAP_S390_VECTOR_REGISTERS
4423
4424Architectures: s390
4425Parameters: none
4426Returns: 0 on success, negative value on error
4427
4428Allows use of the vector registers introduced with z13 processor, and
4429provides for the synchronization between host and user space. Will
4430return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004431
44327.4 KVM_CAP_S390_USER_STSI
4433
4434Architectures: s390
4435Parameters: none
4436
4437This capability allows post-handlers for the STSI instruction. After
4438initial handling in the kernel, KVM exits to user space with
4439KVM_EXIT_S390_STSI to allow user space to insert further data.
4440
4441Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4442vcpu->run:
4443struct {
4444 __u64 addr;
4445 __u8 ar;
4446 __u8 reserved;
4447 __u8 fc;
4448 __u8 sel1;
4449 __u16 sel2;
4450} s390_stsi;
4451
4452@addr - guest address of STSI SYSIB
4453@fc - function code
4454@sel1 - selector 1
4455@sel2 - selector 2
4456@ar - access register number
4457
4458KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004459
Steve Rutherford49df6392015-07-29 23:21:40 -070044607.5 KVM_CAP_SPLIT_IRQCHIP
4461
4462Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004463Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004464Returns: 0 on success, -1 on error
4465
4466Create a local apic for each processor in the kernel. This can be used
4467instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4468IOAPIC and PIC (and also the PIT, even though this has to be enabled
4469separately).
4470
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004471This capability also enables in kernel routing of interrupt requests;
4472when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4473used in the IRQ routing table. The first args[0] MSI routes are reserved
4474for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4475a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004476
4477Fails if VCPU has already been created, or if the irqchip is already in the
4478kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4479
David Hildenbrand051c87f2016-04-19 13:13:40 +020044807.6 KVM_CAP_S390_RI
4481
4482Architectures: s390
4483Parameters: none
4484
4485Allows use of runtime-instrumentation introduced with zEC12 processor.
4486Will return -EINVAL if the machine does not support runtime-instrumentation.
4487Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004488
Radim Krčmář371313132016-07-12 22:09:27 +020044897.7 KVM_CAP_X2APIC_API
4490
4491Architectures: x86
4492Parameters: args[0] - features that should be enabled
4493Returns: 0 on success, -EINVAL when args[0] contains invalid features
4494
4495Valid feature flags in args[0] are
4496
4497#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004498#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004499
4500Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4501KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4502allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4503respective sections.
4504
Radim Krčmářc5192652016-07-12 22:09:28 +02004505KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4506in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4507as a broadcast even in x2APIC mode in order to support physical x2APIC
4508without interrupt remapping. This is undesirable in logical mode,
4509where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004510
David Hildenbrand6502a342016-06-21 14:19:51 +020045117.8 KVM_CAP_S390_USER_INSTR0
4512
4513Architectures: s390
4514Parameters: none
4515
4516With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4517be intercepted and forwarded to user space. User space can use this
4518mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4519not inject an operating exception for these instructions, user space has
4520to take care of that.
4521
4522This capability can be enabled dynamically even if VCPUs were already
4523created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004524
Fan Zhang4e0b1ab2016-11-29 07:17:55 +010045257.9 KVM_CAP_S390_GS
4526
4527Architectures: s390
4528Parameters: none
4529Returns: 0 on success; -EINVAL if the machine does not support
4530 guarded storage; -EBUSY if a VCPU has already been created.
4531
4532Allows use of guarded storage for the KVM guest.
4533
Yi Min Zhao47a46932017-03-10 09:29:38 +010045347.10 KVM_CAP_S390_AIS
4535
4536Architectures: s390
4537Parameters: none
4538
4539Allow use of adapter-interruption suppression.
4540Returns: 0 on success; -EBUSY if a VCPU has already been created.
4541
Paul Mackerras3c313522017-02-06 13:24:41 +110045427.11 KVM_CAP_PPC_SMT
4543
4544Architectures: ppc
4545Parameters: vsmt_mode, flags
4546
4547Enabling this capability on a VM provides userspace with a way to set
4548the desired virtual SMT mode (i.e. the number of virtual CPUs per
4549virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2
4550between 1 and 8. On POWER8, vsmt_mode must also be no greater than
4551the number of threads per subcore for the host. Currently flags must
4552be 0. A successful call to enable this capability will result in
4553vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is
4554subsequently queried for the VM. This capability is only supported by
4555HV KVM, and can only be set before any VCPUs have been created.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004556The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT
4557modes are available.
Paul Mackerras3c313522017-02-06 13:24:41 +11004558
Aravinda Prasad134764e2017-05-11 16:32:48 +053045597.12 KVM_CAP_PPC_FWNMI
4560
4561Architectures: ppc
4562Parameters: none
4563
4564With this capability a machine check exception in the guest address
4565space will cause KVM to exit the guest with NMI exit reason. This
4566enables QEMU to build error log and branch to guest kernel registered
4567machine check handling routine. Without this capability KVM will
4568branch to guests' 0x200 interrupt vector.
4569
Wanpeng Li4d5422c2018-03-12 04:53:02 -070045707.13 KVM_CAP_X86_DISABLE_EXITS
4571
4572Architectures: x86
4573Parameters: args[0] defines which exits are disabled
4574Returns: 0 on success, -EINVAL when args[0] contains invalid exits
4575
4576Valid bits in args[0] are
4577
4578#define KVM_X86_DISABLE_EXITS_MWAIT (1 << 0)
Wanpeng Licaa057a2018-03-12 04:53:03 -07004579#define KVM_X86_DISABLE_EXITS_HLT (1 << 1)
Wanpeng Li4d5422c2018-03-12 04:53:02 -07004580
4581Enabling this capability on a VM provides userspace with a way to no
4582longer intercept some instructions for improved latency in some
4583workloads, and is suggested when vCPUs are associated to dedicated
4584physical CPUs. More bits can be added in the future; userspace can
4585just pass the KVM_CHECK_EXTENSION result to KVM_ENABLE_CAP to disable
4586all such vmexits.
4587
Wanpeng Licaa057a2018-03-12 04:53:03 -07004588Do not enable KVM_FEATURE_PV_UNHALT if you disable HLT exits.
Wanpeng Li4d5422c2018-03-12 04:53:02 -07004589
Janosch Franka4499382018-07-13 11:28:31 +010045907.14 KVM_CAP_S390_HPAGE_1M
4591
4592Architectures: s390
4593Parameters: none
4594Returns: 0 on success, -EINVAL if hpage module parameter was not set
Janosch Frank40ebdb82018-08-01 11:48:28 +01004595 or cmma is enabled, or the VM has the KVM_VM_S390_UCONTROL
4596 flag set
Janosch Franka4499382018-07-13 11:28:31 +01004597
4598With this capability the KVM support for memory backing with 1m pages
4599through hugetlbfs can be enabled for a VM. After the capability is
4600enabled, cmma can't be enabled anymore and pfmfi and the storage key
4601interpretation are disabled. If cmma has already been enabled or the
4602hpage module parameter is not set to 1, -EINVAL is returned.
4603
4604While it is generally possible to create a huge page backed VM without
4605this capability, the VM will not be able to run.
4606
Jim Mattsonc4f55192018-10-16 14:29:24 -070046077.15 KVM_CAP_MSR_PLATFORM_INFO
Drew Schmitt6fbbde92018-08-20 10:32:15 -07004608
4609Architectures: x86
4610Parameters: args[0] whether feature should be enabled or not
4611
4612With this capability, a guest may read the MSR_PLATFORM_INFO MSR. Otherwise,
4613a #GP would be raised when the guest tries to access. Currently, this
4614capability does not enable write permissions of this MSR for the guest.
4615
Paul Mackerrasaa069a92018-09-21 20:02:01 +100046167.16 KVM_CAP_PPC_NESTED_HV
4617
4618Architectures: ppc
4619Parameters: none
4620Returns: 0 on success, -EINVAL when the implementation doesn't support
4621 nested-HV virtualization.
4622
4623HV-KVM on POWER9 and later systems allows for "nested-HV"
4624virtualization, which provides a way for a guest VM to run guests that
4625can run using the CPU's supervisor mode (privileged non-hypervisor
4626state). Enabling this capability on a VM depends on the CPU having
4627the necessary functionality and on the facility being enabled with a
4628kvm-hv module parameter.
4629
Jim Mattsonc4f55192018-10-16 14:29:24 -070046307.17 KVM_CAP_EXCEPTION_PAYLOAD
4631
4632Architectures: x86
4633Parameters: args[0] whether feature should be enabled or not
4634
4635With this capability enabled, CR2 will not be modified prior to the
4636emulated VM-exit when L1 intercepts a #PF exception that occurs in
4637L2. Similarly, for kvm-intel only, DR6 will not be modified prior to
4638the emulated VM-exit when L1 intercepts a #DB exception that occurs in
4639L2. As a result, when KVM_GET_VCPU_EVENTS reports a pending #PF (or
4640#DB) exception for L2, exception.has_payload will be set and the
4641faulting address (or the new DR6 bits*) will be reported in the
4642exception_payload field. Similarly, when userspace injects a #PF (or
4643#DB) into L2 using KVM_SET_VCPU_EVENTS, it is expected to set
4644exception.has_payload and to put the faulting address (or the new DR6
4645bits*) in the exception_payload field.
4646
4647This capability also enables exception.pending in struct
4648kvm_vcpu_events, which allows userspace to distinguish between pending
4649and injected exceptions.
4650
4651
4652* For the new DR6 bits, note that bit 16 is set iff the #DB exception
4653 will clear DR6.RTM.
4654
Michael Ellermane928e9c2015-03-20 20:39:41 +110046558. Other capabilities.
4656----------------------
4657
4658This section lists capabilities that give information about other
4659features of the KVM implementation.
4660
46618.1 KVM_CAP_PPC_HWRNG
4662
4663Architectures: ppc
4664
4665This capability, if KVM_CHECK_EXTENSION indicates that it is
4666available, means that that the kernel has an implementation of the
4667H_RANDOM hypercall backed by a hardware random-number generator.
4668If present, the kernel H_RANDOM handler can be enabled for guest use
4669with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004670
46718.2 KVM_CAP_HYPERV_SYNIC
4672
4673Architectures: x86
4674This capability, if KVM_CHECK_EXTENSION indicates that it is
4675available, means that that the kernel has an implementation of the
4676Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4677used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4678
4679In order to use SynIC, it has to be activated by setting this
4680capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4681will disable the use of APIC hardware virtualization even if supported
4682by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004683
46848.3 KVM_CAP_PPC_RADIX_MMU
4685
4686Architectures: ppc
4687
4688This capability, if KVM_CHECK_EXTENSION indicates that it is
4689available, means that that the kernel can support guests using the
4690radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4691processor).
4692
46938.4 KVM_CAP_PPC_HASH_MMU_V3
4694
4695Architectures: ppc
4696
4697This capability, if KVM_CHECK_EXTENSION indicates that it is
4698available, means that that the kernel can support guests using the
4699hashed page table MMU defined in Power ISA V3.00 (as implemented in
4700the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004701
47028.5 KVM_CAP_MIPS_VZ
4703
4704Architectures: mips
4705
4706This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4707it is available, means that full hardware assisted virtualization capabilities
4708of the hardware are available for use through KVM. An appropriate
4709KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4710utilises it.
4711
4712If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4713available, it means that the VM is using full hardware assisted virtualization
4714capabilities of the hardware. This is useful to check after creating a VM with
4715KVM_VM_MIPS_DEFAULT.
4716
4717The value returned by KVM_CHECK_EXTENSION should be compared against known
4718values (see below). All other values are reserved. This is to allow for the
4719possibility of other hardware assisted virtualization implementations which
4720may be incompatible with the MIPS VZ ASE.
4721
4722 0: The trap & emulate implementation is in use to run guest code in user
4723 mode. Guest virtual memory segments are rearranged to fit the guest in the
4724 user mode address space.
4725
4726 1: The MIPS VZ ASE is in use, providing full hardware assisted
4727 virtualization, including standard guest virtual memory segments.
4728
47298.6 KVM_CAP_MIPS_TE
4730
4731Architectures: mips
4732
4733This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4734it is available, means that the trap & emulate implementation is available to
4735run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4736assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4737to KVM_CREATE_VM to create a VM which utilises it.
4738
4739If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4740available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004741
47428.7 KVM_CAP_MIPS_64BIT
4743
4744Architectures: mips
4745
4746This capability indicates the supported architecture type of the guest, i.e. the
4747supported register and address width.
4748
4749The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4750kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4751be checked specifically against known values (see below). All other values are
4752reserved.
4753
4754 0: MIPS32 or microMIPS32.
4755 Both registers and addresses are 32-bits wide.
4756 It will only be possible to run 32-bit guest code.
4757
4758 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4759 Registers are 64-bits wide, but addresses are 32-bits wide.
4760 64-bit guest code may run but cannot access MIPS64 memory segments.
4761 It will also be possible to run 32-bit guest code.
4762
4763 2: MIPS64 or microMIPS64 with access to all address segments.
4764 Both registers and addresses are 64-bits wide.
4765 It will be possible to run 64-bit or 32-bit guest code.
Michael S. Tsirkin668fffa2017-04-21 12:27:17 +02004766
Paolo Bonzinic24a7be2017-04-27 17:33:14 +020047678.9 KVM_CAP_ARM_USER_IRQ
Alexander Graf3fe17e62016-09-27 21:08:05 +02004768
4769Architectures: arm, arm64
4770This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
4771that if userspace creates a VM without an in-kernel interrupt controller, it
4772will be notified of changes to the output level of in-kernel emulated devices,
4773which can generate virtual interrupts, presented to the VM.
4774For such VMs, on every return to userspace, the kernel
4775updates the vcpu's run->s.regs.device_irq_level field to represent the actual
4776output level of the device.
4777
4778Whenever kvm detects a change in the device output level, kvm guarantees at
4779least one return to userspace before running the VM. This exit could either
4780be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
4781userspace can always sample the device output level and re-compute the state of
4782the userspace interrupt controller. Userspace should always check the state
4783of run->s.regs.device_irq_level on every kvm exit.
4784The value in run->s.regs.device_irq_level can represent both level and edge
4785triggered interrupt signals, depending on the device. Edge triggered interrupt
4786signals will exit to userspace with the bit in run->s.regs.device_irq_level
4787set exactly once per edge signal.
4788
4789The field run->s.regs.device_irq_level is available independent of
4790run->kvm_valid_regs or run->kvm_dirty_regs bits.
4791
4792If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
4793number larger than 0 indicating the version of this capability is implemented
4794and thereby which bits in in run->s.regs.device_irq_level can signal values.
4795
4796Currently the following bits are defined for the device_irq_level bitmap:
4797
4798 KVM_CAP_ARM_USER_IRQ >= 1:
4799
4800 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
4801 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
4802 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
4803
4804Future versions of kvm may implement additional events. These will get
4805indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
4806listed above.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004807
48088.10 KVM_CAP_PPC_SMT_POSSIBLE
4809
4810Architectures: ppc
4811
4812Querying this capability returns a bitmap indicating the possible
4813virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
4814(counting from the right) is set, then a virtual SMT mode of 2^N is
4815available.
Roman Kaganefc479e2017-06-22 16:51:01 +03004816
48178.11 KVM_CAP_HYPERV_SYNIC2
4818
4819Architectures: x86
4820
4821This capability enables a newer version of Hyper-V Synthetic interrupt
4822controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
4823doesn't clear SynIC message and event flags pages when they are enabled by
4824writing to the respective MSRs.
Roman Kagand3457c82017-07-14 17:13:20 +03004825
48268.12 KVM_CAP_HYPERV_VP_INDEX
4827
4828Architectures: x86
4829
4830This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
4831value is used to denote the target vcpu for a SynIC interrupt. For
4832compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
4833capability is absent, userspace can still query this msr's value.
Christian Borntraegerda9a1442017-11-09 10:00:45 +01004834
48358.13 KVM_CAP_S390_AIS_MIGRATION
4836
4837Architectures: s390
4838Parameters: none
4839
4840This capability indicates if the flic device will be able to get/set the
4841AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows
4842to discover this without having to create a flic device.
Christian Borntraeger5c2b4d52018-02-22 13:40:04 +00004843
48448.14 KVM_CAP_S390_PSW
4845
4846Architectures: s390
4847
4848This capability indicates that the PSW is exposed via the kvm_run structure.
4849
48508.15 KVM_CAP_S390_GMAP
4851
4852Architectures: s390
4853
4854This capability indicates that the user space memory used as guest mapping can
4855be anywhere in the user memory address space, as long as the memory slots are
4856aligned and sized to a segment (1MB) boundary.
4857
48588.16 KVM_CAP_S390_COW
4859
4860Architectures: s390
4861
4862This capability indicates that the user space memory used as guest mapping can
4863use copy-on-write semantics as well as dirty pages tracking via read-only page
4864tables.
4865
48668.17 KVM_CAP_S390_BPB
4867
4868Architectures: s390
4869
4870This capability indicates that kvm will implement the interfaces to handle
4871reset, migration and nested KVM for branch prediction blocking. The stfle
4872facility 82 should not be provided to the guest without this capability.
Vitaly Kuznetsovc1aea912018-05-16 17:21:31 +02004873
Vitaly Kuznetsov2ddc6492018-06-22 16:56:14 +020048748.18 KVM_CAP_HYPERV_TLBFLUSH
Vitaly Kuznetsovc1aea912018-05-16 17:21:31 +02004875
4876Architectures: x86
4877
4878This capability indicates that KVM supports paravirtualized Hyper-V TLB Flush
4879hypercalls:
4880HvFlushVirtualAddressSpace, HvFlushVirtualAddressSpaceEx,
4881HvFlushVirtualAddressList, HvFlushVirtualAddressListEx.
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +01004882
Dongjiu Geng688e0582018-08-20 17:39:25 -040048838.19 KVM_CAP_ARM_INJECT_SERROR_ESR
Dongjiu Gengbe26b3a2018-07-19 16:24:23 +01004884
4885Architectures: arm, arm64
4886
4887This capability indicates that userspace can specify (via the
4888KVM_SET_VCPU_EVENTS ioctl) the syndrome value reported to the guest when it
4889takes a virtual SError interrupt exception.
4890If KVM advertises this capability, userspace can only specify the ISS field for
4891the ESR syndrome. Other parts of the ESR, such as the EC are generated by the
4892CPU when the exception is taken. If this virtual SError is taken to EL1 using
4893AArch64, this value will be reported in the ISS field of ESR_ELx.
4894
4895See KVM_CAP_VCPU_EVENTS for more details.
Vitaly Kuznetsov214ff832018-09-26 19:02:59 +020048968.20 KVM_CAP_HYPERV_SEND_IPI
4897
4898Architectures: x86
4899
4900This capability indicates that KVM supports paravirtualized Hyper-V IPI send
4901hypercalls:
4902HvCallSendSyntheticClusterIpi, HvCallSendSyntheticClusterIpiEx.