blob: 6990c0ddc85405df69299e98f2b84eacb3358260 [file] [log] [blame]
Divy Le Ray4d22de32007-01-18 22:04:14 -05001/*
Divy Le Ray1d68e932007-01-30 19:44:35 -08002 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
Divy Le Ray4d22de32007-01-18 22:04:14 -05003 *
Divy Le Ray1d68e932007-01-30 19:44:35 -08004 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
Divy Le Ray4d22de32007-01-18 22:04:14 -05009 *
Divy Le Ray1d68e932007-01-30 19:44:35 -080010 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
Divy Le Ray4d22de32007-01-18 22:04:14 -050031 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050032#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
Divy Le Raye0994eb2007-02-24 16:44:17 -080048
Divy Le Ray4d22de32007-01-18 22:04:14 -050049#define SGE_RX_COPY_THRES 256
Divy Le Raycf992af2007-05-30 21:10:47 -070050#define SGE_RX_PULL_LEN 128
Divy Le Ray4d22de32007-01-18 22:04:14 -050051
Divy Le Raye0994eb2007-02-24 16:44:17 -080052/*
Divy Le Raycf992af2007-05-30 21:10:47 -070053 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
Divy Le Raye0994eb2007-02-24 16:44:17 -080056 */
Divy Le Raycf992af2007-05-30 21:10:47 -070057#define FL0_PG_CHUNK_SIZE 2048
Divy Le Ray7385ecf2008-05-21 18:56:21 -070058#define FL0_PG_ORDER 0
59#define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60#define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
Divy Le Raycf992af2007-05-30 21:10:47 -070061
Divy Le Raye0994eb2007-02-24 16:44:17 -080062#define SGE_RX_DROP_THRES 16
Divy Le Ray4d22de32007-01-18 22:04:14 -050063
64/*
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
67 */
68#define TX_RECLAIM_PERIOD (HZ / 4)
69
70/* WR size in bytes */
71#define WR_LEN (WR_FLITS * 8)
72
73/*
74 * Types of Tx queues in each queue set. Order here matters, do not change.
75 */
76enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
77
78/* Values for sge_txq.flags */
79enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82};
83
84struct tx_desc {
Al Virofb8e4442007-08-23 03:04:12 -040085 __be64 flit[TX_DESC_FLITS];
Divy Le Ray4d22de32007-01-18 22:04:14 -050086};
87
88struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
93};
94
95struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
Divy Le Ray23561c92007-11-16 11:22:05 -080097 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500101};
102
Divy Le Raycf992af2007-05-30 21:10:47 -0700103struct rx_sw_desc { /* SW state per Rx descriptor */
Divy Le Raye0994eb2007-02-24 16:44:17 -0800104 union {
105 struct sk_buff *skb;
Divy Le Raycf992af2007-05-30 21:10:47 -0700106 struct fl_pg_chunk pg_chunk;
107 };
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500109};
110
111struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117};
118
Divy Le Ray4d22de32007-01-18 22:04:14 -0500119/*
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
122 */
123struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126};
127
128/*
Divy Le Ray4d22de32007-01-18 22:04:14 -0500129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
131 *
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
133 *
134 * HW allows up to 4 descriptors to be combined into a WR.
135 */
136static u8 flit_desc_map[] = {
137 0,
138#if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143#elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148#else
149# error "SGE_NUM_GENBITS must be 1 or 2"
150#endif
151};
152
153static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
154{
155 return container_of(q, struct sge_qset, fl[qidx]);
156}
157
158static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
159{
160 return container_of(q, struct sge_qset, rspq);
161}
162
163static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
164{
165 return container_of(q, struct sge_qset, txq[qidx]);
166}
167
168/**
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
173 *
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
176 */
177static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
179{
Divy Le Rayafefce62007-11-16 11:22:21 -0800180 rmb();
Divy Le Ray4d22de32007-01-18 22:04:14 -0500181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183}
184
185/**
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
187 *
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
190 */
191static inline int need_skb_unmap(void)
192{
193 /*
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
196 */
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
199 };
200
201 return sizeof(struct dummy) != 0;
202}
203
204/**
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
210 *
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
Divy Le Ray23561c92007-11-16 11:22:05 -0800213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
220 *
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
Divy Le Ray4d22de32007-01-18 22:04:14 -0500225 */
226static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
228{
229 const struct sg_ent *sgp;
Divy Le Ray23561c92007-11-16 11:22:05 -0800230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500232
Divy Le Ray23561c92007-11-16 11:22:05 -0800233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500235
Divy Le Ray23561c92007-11-16 11:22:05 -0800236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500239 j = 1;
240 }
241
Divy Le Ray23561c92007-11-16 11:22:05 -0800242 curflit = d->sflit + 1 + j;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500243 nfrags = skb_shinfo(skb)->nr_frags;
244
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
253 }
254 curflit++;
255 frag_idx++;
256 }
257
Divy Le Ray23561c92007-11-16 11:22:05 -0800258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500263 }
264}
265
266/**
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
271 *
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
274 */
275static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
277{
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
281
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284
Divy Le Ray4d22de32007-01-18 22:04:14 -0500285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
Divy Le Ray99d7cf32007-02-24 16:44:06 -0800288 if (need_unmap)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500289 unmap_skb(d->skb, q, cidx, pdev);
Divy Le Ray23561c92007-11-16 11:22:05 -0800290 if (d->eop)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500291 kfree_skb(d->skb);
292 }
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
297 }
298 }
299 q->cidx = cidx;
300}
301
302/**
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
306 *
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
310 */
311static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
313{
314 unsigned int reclaim = q->processed - q->cleaned;
315
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
320 }
321}
322
323/**
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
326 *
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
328 */
329static inline int should_restart_tx(const struct sge_txq *q)
330{
331 unsigned int r = q->processed - q->cleaned;
332
333 return q->in_use - r < (q->size >> 1);
334}
335
336/**
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
340 *
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
343 */
344static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
345{
346 unsigned int cidx = q->cidx;
347
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
350
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
Divy Le Raycf992af2007-05-30 21:10:47 -0700353 if (q->use_pages) {
354 put_page(d->pg_chunk.page);
355 d->pg_chunk.page = NULL;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800356 } else {
Divy Le Raycf992af2007-05-30 21:10:47 -0700357 kfree_skb(d->skb);
358 d->skb = NULL;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800359 }
Divy Le Ray4d22de32007-01-18 22:04:14 -0500360 if (++cidx == q->size)
361 cidx = 0;
362 }
Divy Le Raye0994eb2007-02-24 16:44:17 -0800363
Divy Le Raycf992af2007-05-30 21:10:47 -0700364 if (q->pg_chunk.page) {
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700365 __free_pages(q->pg_chunk.page, q->order);
Divy Le Raycf992af2007-05-30 21:10:47 -0700366 q->pg_chunk.page = NULL;
367 }
Divy Le Ray4d22de32007-01-18 22:04:14 -0500368}
369
370/**
371 * add_one_rx_buf - add a packet buffer to a free-buffer list
Divy Le Raycf992af2007-05-30 21:10:47 -0700372 * @va: buffer start VA
Divy Le Ray4d22de32007-01-18 22:04:14 -0500373 * @len: the buffer length
374 * @d: the HW Rx descriptor to write
375 * @sd: the SW Rx descriptor to write
376 * @gen: the generation bit value
377 * @pdev: the PCI device associated with the adapter
378 *
379 * Add a buffer of the given length to the supplied HW and SW Rx
380 * descriptors.
381 */
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700382static inline int add_one_rx_buf(void *va, unsigned int len,
383 struct rx_desc *d, struct rx_sw_desc *sd,
384 unsigned int gen, struct pci_dev *pdev)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500385{
386 dma_addr_t mapping;
387
Divy Le Raye0994eb2007-02-24 16:44:17 -0800388 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
FUJITA Tomonori8d8bb392008-07-25 19:44:49 -0700389 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700390 return -ENOMEM;
391
Divy Le Ray4d22de32007-01-18 22:04:14 -0500392 pci_unmap_addr_set(sd, dma_addr, mapping);
393
394 d->addr_lo = cpu_to_be32(mapping);
395 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
396 wmb();
397 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
398 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700399 return 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500400}
401
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700402static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
403 unsigned int order)
Divy Le Raycf992af2007-05-30 21:10:47 -0700404{
405 if (!q->pg_chunk.page) {
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700406 q->pg_chunk.page = alloc_pages(gfp, order);
Divy Le Raycf992af2007-05-30 21:10:47 -0700407 if (unlikely(!q->pg_chunk.page))
408 return -ENOMEM;
409 q->pg_chunk.va = page_address(q->pg_chunk.page);
410 q->pg_chunk.offset = 0;
411 }
412 sd->pg_chunk = q->pg_chunk;
413
414 q->pg_chunk.offset += q->buf_size;
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700415 if (q->pg_chunk.offset == (PAGE_SIZE << order))
Divy Le Raycf992af2007-05-30 21:10:47 -0700416 q->pg_chunk.page = NULL;
417 else {
418 q->pg_chunk.va += q->buf_size;
419 get_page(q->pg_chunk.page);
420 }
421 return 0;
422}
423
Divy Le Ray4d22de32007-01-18 22:04:14 -0500424/**
425 * refill_fl - refill an SGE free-buffer list
426 * @adapter: the adapter
427 * @q: the free-list to refill
428 * @n: the number of new buffers to allocate
429 * @gfp: the gfp flags for allocating new buffers
430 *
431 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
432 * allocated with the supplied gfp flags. The caller must assure that
433 * @n does not exceed the queue's capacity.
434 */
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700435static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500436{
Divy Le Raycf992af2007-05-30 21:10:47 -0700437 void *buf_start;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500438 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
439 struct rx_desc *d = &q->desc[q->pidx];
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700440 unsigned int count = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500441
442 while (n--) {
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700443 int err;
444
Divy Le Raycf992af2007-05-30 21:10:47 -0700445 if (q->use_pages) {
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700446 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
Divy Le Raycf992af2007-05-30 21:10:47 -0700447nomem: q->alloc_failed++;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800448 break;
449 }
Divy Le Raycf992af2007-05-30 21:10:47 -0700450 buf_start = sd->pg_chunk.va;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800451 } else {
Divy Le Raycf992af2007-05-30 21:10:47 -0700452 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
Divy Le Raye0994eb2007-02-24 16:44:17 -0800453
Divy Le Raycf992af2007-05-30 21:10:47 -0700454 if (!skb)
455 goto nomem;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800456
Divy Le Raycf992af2007-05-30 21:10:47 -0700457 sd->skb = skb;
458 buf_start = skb->data;
Divy Le Raye0994eb2007-02-24 16:44:17 -0800459 }
460
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700461 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
462 adap->pdev);
463 if (unlikely(err)) {
464 if (!q->use_pages) {
465 kfree_skb(sd->skb);
466 sd->skb = NULL;
467 }
468 break;
469 }
470
Divy Le Ray4d22de32007-01-18 22:04:14 -0500471 d++;
472 sd++;
473 if (++q->pidx == q->size) {
474 q->pidx = 0;
475 q->gen ^= 1;
476 sd = q->sdesc;
477 d = q->desc;
478 }
479 q->credits++;
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700480 count++;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500481 }
Divy Le Rayafefce62007-11-16 11:22:21 -0800482 wmb();
Divy Le Rayb1fb1f22008-05-21 18:56:16 -0700483 if (likely(count))
484 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
485
486 return count;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500487}
488
489static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
490{
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700491 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
492 GFP_ATOMIC | __GFP_COMP);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500493}
494
495/**
496 * recycle_rx_buf - recycle a receive buffer
497 * @adapter: the adapter
498 * @q: the SGE free list
499 * @idx: index of buffer to recycle
500 *
501 * Recycles the specified buffer on the given free list by adding it at
502 * the next available slot on the list.
503 */
504static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
505 unsigned int idx)
506{
507 struct rx_desc *from = &q->desc[idx];
508 struct rx_desc *to = &q->desc[q->pidx];
509
Divy Le Raycf992af2007-05-30 21:10:47 -0700510 q->sdesc[q->pidx] = q->sdesc[idx];
Divy Le Ray4d22de32007-01-18 22:04:14 -0500511 to->addr_lo = from->addr_lo; /* already big endian */
512 to->addr_hi = from->addr_hi; /* likewise */
513 wmb();
514 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
515 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
516 q->credits++;
517
518 if (++q->pidx == q->size) {
519 q->pidx = 0;
520 q->gen ^= 1;
521 }
522 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
523}
524
525/**
526 * alloc_ring - allocate resources for an SGE descriptor ring
527 * @pdev: the PCI device
528 * @nelem: the number of descriptors
529 * @elem_size: the size of each descriptor
530 * @sw_size: the size of the SW state associated with each ring element
531 * @phys: the physical address of the allocated ring
532 * @metadata: address of the array holding the SW state for the ring
533 *
534 * Allocates resources for an SGE descriptor ring, such as Tx queues,
535 * free buffer lists, or response queues. Each SGE ring requires
536 * space for its HW descriptors plus, optionally, space for the SW state
537 * associated with each HW entry (the metadata). The function returns
538 * three values: the virtual address for the HW ring (the return value
539 * of the function), the physical address of the HW ring, and the address
540 * of the SW ring.
541 */
542static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
Divy Le Raye0994eb2007-02-24 16:44:17 -0800543 size_t sw_size, dma_addr_t * phys, void *metadata)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500544{
545 size_t len = nelem * elem_size;
546 void *s = NULL;
547 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
548
549 if (!p)
550 return NULL;
551 if (sw_size) {
552 s = kcalloc(nelem, sw_size, GFP_KERNEL);
553
554 if (!s) {
555 dma_free_coherent(&pdev->dev, len, p, *phys);
556 return NULL;
557 }
558 }
559 if (metadata)
560 *(void **)metadata = s;
561 memset(p, 0, len);
562 return p;
563}
564
565/**
Divy Le Ray204e2f92008-05-06 19:26:01 -0700566 * t3_reset_qset - reset a sge qset
567 * @q: the queue set
568 *
569 * Reset the qset structure.
570 * the NAPI structure is preserved in the event of
571 * the qset's reincarnation, for example during EEH recovery.
572 */
573static void t3_reset_qset(struct sge_qset *q)
574{
575 if (q->adap &&
576 !(q->adap->flags & NAPI_INIT)) {
577 memset(q, 0, sizeof(*q));
578 return;
579 }
580
581 q->adap = NULL;
582 memset(&q->rspq, 0, sizeof(q->rspq));
583 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
584 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
585 q->txq_stopped = 0;
586 memset(&q->tx_reclaim_timer, 0, sizeof(q->tx_reclaim_timer));
Divy Le Rayb47385b2008-05-21 18:56:26 -0700587 kfree(q->lro_frag_tbl);
588 q->lro_nfrags = q->lro_frag_len = 0;
Divy Le Ray204e2f92008-05-06 19:26:01 -0700589}
590
591
592/**
Divy Le Ray4d22de32007-01-18 22:04:14 -0500593 * free_qset - free the resources of an SGE queue set
594 * @adapter: the adapter owning the queue set
595 * @q: the queue set
596 *
597 * Release the HW and SW resources associated with an SGE queue set, such
598 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
599 * queue set must be quiesced prior to calling this.
600 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -0700601static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500602{
603 int i;
604 struct pci_dev *pdev = adapter->pdev;
605
606 if (q->tx_reclaim_timer.function)
607 del_timer_sync(&q->tx_reclaim_timer);
608
609 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
610 if (q->fl[i].desc) {
Roland Dreierb1186de2008-03-20 13:30:48 -0700611 spin_lock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500612 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
Roland Dreierb1186de2008-03-20 13:30:48 -0700613 spin_unlock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500614 free_rx_bufs(pdev, &q->fl[i]);
615 kfree(q->fl[i].sdesc);
616 dma_free_coherent(&pdev->dev,
617 q->fl[i].size *
618 sizeof(struct rx_desc), q->fl[i].desc,
619 q->fl[i].phys_addr);
620 }
621
622 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
623 if (q->txq[i].desc) {
Roland Dreierb1186de2008-03-20 13:30:48 -0700624 spin_lock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500625 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
Roland Dreierb1186de2008-03-20 13:30:48 -0700626 spin_unlock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500627 if (q->txq[i].sdesc) {
628 free_tx_desc(adapter, &q->txq[i],
629 q->txq[i].in_use);
630 kfree(q->txq[i].sdesc);
631 }
632 dma_free_coherent(&pdev->dev,
633 q->txq[i].size *
634 sizeof(struct tx_desc),
635 q->txq[i].desc, q->txq[i].phys_addr);
636 __skb_queue_purge(&q->txq[i].sendq);
637 }
638
639 if (q->rspq.desc) {
Roland Dreierb1186de2008-03-20 13:30:48 -0700640 spin_lock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500641 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
Roland Dreierb1186de2008-03-20 13:30:48 -0700642 spin_unlock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500643 dma_free_coherent(&pdev->dev,
644 q->rspq.size * sizeof(struct rsp_desc),
645 q->rspq.desc, q->rspq.phys_addr);
646 }
647
Divy Le Ray204e2f92008-05-06 19:26:01 -0700648 t3_reset_qset(q);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500649}
650
651/**
652 * init_qset_cntxt - initialize an SGE queue set context info
653 * @qs: the queue set
654 * @id: the queue set id
655 *
656 * Initializes the TIDs and context ids for the queues of a queue set.
657 */
658static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
659{
660 qs->rspq.cntxt_id = id;
661 qs->fl[0].cntxt_id = 2 * id;
662 qs->fl[1].cntxt_id = 2 * id + 1;
663 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
664 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
665 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
666 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
667 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
668}
669
670/**
671 * sgl_len - calculates the size of an SGL of the given capacity
672 * @n: the number of SGL entries
673 *
674 * Calculates the number of flits needed for a scatter/gather list that
675 * can hold the given number of entries.
676 */
677static inline unsigned int sgl_len(unsigned int n)
678{
679 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
680 return (3 * n) / 2 + (n & 1);
681}
682
683/**
684 * flits_to_desc - returns the num of Tx descriptors for the given flits
685 * @n: the number of flits
686 *
687 * Calculates the number of Tx descriptors needed for the supplied number
688 * of flits.
689 */
690static inline unsigned int flits_to_desc(unsigned int n)
691{
692 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
693 return flit_desc_map[n];
694}
695
696/**
Divy Le Raycf992af2007-05-30 21:10:47 -0700697 * get_packet - return the next ingress packet buffer from a free list
698 * @adap: the adapter that received the packet
699 * @fl: the SGE free list holding the packet
700 * @len: the packet length including any SGE padding
701 * @drop_thres: # of remaining buffers before we start dropping packets
702 *
703 * Get the next packet from a free list and complete setup of the
704 * sk_buff. If the packet is small we make a copy and recycle the
705 * original buffer, otherwise we use the original buffer itself. If a
706 * positive drop threshold is supplied packets are dropped and their
707 * buffers recycled if (a) the number of remaining buffers is under the
708 * threshold and the packet is too big to copy, or (b) the packet should
709 * be copied but there is no memory for the copy.
710 */
711static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
712 unsigned int len, unsigned int drop_thres)
713{
714 struct sk_buff *skb = NULL;
715 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
716
717 prefetch(sd->skb->data);
718 fl->credits--;
719
720 if (len <= SGE_RX_COPY_THRES) {
721 skb = alloc_skb(len, GFP_ATOMIC);
722 if (likely(skb != NULL)) {
723 __skb_put(skb, len);
724 pci_dma_sync_single_for_cpu(adap->pdev,
725 pci_unmap_addr(sd, dma_addr), len,
726 PCI_DMA_FROMDEVICE);
727 memcpy(skb->data, sd->skb->data, len);
728 pci_dma_sync_single_for_device(adap->pdev,
729 pci_unmap_addr(sd, dma_addr), len,
730 PCI_DMA_FROMDEVICE);
731 } else if (!drop_thres)
732 goto use_orig_buf;
733recycle:
734 recycle_rx_buf(adap, fl, fl->cidx);
735 return skb;
736 }
737
738 if (unlikely(fl->credits < drop_thres))
739 goto recycle;
740
741use_orig_buf:
742 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
743 fl->buf_size, PCI_DMA_FROMDEVICE);
744 skb = sd->skb;
745 skb_put(skb, len);
746 __refill_fl(adap, fl);
747 return skb;
748}
749
750/**
751 * get_packet_pg - return the next ingress packet buffer from a free list
752 * @adap: the adapter that received the packet
753 * @fl: the SGE free list holding the packet
754 * @len: the packet length including any SGE padding
755 * @drop_thres: # of remaining buffers before we start dropping packets
756 *
757 * Get the next packet from a free list populated with page chunks.
758 * If the packet is small we make a copy and recycle the original buffer,
759 * otherwise we attach the original buffer as a page fragment to a fresh
760 * sk_buff. If a positive drop threshold is supplied packets are dropped
761 * and their buffers recycled if (a) the number of remaining buffers is
762 * under the threshold and the packet is too big to copy, or (b) there's
763 * no system memory.
764 *
765 * Note: this function is similar to @get_packet but deals with Rx buffers
766 * that are page chunks rather than sk_buffs.
767 */
768static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700769 struct sge_rspq *q, unsigned int len,
770 unsigned int drop_thres)
Divy Le Raycf992af2007-05-30 21:10:47 -0700771{
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700772 struct sk_buff *newskb, *skb;
Divy Le Raycf992af2007-05-30 21:10:47 -0700773 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
774
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700775 newskb = skb = q->pg_skb;
776
777 if (!skb && (len <= SGE_RX_COPY_THRES)) {
778 newskb = alloc_skb(len, GFP_ATOMIC);
779 if (likely(newskb != NULL)) {
780 __skb_put(newskb, len);
Divy Le Raycf992af2007-05-30 21:10:47 -0700781 pci_dma_sync_single_for_cpu(adap->pdev,
782 pci_unmap_addr(sd, dma_addr), len,
783 PCI_DMA_FROMDEVICE);
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700784 memcpy(newskb->data, sd->pg_chunk.va, len);
Divy Le Raycf992af2007-05-30 21:10:47 -0700785 pci_dma_sync_single_for_device(adap->pdev,
786 pci_unmap_addr(sd, dma_addr), len,
787 PCI_DMA_FROMDEVICE);
788 } else if (!drop_thres)
789 return NULL;
790recycle:
791 fl->credits--;
792 recycle_rx_buf(adap, fl, fl->cidx);
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700793 q->rx_recycle_buf++;
794 return newskb;
Divy Le Raycf992af2007-05-30 21:10:47 -0700795 }
796
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700797 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
Divy Le Raycf992af2007-05-30 21:10:47 -0700798 goto recycle;
799
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700800 if (!skb)
Divy Le Rayb47385b2008-05-21 18:56:26 -0700801 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700802 if (unlikely(!newskb)) {
Divy Le Raycf992af2007-05-30 21:10:47 -0700803 if (!drop_thres)
804 return NULL;
805 goto recycle;
806 }
807
808 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
809 fl->buf_size, PCI_DMA_FROMDEVICE);
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700810 if (!skb) {
811 __skb_put(newskb, SGE_RX_PULL_LEN);
812 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
813 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
814 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
815 len - SGE_RX_PULL_LEN);
816 newskb->len = len;
817 newskb->data_len = len - SGE_RX_PULL_LEN;
818 } else {
819 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
820 sd->pg_chunk.page,
821 sd->pg_chunk.offset, len);
822 newskb->len += len;
823 newskb->data_len += len;
824 }
825 newskb->truesize += newskb->data_len;
Divy Le Raycf992af2007-05-30 21:10:47 -0700826
827 fl->credits--;
828 /*
829 * We do not refill FLs here, we let the caller do it to overlap a
830 * prefetch.
831 */
Divy Le Ray7385ecf2008-05-21 18:56:21 -0700832 return newskb;
Divy Le Raycf992af2007-05-30 21:10:47 -0700833}
834
835/**
Divy Le Ray4d22de32007-01-18 22:04:14 -0500836 * get_imm_packet - return the next ingress packet buffer from a response
837 * @resp: the response descriptor containing the packet data
838 *
839 * Return a packet containing the immediate data of the given response.
840 */
841static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
842{
843 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
844
845 if (skb) {
846 __skb_put(skb, IMMED_PKT_SIZE);
Arnaldo Carvalho de Melo27d7ff42007-03-31 11:55:19 -0300847 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500848 }
849 return skb;
850}
851
852/**
853 * calc_tx_descs - calculate the number of Tx descriptors for a packet
854 * @skb: the packet
855 *
856 * Returns the number of Tx descriptors needed for the given Ethernet
857 * packet. Ethernet packets require addition of WR and CPL headers.
858 */
859static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
860{
861 unsigned int flits;
862
863 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
864 return 1;
865
866 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
867 if (skb_shinfo(skb)->gso_size)
868 flits++;
869 return flits_to_desc(flits);
870}
871
872/**
873 * make_sgl - populate a scatter/gather list for a packet
874 * @skb: the packet
875 * @sgp: the SGL to populate
876 * @start: start address of skb main body data to include in the SGL
877 * @len: length of skb main body data to include in the SGL
878 * @pdev: the PCI device
879 *
880 * Generates a scatter/gather list for the buffers that make up a packet
881 * and returns the SGL size in 8-byte words. The caller must size the SGL
882 * appropriately.
883 */
884static inline unsigned int make_sgl(const struct sk_buff *skb,
885 struct sg_ent *sgp, unsigned char *start,
886 unsigned int len, struct pci_dev *pdev)
887{
888 dma_addr_t mapping;
889 unsigned int i, j = 0, nfrags;
890
891 if (len) {
892 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
893 sgp->len[0] = cpu_to_be32(len);
894 sgp->addr[0] = cpu_to_be64(mapping);
895 j = 1;
896 }
897
898 nfrags = skb_shinfo(skb)->nr_frags;
899 for (i = 0; i < nfrags; i++) {
900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
901
902 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
903 frag->size, PCI_DMA_TODEVICE);
904 sgp->len[j] = cpu_to_be32(frag->size);
905 sgp->addr[j] = cpu_to_be64(mapping);
906 j ^= 1;
907 if (j == 0)
908 ++sgp;
909 }
910 if (j)
911 sgp->len[j] = 0;
912 return ((nfrags + (len != 0)) * 3) / 2 + j;
913}
914
915/**
916 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
917 * @adap: the adapter
918 * @q: the Tx queue
919 *
920 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
921 * where the HW is going to sleep just after we checked, however,
922 * then the interrupt handler will detect the outstanding TX packet
923 * and ring the doorbell for us.
924 *
925 * When GTS is disabled we unconditionally ring the doorbell.
926 */
927static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
928{
929#if USE_GTS
930 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
931 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
932 set_bit(TXQ_LAST_PKT_DB, &q->flags);
933 t3_write_reg(adap, A_SG_KDOORBELL,
934 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
935 }
936#else
937 wmb(); /* write descriptors before telling HW */
938 t3_write_reg(adap, A_SG_KDOORBELL,
939 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
940#endif
941}
942
943static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
944{
945#if SGE_NUM_GENBITS == 2
946 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
947#endif
948}
949
950/**
951 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
952 * @ndesc: number of Tx descriptors spanned by the SGL
953 * @skb: the packet corresponding to the WR
954 * @d: first Tx descriptor to be written
955 * @pidx: index of above descriptors
956 * @q: the SGE Tx queue
957 * @sgl: the SGL
958 * @flits: number of flits to the start of the SGL in the first descriptor
959 * @sgl_flits: the SGL size in flits
960 * @gen: the Tx descriptor generation
961 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
962 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
963 *
964 * Write a work request header and an associated SGL. If the SGL is
965 * small enough to fit into one Tx descriptor it has already been written
966 * and we just need to write the WR header. Otherwise we distribute the
967 * SGL across the number of descriptors it spans.
968 */
969static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
970 struct tx_desc *d, unsigned int pidx,
971 const struct sge_txq *q,
972 const struct sg_ent *sgl,
973 unsigned int flits, unsigned int sgl_flits,
Al Virofb8e4442007-08-23 03:04:12 -0400974 unsigned int gen, __be32 wr_hi,
975 __be32 wr_lo)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500976{
977 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
978 struct tx_sw_desc *sd = &q->sdesc[pidx];
979
980 sd->skb = skb;
981 if (need_skb_unmap()) {
Divy Le Ray23561c92007-11-16 11:22:05 -0800982 sd->fragidx = 0;
983 sd->addr_idx = 0;
984 sd->sflit = flits;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500985 }
986
987 if (likely(ndesc == 1)) {
Divy Le Ray23561c92007-11-16 11:22:05 -0800988 sd->eop = 1;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500989 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
990 V_WR_SGLSFLT(flits)) | wr_hi;
991 wmb();
992 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
993 V_WR_GEN(gen)) | wr_lo;
994 wr_gen2(d, gen);
995 } else {
996 unsigned int ogen = gen;
997 const u64 *fp = (const u64 *)sgl;
998 struct work_request_hdr *wp = wrp;
999
1000 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1001 V_WR_SGLSFLT(flits)) | wr_hi;
1002
1003 while (sgl_flits) {
1004 unsigned int avail = WR_FLITS - flits;
1005
1006 if (avail > sgl_flits)
1007 avail = sgl_flits;
1008 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1009 sgl_flits -= avail;
1010 ndesc--;
1011 if (!sgl_flits)
1012 break;
1013
1014 fp += avail;
1015 d++;
Divy Le Ray23561c92007-11-16 11:22:05 -08001016 sd->eop = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001017 sd++;
1018 if (++pidx == q->size) {
1019 pidx = 0;
1020 gen ^= 1;
1021 d = q->desc;
1022 sd = q->sdesc;
1023 }
1024
1025 sd->skb = skb;
1026 wrp = (struct work_request_hdr *)d;
1027 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1028 V_WR_SGLSFLT(1)) | wr_hi;
1029 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1030 sgl_flits + 1)) |
1031 V_WR_GEN(gen)) | wr_lo;
1032 wr_gen2(d, gen);
1033 flits = 1;
1034 }
Divy Le Ray23561c92007-11-16 11:22:05 -08001035 sd->eop = 1;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001036 wrp->wr_hi |= htonl(F_WR_EOP);
1037 wmb();
1038 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1039 wr_gen2((struct tx_desc *)wp, ogen);
1040 WARN_ON(ndesc != 0);
1041 }
1042}
1043
1044/**
1045 * write_tx_pkt_wr - write a TX_PKT work request
1046 * @adap: the adapter
1047 * @skb: the packet to send
1048 * @pi: the egress interface
1049 * @pidx: index of the first Tx descriptor to write
1050 * @gen: the generation value to use
1051 * @q: the Tx queue
1052 * @ndesc: number of descriptors the packet will occupy
1053 * @compl: the value of the COMPL bit to use
1054 *
1055 * Generate a TX_PKT work request to send the supplied packet.
1056 */
1057static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1058 const struct port_info *pi,
1059 unsigned int pidx, unsigned int gen,
1060 struct sge_txq *q, unsigned int ndesc,
1061 unsigned int compl)
1062{
1063 unsigned int flits, sgl_flits, cntrl, tso_info;
1064 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1065 struct tx_desc *d = &q->desc[pidx];
1066 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1067
1068 cpl->len = htonl(skb->len | 0x80000000);
1069 cntrl = V_TXPKT_INTF(pi->port_id);
1070
1071 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1072 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1073
1074 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1075 if (tso_info) {
1076 int eth_type;
1077 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1078
1079 d->flit[2] = 0;
1080 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1081 hdr->cntrl = htonl(cntrl);
Arnaldo Carvalho de Melobbe735e2007-03-10 22:16:10 -03001082 eth_type = skb_network_offset(skb) == ETH_HLEN ?
Divy Le Ray4d22de32007-01-18 22:04:14 -05001083 CPL_ETH_II : CPL_ETH_II_VLAN;
1084 tso_info |= V_LSO_ETH_TYPE(eth_type) |
Arnaldo Carvalho de Meloeddc9ec2007-04-20 22:47:35 -07001085 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
Arnaldo Carvalho de Meloaa8223c2007-04-10 21:04:22 -07001086 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001087 hdr->lso_info = htonl(tso_info);
1088 flits = 3;
1089 } else {
1090 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1091 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1092 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1093 cpl->cntrl = htonl(cntrl);
1094
1095 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1096 q->sdesc[pidx].skb = NULL;
1097 if (!skb->data_len)
Arnaldo Carvalho de Melod626f622007-03-27 18:55:52 -03001098 skb_copy_from_linear_data(skb, &d->flit[2],
1099 skb->len);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001100 else
1101 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1102
1103 flits = (skb->len + 7) / 8 + 2;
1104 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1105 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1106 | F_WR_SOP | F_WR_EOP | compl);
1107 wmb();
1108 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1109 V_WR_TID(q->token));
1110 wr_gen2(d, gen);
1111 kfree_skb(skb);
1112 return;
1113 }
1114
1115 flits = 2;
1116 }
1117
1118 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1119 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001120
1121 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1122 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1123 htonl(V_WR_TID(q->token)));
1124}
1125
Krishna Kumara8cc21f2008-01-30 12:30:16 +05301126static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1127 struct sge_txq *q)
1128{
1129 netif_stop_queue(dev);
1130 set_bit(TXQ_ETH, &qs->txq_stopped);
1131 q->stops++;
1132}
1133
Divy Le Ray4d22de32007-01-18 22:04:14 -05001134/**
1135 * eth_xmit - add a packet to the Ethernet Tx queue
1136 * @skb: the packet
1137 * @dev: the egress net device
1138 *
1139 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1140 */
1141int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1142{
1143 unsigned int ndesc, pidx, credits, gen, compl;
1144 const struct port_info *pi = netdev_priv(dev);
Divy Le Ray5fbf8162007-08-29 19:15:47 -07001145 struct adapter *adap = pi->adapter;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001146 struct sge_qset *qs = pi->qs;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001147 struct sge_txq *q = &qs->txq[TXQ_ETH];
1148
1149 /*
1150 * The chip min packet length is 9 octets but play safe and reject
1151 * anything shorter than an Ethernet header.
1152 */
1153 if (unlikely(skb->len < ETH_HLEN)) {
1154 dev_kfree_skb(skb);
1155 return NETDEV_TX_OK;
1156 }
1157
1158 spin_lock(&q->lock);
1159 reclaim_completed_tx(adap, q);
1160
1161 credits = q->size - q->in_use;
1162 ndesc = calc_tx_descs(skb);
1163
1164 if (unlikely(credits < ndesc)) {
Krishna Kumara8cc21f2008-01-30 12:30:16 +05301165 t3_stop_queue(dev, qs, q);
1166 dev_err(&adap->pdev->dev,
1167 "%s: Tx ring %u full while queue awake!\n",
1168 dev->name, q->cntxt_id & 7);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001169 spin_unlock(&q->lock);
1170 return NETDEV_TX_BUSY;
1171 }
1172
1173 q->in_use += ndesc;
Divy Le Raycd7e9032008-03-13 00:13:30 -07001174 if (unlikely(credits - ndesc < q->stop_thres)) {
1175 t3_stop_queue(dev, qs, q);
1176
1177 if (should_restart_tx(q) &&
1178 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1179 q->restarts++;
1180 netif_wake_queue(dev);
1181 }
1182 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05001183
1184 gen = q->gen;
1185 q->unacked += ndesc;
1186 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1187 q->unacked &= 7;
1188 pidx = q->pidx;
1189 q->pidx += ndesc;
1190 if (q->pidx >= q->size) {
1191 q->pidx -= q->size;
1192 q->gen ^= 1;
1193 }
1194
1195 /* update port statistics */
1196 if (skb->ip_summed == CHECKSUM_COMPLETE)
1197 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1198 if (skb_shinfo(skb)->gso_size)
1199 qs->port_stats[SGE_PSTAT_TSO]++;
1200 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1201 qs->port_stats[SGE_PSTAT_VLANINS]++;
1202
1203 dev->trans_start = jiffies;
1204 spin_unlock(&q->lock);
1205
1206 /*
1207 * We do not use Tx completion interrupts to free DMAd Tx packets.
1208 * This is good for performamce but means that we rely on new Tx
1209 * packets arriving to run the destructors of completed packets,
1210 * which open up space in their sockets' send queues. Sometimes
1211 * we do not get such new packets causing Tx to stall. A single
1212 * UDP transmitter is a good example of this situation. We have
1213 * a clean up timer that periodically reclaims completed packets
1214 * but it doesn't run often enough (nor do we want it to) to prevent
1215 * lengthy stalls. A solution to this problem is to run the
1216 * destructor early, after the packet is queued but before it's DMAd.
1217 * A cons is that we lie to socket memory accounting, but the amount
1218 * of extra memory is reasonable (limited by the number of Tx
1219 * descriptors), the packets do actually get freed quickly by new
1220 * packets almost always, and for protocols like TCP that wait for
1221 * acks to really free up the data the extra memory is even less.
1222 * On the positive side we run the destructors on the sending CPU
1223 * rather than on a potentially different completing CPU, usually a
1224 * good thing. We also run them without holding our Tx queue lock,
1225 * unlike what reclaim_completed_tx() would otherwise do.
1226 *
1227 * Run the destructor before telling the DMA engine about the packet
1228 * to make sure it doesn't complete and get freed prematurely.
1229 */
1230 if (likely(!skb_shared(skb)))
1231 skb_orphan(skb);
1232
1233 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1234 check_ring_tx_db(adap, q);
1235 return NETDEV_TX_OK;
1236}
1237
1238/**
1239 * write_imm - write a packet into a Tx descriptor as immediate data
1240 * @d: the Tx descriptor to write
1241 * @skb: the packet
1242 * @len: the length of packet data to write as immediate data
1243 * @gen: the generation bit value to write
1244 *
1245 * Writes a packet as immediate data into a Tx descriptor. The packet
1246 * contains a work request at its beginning. We must write the packet
Divy Le Ray27186dc2007-08-21 20:49:15 -07001247 * carefully so the SGE doesn't read it accidentally before it's written
1248 * in its entirety.
Divy Le Ray4d22de32007-01-18 22:04:14 -05001249 */
1250static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1251 unsigned int len, unsigned int gen)
1252{
1253 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1254 struct work_request_hdr *to = (struct work_request_hdr *)d;
1255
Divy Le Ray27186dc2007-08-21 20:49:15 -07001256 if (likely(!skb->data_len))
1257 memcpy(&to[1], &from[1], len - sizeof(*from));
1258 else
1259 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1260
Divy Le Ray4d22de32007-01-18 22:04:14 -05001261 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1262 V_WR_BCNTLFLT(len & 7));
1263 wmb();
1264 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1265 V_WR_LEN((len + 7) / 8));
1266 wr_gen2(d, gen);
1267 kfree_skb(skb);
1268}
1269
1270/**
1271 * check_desc_avail - check descriptor availability on a send queue
1272 * @adap: the adapter
1273 * @q: the send queue
1274 * @skb: the packet needing the descriptors
1275 * @ndesc: the number of Tx descriptors needed
1276 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1277 *
1278 * Checks if the requested number of Tx descriptors is available on an
1279 * SGE send queue. If the queue is already suspended or not enough
1280 * descriptors are available the packet is queued for later transmission.
1281 * Must be called with the Tx queue locked.
1282 *
1283 * Returns 0 if enough descriptors are available, 1 if there aren't
1284 * enough descriptors and the packet has been queued, and 2 if the caller
1285 * needs to retry because there weren't enough descriptors at the
1286 * beginning of the call but some freed up in the mean time.
1287 */
1288static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1289 struct sk_buff *skb, unsigned int ndesc,
1290 unsigned int qid)
1291{
1292 if (unlikely(!skb_queue_empty(&q->sendq))) {
1293 addq_exit:__skb_queue_tail(&q->sendq, skb);
1294 return 1;
1295 }
1296 if (unlikely(q->size - q->in_use < ndesc)) {
1297 struct sge_qset *qs = txq_to_qset(q, qid);
1298
1299 set_bit(qid, &qs->txq_stopped);
1300 smp_mb__after_clear_bit();
1301
1302 if (should_restart_tx(q) &&
1303 test_and_clear_bit(qid, &qs->txq_stopped))
1304 return 2;
1305
1306 q->stops++;
1307 goto addq_exit;
1308 }
1309 return 0;
1310}
1311
1312/**
1313 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1314 * @q: the SGE control Tx queue
1315 *
1316 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1317 * that send only immediate data (presently just the control queues) and
1318 * thus do not have any sk_buffs to release.
1319 */
1320static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1321{
1322 unsigned int reclaim = q->processed - q->cleaned;
1323
1324 q->in_use -= reclaim;
1325 q->cleaned += reclaim;
1326}
1327
1328static inline int immediate(const struct sk_buff *skb)
1329{
Divy Le Ray27186dc2007-08-21 20:49:15 -07001330 return skb->len <= WR_LEN;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001331}
1332
1333/**
1334 * ctrl_xmit - send a packet through an SGE control Tx queue
1335 * @adap: the adapter
1336 * @q: the control queue
1337 * @skb: the packet
1338 *
1339 * Send a packet through an SGE control Tx queue. Packets sent through
1340 * a control queue must fit entirely as immediate data in a single Tx
1341 * descriptor and have no page fragments.
1342 */
1343static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1344 struct sk_buff *skb)
1345{
1346 int ret;
1347 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1348
1349 if (unlikely(!immediate(skb))) {
1350 WARN_ON(1);
1351 dev_kfree_skb(skb);
1352 return NET_XMIT_SUCCESS;
1353 }
1354
1355 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1356 wrp->wr_lo = htonl(V_WR_TID(q->token));
1357
1358 spin_lock(&q->lock);
1359 again:reclaim_completed_tx_imm(q);
1360
1361 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1362 if (unlikely(ret)) {
1363 if (ret == 1) {
1364 spin_unlock(&q->lock);
1365 return NET_XMIT_CN;
1366 }
1367 goto again;
1368 }
1369
1370 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1371
1372 q->in_use++;
1373 if (++q->pidx >= q->size) {
1374 q->pidx = 0;
1375 q->gen ^= 1;
1376 }
1377 spin_unlock(&q->lock);
1378 wmb();
1379 t3_write_reg(adap, A_SG_KDOORBELL,
1380 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1381 return NET_XMIT_SUCCESS;
1382}
1383
1384/**
1385 * restart_ctrlq - restart a suspended control queue
1386 * @qs: the queue set cotaining the control queue
1387 *
1388 * Resumes transmission on a suspended Tx control queue.
1389 */
1390static void restart_ctrlq(unsigned long data)
1391{
1392 struct sk_buff *skb;
1393 struct sge_qset *qs = (struct sge_qset *)data;
1394 struct sge_txq *q = &qs->txq[TXQ_CTRL];
Divy Le Ray4d22de32007-01-18 22:04:14 -05001395
1396 spin_lock(&q->lock);
1397 again:reclaim_completed_tx_imm(q);
1398
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001399 while (q->in_use < q->size &&
1400 (skb = __skb_dequeue(&q->sendq)) != NULL) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001401
1402 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1403
1404 if (++q->pidx >= q->size) {
1405 q->pidx = 0;
1406 q->gen ^= 1;
1407 }
1408 q->in_use++;
1409 }
1410
1411 if (!skb_queue_empty(&q->sendq)) {
1412 set_bit(TXQ_CTRL, &qs->txq_stopped);
1413 smp_mb__after_clear_bit();
1414
1415 if (should_restart_tx(q) &&
1416 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1417 goto again;
1418 q->stops++;
1419 }
1420
1421 spin_unlock(&q->lock);
Divy Le Rayafefce62007-11-16 11:22:21 -08001422 wmb();
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001423 t3_write_reg(qs->adap, A_SG_KDOORBELL,
Divy Le Ray4d22de32007-01-18 22:04:14 -05001424 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1425}
1426
Divy Le Ray14ab9892007-01-30 19:43:50 -08001427/*
1428 * Send a management message through control queue 0
1429 */
1430int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1431{
Divy Le Ray204e2f92008-05-06 19:26:01 -07001432 int ret;
Divy Le Raybc4b6b522007-12-17 18:47:41 -08001433 local_bh_disable();
1434 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1435 local_bh_enable();
1436
1437 return ret;
Divy Le Ray14ab9892007-01-30 19:43:50 -08001438}
1439
Divy Le Ray4d22de32007-01-18 22:04:14 -05001440/**
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001441 * deferred_unmap_destructor - unmap a packet when it is freed
1442 * @skb: the packet
1443 *
1444 * This is the packet destructor used for Tx packets that need to remain
1445 * mapped until they are freed rather than until their Tx descriptors are
1446 * freed.
1447 */
1448static void deferred_unmap_destructor(struct sk_buff *skb)
1449{
1450 int i;
1451 const dma_addr_t *p;
1452 const struct skb_shared_info *si;
1453 const struct deferred_unmap_info *dui;
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001454
1455 dui = (struct deferred_unmap_info *)skb->head;
1456 p = dui->addr;
1457
Divy Le Ray23561c92007-11-16 11:22:05 -08001458 if (skb->tail - skb->transport_header)
1459 pci_unmap_single(dui->pdev, *p++,
1460 skb->tail - skb->transport_header,
1461 PCI_DMA_TODEVICE);
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001462
1463 si = skb_shinfo(skb);
1464 for (i = 0; i < si->nr_frags; i++)
1465 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1466 PCI_DMA_TODEVICE);
1467}
1468
1469static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1470 const struct sg_ent *sgl, int sgl_flits)
1471{
1472 dma_addr_t *p;
1473 struct deferred_unmap_info *dui;
1474
1475 dui = (struct deferred_unmap_info *)skb->head;
1476 dui->pdev = pdev;
1477 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1478 *p++ = be64_to_cpu(sgl->addr[0]);
1479 *p++ = be64_to_cpu(sgl->addr[1]);
1480 }
1481 if (sgl_flits)
1482 *p = be64_to_cpu(sgl->addr[0]);
1483}
1484
1485/**
Divy Le Ray4d22de32007-01-18 22:04:14 -05001486 * write_ofld_wr - write an offload work request
1487 * @adap: the adapter
1488 * @skb: the packet to send
1489 * @q: the Tx queue
1490 * @pidx: index of the first Tx descriptor to write
1491 * @gen: the generation value to use
1492 * @ndesc: number of descriptors the packet will occupy
1493 *
1494 * Write an offload work request to send the supplied packet. The packet
1495 * data already carry the work request with most fields populated.
1496 */
1497static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1498 struct sge_txq *q, unsigned int pidx,
1499 unsigned int gen, unsigned int ndesc)
1500{
1501 unsigned int sgl_flits, flits;
1502 struct work_request_hdr *from;
1503 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1504 struct tx_desc *d = &q->desc[pidx];
1505
1506 if (immediate(skb)) {
1507 q->sdesc[pidx].skb = NULL;
1508 write_imm(d, skb, skb->len, gen);
1509 return;
1510 }
1511
1512 /* Only TX_DATA builds SGLs */
1513
1514 from = (struct work_request_hdr *)skb->data;
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001515 memcpy(&d->flit[1], &from[1],
1516 skb_transport_offset(skb) - sizeof(*from));
Divy Le Ray4d22de32007-01-18 22:04:14 -05001517
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001518 flits = skb_transport_offset(skb) / 8;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001519 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
Arnaldo Carvalho de Melo9c702202007-04-25 18:04:18 -07001520 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
Arnaldo Carvalho de Melo27a884d2007-04-19 20:29:13 -07001521 skb->tail - skb->transport_header,
Divy Le Ray4d22de32007-01-18 22:04:14 -05001522 adap->pdev);
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001523 if (need_skb_unmap()) {
1524 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1525 skb->destructor = deferred_unmap_destructor;
Divy Le Ray99d7cf32007-02-24 16:44:06 -08001526 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05001527
1528 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1529 gen, from->wr_hi, from->wr_lo);
1530}
1531
1532/**
1533 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1534 * @skb: the packet
1535 *
1536 * Returns the number of Tx descriptors needed for the given offload
1537 * packet. These packets are already fully constructed.
1538 */
1539static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1540{
Divy Le Ray27186dc2007-08-21 20:49:15 -07001541 unsigned int flits, cnt;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001542
Divy Le Ray27186dc2007-08-21 20:49:15 -07001543 if (skb->len <= WR_LEN)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001544 return 1; /* packet fits as immediate data */
1545
Arnaldo Carvalho de Meloea2ae172007-04-25 17:55:53 -07001546 flits = skb_transport_offset(skb) / 8; /* headers */
Divy Le Ray27186dc2007-08-21 20:49:15 -07001547 cnt = skb_shinfo(skb)->nr_frags;
Arnaldo Carvalho de Melo27a884d2007-04-19 20:29:13 -07001548 if (skb->tail != skb->transport_header)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001549 cnt++;
1550 return flits_to_desc(flits + sgl_len(cnt));
1551}
1552
1553/**
1554 * ofld_xmit - send a packet through an offload queue
1555 * @adap: the adapter
1556 * @q: the Tx offload queue
1557 * @skb: the packet
1558 *
1559 * Send an offload packet through an SGE offload queue.
1560 */
1561static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1562 struct sk_buff *skb)
1563{
1564 int ret;
1565 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1566
1567 spin_lock(&q->lock);
1568 again:reclaim_completed_tx(adap, q);
1569
1570 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1571 if (unlikely(ret)) {
1572 if (ret == 1) {
1573 skb->priority = ndesc; /* save for restart */
1574 spin_unlock(&q->lock);
1575 return NET_XMIT_CN;
1576 }
1577 goto again;
1578 }
1579
1580 gen = q->gen;
1581 q->in_use += ndesc;
1582 pidx = q->pidx;
1583 q->pidx += ndesc;
1584 if (q->pidx >= q->size) {
1585 q->pidx -= q->size;
1586 q->gen ^= 1;
1587 }
1588 spin_unlock(&q->lock);
1589
1590 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1591 check_ring_tx_db(adap, q);
1592 return NET_XMIT_SUCCESS;
1593}
1594
1595/**
1596 * restart_offloadq - restart a suspended offload queue
1597 * @qs: the queue set cotaining the offload queue
1598 *
1599 * Resumes transmission on a suspended Tx offload queue.
1600 */
1601static void restart_offloadq(unsigned long data)
1602{
1603 struct sk_buff *skb;
1604 struct sge_qset *qs = (struct sge_qset *)data;
1605 struct sge_txq *q = &qs->txq[TXQ_OFLD];
Divy Le Ray5fbf8162007-08-29 19:15:47 -07001606 const struct port_info *pi = netdev_priv(qs->netdev);
1607 struct adapter *adap = pi->adapter;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001608
1609 spin_lock(&q->lock);
1610 again:reclaim_completed_tx(adap, q);
1611
1612 while ((skb = skb_peek(&q->sendq)) != NULL) {
1613 unsigned int gen, pidx;
1614 unsigned int ndesc = skb->priority;
1615
1616 if (unlikely(q->size - q->in_use < ndesc)) {
1617 set_bit(TXQ_OFLD, &qs->txq_stopped);
1618 smp_mb__after_clear_bit();
1619
1620 if (should_restart_tx(q) &&
1621 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1622 goto again;
1623 q->stops++;
1624 break;
1625 }
1626
1627 gen = q->gen;
1628 q->in_use += ndesc;
1629 pidx = q->pidx;
1630 q->pidx += ndesc;
1631 if (q->pidx >= q->size) {
1632 q->pidx -= q->size;
1633 q->gen ^= 1;
1634 }
1635 __skb_unlink(skb, &q->sendq);
1636 spin_unlock(&q->lock);
1637
1638 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1639 spin_lock(&q->lock);
1640 }
1641 spin_unlock(&q->lock);
1642
1643#if USE_GTS
1644 set_bit(TXQ_RUNNING, &q->flags);
1645 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1646#endif
Divy Le Rayafefce62007-11-16 11:22:21 -08001647 wmb();
Divy Le Ray4d22de32007-01-18 22:04:14 -05001648 t3_write_reg(adap, A_SG_KDOORBELL,
1649 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1650}
1651
1652/**
1653 * queue_set - return the queue set a packet should use
1654 * @skb: the packet
1655 *
1656 * Maps a packet to the SGE queue set it should use. The desired queue
1657 * set is carried in bits 1-3 in the packet's priority.
1658 */
1659static inline int queue_set(const struct sk_buff *skb)
1660{
1661 return skb->priority >> 1;
1662}
1663
1664/**
1665 * is_ctrl_pkt - return whether an offload packet is a control packet
1666 * @skb: the packet
1667 *
1668 * Determines whether an offload packet should use an OFLD or a CTRL
1669 * Tx queue. This is indicated by bit 0 in the packet's priority.
1670 */
1671static inline int is_ctrl_pkt(const struct sk_buff *skb)
1672{
1673 return skb->priority & 1;
1674}
1675
1676/**
1677 * t3_offload_tx - send an offload packet
1678 * @tdev: the offload device to send to
1679 * @skb: the packet
1680 *
1681 * Sends an offload packet. We use the packet priority to select the
1682 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1683 * should be sent as regular or control, bits 1-3 select the queue set.
1684 */
1685int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1686{
1687 struct adapter *adap = tdev2adap(tdev);
1688 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1689
1690 if (unlikely(is_ctrl_pkt(skb)))
1691 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1692
1693 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1694}
1695
1696/**
1697 * offload_enqueue - add an offload packet to an SGE offload receive queue
1698 * @q: the SGE response queue
1699 * @skb: the packet
1700 *
1701 * Add a new offload packet to an SGE response queue's offload packet
1702 * queue. If the packet is the first on the queue it schedules the RX
1703 * softirq to process the queue.
1704 */
1705static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1706{
David S. Miller147e70e2008-09-22 01:29:52 -07001707 int was_empty = skb_queue_empty(&q->rx_queue);
1708
1709 __skb_queue_tail(&q->rx_queue, skb);
1710
1711 if (was_empty) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001712 struct sge_qset *qs = rspq_to_qset(q);
1713
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001714 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001715 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05001716}
1717
1718/**
1719 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1720 * @tdev: the offload device that will be receiving the packets
1721 * @q: the SGE response queue that assembled the bundle
1722 * @skbs: the partial bundle
1723 * @n: the number of packets in the bundle
1724 *
1725 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1726 */
1727static inline void deliver_partial_bundle(struct t3cdev *tdev,
1728 struct sge_rspq *q,
1729 struct sk_buff *skbs[], int n)
1730{
1731 if (n) {
1732 q->offload_bundles++;
1733 tdev->recv(tdev, skbs, n);
1734 }
1735}
1736
1737/**
1738 * ofld_poll - NAPI handler for offload packets in interrupt mode
1739 * @dev: the network device doing the polling
1740 * @budget: polling budget
1741 *
1742 * The NAPI handler for offload packets when a response queue is serviced
1743 * by the hard interrupt handler, i.e., when it's operating in non-polling
1744 * mode. Creates small packet batches and sends them through the offload
1745 * receive handler. Batches need to be of modest size as we do prefetches
1746 * on the packets in each.
1747 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001748static int ofld_poll(struct napi_struct *napi, int budget)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001749{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001750 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001751 struct sge_rspq *q = &qs->rspq;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001752 struct adapter *adapter = qs->adap;
1753 int work_done = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001754
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001755 while (work_done < budget) {
David S. Miller147e70e2008-09-22 01:29:52 -07001756 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1757 struct sk_buff_head queue;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001758 int ngathered;
1759
1760 spin_lock_irq(&q->lock);
David S. Miller147e70e2008-09-22 01:29:52 -07001761 __skb_queue_head_init(&queue);
1762 skb_queue_splice_init(&q->rx_queue, &queue);
1763 if (skb_queue_empty(&queue)) {
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001764 napi_complete(napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001765 spin_unlock_irq(&q->lock);
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001766 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001767 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05001768 spin_unlock_irq(&q->lock);
1769
David S. Miller147e70e2008-09-22 01:29:52 -07001770 ngathered = 0;
1771 skb_queue_walk_safe(&queue, skb, tmp) {
1772 if (work_done >= budget)
1773 break;
1774 work_done++;
1775
1776 __skb_unlink(skb, &queue);
1777 prefetch(skb->data);
1778 skbs[ngathered] = skb;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001779 if (++ngathered == RX_BUNDLE_SIZE) {
1780 q->offload_bundles++;
1781 adapter->tdev.recv(&adapter->tdev, skbs,
1782 ngathered);
1783 ngathered = 0;
1784 }
1785 }
David S. Miller147e70e2008-09-22 01:29:52 -07001786 if (!skb_queue_empty(&queue)) {
1787 /* splice remaining packets back onto Rx queue */
Divy Le Ray4d22de32007-01-18 22:04:14 -05001788 spin_lock_irq(&q->lock);
David S. Miller147e70e2008-09-22 01:29:52 -07001789 skb_queue_splice(&queue, &q->rx_queue);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001790 spin_unlock_irq(&q->lock);
1791 }
1792 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1793 }
Stephen Hemmingerbea33482007-10-03 16:41:36 -07001794
1795 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001796}
1797
1798/**
1799 * rx_offload - process a received offload packet
1800 * @tdev: the offload device receiving the packet
1801 * @rq: the response queue that received the packet
1802 * @skb: the packet
1803 * @rx_gather: a gather list of packets if we are building a bundle
1804 * @gather_idx: index of the next available slot in the bundle
1805 *
1806 * Process an ingress offload pakcet and add it to the offload ingress
1807 * queue. Returns the index of the next available slot in the bundle.
1808 */
1809static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1810 struct sk_buff *skb, struct sk_buff *rx_gather[],
1811 unsigned int gather_idx)
1812{
Arnaldo Carvalho de Melo459a98e2007-03-19 15:30:44 -07001813 skb_reset_mac_header(skb);
Arnaldo Carvalho de Meloc1d2bbe2007-04-10 20:45:18 -07001814 skb_reset_network_header(skb);
Arnaldo Carvalho de Melobadff6d2007-03-13 13:06:52 -03001815 skb_reset_transport_header(skb);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001816
1817 if (rq->polling) {
1818 rx_gather[gather_idx++] = skb;
1819 if (gather_idx == RX_BUNDLE_SIZE) {
1820 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1821 gather_idx = 0;
1822 rq->offload_bundles++;
1823 }
1824 } else
1825 offload_enqueue(rq, skb);
1826
1827 return gather_idx;
1828}
1829
1830/**
Divy Le Ray4d22de32007-01-18 22:04:14 -05001831 * restart_tx - check whether to restart suspended Tx queues
1832 * @qs: the queue set to resume
1833 *
1834 * Restarts suspended Tx queues of an SGE queue set if they have enough
1835 * free resources to resume operation.
1836 */
1837static void restart_tx(struct sge_qset *qs)
1838{
1839 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1840 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1841 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1842 qs->txq[TXQ_ETH].restarts++;
1843 if (netif_running(qs->netdev))
1844 netif_wake_queue(qs->netdev);
1845 }
1846
1847 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1848 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1849 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1850 qs->txq[TXQ_OFLD].restarts++;
1851 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1852 }
1853 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1854 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1855 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1856 qs->txq[TXQ_CTRL].restarts++;
1857 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1858 }
1859}
1860
1861/**
1862 * rx_eth - process an ingress ethernet packet
1863 * @adap: the adapter
1864 * @rq: the response queue that received the packet
1865 * @skb: the packet
1866 * @pad: amount of padding at the start of the buffer
1867 *
1868 * Process an ingress ethernet pakcet and deliver it to the stack.
1869 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1870 * if it was immediate data in a response.
1871 */
1872static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
Divy Le Rayb47385b2008-05-21 18:56:26 -07001873 struct sk_buff *skb, int pad, int lro)
Divy Le Ray4d22de32007-01-18 22:04:14 -05001874{
1875 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
Divy Le Rayb47385b2008-05-21 18:56:26 -07001876 struct sge_qset *qs = rspq_to_qset(rq);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001877 struct port_info *pi;
1878
Divy Le Ray4d22de32007-01-18 22:04:14 -05001879 skb_pull(skb, sizeof(*p) + pad);
Arnaldo Carvalho de Melo4c13eb62007-04-25 17:40:23 -07001880 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
Divy Le Raye360b562007-05-30 10:01:29 -07001881 skb->dev->last_rx = jiffies;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001882 pi = netdev_priv(skb->dev);
Al Viro05e5c112007-12-22 18:56:23 +00001883 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
Divy Le Ray4d22de32007-01-18 22:04:14 -05001884 !p->fragment) {
1885 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1886 skb->ip_summed = CHECKSUM_UNNECESSARY;
1887 } else
1888 skb->ip_summed = CHECKSUM_NONE;
1889
1890 if (unlikely(p->vlan_valid)) {
1891 struct vlan_group *grp = pi->vlan_grp;
1892
Divy Le Rayb47385b2008-05-21 18:56:26 -07001893 qs->port_stats[SGE_PSTAT_VLANEX]++;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001894 if (likely(grp))
Divy Le Rayb47385b2008-05-21 18:56:26 -07001895 if (lro)
1896 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1897 grp,
1898 ntohs(p->vlan),
1899 p);
1900 else
1901 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1902 rq->polling);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001903 else
1904 dev_kfree_skb_any(skb);
Divy Le Rayb47385b2008-05-21 18:56:26 -07001905 } else if (rq->polling) {
1906 if (lro)
1907 lro_receive_skb(&qs->lro_mgr, skb, p);
1908 else
1909 netif_receive_skb(skb);
1910 } else
Divy Le Ray4d22de32007-01-18 22:04:14 -05001911 netif_rx(skb);
1912}
1913
Divy Le Rayb47385b2008-05-21 18:56:26 -07001914static inline int is_eth_tcp(u32 rss)
1915{
1916 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1917}
1918
1919/**
1920 * lro_frame_ok - check if an ingress packet is eligible for LRO
1921 * @p: the CPL header of the packet
1922 *
1923 * Returns true if a received packet is eligible for LRO.
1924 * The following conditions must be true:
1925 * - packet is TCP/IP Ethernet II (checked elsewhere)
1926 * - not an IP fragment
1927 * - no IP options
1928 * - TCP/IP checksums are correct
1929 * - the packet is for this host
1930 */
1931static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1932{
1933 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1934 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1935
1936 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
1937 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
1938}
1939
1940#define TCP_FLAG_MASK (TCP_FLAG_CWR | TCP_FLAG_ECE | TCP_FLAG_URG |\
1941 TCP_FLAG_ACK | TCP_FLAG_PSH | TCP_FLAG_RST |\
1942 TCP_FLAG_SYN | TCP_FLAG_FIN)
1943#define TSTAMP_WORD ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |\
1944 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)
1945
1946/**
1947 * lro_segment_ok - check if a TCP segment is eligible for LRO
1948 * @tcph: the TCP header of the packet
1949 *
1950 * Returns true if a TCP packet is eligible for LRO. This requires that
1951 * the packet have only the ACK flag set and no TCP options besides
1952 * time stamps.
1953 */
1954static inline int lro_segment_ok(const struct tcphdr *tcph)
1955{
1956 int optlen;
1957
1958 if (unlikely((tcp_flag_word(tcph) & TCP_FLAG_MASK) != TCP_FLAG_ACK))
1959 return 0;
1960
1961 optlen = (tcph->doff << 2) - sizeof(*tcph);
1962 if (optlen) {
1963 const u32 *opt = (const u32 *)(tcph + 1);
1964
1965 if (optlen != TCPOLEN_TSTAMP_ALIGNED ||
1966 *opt != htonl(TSTAMP_WORD) || !opt[2])
1967 return 0;
1968 }
1969 return 1;
1970}
1971
1972static int t3_get_lro_header(void **eh, void **iph, void **tcph,
1973 u64 *hdr_flags, void *priv)
1974{
1975 const struct cpl_rx_pkt *cpl = priv;
1976
1977 if (!lro_frame_ok(cpl))
1978 return -1;
1979
1980 *eh = (struct ethhdr *)(cpl + 1);
1981 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
1982 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
1983
1984 if (!lro_segment_ok(*tcph))
1985 return -1;
1986
1987 *hdr_flags = LRO_IPV4 | LRO_TCP;
1988 return 0;
1989}
1990
1991static int t3_get_skb_header(struct sk_buff *skb,
1992 void **iph, void **tcph, u64 *hdr_flags,
1993 void *priv)
1994{
1995 void *eh;
1996
1997 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
1998}
1999
2000static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
2001 void **iph, void **tcph, u64 *hdr_flags,
2002 void *priv)
2003{
2004 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
2005}
2006
2007/**
2008 * lro_add_page - add a page chunk to an LRO session
2009 * @adap: the adapter
2010 * @qs: the associated queue set
2011 * @fl: the free list containing the page chunk to add
2012 * @len: packet length
2013 * @complete: Indicates the last fragment of a frame
2014 *
2015 * Add a received packet contained in a page chunk to an existing LRO
2016 * session.
2017 */
2018static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2019 struct sge_fl *fl, int len, int complete)
2020{
2021 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2022 struct cpl_rx_pkt *cpl;
2023 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
2024 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
2025 int offset = 0;
2026
2027 if (!nr_frags) {
2028 offset = 2 + sizeof(struct cpl_rx_pkt);
2029 qs->lro_va = cpl = sd->pg_chunk.va + 2;
2030 }
2031
2032 fl->credits--;
2033
2034 len -= offset;
2035 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
2036 fl->buf_size, PCI_DMA_FROMDEVICE);
2037
2038 rx_frag += nr_frags;
2039 rx_frag->page = sd->pg_chunk.page;
2040 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2041 rx_frag->size = len;
2042 frag_len += len;
2043 qs->lro_nfrags++;
2044 qs->lro_frag_len = frag_len;
2045
2046 if (!complete)
2047 return;
2048
2049 qs->lro_nfrags = qs->lro_frag_len = 0;
2050 cpl = qs->lro_va;
2051
2052 if (unlikely(cpl->vlan_valid)) {
2053 struct net_device *dev = qs->netdev;
2054 struct port_info *pi = netdev_priv(dev);
2055 struct vlan_group *grp = pi->vlan_grp;
2056
2057 if (likely(grp != NULL)) {
2058 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2059 qs->lro_frag_tbl,
2060 frag_len, frag_len,
2061 grp, ntohs(cpl->vlan),
2062 cpl, 0);
2063 return;
2064 }
2065 }
2066 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2067 frag_len, frag_len, cpl, 0);
2068}
2069
2070/**
2071 * init_lro_mgr - initialize a LRO manager object
2072 * @lro_mgr: the LRO manager object
2073 */
2074static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2075{
2076 lro_mgr->dev = qs->netdev;
2077 lro_mgr->features = LRO_F_NAPI;
2078 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2079 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2080 lro_mgr->max_desc = T3_MAX_LRO_SES;
2081 lro_mgr->lro_arr = qs->lro_desc;
2082 lro_mgr->get_frag_header = t3_get_frag_header;
2083 lro_mgr->get_skb_header = t3_get_skb_header;
2084 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2085 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2086 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2087}
2088
Divy Le Ray4d22de32007-01-18 22:04:14 -05002089/**
2090 * handle_rsp_cntrl_info - handles control information in a response
2091 * @qs: the queue set corresponding to the response
2092 * @flags: the response control flags
Divy Le Ray4d22de32007-01-18 22:04:14 -05002093 *
2094 * Handles the control information of an SGE response, such as GTS
2095 * indications and completion credits for the queue set's Tx queues.
Divy Le Ray6195c712007-01-30 19:43:56 -08002096 * HW coalesces credits, we don't do any extra SW coalescing.
Divy Le Ray4d22de32007-01-18 22:04:14 -05002097 */
Divy Le Ray6195c712007-01-30 19:43:56 -08002098static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002099{
2100 unsigned int credits;
2101
2102#if USE_GTS
2103 if (flags & F_RSPD_TXQ0_GTS)
2104 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2105#endif
2106
Divy Le Ray4d22de32007-01-18 22:04:14 -05002107 credits = G_RSPD_TXQ0_CR(flags);
2108 if (credits)
2109 qs->txq[TXQ_ETH].processed += credits;
2110
Divy Le Ray6195c712007-01-30 19:43:56 -08002111 credits = G_RSPD_TXQ2_CR(flags);
2112 if (credits)
2113 qs->txq[TXQ_CTRL].processed += credits;
2114
Divy Le Ray4d22de32007-01-18 22:04:14 -05002115# if USE_GTS
2116 if (flags & F_RSPD_TXQ1_GTS)
2117 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2118# endif
Divy Le Ray6195c712007-01-30 19:43:56 -08002119 credits = G_RSPD_TXQ1_CR(flags);
2120 if (credits)
2121 qs->txq[TXQ_OFLD].processed += credits;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002122}
2123
2124/**
2125 * check_ring_db - check if we need to ring any doorbells
2126 * @adapter: the adapter
2127 * @qs: the queue set whose Tx queues are to be examined
2128 * @sleeping: indicates which Tx queue sent GTS
2129 *
2130 * Checks if some of a queue set's Tx queues need to ring their doorbells
2131 * to resume transmission after idling while they still have unprocessed
2132 * descriptors.
2133 */
2134static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2135 unsigned int sleeping)
2136{
2137 if (sleeping & F_RSPD_TXQ0_GTS) {
2138 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2139
2140 if (txq->cleaned + txq->in_use != txq->processed &&
2141 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2142 set_bit(TXQ_RUNNING, &txq->flags);
2143 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2144 V_EGRCNTX(txq->cntxt_id));
2145 }
2146 }
2147
2148 if (sleeping & F_RSPD_TXQ1_GTS) {
2149 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2150
2151 if (txq->cleaned + txq->in_use != txq->processed &&
2152 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2153 set_bit(TXQ_RUNNING, &txq->flags);
2154 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2155 V_EGRCNTX(txq->cntxt_id));
2156 }
2157 }
2158}
2159
2160/**
2161 * is_new_response - check if a response is newly written
2162 * @r: the response descriptor
2163 * @q: the response queue
2164 *
2165 * Returns true if a response descriptor contains a yet unprocessed
2166 * response.
2167 */
2168static inline int is_new_response(const struct rsp_desc *r,
2169 const struct sge_rspq *q)
2170{
2171 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2172}
2173
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002174static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2175{
2176 q->pg_skb = NULL;
2177 q->rx_recycle_buf = 0;
2178}
2179
Divy Le Ray4d22de32007-01-18 22:04:14 -05002180#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2181#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2182 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2183 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2184 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2185
2186/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2187#define NOMEM_INTR_DELAY 2500
2188
2189/**
2190 * process_responses - process responses from an SGE response queue
2191 * @adap: the adapter
2192 * @qs: the queue set to which the response queue belongs
2193 * @budget: how many responses can be processed in this round
2194 *
2195 * Process responses from an SGE response queue up to the supplied budget.
2196 * Responses include received packets as well as credits and other events
2197 * for the queues that belong to the response queue's queue set.
2198 * A negative budget is effectively unlimited.
2199 *
2200 * Additionally choose the interrupt holdoff time for the next interrupt
2201 * on this queue. If the system is under memory shortage use a fairly
2202 * long delay to help recovery.
2203 */
2204static int process_responses(struct adapter *adap, struct sge_qset *qs,
2205 int budget)
2206{
2207 struct sge_rspq *q = &qs->rspq;
2208 struct rsp_desc *r = &q->desc[q->cidx];
2209 int budget_left = budget;
Divy Le Ray6195c712007-01-30 19:43:56 -08002210 unsigned int sleeping = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002211 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2212 int ngathered = 0;
2213
2214 q->next_holdoff = q->holdoff_tmr;
2215
2216 while (likely(budget_left && is_new_response(r, q))) {
Divy Le Rayb47385b2008-05-21 18:56:26 -07002217 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002218 struct sk_buff *skb = NULL;
2219 u32 len, flags = ntohl(r->flags);
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002220 __be32 rss_hi = *(const __be32 *)r,
2221 rss_lo = r->rss_hdr.rss_hash_val;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002222
2223 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2224
2225 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2226 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2227 if (!skb)
2228 goto no_mem;
2229
2230 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2231 skb->data[0] = CPL_ASYNC_NOTIF;
2232 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2233 q->async_notif++;
2234 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2235 skb = get_imm_packet(r);
2236 if (unlikely(!skb)) {
Divy Le Raycf992af2007-05-30 21:10:47 -07002237no_mem:
Divy Le Ray4d22de32007-01-18 22:04:14 -05002238 q->next_holdoff = NOMEM_INTR_DELAY;
2239 q->nomem++;
2240 /* consume one credit since we tried */
2241 budget_left--;
2242 break;
2243 }
2244 q->imm_data++;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002245 ethpad = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002246 } else if ((len = ntohl(r->len_cq)) != 0) {
Divy Le Raycf992af2007-05-30 21:10:47 -07002247 struct sge_fl *fl;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002248
Divy Le Rayb47385b2008-05-21 18:56:26 -07002249 if (eth)
2250 lro = qs->lro_enabled && is_eth_tcp(rss_hi);
2251
Divy Le Raycf992af2007-05-30 21:10:47 -07002252 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2253 if (fl->use_pages) {
2254 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002255
Divy Le Raycf992af2007-05-30 21:10:47 -07002256 prefetch(addr);
2257#if L1_CACHE_BYTES < 128
2258 prefetch(addr + L1_CACHE_BYTES);
2259#endif
Divy Le Raye0994eb2007-02-24 16:44:17 -08002260 __refill_fl(adap, fl);
Divy Le Rayb47385b2008-05-21 18:56:26 -07002261 if (lro > 0) {
2262 lro_add_page(adap, qs, fl,
2263 G_RSPD_LEN(len),
2264 flags & F_RSPD_EOP);
2265 goto next_fl;
2266 }
Divy Le Raye0994eb2007-02-24 16:44:17 -08002267
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002268 skb = get_packet_pg(adap, fl, q,
2269 G_RSPD_LEN(len),
2270 eth ?
2271 SGE_RX_DROP_THRES : 0);
2272 q->pg_skb = skb;
Divy Le Raycf992af2007-05-30 21:10:47 -07002273 } else
Divy Le Raye0994eb2007-02-24 16:44:17 -08002274 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2275 eth ? SGE_RX_DROP_THRES : 0);
Divy Le Raycf992af2007-05-30 21:10:47 -07002276 if (unlikely(!skb)) {
2277 if (!eth)
2278 goto no_mem;
2279 q->rx_drops++;
2280 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2281 __skb_pull(skb, 2);
Divy Le Rayb47385b2008-05-21 18:56:26 -07002282next_fl:
Divy Le Ray4d22de32007-01-18 22:04:14 -05002283 if (++fl->cidx == fl->size)
2284 fl->cidx = 0;
2285 } else
2286 q->pure_rsps++;
2287
2288 if (flags & RSPD_CTRL_MASK) {
2289 sleeping |= flags & RSPD_GTS_MASK;
Divy Le Ray6195c712007-01-30 19:43:56 -08002290 handle_rsp_cntrl_info(qs, flags);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002291 }
2292
2293 r++;
2294 if (unlikely(++q->cidx == q->size)) {
2295 q->cidx = 0;
2296 q->gen ^= 1;
2297 r = q->desc;
2298 }
2299 prefetch(r);
2300
2301 if (++q->credits >= (q->size / 4)) {
2302 refill_rspq(adap, q, q->credits);
2303 q->credits = 0;
2304 }
2305
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002306 packet_complete = flags &
2307 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2308 F_RSPD_ASYNC_NOTIF);
2309
2310 if (skb != NULL && packet_complete) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05002311 if (eth)
Divy Le Rayb47385b2008-05-21 18:56:26 -07002312 rx_eth(adap, q, skb, ethpad, lro);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002313 else {
Divy Le Rayafefce62007-11-16 11:22:21 -08002314 q->offload_pkts++;
Divy Le Raycf992af2007-05-30 21:10:47 -07002315 /* Preserve the RSS info in csum & priority */
2316 skb->csum = rss_hi;
2317 skb->priority = rss_lo;
2318 ngathered = rx_offload(&adap->tdev, q, skb,
2319 offload_skbs,
Divy Le Raye0994eb2007-02-24 16:44:17 -08002320 ngathered);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002321 }
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002322
2323 if (flags & F_RSPD_EOP)
Divy Le Rayb47385b2008-05-21 18:56:26 -07002324 clear_rspq_bufstate(q);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002325 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05002326 --budget_left;
2327 }
2328
Divy Le Ray4d22de32007-01-18 22:04:14 -05002329 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
Divy Le Rayb47385b2008-05-21 18:56:26 -07002330 lro_flush_all(&qs->lro_mgr);
2331 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2332 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2333 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2334
Divy Le Ray4d22de32007-01-18 22:04:14 -05002335 if (sleeping)
2336 check_ring_db(adap, qs, sleeping);
2337
2338 smp_mb(); /* commit Tx queue .processed updates */
2339 if (unlikely(qs->txq_stopped != 0))
2340 restart_tx(qs);
2341
2342 budget -= budget_left;
2343 return budget;
2344}
2345
2346static inline int is_pure_response(const struct rsp_desc *r)
2347{
2348 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2349
2350 return (n | r->len_cq) == 0;
2351}
2352
2353/**
2354 * napi_rx_handler - the NAPI handler for Rx processing
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002355 * @napi: the napi instance
Divy Le Ray4d22de32007-01-18 22:04:14 -05002356 * @budget: how many packets we can process in this round
2357 *
2358 * Handler for new data events when using NAPI.
2359 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002360static int napi_rx_handler(struct napi_struct *napi, int budget)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002361{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002362 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2363 struct adapter *adap = qs->adap;
2364 int work_done = process_responses(adap, qs, budget);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002365
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002366 if (likely(work_done < budget)) {
2367 napi_complete(napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002368
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002369 /*
2370 * Because we don't atomically flush the following
2371 * write it is possible that in very rare cases it can
2372 * reach the device in a way that races with a new
2373 * response being written plus an error interrupt
2374 * causing the NAPI interrupt handler below to return
2375 * unhandled status to the OS. To protect against
2376 * this would require flushing the write and doing
2377 * both the write and the flush with interrupts off.
2378 * Way too expensive and unjustifiable given the
2379 * rarity of the race.
2380 *
2381 * The race cannot happen at all with MSI-X.
2382 */
2383 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2384 V_NEWTIMER(qs->rspq.next_holdoff) |
2385 V_NEWINDEX(qs->rspq.cidx));
2386 }
2387 return work_done;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002388}
2389
2390/*
2391 * Returns true if the device is already scheduled for polling.
2392 */
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002393static inline int napi_is_scheduled(struct napi_struct *napi)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002394{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002395 return test_bit(NAPI_STATE_SCHED, &napi->state);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002396}
2397
2398/**
2399 * process_pure_responses - process pure responses from a response queue
2400 * @adap: the adapter
2401 * @qs: the queue set owning the response queue
2402 * @r: the first pure response to process
2403 *
2404 * A simpler version of process_responses() that handles only pure (i.e.,
2405 * non data-carrying) responses. Such respones are too light-weight to
2406 * justify calling a softirq under NAPI, so we handle them specially in
2407 * the interrupt handler. The function is called with a pointer to a
2408 * response, which the caller must ensure is a valid pure response.
2409 *
2410 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2411 */
2412static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2413 struct rsp_desc *r)
2414{
2415 struct sge_rspq *q = &qs->rspq;
Divy Le Ray6195c712007-01-30 19:43:56 -08002416 unsigned int sleeping = 0;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002417
2418 do {
2419 u32 flags = ntohl(r->flags);
2420
2421 r++;
2422 if (unlikely(++q->cidx == q->size)) {
2423 q->cidx = 0;
2424 q->gen ^= 1;
2425 r = q->desc;
2426 }
2427 prefetch(r);
2428
2429 if (flags & RSPD_CTRL_MASK) {
2430 sleeping |= flags & RSPD_GTS_MASK;
Divy Le Ray6195c712007-01-30 19:43:56 -08002431 handle_rsp_cntrl_info(qs, flags);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002432 }
2433
2434 q->pure_rsps++;
2435 if (++q->credits >= (q->size / 4)) {
2436 refill_rspq(adap, q, q->credits);
2437 q->credits = 0;
2438 }
2439 } while (is_new_response(r, q) && is_pure_response(r));
2440
Divy Le Ray4d22de32007-01-18 22:04:14 -05002441 if (sleeping)
2442 check_ring_db(adap, qs, sleeping);
2443
2444 smp_mb(); /* commit Tx queue .processed updates */
2445 if (unlikely(qs->txq_stopped != 0))
2446 restart_tx(qs);
2447
2448 return is_new_response(r, q);
2449}
2450
2451/**
2452 * handle_responses - decide what to do with new responses in NAPI mode
2453 * @adap: the adapter
2454 * @q: the response queue
2455 *
2456 * This is used by the NAPI interrupt handlers to decide what to do with
2457 * new SGE responses. If there are no new responses it returns -1. If
2458 * there are new responses and they are pure (i.e., non-data carrying)
2459 * it handles them straight in hard interrupt context as they are very
2460 * cheap and don't deliver any packets. Finally, if there are any data
2461 * signaling responses it schedules the NAPI handler. Returns 1 if it
2462 * schedules NAPI, 0 if all new responses were pure.
2463 *
2464 * The caller must ascertain NAPI is not already running.
2465 */
2466static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2467{
2468 struct sge_qset *qs = rspq_to_qset(q);
2469 struct rsp_desc *r = &q->desc[q->cidx];
2470
2471 if (!is_new_response(r, q))
2472 return -1;
2473 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2474 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2475 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2476 return 0;
2477 }
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002478 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002479 return 1;
2480}
2481
2482/*
2483 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2484 * (i.e., response queue serviced in hard interrupt).
2485 */
2486irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2487{
2488 struct sge_qset *qs = cookie;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002489 struct adapter *adap = qs->adap;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002490 struct sge_rspq *q = &qs->rspq;
2491
2492 spin_lock(&q->lock);
2493 if (process_responses(adap, qs, -1) == 0)
2494 q->unhandled_irqs++;
2495 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2496 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2497 spin_unlock(&q->lock);
2498 return IRQ_HANDLED;
2499}
2500
2501/*
2502 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2503 * (i.e., response queue serviced by NAPI polling).
2504 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -07002505static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002506{
2507 struct sge_qset *qs = cookie;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002508 struct sge_rspq *q = &qs->rspq;
2509
2510 spin_lock(&q->lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002511
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002512 if (handle_responses(qs->adap, q) < 0)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002513 q->unhandled_irqs++;
2514 spin_unlock(&q->lock);
2515 return IRQ_HANDLED;
2516}
2517
2518/*
2519 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2520 * SGE response queues as well as error and other async events as they all use
2521 * the same MSI vector. We use one SGE response queue per port in this mode
2522 * and protect all response queues with queue 0's lock.
2523 */
2524static irqreturn_t t3_intr_msi(int irq, void *cookie)
2525{
2526 int new_packets = 0;
2527 struct adapter *adap = cookie;
2528 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2529
2530 spin_lock(&q->lock);
2531
2532 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2533 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2534 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2535 new_packets = 1;
2536 }
2537
2538 if (adap->params.nports == 2 &&
2539 process_responses(adap, &adap->sge.qs[1], -1)) {
2540 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2541
2542 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2543 V_NEWTIMER(q1->next_holdoff) |
2544 V_NEWINDEX(q1->cidx));
2545 new_packets = 1;
2546 }
2547
2548 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2549 q->unhandled_irqs++;
2550
2551 spin_unlock(&q->lock);
2552 return IRQ_HANDLED;
2553}
2554
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002555static int rspq_check_napi(struct sge_qset *qs)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002556{
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002557 struct sge_rspq *q = &qs->rspq;
2558
2559 if (!napi_is_scheduled(&qs->napi) &&
2560 is_new_response(&q->desc[q->cidx], q)) {
2561 napi_schedule(&qs->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002562 return 1;
2563 }
2564 return 0;
2565}
2566
2567/*
2568 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2569 * by NAPI polling). Handles data events from SGE response queues as well as
2570 * error and other async events as they all use the same MSI vector. We use
2571 * one SGE response queue per port in this mode and protect all response
2572 * queues with queue 0's lock.
2573 */
Stephen Hemminger9265fab2007-10-08 16:22:29 -07002574static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002575{
2576 int new_packets;
2577 struct adapter *adap = cookie;
2578 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2579
2580 spin_lock(&q->lock);
2581
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002582 new_packets = rspq_check_napi(&adap->sge.qs[0]);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002583 if (adap->params.nports == 2)
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002584 new_packets += rspq_check_napi(&adap->sge.qs[1]);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002585 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2586 q->unhandled_irqs++;
2587
2588 spin_unlock(&q->lock);
2589 return IRQ_HANDLED;
2590}
2591
2592/*
2593 * A helper function that processes responses and issues GTS.
2594 */
2595static inline int process_responses_gts(struct adapter *adap,
2596 struct sge_rspq *rq)
2597{
2598 int work;
2599
2600 work = process_responses(adap, rspq_to_qset(rq), -1);
2601 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2602 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2603 return work;
2604}
2605
2606/*
2607 * The legacy INTx interrupt handler. This needs to handle data events from
2608 * SGE response queues as well as error and other async events as they all use
2609 * the same interrupt pin. We use one SGE response queue per port in this mode
2610 * and protect all response queues with queue 0's lock.
2611 */
2612static irqreturn_t t3_intr(int irq, void *cookie)
2613{
2614 int work_done, w0, w1;
2615 struct adapter *adap = cookie;
2616 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2617 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2618
2619 spin_lock(&q0->lock);
2620
2621 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2622 w1 = adap->params.nports == 2 &&
2623 is_new_response(&q1->desc[q1->cidx], q1);
2624
2625 if (likely(w0 | w1)) {
2626 t3_write_reg(adap, A_PL_CLI, 0);
2627 t3_read_reg(adap, A_PL_CLI); /* flush */
2628
2629 if (likely(w0))
2630 process_responses_gts(adap, q0);
2631
2632 if (w1)
2633 process_responses_gts(adap, q1);
2634
2635 work_done = w0 | w1;
2636 } else
2637 work_done = t3_slow_intr_handler(adap);
2638
2639 spin_unlock(&q0->lock);
2640 return IRQ_RETVAL(work_done != 0);
2641}
2642
2643/*
2644 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2645 * Handles data events from SGE response queues as well as error and other
2646 * async events as they all use the same interrupt pin. We use one SGE
2647 * response queue per port in this mode and protect all response queues with
2648 * queue 0's lock.
2649 */
2650static irqreturn_t t3b_intr(int irq, void *cookie)
2651{
2652 u32 map;
2653 struct adapter *adap = cookie;
2654 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2655
2656 t3_write_reg(adap, A_PL_CLI, 0);
2657 map = t3_read_reg(adap, A_SG_DATA_INTR);
2658
2659 if (unlikely(!map)) /* shared interrupt, most likely */
2660 return IRQ_NONE;
2661
2662 spin_lock(&q0->lock);
2663
2664 if (unlikely(map & F_ERRINTR))
2665 t3_slow_intr_handler(adap);
2666
2667 if (likely(map & 1))
2668 process_responses_gts(adap, q0);
2669
2670 if (map & 2)
2671 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2672
2673 spin_unlock(&q0->lock);
2674 return IRQ_HANDLED;
2675}
2676
2677/*
2678 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2679 * Handles data events from SGE response queues as well as error and other
2680 * async events as they all use the same interrupt pin. We use one SGE
2681 * response queue per port in this mode and protect all response queues with
2682 * queue 0's lock.
2683 */
2684static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2685{
2686 u32 map;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002687 struct adapter *adap = cookie;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002688 struct sge_qset *qs0 = &adap->sge.qs[0];
2689 struct sge_rspq *q0 = &qs0->rspq;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002690
2691 t3_write_reg(adap, A_PL_CLI, 0);
2692 map = t3_read_reg(adap, A_SG_DATA_INTR);
2693
2694 if (unlikely(!map)) /* shared interrupt, most likely */
2695 return IRQ_NONE;
2696
2697 spin_lock(&q0->lock);
2698
2699 if (unlikely(map & F_ERRINTR))
2700 t3_slow_intr_handler(adap);
2701
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002702 if (likely(map & 1))
2703 napi_schedule(&qs0->napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002704
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002705 if (map & 2)
2706 napi_schedule(&adap->sge.qs[1].napi);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002707
2708 spin_unlock(&q0->lock);
2709 return IRQ_HANDLED;
2710}
2711
2712/**
2713 * t3_intr_handler - select the top-level interrupt handler
2714 * @adap: the adapter
2715 * @polling: whether using NAPI to service response queues
2716 *
2717 * Selects the top-level interrupt handler based on the type of interrupts
2718 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2719 * response queues.
2720 */
Jeff Garzik7c239972007-10-19 03:12:20 -04002721irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002722{
2723 if (adap->flags & USING_MSIX)
2724 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2725 if (adap->flags & USING_MSI)
2726 return polling ? t3_intr_msi_napi : t3_intr_msi;
2727 if (adap->params.rev > 0)
2728 return polling ? t3b_intr_napi : t3b_intr;
2729 return t3_intr;
2730}
2731
Divy Le Rayb8819552007-12-17 18:47:31 -08002732#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2733 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2734 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2735 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2736 F_HIRCQPARITYERROR)
2737#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2738#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2739 F_RSPQDISABLED)
2740
Divy Le Ray4d22de32007-01-18 22:04:14 -05002741/**
2742 * t3_sge_err_intr_handler - SGE async event interrupt handler
2743 * @adapter: the adapter
2744 *
2745 * Interrupt handler for SGE asynchronous (non-data) events.
2746 */
2747void t3_sge_err_intr_handler(struct adapter *adapter)
2748{
2749 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2750
Divy Le Rayb8819552007-12-17 18:47:31 -08002751 if (status & SGE_PARERR)
2752 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2753 status & SGE_PARERR);
2754 if (status & SGE_FRAMINGERR)
2755 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2756 status & SGE_FRAMINGERR);
2757
Divy Le Ray4d22de32007-01-18 22:04:14 -05002758 if (status & F_RSPQCREDITOVERFOW)
2759 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2760
2761 if (status & F_RSPQDISABLED) {
2762 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2763
2764 CH_ALERT(adapter,
2765 "packet delivered to disabled response queue "
2766 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2767 }
2768
Divy Le Ray6e3f03b2007-08-21 20:49:10 -07002769 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2770 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2771 status & F_HIPIODRBDROPERR ? "high" : "lo");
2772
Divy Le Ray4d22de32007-01-18 22:04:14 -05002773 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
Divy Le Rayb8819552007-12-17 18:47:31 -08002774 if (status & SGE_FATALERR)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002775 t3_fatal_err(adapter);
2776}
2777
2778/**
2779 * sge_timer_cb - perform periodic maintenance of an SGE qset
2780 * @data: the SGE queue set to maintain
2781 *
2782 * Runs periodically from a timer to perform maintenance of an SGE queue
2783 * set. It performs two tasks:
2784 *
2785 * a) Cleans up any completed Tx descriptors that may still be pending.
2786 * Normal descriptor cleanup happens when new packets are added to a Tx
2787 * queue so this timer is relatively infrequent and does any cleanup only
2788 * if the Tx queue has not seen any new packets in a while. We make a
2789 * best effort attempt to reclaim descriptors, in that we don't wait
2790 * around if we cannot get a queue's lock (which most likely is because
2791 * someone else is queueing new packets and so will also handle the clean
2792 * up). Since control queues use immediate data exclusively we don't
2793 * bother cleaning them up here.
2794 *
2795 * b) Replenishes Rx queues that have run out due to memory shortage.
2796 * Normally new Rx buffers are added when existing ones are consumed but
2797 * when out of memory a queue can become empty. We try to add only a few
2798 * buffers here, the queue will be replenished fully as these new buffers
2799 * are used up if memory shortage has subsided.
2800 */
2801static void sge_timer_cb(unsigned long data)
2802{
2803 spinlock_t *lock;
2804 struct sge_qset *qs = (struct sge_qset *)data;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002805 struct adapter *adap = qs->adap;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002806
2807 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2808 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2809 spin_unlock(&qs->txq[TXQ_ETH].lock);
2810 }
2811 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2812 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2813 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2814 }
2815 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002816 &adap->sge.qs[0].rspq.lock;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002817 if (spin_trylock_irq(lock)) {
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002818 if (!napi_is_scheduled(&qs->napi)) {
Divy Le Raybae73f42007-02-24 16:44:12 -08002819 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2820
Divy Le Ray4d22de32007-01-18 22:04:14 -05002821 if (qs->fl[0].credits < qs->fl[0].size)
2822 __refill_fl(adap, &qs->fl[0]);
2823 if (qs->fl[1].credits < qs->fl[1].size)
2824 __refill_fl(adap, &qs->fl[1]);
Divy Le Raybae73f42007-02-24 16:44:12 -08002825
2826 if (status & (1 << qs->rspq.cntxt_id)) {
2827 qs->rspq.starved++;
2828 if (qs->rspq.credits) {
2829 refill_rspq(adap, &qs->rspq, 1);
2830 qs->rspq.credits--;
2831 qs->rspq.restarted++;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002832 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
Divy Le Raybae73f42007-02-24 16:44:12 -08002833 1 << qs->rspq.cntxt_id);
2834 }
2835 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05002836 }
2837 spin_unlock_irq(lock);
2838 }
2839 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2840}
2841
2842/**
2843 * t3_update_qset_coalesce - update coalescing settings for a queue set
2844 * @qs: the SGE queue set
2845 * @p: new queue set parameters
2846 *
2847 * Update the coalescing settings for an SGE queue set. Nothing is done
2848 * if the queue set is not initialized yet.
2849 */
2850void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2851{
Divy Le Ray4d22de32007-01-18 22:04:14 -05002852 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2853 qs->rspq.polling = p->polling;
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002854 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002855}
2856
2857/**
2858 * t3_sge_alloc_qset - initialize an SGE queue set
2859 * @adapter: the adapter
2860 * @id: the queue set id
2861 * @nports: how many Ethernet ports will be using this queue set
2862 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2863 * @p: configuration parameters for this queue set
2864 * @ntxq: number of Tx queues for the queue set
2865 * @netdev: net device associated with this queue set
2866 *
2867 * Allocate resources and initialize an SGE queue set. A queue set
2868 * comprises a response queue, two Rx free-buffer queues, and up to 3
2869 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2870 * queue, offload queue, and control queue.
2871 */
2872int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2873 int irq_vec_idx, const struct qset_params *p,
Stephen Hemmingerbea33482007-10-03 16:41:36 -07002874 int ntxq, struct net_device *dev)
Divy Le Ray4d22de32007-01-18 22:04:14 -05002875{
Divy Le Rayb1fb1f22008-05-21 18:56:16 -07002876 int i, avail, ret = -ENOMEM;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002877 struct sge_qset *q = &adapter->sge.qs[id];
Divy Le Rayb47385b2008-05-21 18:56:26 -07002878 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002879
2880 init_qset_cntxt(q, id);
2881 init_timer(&q->tx_reclaim_timer);
2882 q->tx_reclaim_timer.data = (unsigned long)q;
2883 q->tx_reclaim_timer.function = sge_timer_cb;
2884
2885 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2886 sizeof(struct rx_desc),
2887 sizeof(struct rx_sw_desc),
2888 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2889 if (!q->fl[0].desc)
2890 goto err;
2891
2892 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2893 sizeof(struct rx_desc),
2894 sizeof(struct rx_sw_desc),
2895 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2896 if (!q->fl[1].desc)
2897 goto err;
2898
2899 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2900 sizeof(struct rsp_desc), 0,
2901 &q->rspq.phys_addr, NULL);
2902 if (!q->rspq.desc)
2903 goto err;
2904
2905 for (i = 0; i < ntxq; ++i) {
2906 /*
2907 * The control queue always uses immediate data so does not
2908 * need to keep track of any sk_buffs.
2909 */
2910 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2911
2912 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2913 sizeof(struct tx_desc), sz,
2914 &q->txq[i].phys_addr,
2915 &q->txq[i].sdesc);
2916 if (!q->txq[i].desc)
2917 goto err;
2918
2919 q->txq[i].gen = 1;
2920 q->txq[i].size = p->txq_size[i];
2921 spin_lock_init(&q->txq[i].lock);
2922 skb_queue_head_init(&q->txq[i].sendq);
2923 }
2924
2925 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2926 (unsigned long)q);
2927 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2928 (unsigned long)q);
2929
2930 q->fl[0].gen = q->fl[1].gen = 1;
2931 q->fl[0].size = p->fl_size;
2932 q->fl[1].size = p->jumbo_size;
2933
2934 q->rspq.gen = 1;
2935 q->rspq.size = p->rspq_size;
2936 spin_lock_init(&q->rspq.lock);
David S. Miller147e70e2008-09-22 01:29:52 -07002937 skb_queue_head_init(&q->rspq.rx_queue);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002938
2939 q->txq[TXQ_ETH].stop_thres = nports *
2940 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2941
Divy Le Raycf992af2007-05-30 21:10:47 -07002942#if FL0_PG_CHUNK_SIZE > 0
2943 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
Divy Le Raye0994eb2007-02-24 16:44:17 -08002944#else
Divy Le Raycf992af2007-05-30 21:10:47 -07002945 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
Divy Le Raye0994eb2007-02-24 16:44:17 -08002946#endif
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002947#if FL1_PG_CHUNK_SIZE > 0
2948 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2949#else
Divy Le Raycf992af2007-05-30 21:10:47 -07002950 q->fl[1].buf_size = is_offload(adapter) ?
2951 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2952 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
Divy Le Ray7385ecf2008-05-21 18:56:21 -07002953#endif
2954
2955 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2956 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2957 q->fl[0].order = FL0_PG_ORDER;
2958 q->fl[1].order = FL1_PG_ORDER;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002959
Divy Le Rayb47385b2008-05-21 18:56:26 -07002960 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2961 sizeof(struct skb_frag_struct),
2962 GFP_KERNEL);
2963 q->lro_nfrags = q->lro_frag_len = 0;
Roland Dreierb1186de2008-03-20 13:30:48 -07002964 spin_lock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002965
2966 /* FL threshold comparison uses < */
2967 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2968 q->rspq.phys_addr, q->rspq.size,
2969 q->fl[0].buf_size, 1, 0);
2970 if (ret)
2971 goto err_unlock;
2972
2973 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2974 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2975 q->fl[i].phys_addr, q->fl[i].size,
2976 q->fl[i].buf_size, p->cong_thres, 1,
2977 0);
2978 if (ret)
2979 goto err_unlock;
2980 }
2981
2982 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2983 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2984 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2985 1, 0);
2986 if (ret)
2987 goto err_unlock;
2988
2989 if (ntxq > 1) {
2990 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2991 USE_GTS, SGE_CNTXT_OFLD, id,
2992 q->txq[TXQ_OFLD].phys_addr,
2993 q->txq[TXQ_OFLD].size, 0, 1, 0);
2994 if (ret)
2995 goto err_unlock;
2996 }
2997
2998 if (ntxq > 2) {
2999 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3000 SGE_CNTXT_CTRL, id,
3001 q->txq[TXQ_CTRL].phys_addr,
3002 q->txq[TXQ_CTRL].size,
3003 q->txq[TXQ_CTRL].token, 1, 0);
3004 if (ret)
3005 goto err_unlock;
3006 }
3007
Roland Dreierb1186de2008-03-20 13:30:48 -07003008 spin_unlock_irq(&adapter->sge.reg_lock);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003009
Stephen Hemmingerbea33482007-10-03 16:41:36 -07003010 q->adap = adapter;
3011 q->netdev = dev;
3012 t3_update_qset_coalesce(q, p);
Divy Le Rayb47385b2008-05-21 18:56:26 -07003013
3014 init_lro_mgr(q, lro_mgr);
3015
Divy Le Ray7385ecf2008-05-21 18:56:21 -07003016 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3017 GFP_KERNEL | __GFP_COMP);
Divy Le Rayb1fb1f22008-05-21 18:56:16 -07003018 if (!avail) {
3019 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3020 goto err;
3021 }
3022 if (avail < q->fl[0].size)
3023 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3024 avail);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003025
Divy Le Ray7385ecf2008-05-21 18:56:21 -07003026 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3027 GFP_KERNEL | __GFP_COMP);
Divy Le Rayb1fb1f22008-05-21 18:56:16 -07003028 if (avail < q->fl[1].size)
3029 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3030 avail);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003031 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3032
3033 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3034 V_NEWTIMER(q->rspq.holdoff_tmr));
3035
3036 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3037 return 0;
3038
Divy Le Rayb1fb1f22008-05-21 18:56:16 -07003039err_unlock:
Roland Dreierb1186de2008-03-20 13:30:48 -07003040 spin_unlock_irq(&adapter->sge.reg_lock);
Divy Le Rayb1fb1f22008-05-21 18:56:16 -07003041err:
Divy Le Ray4d22de32007-01-18 22:04:14 -05003042 t3_free_qset(adapter, q);
3043 return ret;
3044}
3045
3046/**
3047 * t3_free_sge_resources - free SGE resources
3048 * @adap: the adapter
3049 *
3050 * Frees resources used by the SGE queue sets.
3051 */
3052void t3_free_sge_resources(struct adapter *adap)
3053{
3054 int i;
3055
3056 for (i = 0; i < SGE_QSETS; ++i)
3057 t3_free_qset(adap, &adap->sge.qs[i]);
3058}
3059
3060/**
3061 * t3_sge_start - enable SGE
3062 * @adap: the adapter
3063 *
3064 * Enables the SGE for DMAs. This is the last step in starting packet
3065 * transfers.
3066 */
3067void t3_sge_start(struct adapter *adap)
3068{
3069 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3070}
3071
3072/**
3073 * t3_sge_stop - disable SGE operation
3074 * @adap: the adapter
3075 *
3076 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3077 * from error interrupts) or from normal process context. In the latter
3078 * case it also disables any pending queue restart tasklets. Note that
3079 * if it is called in interrupt context it cannot disable the restart
3080 * tasklets as it cannot wait, however the tasklets will have no effect
3081 * since the doorbells are disabled and the driver will call this again
3082 * later from process context, at which time the tasklets will be stopped
3083 * if they are still running.
3084 */
3085void t3_sge_stop(struct adapter *adap)
3086{
3087 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3088 if (!in_interrupt()) {
3089 int i;
3090
3091 for (i = 0; i < SGE_QSETS; ++i) {
3092 struct sge_qset *qs = &adap->sge.qs[i];
3093
3094 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3095 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3096 }
3097 }
3098}
3099
3100/**
3101 * t3_sge_init - initialize SGE
3102 * @adap: the adapter
3103 * @p: the SGE parameters
3104 *
3105 * Performs SGE initialization needed every time after a chip reset.
3106 * We do not initialize any of the queue sets here, instead the driver
3107 * top-level must request those individually. We also do not enable DMA
3108 * here, that should be done after the queues have been set up.
3109 */
3110void t3_sge_init(struct adapter *adap, struct sge_params *p)
3111{
3112 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3113
3114 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
Divy Le Rayb8819552007-12-17 18:47:31 -08003115 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
Divy Le Ray4d22de32007-01-18 22:04:14 -05003116 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3117 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3118#if SGE_NUM_GENBITS == 1
3119 ctrl |= F_EGRGENCTRL;
3120#endif
3121 if (adap->params.rev > 0) {
3122 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3123 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
Divy Le Ray4d22de32007-01-18 22:04:14 -05003124 }
3125 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3126 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3127 V_LORCQDRBTHRSH(512));
3128 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3129 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
Divy Le Ray6195c712007-01-30 19:43:56 -08003130 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
Divy Le Rayb8819552007-12-17 18:47:31 -08003131 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3132 adap->params.rev < T3_REV_C ? 1000 : 500);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003133 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3134 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3135 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3136 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3137 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3138}
3139
3140/**
3141 * t3_sge_prep - one-time SGE initialization
3142 * @adap: the associated adapter
3143 * @p: SGE parameters
3144 *
3145 * Performs one-time initialization of SGE SW state. Includes determining
3146 * defaults for the assorted SGE parameters, which admins can change until
3147 * they are used to initialize the SGE.
3148 */
Roland Dreier7b9b0942008-01-29 14:45:11 -08003149void t3_sge_prep(struct adapter *adap, struct sge_params *p)
Divy Le Ray4d22de32007-01-18 22:04:14 -05003150{
3151 int i;
3152
3153 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3154 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3155
3156 for (i = 0; i < SGE_QSETS; ++i) {
3157 struct qset_params *q = p->qset + i;
3158
3159 q->polling = adap->params.rev > 0;
3160 q->coalesce_usecs = 5;
3161 q->rspq_size = 1024;
Divy Le Raye0994eb2007-02-24 16:44:17 -08003162 q->fl_size = 1024;
Divy Le Ray7385ecf2008-05-21 18:56:21 -07003163 q->jumbo_size = 512;
Divy Le Ray4d22de32007-01-18 22:04:14 -05003164 q->txq_size[TXQ_ETH] = 1024;
3165 q->txq_size[TXQ_OFLD] = 1024;
3166 q->txq_size[TXQ_CTRL] = 256;
3167 q->cong_thres = 0;
3168 }
3169
3170 spin_lock_init(&adap->sge.reg_lock);
3171}
3172
3173/**
3174 * t3_get_desc - dump an SGE descriptor for debugging purposes
3175 * @qs: the queue set
3176 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3177 * @idx: the descriptor index in the queue
3178 * @data: where to dump the descriptor contents
3179 *
3180 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3181 * size of the descriptor.
3182 */
3183int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3184 unsigned char *data)
3185{
3186 if (qnum >= 6)
3187 return -EINVAL;
3188
3189 if (qnum < 3) {
3190 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3191 return -EINVAL;
3192 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3193 return sizeof(struct tx_desc);
3194 }
3195
3196 if (qnum == 3) {
3197 if (!qs->rspq.desc || idx >= qs->rspq.size)
3198 return -EINVAL;
3199 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3200 return sizeof(struct rsp_desc);
3201 }
3202
3203 qnum -= 4;
3204 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3205 return -EINVAL;
3206 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3207 return sizeof(struct rx_desc);
3208}