Divy Le Ray | 4d22de3 | 2007-01-18 22:04:14 -0500 | [diff] [blame^] | 1 | /* |
| 2 | * This file is part of the Chelsio T3 Ethernet driver. |
| 3 | * |
| 4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. |
| 5 | * |
| 6 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this |
| 9 | * release for licensing terms and conditions. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/skbuff.h> |
| 13 | #include <linux/netdevice.h> |
| 14 | #include <linux/etherdevice.h> |
| 15 | #include <linux/if_vlan.h> |
| 16 | #include <linux/ip.h> |
| 17 | #include <linux/tcp.h> |
| 18 | #include <linux/dma-mapping.h> |
| 19 | #include "common.h" |
| 20 | #include "regs.h" |
| 21 | #include "sge_defs.h" |
| 22 | #include "t3_cpl.h" |
| 23 | #include "firmware_exports.h" |
| 24 | |
| 25 | #define USE_GTS 0 |
| 26 | |
| 27 | #define SGE_RX_SM_BUF_SIZE 1536 |
| 28 | #define SGE_RX_COPY_THRES 256 |
| 29 | |
| 30 | # define SGE_RX_DROP_THRES 16 |
| 31 | |
| 32 | /* |
| 33 | * Period of the Tx buffer reclaim timer. This timer does not need to run |
| 34 | * frequently as Tx buffers are usually reclaimed by new Tx packets. |
| 35 | */ |
| 36 | #define TX_RECLAIM_PERIOD (HZ / 4) |
| 37 | |
| 38 | /* WR size in bytes */ |
| 39 | #define WR_LEN (WR_FLITS * 8) |
| 40 | |
| 41 | /* |
| 42 | * Types of Tx queues in each queue set. Order here matters, do not change. |
| 43 | */ |
| 44 | enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; |
| 45 | |
| 46 | /* Values for sge_txq.flags */ |
| 47 | enum { |
| 48 | TXQ_RUNNING = 1 << 0, /* fetch engine is running */ |
| 49 | TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ |
| 50 | }; |
| 51 | |
| 52 | struct tx_desc { |
| 53 | u64 flit[TX_DESC_FLITS]; |
| 54 | }; |
| 55 | |
| 56 | struct rx_desc { |
| 57 | __be32 addr_lo; |
| 58 | __be32 len_gen; |
| 59 | __be32 gen2; |
| 60 | __be32 addr_hi; |
| 61 | }; |
| 62 | |
| 63 | struct tx_sw_desc { /* SW state per Tx descriptor */ |
| 64 | struct sk_buff *skb; |
| 65 | }; |
| 66 | |
| 67 | struct rx_sw_desc { /* SW state per Rx descriptor */ |
| 68 | struct sk_buff *skb; |
| 69 | DECLARE_PCI_UNMAP_ADDR(dma_addr); |
| 70 | }; |
| 71 | |
| 72 | struct rsp_desc { /* response queue descriptor */ |
| 73 | struct rss_header rss_hdr; |
| 74 | __be32 flags; |
| 75 | __be32 len_cq; |
| 76 | u8 imm_data[47]; |
| 77 | u8 intr_gen; |
| 78 | }; |
| 79 | |
| 80 | struct unmap_info { /* packet unmapping info, overlays skb->cb */ |
| 81 | int sflit; /* start flit of first SGL entry in Tx descriptor */ |
| 82 | u16 fragidx; /* first page fragment in current Tx descriptor */ |
| 83 | u16 addr_idx; /* buffer index of first SGL entry in descriptor */ |
| 84 | u32 len; /* mapped length of skb main body */ |
| 85 | }; |
| 86 | |
| 87 | /* |
| 88 | * Maps a number of flits to the number of Tx descriptors that can hold them. |
| 89 | * The formula is |
| 90 | * |
| 91 | * desc = 1 + (flits - 2) / (WR_FLITS - 1). |
| 92 | * |
| 93 | * HW allows up to 4 descriptors to be combined into a WR. |
| 94 | */ |
| 95 | static u8 flit_desc_map[] = { |
| 96 | 0, |
| 97 | #if SGE_NUM_GENBITS == 1 |
| 98 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 99 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 100 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 101 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 |
| 102 | #elif SGE_NUM_GENBITS == 2 |
| 103 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 104 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 105 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 106 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 107 | #else |
| 108 | # error "SGE_NUM_GENBITS must be 1 or 2" |
| 109 | #endif |
| 110 | }; |
| 111 | |
| 112 | static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) |
| 113 | { |
| 114 | return container_of(q, struct sge_qset, fl[qidx]); |
| 115 | } |
| 116 | |
| 117 | static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) |
| 118 | { |
| 119 | return container_of(q, struct sge_qset, rspq); |
| 120 | } |
| 121 | |
| 122 | static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) |
| 123 | { |
| 124 | return container_of(q, struct sge_qset, txq[qidx]); |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * refill_rspq - replenish an SGE response queue |
| 129 | * @adapter: the adapter |
| 130 | * @q: the response queue to replenish |
| 131 | * @credits: how many new responses to make available |
| 132 | * |
| 133 | * Replenishes a response queue by making the supplied number of responses |
| 134 | * available to HW. |
| 135 | */ |
| 136 | static inline void refill_rspq(struct adapter *adapter, |
| 137 | const struct sge_rspq *q, unsigned int credits) |
| 138 | { |
| 139 | t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, |
| 140 | V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); |
| 141 | } |
| 142 | |
| 143 | /** |
| 144 | * need_skb_unmap - does the platform need unmapping of sk_buffs? |
| 145 | * |
| 146 | * Returns true if the platfrom needs sk_buff unmapping. The compiler |
| 147 | * optimizes away unecessary code if this returns true. |
| 148 | */ |
| 149 | static inline int need_skb_unmap(void) |
| 150 | { |
| 151 | /* |
| 152 | * This structure is used to tell if the platfrom needs buffer |
| 153 | * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything. |
| 154 | */ |
| 155 | struct dummy { |
| 156 | DECLARE_PCI_UNMAP_ADDR(addr); |
| 157 | }; |
| 158 | |
| 159 | return sizeof(struct dummy) != 0; |
| 160 | } |
| 161 | |
| 162 | /** |
| 163 | * unmap_skb - unmap a packet main body and its page fragments |
| 164 | * @skb: the packet |
| 165 | * @q: the Tx queue containing Tx descriptors for the packet |
| 166 | * @cidx: index of Tx descriptor |
| 167 | * @pdev: the PCI device |
| 168 | * |
| 169 | * Unmap the main body of an sk_buff and its page fragments, if any. |
| 170 | * Because of the fairly complicated structure of our SGLs and the desire |
| 171 | * to conserve space for metadata, we keep the information necessary to |
| 172 | * unmap an sk_buff partly in the sk_buff itself (in its cb), and partly |
| 173 | * in the Tx descriptors (the physical addresses of the various data |
| 174 | * buffers). The send functions initialize the state in skb->cb so we |
| 175 | * can unmap the buffers held in the first Tx descriptor here, and we |
| 176 | * have enough information at this point to update the state for the next |
| 177 | * Tx descriptor. |
| 178 | */ |
| 179 | static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, |
| 180 | unsigned int cidx, struct pci_dev *pdev) |
| 181 | { |
| 182 | const struct sg_ent *sgp; |
| 183 | struct unmap_info *ui = (struct unmap_info *)skb->cb; |
| 184 | int nfrags, frag_idx, curflit, j = ui->addr_idx; |
| 185 | |
| 186 | sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit]; |
| 187 | |
| 188 | if (ui->len) { |
| 189 | pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len, |
| 190 | PCI_DMA_TODEVICE); |
| 191 | ui->len = 0; /* so we know for next descriptor for this skb */ |
| 192 | j = 1; |
| 193 | } |
| 194 | |
| 195 | frag_idx = ui->fragidx; |
| 196 | curflit = ui->sflit + 1 + j; |
| 197 | nfrags = skb_shinfo(skb)->nr_frags; |
| 198 | |
| 199 | while (frag_idx < nfrags && curflit < WR_FLITS) { |
| 200 | pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), |
| 201 | skb_shinfo(skb)->frags[frag_idx].size, |
| 202 | PCI_DMA_TODEVICE); |
| 203 | j ^= 1; |
| 204 | if (j == 0) { |
| 205 | sgp++; |
| 206 | curflit++; |
| 207 | } |
| 208 | curflit++; |
| 209 | frag_idx++; |
| 210 | } |
| 211 | |
| 212 | if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ |
| 213 | ui->fragidx = frag_idx; |
| 214 | ui->addr_idx = j; |
| 215 | ui->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /** |
| 220 | * free_tx_desc - reclaims Tx descriptors and their buffers |
| 221 | * @adapter: the adapter |
| 222 | * @q: the Tx queue to reclaim descriptors from |
| 223 | * @n: the number of descriptors to reclaim |
| 224 | * |
| 225 | * Reclaims Tx descriptors from an SGE Tx queue and frees the associated |
| 226 | * Tx buffers. Called with the Tx queue lock held. |
| 227 | */ |
| 228 | static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, |
| 229 | unsigned int n) |
| 230 | { |
| 231 | struct tx_sw_desc *d; |
| 232 | struct pci_dev *pdev = adapter->pdev; |
| 233 | unsigned int cidx = q->cidx; |
| 234 | |
| 235 | d = &q->sdesc[cidx]; |
| 236 | while (n--) { |
| 237 | if (d->skb) { /* an SGL is present */ |
| 238 | if (need_skb_unmap()) |
| 239 | unmap_skb(d->skb, q, cidx, pdev); |
| 240 | if (d->skb->priority == cidx) |
| 241 | kfree_skb(d->skb); |
| 242 | } |
| 243 | ++d; |
| 244 | if (++cidx == q->size) { |
| 245 | cidx = 0; |
| 246 | d = q->sdesc; |
| 247 | } |
| 248 | } |
| 249 | q->cidx = cidx; |
| 250 | } |
| 251 | |
| 252 | /** |
| 253 | * reclaim_completed_tx - reclaims completed Tx descriptors |
| 254 | * @adapter: the adapter |
| 255 | * @q: the Tx queue to reclaim completed descriptors from |
| 256 | * |
| 257 | * Reclaims Tx descriptors that the SGE has indicated it has processed, |
| 258 | * and frees the associated buffers if possible. Called with the Tx |
| 259 | * queue's lock held. |
| 260 | */ |
| 261 | static inline void reclaim_completed_tx(struct adapter *adapter, |
| 262 | struct sge_txq *q) |
| 263 | { |
| 264 | unsigned int reclaim = q->processed - q->cleaned; |
| 265 | |
| 266 | if (reclaim) { |
| 267 | free_tx_desc(adapter, q, reclaim); |
| 268 | q->cleaned += reclaim; |
| 269 | q->in_use -= reclaim; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /** |
| 274 | * should_restart_tx - are there enough resources to restart a Tx queue? |
| 275 | * @q: the Tx queue |
| 276 | * |
| 277 | * Checks if there are enough descriptors to restart a suspended Tx queue. |
| 278 | */ |
| 279 | static inline int should_restart_tx(const struct sge_txq *q) |
| 280 | { |
| 281 | unsigned int r = q->processed - q->cleaned; |
| 282 | |
| 283 | return q->in_use - r < (q->size >> 1); |
| 284 | } |
| 285 | |
| 286 | /** |
| 287 | * free_rx_bufs - free the Rx buffers on an SGE free list |
| 288 | * @pdev: the PCI device associated with the adapter |
| 289 | * @rxq: the SGE free list to clean up |
| 290 | * |
| 291 | * Release the buffers on an SGE free-buffer Rx queue. HW fetching from |
| 292 | * this queue should be stopped before calling this function. |
| 293 | */ |
| 294 | static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) |
| 295 | { |
| 296 | unsigned int cidx = q->cidx; |
| 297 | |
| 298 | while (q->credits--) { |
| 299 | struct rx_sw_desc *d = &q->sdesc[cidx]; |
| 300 | |
| 301 | pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr), |
| 302 | q->buf_size, PCI_DMA_FROMDEVICE); |
| 303 | kfree_skb(d->skb); |
| 304 | d->skb = NULL; |
| 305 | if (++cidx == q->size) |
| 306 | cidx = 0; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /** |
| 311 | * add_one_rx_buf - add a packet buffer to a free-buffer list |
| 312 | * @skb: the buffer to add |
| 313 | * @len: the buffer length |
| 314 | * @d: the HW Rx descriptor to write |
| 315 | * @sd: the SW Rx descriptor to write |
| 316 | * @gen: the generation bit value |
| 317 | * @pdev: the PCI device associated with the adapter |
| 318 | * |
| 319 | * Add a buffer of the given length to the supplied HW and SW Rx |
| 320 | * descriptors. |
| 321 | */ |
| 322 | static inline void add_one_rx_buf(struct sk_buff *skb, unsigned int len, |
| 323 | struct rx_desc *d, struct rx_sw_desc *sd, |
| 324 | unsigned int gen, struct pci_dev *pdev) |
| 325 | { |
| 326 | dma_addr_t mapping; |
| 327 | |
| 328 | sd->skb = skb; |
| 329 | mapping = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE); |
| 330 | pci_unmap_addr_set(sd, dma_addr, mapping); |
| 331 | |
| 332 | d->addr_lo = cpu_to_be32(mapping); |
| 333 | d->addr_hi = cpu_to_be32((u64) mapping >> 32); |
| 334 | wmb(); |
| 335 | d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); |
| 336 | d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); |
| 337 | } |
| 338 | |
| 339 | /** |
| 340 | * refill_fl - refill an SGE free-buffer list |
| 341 | * @adapter: the adapter |
| 342 | * @q: the free-list to refill |
| 343 | * @n: the number of new buffers to allocate |
| 344 | * @gfp: the gfp flags for allocating new buffers |
| 345 | * |
| 346 | * (Re)populate an SGE free-buffer list with up to @n new packet buffers, |
| 347 | * allocated with the supplied gfp flags. The caller must assure that |
| 348 | * @n does not exceed the queue's capacity. |
| 349 | */ |
| 350 | static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) |
| 351 | { |
| 352 | struct rx_sw_desc *sd = &q->sdesc[q->pidx]; |
| 353 | struct rx_desc *d = &q->desc[q->pidx]; |
| 354 | |
| 355 | while (n--) { |
| 356 | struct sk_buff *skb = alloc_skb(q->buf_size, gfp); |
| 357 | |
| 358 | if (!skb) |
| 359 | break; |
| 360 | |
| 361 | add_one_rx_buf(skb, q->buf_size, d, sd, q->gen, adap->pdev); |
| 362 | d++; |
| 363 | sd++; |
| 364 | if (++q->pidx == q->size) { |
| 365 | q->pidx = 0; |
| 366 | q->gen ^= 1; |
| 367 | sd = q->sdesc; |
| 368 | d = q->desc; |
| 369 | } |
| 370 | q->credits++; |
| 371 | } |
| 372 | |
| 373 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); |
| 374 | } |
| 375 | |
| 376 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) |
| 377 | { |
| 378 | refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC); |
| 379 | } |
| 380 | |
| 381 | /** |
| 382 | * recycle_rx_buf - recycle a receive buffer |
| 383 | * @adapter: the adapter |
| 384 | * @q: the SGE free list |
| 385 | * @idx: index of buffer to recycle |
| 386 | * |
| 387 | * Recycles the specified buffer on the given free list by adding it at |
| 388 | * the next available slot on the list. |
| 389 | */ |
| 390 | static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, |
| 391 | unsigned int idx) |
| 392 | { |
| 393 | struct rx_desc *from = &q->desc[idx]; |
| 394 | struct rx_desc *to = &q->desc[q->pidx]; |
| 395 | |
| 396 | q->sdesc[q->pidx] = q->sdesc[idx]; |
| 397 | to->addr_lo = from->addr_lo; /* already big endian */ |
| 398 | to->addr_hi = from->addr_hi; /* likewise */ |
| 399 | wmb(); |
| 400 | to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); |
| 401 | to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); |
| 402 | q->credits++; |
| 403 | |
| 404 | if (++q->pidx == q->size) { |
| 405 | q->pidx = 0; |
| 406 | q->gen ^= 1; |
| 407 | } |
| 408 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); |
| 409 | } |
| 410 | |
| 411 | /** |
| 412 | * alloc_ring - allocate resources for an SGE descriptor ring |
| 413 | * @pdev: the PCI device |
| 414 | * @nelem: the number of descriptors |
| 415 | * @elem_size: the size of each descriptor |
| 416 | * @sw_size: the size of the SW state associated with each ring element |
| 417 | * @phys: the physical address of the allocated ring |
| 418 | * @metadata: address of the array holding the SW state for the ring |
| 419 | * |
| 420 | * Allocates resources for an SGE descriptor ring, such as Tx queues, |
| 421 | * free buffer lists, or response queues. Each SGE ring requires |
| 422 | * space for its HW descriptors plus, optionally, space for the SW state |
| 423 | * associated with each HW entry (the metadata). The function returns |
| 424 | * three values: the virtual address for the HW ring (the return value |
| 425 | * of the function), the physical address of the HW ring, and the address |
| 426 | * of the SW ring. |
| 427 | */ |
| 428 | static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, |
| 429 | size_t sw_size, dma_addr_t *phys, void *metadata) |
| 430 | { |
| 431 | size_t len = nelem * elem_size; |
| 432 | void *s = NULL; |
| 433 | void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); |
| 434 | |
| 435 | if (!p) |
| 436 | return NULL; |
| 437 | if (sw_size) { |
| 438 | s = kcalloc(nelem, sw_size, GFP_KERNEL); |
| 439 | |
| 440 | if (!s) { |
| 441 | dma_free_coherent(&pdev->dev, len, p, *phys); |
| 442 | return NULL; |
| 443 | } |
| 444 | } |
| 445 | if (metadata) |
| 446 | *(void **)metadata = s; |
| 447 | memset(p, 0, len); |
| 448 | return p; |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * free_qset - free the resources of an SGE queue set |
| 453 | * @adapter: the adapter owning the queue set |
| 454 | * @q: the queue set |
| 455 | * |
| 456 | * Release the HW and SW resources associated with an SGE queue set, such |
| 457 | * as HW contexts, packet buffers, and descriptor rings. Traffic to the |
| 458 | * queue set must be quiesced prior to calling this. |
| 459 | */ |
| 460 | void t3_free_qset(struct adapter *adapter, struct sge_qset *q) |
| 461 | { |
| 462 | int i; |
| 463 | struct pci_dev *pdev = adapter->pdev; |
| 464 | |
| 465 | if (q->tx_reclaim_timer.function) |
| 466 | del_timer_sync(&q->tx_reclaim_timer); |
| 467 | |
| 468 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) |
| 469 | if (q->fl[i].desc) { |
| 470 | spin_lock(&adapter->sge.reg_lock); |
| 471 | t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); |
| 472 | spin_unlock(&adapter->sge.reg_lock); |
| 473 | free_rx_bufs(pdev, &q->fl[i]); |
| 474 | kfree(q->fl[i].sdesc); |
| 475 | dma_free_coherent(&pdev->dev, |
| 476 | q->fl[i].size * |
| 477 | sizeof(struct rx_desc), q->fl[i].desc, |
| 478 | q->fl[i].phys_addr); |
| 479 | } |
| 480 | |
| 481 | for (i = 0; i < SGE_TXQ_PER_SET; ++i) |
| 482 | if (q->txq[i].desc) { |
| 483 | spin_lock(&adapter->sge.reg_lock); |
| 484 | t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); |
| 485 | spin_unlock(&adapter->sge.reg_lock); |
| 486 | if (q->txq[i].sdesc) { |
| 487 | free_tx_desc(adapter, &q->txq[i], |
| 488 | q->txq[i].in_use); |
| 489 | kfree(q->txq[i].sdesc); |
| 490 | } |
| 491 | dma_free_coherent(&pdev->dev, |
| 492 | q->txq[i].size * |
| 493 | sizeof(struct tx_desc), |
| 494 | q->txq[i].desc, q->txq[i].phys_addr); |
| 495 | __skb_queue_purge(&q->txq[i].sendq); |
| 496 | } |
| 497 | |
| 498 | if (q->rspq.desc) { |
| 499 | spin_lock(&adapter->sge.reg_lock); |
| 500 | t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); |
| 501 | spin_unlock(&adapter->sge.reg_lock); |
| 502 | dma_free_coherent(&pdev->dev, |
| 503 | q->rspq.size * sizeof(struct rsp_desc), |
| 504 | q->rspq.desc, q->rspq.phys_addr); |
| 505 | } |
| 506 | |
| 507 | if (q->netdev) |
| 508 | q->netdev->atalk_ptr = NULL; |
| 509 | |
| 510 | memset(q, 0, sizeof(*q)); |
| 511 | } |
| 512 | |
| 513 | /** |
| 514 | * init_qset_cntxt - initialize an SGE queue set context info |
| 515 | * @qs: the queue set |
| 516 | * @id: the queue set id |
| 517 | * |
| 518 | * Initializes the TIDs and context ids for the queues of a queue set. |
| 519 | */ |
| 520 | static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) |
| 521 | { |
| 522 | qs->rspq.cntxt_id = id; |
| 523 | qs->fl[0].cntxt_id = 2 * id; |
| 524 | qs->fl[1].cntxt_id = 2 * id + 1; |
| 525 | qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; |
| 526 | qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; |
| 527 | qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; |
| 528 | qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; |
| 529 | qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; |
| 530 | } |
| 531 | |
| 532 | /** |
| 533 | * sgl_len - calculates the size of an SGL of the given capacity |
| 534 | * @n: the number of SGL entries |
| 535 | * |
| 536 | * Calculates the number of flits needed for a scatter/gather list that |
| 537 | * can hold the given number of entries. |
| 538 | */ |
| 539 | static inline unsigned int sgl_len(unsigned int n) |
| 540 | { |
| 541 | /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ |
| 542 | return (3 * n) / 2 + (n & 1); |
| 543 | } |
| 544 | |
| 545 | /** |
| 546 | * flits_to_desc - returns the num of Tx descriptors for the given flits |
| 547 | * @n: the number of flits |
| 548 | * |
| 549 | * Calculates the number of Tx descriptors needed for the supplied number |
| 550 | * of flits. |
| 551 | */ |
| 552 | static inline unsigned int flits_to_desc(unsigned int n) |
| 553 | { |
| 554 | BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); |
| 555 | return flit_desc_map[n]; |
| 556 | } |
| 557 | |
| 558 | /** |
| 559 | * get_packet - return the next ingress packet buffer from a free list |
| 560 | * @adap: the adapter that received the packet |
| 561 | * @fl: the SGE free list holding the packet |
| 562 | * @len: the packet length including any SGE padding |
| 563 | * @drop_thres: # of remaining buffers before we start dropping packets |
| 564 | * |
| 565 | * Get the next packet from a free list and complete setup of the |
| 566 | * sk_buff. If the packet is small we make a copy and recycle the |
| 567 | * original buffer, otherwise we use the original buffer itself. If a |
| 568 | * positive drop threshold is supplied packets are dropped and their |
| 569 | * buffers recycled if (a) the number of remaining buffers is under the |
| 570 | * threshold and the packet is too big to copy, or (b) the packet should |
| 571 | * be copied but there is no memory for the copy. |
| 572 | */ |
| 573 | static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, |
| 574 | unsigned int len, unsigned int drop_thres) |
| 575 | { |
| 576 | struct sk_buff *skb = NULL; |
| 577 | struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; |
| 578 | |
| 579 | prefetch(sd->skb->data); |
| 580 | |
| 581 | if (len <= SGE_RX_COPY_THRES) { |
| 582 | skb = alloc_skb(len, GFP_ATOMIC); |
| 583 | if (likely(skb != NULL)) { |
| 584 | __skb_put(skb, len); |
| 585 | pci_dma_sync_single_for_cpu(adap->pdev, |
| 586 | pci_unmap_addr(sd, |
| 587 | dma_addr), |
| 588 | len, PCI_DMA_FROMDEVICE); |
| 589 | memcpy(skb->data, sd->skb->data, len); |
| 590 | pci_dma_sync_single_for_device(adap->pdev, |
| 591 | pci_unmap_addr(sd, |
| 592 | dma_addr), |
| 593 | len, PCI_DMA_FROMDEVICE); |
| 594 | } else if (!drop_thres) |
| 595 | goto use_orig_buf; |
| 596 | recycle: |
| 597 | recycle_rx_buf(adap, fl, fl->cidx); |
| 598 | return skb; |
| 599 | } |
| 600 | |
| 601 | if (unlikely(fl->credits < drop_thres)) |
| 602 | goto recycle; |
| 603 | |
| 604 | use_orig_buf: |
| 605 | pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr), |
| 606 | fl->buf_size, PCI_DMA_FROMDEVICE); |
| 607 | skb = sd->skb; |
| 608 | skb_put(skb, len); |
| 609 | __refill_fl(adap, fl); |
| 610 | return skb; |
| 611 | } |
| 612 | |
| 613 | /** |
| 614 | * get_imm_packet - return the next ingress packet buffer from a response |
| 615 | * @resp: the response descriptor containing the packet data |
| 616 | * |
| 617 | * Return a packet containing the immediate data of the given response. |
| 618 | */ |
| 619 | static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) |
| 620 | { |
| 621 | struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); |
| 622 | |
| 623 | if (skb) { |
| 624 | __skb_put(skb, IMMED_PKT_SIZE); |
| 625 | memcpy(skb->data, resp->imm_data, IMMED_PKT_SIZE); |
| 626 | } |
| 627 | return skb; |
| 628 | } |
| 629 | |
| 630 | /** |
| 631 | * calc_tx_descs - calculate the number of Tx descriptors for a packet |
| 632 | * @skb: the packet |
| 633 | * |
| 634 | * Returns the number of Tx descriptors needed for the given Ethernet |
| 635 | * packet. Ethernet packets require addition of WR and CPL headers. |
| 636 | */ |
| 637 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) |
| 638 | { |
| 639 | unsigned int flits; |
| 640 | |
| 641 | if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) |
| 642 | return 1; |
| 643 | |
| 644 | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; |
| 645 | if (skb_shinfo(skb)->gso_size) |
| 646 | flits++; |
| 647 | return flits_to_desc(flits); |
| 648 | } |
| 649 | |
| 650 | /** |
| 651 | * make_sgl - populate a scatter/gather list for a packet |
| 652 | * @skb: the packet |
| 653 | * @sgp: the SGL to populate |
| 654 | * @start: start address of skb main body data to include in the SGL |
| 655 | * @len: length of skb main body data to include in the SGL |
| 656 | * @pdev: the PCI device |
| 657 | * |
| 658 | * Generates a scatter/gather list for the buffers that make up a packet |
| 659 | * and returns the SGL size in 8-byte words. The caller must size the SGL |
| 660 | * appropriately. |
| 661 | */ |
| 662 | static inline unsigned int make_sgl(const struct sk_buff *skb, |
| 663 | struct sg_ent *sgp, unsigned char *start, |
| 664 | unsigned int len, struct pci_dev *pdev) |
| 665 | { |
| 666 | dma_addr_t mapping; |
| 667 | unsigned int i, j = 0, nfrags; |
| 668 | |
| 669 | if (len) { |
| 670 | mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); |
| 671 | sgp->len[0] = cpu_to_be32(len); |
| 672 | sgp->addr[0] = cpu_to_be64(mapping); |
| 673 | j = 1; |
| 674 | } |
| 675 | |
| 676 | nfrags = skb_shinfo(skb)->nr_frags; |
| 677 | for (i = 0; i < nfrags; i++) { |
| 678 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| 679 | |
| 680 | mapping = pci_map_page(pdev, frag->page, frag->page_offset, |
| 681 | frag->size, PCI_DMA_TODEVICE); |
| 682 | sgp->len[j] = cpu_to_be32(frag->size); |
| 683 | sgp->addr[j] = cpu_to_be64(mapping); |
| 684 | j ^= 1; |
| 685 | if (j == 0) |
| 686 | ++sgp; |
| 687 | } |
| 688 | if (j) |
| 689 | sgp->len[j] = 0; |
| 690 | return ((nfrags + (len != 0)) * 3) / 2 + j; |
| 691 | } |
| 692 | |
| 693 | /** |
| 694 | * check_ring_tx_db - check and potentially ring a Tx queue's doorbell |
| 695 | * @adap: the adapter |
| 696 | * @q: the Tx queue |
| 697 | * |
| 698 | * Ring the doorbel if a Tx queue is asleep. There is a natural race, |
| 699 | * where the HW is going to sleep just after we checked, however, |
| 700 | * then the interrupt handler will detect the outstanding TX packet |
| 701 | * and ring the doorbell for us. |
| 702 | * |
| 703 | * When GTS is disabled we unconditionally ring the doorbell. |
| 704 | */ |
| 705 | static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) |
| 706 | { |
| 707 | #if USE_GTS |
| 708 | clear_bit(TXQ_LAST_PKT_DB, &q->flags); |
| 709 | if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { |
| 710 | set_bit(TXQ_LAST_PKT_DB, &q->flags); |
| 711 | t3_write_reg(adap, A_SG_KDOORBELL, |
| 712 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| 713 | } |
| 714 | #else |
| 715 | wmb(); /* write descriptors before telling HW */ |
| 716 | t3_write_reg(adap, A_SG_KDOORBELL, |
| 717 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| 718 | #endif |
| 719 | } |
| 720 | |
| 721 | static inline void wr_gen2(struct tx_desc *d, unsigned int gen) |
| 722 | { |
| 723 | #if SGE_NUM_GENBITS == 2 |
| 724 | d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); |
| 725 | #endif |
| 726 | } |
| 727 | |
| 728 | /** |
| 729 | * write_wr_hdr_sgl - write a WR header and, optionally, SGL |
| 730 | * @ndesc: number of Tx descriptors spanned by the SGL |
| 731 | * @skb: the packet corresponding to the WR |
| 732 | * @d: first Tx descriptor to be written |
| 733 | * @pidx: index of above descriptors |
| 734 | * @q: the SGE Tx queue |
| 735 | * @sgl: the SGL |
| 736 | * @flits: number of flits to the start of the SGL in the first descriptor |
| 737 | * @sgl_flits: the SGL size in flits |
| 738 | * @gen: the Tx descriptor generation |
| 739 | * @wr_hi: top 32 bits of WR header based on WR type (big endian) |
| 740 | * @wr_lo: low 32 bits of WR header based on WR type (big endian) |
| 741 | * |
| 742 | * Write a work request header and an associated SGL. If the SGL is |
| 743 | * small enough to fit into one Tx descriptor it has already been written |
| 744 | * and we just need to write the WR header. Otherwise we distribute the |
| 745 | * SGL across the number of descriptors it spans. |
| 746 | */ |
| 747 | static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, |
| 748 | struct tx_desc *d, unsigned int pidx, |
| 749 | const struct sge_txq *q, |
| 750 | const struct sg_ent *sgl, |
| 751 | unsigned int flits, unsigned int sgl_flits, |
| 752 | unsigned int gen, unsigned int wr_hi, |
| 753 | unsigned int wr_lo) |
| 754 | { |
| 755 | struct work_request_hdr *wrp = (struct work_request_hdr *)d; |
| 756 | struct tx_sw_desc *sd = &q->sdesc[pidx]; |
| 757 | |
| 758 | sd->skb = skb; |
| 759 | if (need_skb_unmap()) { |
| 760 | struct unmap_info *ui = (struct unmap_info *)skb->cb; |
| 761 | |
| 762 | ui->fragidx = 0; |
| 763 | ui->addr_idx = 0; |
| 764 | ui->sflit = flits; |
| 765 | } |
| 766 | |
| 767 | if (likely(ndesc == 1)) { |
| 768 | skb->priority = pidx; |
| 769 | wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | |
| 770 | V_WR_SGLSFLT(flits)) | wr_hi; |
| 771 | wmb(); |
| 772 | wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | |
| 773 | V_WR_GEN(gen)) | wr_lo; |
| 774 | wr_gen2(d, gen); |
| 775 | } else { |
| 776 | unsigned int ogen = gen; |
| 777 | const u64 *fp = (const u64 *)sgl; |
| 778 | struct work_request_hdr *wp = wrp; |
| 779 | |
| 780 | wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | |
| 781 | V_WR_SGLSFLT(flits)) | wr_hi; |
| 782 | |
| 783 | while (sgl_flits) { |
| 784 | unsigned int avail = WR_FLITS - flits; |
| 785 | |
| 786 | if (avail > sgl_flits) |
| 787 | avail = sgl_flits; |
| 788 | memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); |
| 789 | sgl_flits -= avail; |
| 790 | ndesc--; |
| 791 | if (!sgl_flits) |
| 792 | break; |
| 793 | |
| 794 | fp += avail; |
| 795 | d++; |
| 796 | sd++; |
| 797 | if (++pidx == q->size) { |
| 798 | pidx = 0; |
| 799 | gen ^= 1; |
| 800 | d = q->desc; |
| 801 | sd = q->sdesc; |
| 802 | } |
| 803 | |
| 804 | sd->skb = skb; |
| 805 | wrp = (struct work_request_hdr *)d; |
| 806 | wrp->wr_hi = htonl(V_WR_DATATYPE(1) | |
| 807 | V_WR_SGLSFLT(1)) | wr_hi; |
| 808 | wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, |
| 809 | sgl_flits + 1)) | |
| 810 | V_WR_GEN(gen)) | wr_lo; |
| 811 | wr_gen2(d, gen); |
| 812 | flits = 1; |
| 813 | } |
| 814 | skb->priority = pidx; |
| 815 | wrp->wr_hi |= htonl(F_WR_EOP); |
| 816 | wmb(); |
| 817 | wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; |
| 818 | wr_gen2((struct tx_desc *)wp, ogen); |
| 819 | WARN_ON(ndesc != 0); |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | /** |
| 824 | * write_tx_pkt_wr - write a TX_PKT work request |
| 825 | * @adap: the adapter |
| 826 | * @skb: the packet to send |
| 827 | * @pi: the egress interface |
| 828 | * @pidx: index of the first Tx descriptor to write |
| 829 | * @gen: the generation value to use |
| 830 | * @q: the Tx queue |
| 831 | * @ndesc: number of descriptors the packet will occupy |
| 832 | * @compl: the value of the COMPL bit to use |
| 833 | * |
| 834 | * Generate a TX_PKT work request to send the supplied packet. |
| 835 | */ |
| 836 | static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, |
| 837 | const struct port_info *pi, |
| 838 | unsigned int pidx, unsigned int gen, |
| 839 | struct sge_txq *q, unsigned int ndesc, |
| 840 | unsigned int compl) |
| 841 | { |
| 842 | unsigned int flits, sgl_flits, cntrl, tso_info; |
| 843 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; |
| 844 | struct tx_desc *d = &q->desc[pidx]; |
| 845 | struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; |
| 846 | |
| 847 | cpl->len = htonl(skb->len | 0x80000000); |
| 848 | cntrl = V_TXPKT_INTF(pi->port_id); |
| 849 | |
| 850 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) |
| 851 | cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb)); |
| 852 | |
| 853 | tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); |
| 854 | if (tso_info) { |
| 855 | int eth_type; |
| 856 | struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; |
| 857 | |
| 858 | d->flit[2] = 0; |
| 859 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); |
| 860 | hdr->cntrl = htonl(cntrl); |
| 861 | eth_type = skb->nh.raw - skb->data == ETH_HLEN ? |
| 862 | CPL_ETH_II : CPL_ETH_II_VLAN; |
| 863 | tso_info |= V_LSO_ETH_TYPE(eth_type) | |
| 864 | V_LSO_IPHDR_WORDS(skb->nh.iph->ihl) | |
| 865 | V_LSO_TCPHDR_WORDS(skb->h.th->doff); |
| 866 | hdr->lso_info = htonl(tso_info); |
| 867 | flits = 3; |
| 868 | } else { |
| 869 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); |
| 870 | cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ |
| 871 | cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); |
| 872 | cpl->cntrl = htonl(cntrl); |
| 873 | |
| 874 | if (skb->len <= WR_LEN - sizeof(*cpl)) { |
| 875 | q->sdesc[pidx].skb = NULL; |
| 876 | if (!skb->data_len) |
| 877 | memcpy(&d->flit[2], skb->data, skb->len); |
| 878 | else |
| 879 | skb_copy_bits(skb, 0, &d->flit[2], skb->len); |
| 880 | |
| 881 | flits = (skb->len + 7) / 8 + 2; |
| 882 | cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | |
| 883 | V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
| 884 | | F_WR_SOP | F_WR_EOP | compl); |
| 885 | wmb(); |
| 886 | cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | |
| 887 | V_WR_TID(q->token)); |
| 888 | wr_gen2(d, gen); |
| 889 | kfree_skb(skb); |
| 890 | return; |
| 891 | } |
| 892 | |
| 893 | flits = 2; |
| 894 | } |
| 895 | |
| 896 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; |
| 897 | sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); |
| 898 | if (need_skb_unmap()) |
| 899 | ((struct unmap_info *)skb->cb)->len = skb_headlen(skb); |
| 900 | |
| 901 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, |
| 902 | htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), |
| 903 | htonl(V_WR_TID(q->token))); |
| 904 | } |
| 905 | |
| 906 | /** |
| 907 | * eth_xmit - add a packet to the Ethernet Tx queue |
| 908 | * @skb: the packet |
| 909 | * @dev: the egress net device |
| 910 | * |
| 911 | * Add a packet to an SGE Tx queue. Runs with softirqs disabled. |
| 912 | */ |
| 913 | int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) |
| 914 | { |
| 915 | unsigned int ndesc, pidx, credits, gen, compl; |
| 916 | const struct port_info *pi = netdev_priv(dev); |
| 917 | struct adapter *adap = dev->priv; |
| 918 | struct sge_qset *qs = dev2qset(dev); |
| 919 | struct sge_txq *q = &qs->txq[TXQ_ETH]; |
| 920 | |
| 921 | /* |
| 922 | * The chip min packet length is 9 octets but play safe and reject |
| 923 | * anything shorter than an Ethernet header. |
| 924 | */ |
| 925 | if (unlikely(skb->len < ETH_HLEN)) { |
| 926 | dev_kfree_skb(skb); |
| 927 | return NETDEV_TX_OK; |
| 928 | } |
| 929 | |
| 930 | spin_lock(&q->lock); |
| 931 | reclaim_completed_tx(adap, q); |
| 932 | |
| 933 | credits = q->size - q->in_use; |
| 934 | ndesc = calc_tx_descs(skb); |
| 935 | |
| 936 | if (unlikely(credits < ndesc)) { |
| 937 | if (!netif_queue_stopped(dev)) { |
| 938 | netif_stop_queue(dev); |
| 939 | set_bit(TXQ_ETH, &qs->txq_stopped); |
| 940 | q->stops++; |
| 941 | dev_err(&adap->pdev->dev, |
| 942 | "%s: Tx ring %u full while queue awake!\n", |
| 943 | dev->name, q->cntxt_id & 7); |
| 944 | } |
| 945 | spin_unlock(&q->lock); |
| 946 | return NETDEV_TX_BUSY; |
| 947 | } |
| 948 | |
| 949 | q->in_use += ndesc; |
| 950 | if (unlikely(credits - ndesc < q->stop_thres)) { |
| 951 | q->stops++; |
| 952 | netif_stop_queue(dev); |
| 953 | set_bit(TXQ_ETH, &qs->txq_stopped); |
| 954 | #if !USE_GTS |
| 955 | if (should_restart_tx(q) && |
| 956 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { |
| 957 | q->restarts++; |
| 958 | netif_wake_queue(dev); |
| 959 | } |
| 960 | #endif |
| 961 | } |
| 962 | |
| 963 | gen = q->gen; |
| 964 | q->unacked += ndesc; |
| 965 | compl = (q->unacked & 8) << (S_WR_COMPL - 3); |
| 966 | q->unacked &= 7; |
| 967 | pidx = q->pidx; |
| 968 | q->pidx += ndesc; |
| 969 | if (q->pidx >= q->size) { |
| 970 | q->pidx -= q->size; |
| 971 | q->gen ^= 1; |
| 972 | } |
| 973 | |
| 974 | /* update port statistics */ |
| 975 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
| 976 | qs->port_stats[SGE_PSTAT_TX_CSUM]++; |
| 977 | if (skb_shinfo(skb)->gso_size) |
| 978 | qs->port_stats[SGE_PSTAT_TSO]++; |
| 979 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) |
| 980 | qs->port_stats[SGE_PSTAT_VLANINS]++; |
| 981 | |
| 982 | dev->trans_start = jiffies; |
| 983 | spin_unlock(&q->lock); |
| 984 | |
| 985 | /* |
| 986 | * We do not use Tx completion interrupts to free DMAd Tx packets. |
| 987 | * This is good for performamce but means that we rely on new Tx |
| 988 | * packets arriving to run the destructors of completed packets, |
| 989 | * which open up space in their sockets' send queues. Sometimes |
| 990 | * we do not get such new packets causing Tx to stall. A single |
| 991 | * UDP transmitter is a good example of this situation. We have |
| 992 | * a clean up timer that periodically reclaims completed packets |
| 993 | * but it doesn't run often enough (nor do we want it to) to prevent |
| 994 | * lengthy stalls. A solution to this problem is to run the |
| 995 | * destructor early, after the packet is queued but before it's DMAd. |
| 996 | * A cons is that we lie to socket memory accounting, but the amount |
| 997 | * of extra memory is reasonable (limited by the number of Tx |
| 998 | * descriptors), the packets do actually get freed quickly by new |
| 999 | * packets almost always, and for protocols like TCP that wait for |
| 1000 | * acks to really free up the data the extra memory is even less. |
| 1001 | * On the positive side we run the destructors on the sending CPU |
| 1002 | * rather than on a potentially different completing CPU, usually a |
| 1003 | * good thing. We also run them without holding our Tx queue lock, |
| 1004 | * unlike what reclaim_completed_tx() would otherwise do. |
| 1005 | * |
| 1006 | * Run the destructor before telling the DMA engine about the packet |
| 1007 | * to make sure it doesn't complete and get freed prematurely. |
| 1008 | */ |
| 1009 | if (likely(!skb_shared(skb))) |
| 1010 | skb_orphan(skb); |
| 1011 | |
| 1012 | write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); |
| 1013 | check_ring_tx_db(adap, q); |
| 1014 | return NETDEV_TX_OK; |
| 1015 | } |
| 1016 | |
| 1017 | /** |
| 1018 | * write_imm - write a packet into a Tx descriptor as immediate data |
| 1019 | * @d: the Tx descriptor to write |
| 1020 | * @skb: the packet |
| 1021 | * @len: the length of packet data to write as immediate data |
| 1022 | * @gen: the generation bit value to write |
| 1023 | * |
| 1024 | * Writes a packet as immediate data into a Tx descriptor. The packet |
| 1025 | * contains a work request at its beginning. We must write the packet |
| 1026 | * carefully so the SGE doesn't read accidentally before it's written in |
| 1027 | * its entirety. |
| 1028 | */ |
| 1029 | static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, |
| 1030 | unsigned int len, unsigned int gen) |
| 1031 | { |
| 1032 | struct work_request_hdr *from = (struct work_request_hdr *)skb->data; |
| 1033 | struct work_request_hdr *to = (struct work_request_hdr *)d; |
| 1034 | |
| 1035 | memcpy(&to[1], &from[1], len - sizeof(*from)); |
| 1036 | to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | |
| 1037 | V_WR_BCNTLFLT(len & 7)); |
| 1038 | wmb(); |
| 1039 | to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | |
| 1040 | V_WR_LEN((len + 7) / 8)); |
| 1041 | wr_gen2(d, gen); |
| 1042 | kfree_skb(skb); |
| 1043 | } |
| 1044 | |
| 1045 | /** |
| 1046 | * check_desc_avail - check descriptor availability on a send queue |
| 1047 | * @adap: the adapter |
| 1048 | * @q: the send queue |
| 1049 | * @skb: the packet needing the descriptors |
| 1050 | * @ndesc: the number of Tx descriptors needed |
| 1051 | * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) |
| 1052 | * |
| 1053 | * Checks if the requested number of Tx descriptors is available on an |
| 1054 | * SGE send queue. If the queue is already suspended or not enough |
| 1055 | * descriptors are available the packet is queued for later transmission. |
| 1056 | * Must be called with the Tx queue locked. |
| 1057 | * |
| 1058 | * Returns 0 if enough descriptors are available, 1 if there aren't |
| 1059 | * enough descriptors and the packet has been queued, and 2 if the caller |
| 1060 | * needs to retry because there weren't enough descriptors at the |
| 1061 | * beginning of the call but some freed up in the mean time. |
| 1062 | */ |
| 1063 | static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, |
| 1064 | struct sk_buff *skb, unsigned int ndesc, |
| 1065 | unsigned int qid) |
| 1066 | { |
| 1067 | if (unlikely(!skb_queue_empty(&q->sendq))) { |
| 1068 | addq_exit:__skb_queue_tail(&q->sendq, skb); |
| 1069 | return 1; |
| 1070 | } |
| 1071 | if (unlikely(q->size - q->in_use < ndesc)) { |
| 1072 | struct sge_qset *qs = txq_to_qset(q, qid); |
| 1073 | |
| 1074 | set_bit(qid, &qs->txq_stopped); |
| 1075 | smp_mb__after_clear_bit(); |
| 1076 | |
| 1077 | if (should_restart_tx(q) && |
| 1078 | test_and_clear_bit(qid, &qs->txq_stopped)) |
| 1079 | return 2; |
| 1080 | |
| 1081 | q->stops++; |
| 1082 | goto addq_exit; |
| 1083 | } |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | /** |
| 1088 | * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs |
| 1089 | * @q: the SGE control Tx queue |
| 1090 | * |
| 1091 | * This is a variant of reclaim_completed_tx() that is used for Tx queues |
| 1092 | * that send only immediate data (presently just the control queues) and |
| 1093 | * thus do not have any sk_buffs to release. |
| 1094 | */ |
| 1095 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) |
| 1096 | { |
| 1097 | unsigned int reclaim = q->processed - q->cleaned; |
| 1098 | |
| 1099 | q->in_use -= reclaim; |
| 1100 | q->cleaned += reclaim; |
| 1101 | } |
| 1102 | |
| 1103 | static inline int immediate(const struct sk_buff *skb) |
| 1104 | { |
| 1105 | return skb->len <= WR_LEN && !skb->data_len; |
| 1106 | } |
| 1107 | |
| 1108 | /** |
| 1109 | * ctrl_xmit - send a packet through an SGE control Tx queue |
| 1110 | * @adap: the adapter |
| 1111 | * @q: the control queue |
| 1112 | * @skb: the packet |
| 1113 | * |
| 1114 | * Send a packet through an SGE control Tx queue. Packets sent through |
| 1115 | * a control queue must fit entirely as immediate data in a single Tx |
| 1116 | * descriptor and have no page fragments. |
| 1117 | */ |
| 1118 | static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, |
| 1119 | struct sk_buff *skb) |
| 1120 | { |
| 1121 | int ret; |
| 1122 | struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; |
| 1123 | |
| 1124 | if (unlikely(!immediate(skb))) { |
| 1125 | WARN_ON(1); |
| 1126 | dev_kfree_skb(skb); |
| 1127 | return NET_XMIT_SUCCESS; |
| 1128 | } |
| 1129 | |
| 1130 | wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); |
| 1131 | wrp->wr_lo = htonl(V_WR_TID(q->token)); |
| 1132 | |
| 1133 | spin_lock(&q->lock); |
| 1134 | again:reclaim_completed_tx_imm(q); |
| 1135 | |
| 1136 | ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); |
| 1137 | if (unlikely(ret)) { |
| 1138 | if (ret == 1) { |
| 1139 | spin_unlock(&q->lock); |
| 1140 | return NET_XMIT_CN; |
| 1141 | } |
| 1142 | goto again; |
| 1143 | } |
| 1144 | |
| 1145 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); |
| 1146 | |
| 1147 | q->in_use++; |
| 1148 | if (++q->pidx >= q->size) { |
| 1149 | q->pidx = 0; |
| 1150 | q->gen ^= 1; |
| 1151 | } |
| 1152 | spin_unlock(&q->lock); |
| 1153 | wmb(); |
| 1154 | t3_write_reg(adap, A_SG_KDOORBELL, |
| 1155 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| 1156 | return NET_XMIT_SUCCESS; |
| 1157 | } |
| 1158 | |
| 1159 | /** |
| 1160 | * restart_ctrlq - restart a suspended control queue |
| 1161 | * @qs: the queue set cotaining the control queue |
| 1162 | * |
| 1163 | * Resumes transmission on a suspended Tx control queue. |
| 1164 | */ |
| 1165 | static void restart_ctrlq(unsigned long data) |
| 1166 | { |
| 1167 | struct sk_buff *skb; |
| 1168 | struct sge_qset *qs = (struct sge_qset *)data; |
| 1169 | struct sge_txq *q = &qs->txq[TXQ_CTRL]; |
| 1170 | struct adapter *adap = qs->netdev->priv; |
| 1171 | |
| 1172 | spin_lock(&q->lock); |
| 1173 | again:reclaim_completed_tx_imm(q); |
| 1174 | |
| 1175 | while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) { |
| 1176 | |
| 1177 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); |
| 1178 | |
| 1179 | if (++q->pidx >= q->size) { |
| 1180 | q->pidx = 0; |
| 1181 | q->gen ^= 1; |
| 1182 | } |
| 1183 | q->in_use++; |
| 1184 | } |
| 1185 | |
| 1186 | if (!skb_queue_empty(&q->sendq)) { |
| 1187 | set_bit(TXQ_CTRL, &qs->txq_stopped); |
| 1188 | smp_mb__after_clear_bit(); |
| 1189 | |
| 1190 | if (should_restart_tx(q) && |
| 1191 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) |
| 1192 | goto again; |
| 1193 | q->stops++; |
| 1194 | } |
| 1195 | |
| 1196 | spin_unlock(&q->lock); |
| 1197 | t3_write_reg(adap, A_SG_KDOORBELL, |
| 1198 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| 1199 | } |
| 1200 | |
| 1201 | /** |
| 1202 | * write_ofld_wr - write an offload work request |
| 1203 | * @adap: the adapter |
| 1204 | * @skb: the packet to send |
| 1205 | * @q: the Tx queue |
| 1206 | * @pidx: index of the first Tx descriptor to write |
| 1207 | * @gen: the generation value to use |
| 1208 | * @ndesc: number of descriptors the packet will occupy |
| 1209 | * |
| 1210 | * Write an offload work request to send the supplied packet. The packet |
| 1211 | * data already carry the work request with most fields populated. |
| 1212 | */ |
| 1213 | static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, |
| 1214 | struct sge_txq *q, unsigned int pidx, |
| 1215 | unsigned int gen, unsigned int ndesc) |
| 1216 | { |
| 1217 | unsigned int sgl_flits, flits; |
| 1218 | struct work_request_hdr *from; |
| 1219 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; |
| 1220 | struct tx_desc *d = &q->desc[pidx]; |
| 1221 | |
| 1222 | if (immediate(skb)) { |
| 1223 | q->sdesc[pidx].skb = NULL; |
| 1224 | write_imm(d, skb, skb->len, gen); |
| 1225 | return; |
| 1226 | } |
| 1227 | |
| 1228 | /* Only TX_DATA builds SGLs */ |
| 1229 | |
| 1230 | from = (struct work_request_hdr *)skb->data; |
| 1231 | memcpy(&d->flit[1], &from[1], skb->h.raw - skb->data - sizeof(*from)); |
| 1232 | |
| 1233 | flits = (skb->h.raw - skb->data) / 8; |
| 1234 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; |
| 1235 | sgl_flits = make_sgl(skb, sgp, skb->h.raw, skb->tail - skb->h.raw, |
| 1236 | adap->pdev); |
| 1237 | if (need_skb_unmap()) |
| 1238 | ((struct unmap_info *)skb->cb)->len = skb->tail - skb->h.raw; |
| 1239 | |
| 1240 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, |
| 1241 | gen, from->wr_hi, from->wr_lo); |
| 1242 | } |
| 1243 | |
| 1244 | /** |
| 1245 | * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet |
| 1246 | * @skb: the packet |
| 1247 | * |
| 1248 | * Returns the number of Tx descriptors needed for the given offload |
| 1249 | * packet. These packets are already fully constructed. |
| 1250 | */ |
| 1251 | static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) |
| 1252 | { |
| 1253 | unsigned int flits, cnt = skb_shinfo(skb)->nr_frags; |
| 1254 | |
| 1255 | if (skb->len <= WR_LEN && cnt == 0) |
| 1256 | return 1; /* packet fits as immediate data */ |
| 1257 | |
| 1258 | flits = (skb->h.raw - skb->data) / 8; /* headers */ |
| 1259 | if (skb->tail != skb->h.raw) |
| 1260 | cnt++; |
| 1261 | return flits_to_desc(flits + sgl_len(cnt)); |
| 1262 | } |
| 1263 | |
| 1264 | /** |
| 1265 | * ofld_xmit - send a packet through an offload queue |
| 1266 | * @adap: the adapter |
| 1267 | * @q: the Tx offload queue |
| 1268 | * @skb: the packet |
| 1269 | * |
| 1270 | * Send an offload packet through an SGE offload queue. |
| 1271 | */ |
| 1272 | static int ofld_xmit(struct adapter *adap, struct sge_txq *q, |
| 1273 | struct sk_buff *skb) |
| 1274 | { |
| 1275 | int ret; |
| 1276 | unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; |
| 1277 | |
| 1278 | spin_lock(&q->lock); |
| 1279 | again:reclaim_completed_tx(adap, q); |
| 1280 | |
| 1281 | ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); |
| 1282 | if (unlikely(ret)) { |
| 1283 | if (ret == 1) { |
| 1284 | skb->priority = ndesc; /* save for restart */ |
| 1285 | spin_unlock(&q->lock); |
| 1286 | return NET_XMIT_CN; |
| 1287 | } |
| 1288 | goto again; |
| 1289 | } |
| 1290 | |
| 1291 | gen = q->gen; |
| 1292 | q->in_use += ndesc; |
| 1293 | pidx = q->pidx; |
| 1294 | q->pidx += ndesc; |
| 1295 | if (q->pidx >= q->size) { |
| 1296 | q->pidx -= q->size; |
| 1297 | q->gen ^= 1; |
| 1298 | } |
| 1299 | spin_unlock(&q->lock); |
| 1300 | |
| 1301 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); |
| 1302 | check_ring_tx_db(adap, q); |
| 1303 | return NET_XMIT_SUCCESS; |
| 1304 | } |
| 1305 | |
| 1306 | /** |
| 1307 | * restart_offloadq - restart a suspended offload queue |
| 1308 | * @qs: the queue set cotaining the offload queue |
| 1309 | * |
| 1310 | * Resumes transmission on a suspended Tx offload queue. |
| 1311 | */ |
| 1312 | static void restart_offloadq(unsigned long data) |
| 1313 | { |
| 1314 | struct sk_buff *skb; |
| 1315 | struct sge_qset *qs = (struct sge_qset *)data; |
| 1316 | struct sge_txq *q = &qs->txq[TXQ_OFLD]; |
| 1317 | struct adapter *adap = qs->netdev->priv; |
| 1318 | |
| 1319 | spin_lock(&q->lock); |
| 1320 | again:reclaim_completed_tx(adap, q); |
| 1321 | |
| 1322 | while ((skb = skb_peek(&q->sendq)) != NULL) { |
| 1323 | unsigned int gen, pidx; |
| 1324 | unsigned int ndesc = skb->priority; |
| 1325 | |
| 1326 | if (unlikely(q->size - q->in_use < ndesc)) { |
| 1327 | set_bit(TXQ_OFLD, &qs->txq_stopped); |
| 1328 | smp_mb__after_clear_bit(); |
| 1329 | |
| 1330 | if (should_restart_tx(q) && |
| 1331 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) |
| 1332 | goto again; |
| 1333 | q->stops++; |
| 1334 | break; |
| 1335 | } |
| 1336 | |
| 1337 | gen = q->gen; |
| 1338 | q->in_use += ndesc; |
| 1339 | pidx = q->pidx; |
| 1340 | q->pidx += ndesc; |
| 1341 | if (q->pidx >= q->size) { |
| 1342 | q->pidx -= q->size; |
| 1343 | q->gen ^= 1; |
| 1344 | } |
| 1345 | __skb_unlink(skb, &q->sendq); |
| 1346 | spin_unlock(&q->lock); |
| 1347 | |
| 1348 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); |
| 1349 | spin_lock(&q->lock); |
| 1350 | } |
| 1351 | spin_unlock(&q->lock); |
| 1352 | |
| 1353 | #if USE_GTS |
| 1354 | set_bit(TXQ_RUNNING, &q->flags); |
| 1355 | set_bit(TXQ_LAST_PKT_DB, &q->flags); |
| 1356 | #endif |
| 1357 | t3_write_reg(adap, A_SG_KDOORBELL, |
| 1358 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); |
| 1359 | } |
| 1360 | |
| 1361 | /** |
| 1362 | * queue_set - return the queue set a packet should use |
| 1363 | * @skb: the packet |
| 1364 | * |
| 1365 | * Maps a packet to the SGE queue set it should use. The desired queue |
| 1366 | * set is carried in bits 1-3 in the packet's priority. |
| 1367 | */ |
| 1368 | static inline int queue_set(const struct sk_buff *skb) |
| 1369 | { |
| 1370 | return skb->priority >> 1; |
| 1371 | } |
| 1372 | |
| 1373 | /** |
| 1374 | * is_ctrl_pkt - return whether an offload packet is a control packet |
| 1375 | * @skb: the packet |
| 1376 | * |
| 1377 | * Determines whether an offload packet should use an OFLD or a CTRL |
| 1378 | * Tx queue. This is indicated by bit 0 in the packet's priority. |
| 1379 | */ |
| 1380 | static inline int is_ctrl_pkt(const struct sk_buff *skb) |
| 1381 | { |
| 1382 | return skb->priority & 1; |
| 1383 | } |
| 1384 | |
| 1385 | /** |
| 1386 | * t3_offload_tx - send an offload packet |
| 1387 | * @tdev: the offload device to send to |
| 1388 | * @skb: the packet |
| 1389 | * |
| 1390 | * Sends an offload packet. We use the packet priority to select the |
| 1391 | * appropriate Tx queue as follows: bit 0 indicates whether the packet |
| 1392 | * should be sent as regular or control, bits 1-3 select the queue set. |
| 1393 | */ |
| 1394 | int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) |
| 1395 | { |
| 1396 | struct adapter *adap = tdev2adap(tdev); |
| 1397 | struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; |
| 1398 | |
| 1399 | if (unlikely(is_ctrl_pkt(skb))) |
| 1400 | return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); |
| 1401 | |
| 1402 | return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); |
| 1403 | } |
| 1404 | |
| 1405 | /** |
| 1406 | * offload_enqueue - add an offload packet to an SGE offload receive queue |
| 1407 | * @q: the SGE response queue |
| 1408 | * @skb: the packet |
| 1409 | * |
| 1410 | * Add a new offload packet to an SGE response queue's offload packet |
| 1411 | * queue. If the packet is the first on the queue it schedules the RX |
| 1412 | * softirq to process the queue. |
| 1413 | */ |
| 1414 | static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) |
| 1415 | { |
| 1416 | skb->next = skb->prev = NULL; |
| 1417 | if (q->rx_tail) |
| 1418 | q->rx_tail->next = skb; |
| 1419 | else { |
| 1420 | struct sge_qset *qs = rspq_to_qset(q); |
| 1421 | |
| 1422 | if (__netif_rx_schedule_prep(qs->netdev)) |
| 1423 | __netif_rx_schedule(qs->netdev); |
| 1424 | q->rx_head = skb; |
| 1425 | } |
| 1426 | q->rx_tail = skb; |
| 1427 | } |
| 1428 | |
| 1429 | /** |
| 1430 | * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts |
| 1431 | * @tdev: the offload device that will be receiving the packets |
| 1432 | * @q: the SGE response queue that assembled the bundle |
| 1433 | * @skbs: the partial bundle |
| 1434 | * @n: the number of packets in the bundle |
| 1435 | * |
| 1436 | * Delivers a (partial) bundle of Rx offload packets to an offload device. |
| 1437 | */ |
| 1438 | static inline void deliver_partial_bundle(struct t3cdev *tdev, |
| 1439 | struct sge_rspq *q, |
| 1440 | struct sk_buff *skbs[], int n) |
| 1441 | { |
| 1442 | if (n) { |
| 1443 | q->offload_bundles++; |
| 1444 | tdev->recv(tdev, skbs, n); |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | /** |
| 1449 | * ofld_poll - NAPI handler for offload packets in interrupt mode |
| 1450 | * @dev: the network device doing the polling |
| 1451 | * @budget: polling budget |
| 1452 | * |
| 1453 | * The NAPI handler for offload packets when a response queue is serviced |
| 1454 | * by the hard interrupt handler, i.e., when it's operating in non-polling |
| 1455 | * mode. Creates small packet batches and sends them through the offload |
| 1456 | * receive handler. Batches need to be of modest size as we do prefetches |
| 1457 | * on the packets in each. |
| 1458 | */ |
| 1459 | static int ofld_poll(struct net_device *dev, int *budget) |
| 1460 | { |
| 1461 | struct adapter *adapter = dev->priv; |
| 1462 | struct sge_qset *qs = dev2qset(dev); |
| 1463 | struct sge_rspq *q = &qs->rspq; |
| 1464 | int work_done, limit = min(*budget, dev->quota), avail = limit; |
| 1465 | |
| 1466 | while (avail) { |
| 1467 | struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE]; |
| 1468 | int ngathered; |
| 1469 | |
| 1470 | spin_lock_irq(&q->lock); |
| 1471 | head = q->rx_head; |
| 1472 | if (!head) { |
| 1473 | work_done = limit - avail; |
| 1474 | *budget -= work_done; |
| 1475 | dev->quota -= work_done; |
| 1476 | __netif_rx_complete(dev); |
| 1477 | spin_unlock_irq(&q->lock); |
| 1478 | return 0; |
| 1479 | } |
| 1480 | |
| 1481 | tail = q->rx_tail; |
| 1482 | q->rx_head = q->rx_tail = NULL; |
| 1483 | spin_unlock_irq(&q->lock); |
| 1484 | |
| 1485 | for (ngathered = 0; avail && head; avail--) { |
| 1486 | prefetch(head->data); |
| 1487 | skbs[ngathered] = head; |
| 1488 | head = head->next; |
| 1489 | skbs[ngathered]->next = NULL; |
| 1490 | if (++ngathered == RX_BUNDLE_SIZE) { |
| 1491 | q->offload_bundles++; |
| 1492 | adapter->tdev.recv(&adapter->tdev, skbs, |
| 1493 | ngathered); |
| 1494 | ngathered = 0; |
| 1495 | } |
| 1496 | } |
| 1497 | if (head) { /* splice remaining packets back onto Rx queue */ |
| 1498 | spin_lock_irq(&q->lock); |
| 1499 | tail->next = q->rx_head; |
| 1500 | if (!q->rx_head) |
| 1501 | q->rx_tail = tail; |
| 1502 | q->rx_head = head; |
| 1503 | spin_unlock_irq(&q->lock); |
| 1504 | } |
| 1505 | deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); |
| 1506 | } |
| 1507 | work_done = limit - avail; |
| 1508 | *budget -= work_done; |
| 1509 | dev->quota -= work_done; |
| 1510 | return 1; |
| 1511 | } |
| 1512 | |
| 1513 | /** |
| 1514 | * rx_offload - process a received offload packet |
| 1515 | * @tdev: the offload device receiving the packet |
| 1516 | * @rq: the response queue that received the packet |
| 1517 | * @skb: the packet |
| 1518 | * @rx_gather: a gather list of packets if we are building a bundle |
| 1519 | * @gather_idx: index of the next available slot in the bundle |
| 1520 | * |
| 1521 | * Process an ingress offload pakcet and add it to the offload ingress |
| 1522 | * queue. Returns the index of the next available slot in the bundle. |
| 1523 | */ |
| 1524 | static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, |
| 1525 | struct sk_buff *skb, struct sk_buff *rx_gather[], |
| 1526 | unsigned int gather_idx) |
| 1527 | { |
| 1528 | rq->offload_pkts++; |
| 1529 | skb->mac.raw = skb->nh.raw = skb->h.raw = skb->data; |
| 1530 | |
| 1531 | if (rq->polling) { |
| 1532 | rx_gather[gather_idx++] = skb; |
| 1533 | if (gather_idx == RX_BUNDLE_SIZE) { |
| 1534 | tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); |
| 1535 | gather_idx = 0; |
| 1536 | rq->offload_bundles++; |
| 1537 | } |
| 1538 | } else |
| 1539 | offload_enqueue(rq, skb); |
| 1540 | |
| 1541 | return gather_idx; |
| 1542 | } |
| 1543 | |
| 1544 | /** |
| 1545 | * update_tx_completed - update the number of processed Tx descriptors |
| 1546 | * @qs: the queue set to update |
| 1547 | * @idx: which Tx queue within the set to update |
| 1548 | * @credits: number of new processed descriptors |
| 1549 | * @tx_completed: accumulates credits for the queues |
| 1550 | * |
| 1551 | * Updates the number of completed Tx descriptors for a queue set's Tx |
| 1552 | * queue. On UP systems we updated the information immediately but on |
| 1553 | * MP we accumulate the credits locally and update the Tx queue when we |
| 1554 | * reach a threshold to avoid cache-line bouncing. |
| 1555 | */ |
| 1556 | static inline void update_tx_completed(struct sge_qset *qs, int idx, |
| 1557 | unsigned int credits, |
| 1558 | unsigned int tx_completed[]) |
| 1559 | { |
| 1560 | #ifdef CONFIG_SMP |
| 1561 | tx_completed[idx] += credits; |
| 1562 | if (tx_completed[idx] > 32) { |
| 1563 | qs->txq[idx].processed += tx_completed[idx]; |
| 1564 | tx_completed[idx] = 0; |
| 1565 | } |
| 1566 | #else |
| 1567 | qs->txq[idx].processed += credits; |
| 1568 | #endif |
| 1569 | } |
| 1570 | |
| 1571 | /** |
| 1572 | * restart_tx - check whether to restart suspended Tx queues |
| 1573 | * @qs: the queue set to resume |
| 1574 | * |
| 1575 | * Restarts suspended Tx queues of an SGE queue set if they have enough |
| 1576 | * free resources to resume operation. |
| 1577 | */ |
| 1578 | static void restart_tx(struct sge_qset *qs) |
| 1579 | { |
| 1580 | if (test_bit(TXQ_ETH, &qs->txq_stopped) && |
| 1581 | should_restart_tx(&qs->txq[TXQ_ETH]) && |
| 1582 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { |
| 1583 | qs->txq[TXQ_ETH].restarts++; |
| 1584 | if (netif_running(qs->netdev)) |
| 1585 | netif_wake_queue(qs->netdev); |
| 1586 | } |
| 1587 | |
| 1588 | if (test_bit(TXQ_OFLD, &qs->txq_stopped) && |
| 1589 | should_restart_tx(&qs->txq[TXQ_OFLD]) && |
| 1590 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { |
| 1591 | qs->txq[TXQ_OFLD].restarts++; |
| 1592 | tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); |
| 1593 | } |
| 1594 | if (test_bit(TXQ_CTRL, &qs->txq_stopped) && |
| 1595 | should_restart_tx(&qs->txq[TXQ_CTRL]) && |
| 1596 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { |
| 1597 | qs->txq[TXQ_CTRL].restarts++; |
| 1598 | tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); |
| 1599 | } |
| 1600 | } |
| 1601 | |
| 1602 | /** |
| 1603 | * rx_eth - process an ingress ethernet packet |
| 1604 | * @adap: the adapter |
| 1605 | * @rq: the response queue that received the packet |
| 1606 | * @skb: the packet |
| 1607 | * @pad: amount of padding at the start of the buffer |
| 1608 | * |
| 1609 | * Process an ingress ethernet pakcet and deliver it to the stack. |
| 1610 | * The padding is 2 if the packet was delivered in an Rx buffer and 0 |
| 1611 | * if it was immediate data in a response. |
| 1612 | */ |
| 1613 | static void rx_eth(struct adapter *adap, struct sge_rspq *rq, |
| 1614 | struct sk_buff *skb, int pad) |
| 1615 | { |
| 1616 | struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); |
| 1617 | struct port_info *pi; |
| 1618 | |
| 1619 | rq->eth_pkts++; |
| 1620 | skb_pull(skb, sizeof(*p) + pad); |
| 1621 | skb->dev = adap->port[p->iff]; |
| 1622 | skb->dev->last_rx = jiffies; |
| 1623 | skb->protocol = eth_type_trans(skb, skb->dev); |
| 1624 | pi = netdev_priv(skb->dev); |
| 1625 | if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff && |
| 1626 | !p->fragment) { |
| 1627 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; |
| 1628 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1629 | } else |
| 1630 | skb->ip_summed = CHECKSUM_NONE; |
| 1631 | |
| 1632 | if (unlikely(p->vlan_valid)) { |
| 1633 | struct vlan_group *grp = pi->vlan_grp; |
| 1634 | |
| 1635 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++; |
| 1636 | if (likely(grp)) |
| 1637 | __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan), |
| 1638 | rq->polling); |
| 1639 | else |
| 1640 | dev_kfree_skb_any(skb); |
| 1641 | } else if (rq->polling) |
| 1642 | netif_receive_skb(skb); |
| 1643 | else |
| 1644 | netif_rx(skb); |
| 1645 | } |
| 1646 | |
| 1647 | /** |
| 1648 | * handle_rsp_cntrl_info - handles control information in a response |
| 1649 | * @qs: the queue set corresponding to the response |
| 1650 | * @flags: the response control flags |
| 1651 | * @tx_completed: accumulates completion credits for the Tx queues |
| 1652 | * |
| 1653 | * Handles the control information of an SGE response, such as GTS |
| 1654 | * indications and completion credits for the queue set's Tx queues. |
| 1655 | */ |
| 1656 | static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags, |
| 1657 | unsigned int tx_completed[]) |
| 1658 | { |
| 1659 | unsigned int credits; |
| 1660 | |
| 1661 | #if USE_GTS |
| 1662 | if (flags & F_RSPD_TXQ0_GTS) |
| 1663 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); |
| 1664 | #endif |
| 1665 | |
| 1666 | /* ETH credits are already coalesced, return them immediately. */ |
| 1667 | credits = G_RSPD_TXQ0_CR(flags); |
| 1668 | if (credits) |
| 1669 | qs->txq[TXQ_ETH].processed += credits; |
| 1670 | |
| 1671 | # if USE_GTS |
| 1672 | if (flags & F_RSPD_TXQ1_GTS) |
| 1673 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); |
| 1674 | # endif |
| 1675 | update_tx_completed(qs, TXQ_OFLD, G_RSPD_TXQ1_CR(flags), tx_completed); |
| 1676 | update_tx_completed(qs, TXQ_CTRL, G_RSPD_TXQ2_CR(flags), tx_completed); |
| 1677 | } |
| 1678 | |
| 1679 | /** |
| 1680 | * flush_tx_completed - returns accumulated Tx completions to Tx queues |
| 1681 | * @qs: the queue set to update |
| 1682 | * @tx_completed: pending completion credits to return to Tx queues |
| 1683 | * |
| 1684 | * Updates the number of completed Tx descriptors for a queue set's Tx |
| 1685 | * queues with the credits pending in @tx_completed. This does something |
| 1686 | * only on MP systems as on UP systems we return the credits immediately. |
| 1687 | */ |
| 1688 | static inline void flush_tx_completed(struct sge_qset *qs, |
| 1689 | unsigned int tx_completed[]) |
| 1690 | { |
| 1691 | #if defined(CONFIG_SMP) |
| 1692 | if (tx_completed[TXQ_OFLD]) |
| 1693 | qs->txq[TXQ_OFLD].processed += tx_completed[TXQ_OFLD]; |
| 1694 | if (tx_completed[TXQ_CTRL]) |
| 1695 | qs->txq[TXQ_CTRL].processed += tx_completed[TXQ_CTRL]; |
| 1696 | #endif |
| 1697 | } |
| 1698 | |
| 1699 | /** |
| 1700 | * check_ring_db - check if we need to ring any doorbells |
| 1701 | * @adapter: the adapter |
| 1702 | * @qs: the queue set whose Tx queues are to be examined |
| 1703 | * @sleeping: indicates which Tx queue sent GTS |
| 1704 | * |
| 1705 | * Checks if some of a queue set's Tx queues need to ring their doorbells |
| 1706 | * to resume transmission after idling while they still have unprocessed |
| 1707 | * descriptors. |
| 1708 | */ |
| 1709 | static void check_ring_db(struct adapter *adap, struct sge_qset *qs, |
| 1710 | unsigned int sleeping) |
| 1711 | { |
| 1712 | if (sleeping & F_RSPD_TXQ0_GTS) { |
| 1713 | struct sge_txq *txq = &qs->txq[TXQ_ETH]; |
| 1714 | |
| 1715 | if (txq->cleaned + txq->in_use != txq->processed && |
| 1716 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { |
| 1717 | set_bit(TXQ_RUNNING, &txq->flags); |
| 1718 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | |
| 1719 | V_EGRCNTX(txq->cntxt_id)); |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | if (sleeping & F_RSPD_TXQ1_GTS) { |
| 1724 | struct sge_txq *txq = &qs->txq[TXQ_OFLD]; |
| 1725 | |
| 1726 | if (txq->cleaned + txq->in_use != txq->processed && |
| 1727 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { |
| 1728 | set_bit(TXQ_RUNNING, &txq->flags); |
| 1729 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | |
| 1730 | V_EGRCNTX(txq->cntxt_id)); |
| 1731 | } |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | /** |
| 1736 | * is_new_response - check if a response is newly written |
| 1737 | * @r: the response descriptor |
| 1738 | * @q: the response queue |
| 1739 | * |
| 1740 | * Returns true if a response descriptor contains a yet unprocessed |
| 1741 | * response. |
| 1742 | */ |
| 1743 | static inline int is_new_response(const struct rsp_desc *r, |
| 1744 | const struct sge_rspq *q) |
| 1745 | { |
| 1746 | return (r->intr_gen & F_RSPD_GEN2) == q->gen; |
| 1747 | } |
| 1748 | |
| 1749 | #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) |
| 1750 | #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ |
| 1751 | V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ |
| 1752 | V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ |
| 1753 | V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) |
| 1754 | |
| 1755 | /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ |
| 1756 | #define NOMEM_INTR_DELAY 2500 |
| 1757 | |
| 1758 | /** |
| 1759 | * process_responses - process responses from an SGE response queue |
| 1760 | * @adap: the adapter |
| 1761 | * @qs: the queue set to which the response queue belongs |
| 1762 | * @budget: how many responses can be processed in this round |
| 1763 | * |
| 1764 | * Process responses from an SGE response queue up to the supplied budget. |
| 1765 | * Responses include received packets as well as credits and other events |
| 1766 | * for the queues that belong to the response queue's queue set. |
| 1767 | * A negative budget is effectively unlimited. |
| 1768 | * |
| 1769 | * Additionally choose the interrupt holdoff time for the next interrupt |
| 1770 | * on this queue. If the system is under memory shortage use a fairly |
| 1771 | * long delay to help recovery. |
| 1772 | */ |
| 1773 | static int process_responses(struct adapter *adap, struct sge_qset *qs, |
| 1774 | int budget) |
| 1775 | { |
| 1776 | struct sge_rspq *q = &qs->rspq; |
| 1777 | struct rsp_desc *r = &q->desc[q->cidx]; |
| 1778 | int budget_left = budget; |
| 1779 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; |
| 1780 | struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; |
| 1781 | int ngathered = 0; |
| 1782 | |
| 1783 | q->next_holdoff = q->holdoff_tmr; |
| 1784 | |
| 1785 | while (likely(budget_left && is_new_response(r, q))) { |
| 1786 | int eth, ethpad = 0; |
| 1787 | struct sk_buff *skb = NULL; |
| 1788 | u32 len, flags = ntohl(r->flags); |
| 1789 | u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val; |
| 1790 | |
| 1791 | eth = r->rss_hdr.opcode == CPL_RX_PKT; |
| 1792 | |
| 1793 | if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { |
| 1794 | skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); |
| 1795 | if (!skb) |
| 1796 | goto no_mem; |
| 1797 | |
| 1798 | memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); |
| 1799 | skb->data[0] = CPL_ASYNC_NOTIF; |
| 1800 | rss_hi = htonl(CPL_ASYNC_NOTIF << 24); |
| 1801 | q->async_notif++; |
| 1802 | } else if (flags & F_RSPD_IMM_DATA_VALID) { |
| 1803 | skb = get_imm_packet(r); |
| 1804 | if (unlikely(!skb)) { |
| 1805 | no_mem: |
| 1806 | q->next_holdoff = NOMEM_INTR_DELAY; |
| 1807 | q->nomem++; |
| 1808 | /* consume one credit since we tried */ |
| 1809 | budget_left--; |
| 1810 | break; |
| 1811 | } |
| 1812 | q->imm_data++; |
| 1813 | } else if ((len = ntohl(r->len_cq)) != 0) { |
| 1814 | struct sge_fl *fl; |
| 1815 | |
| 1816 | fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; |
| 1817 | fl->credits--; |
| 1818 | skb = get_packet(adap, fl, G_RSPD_LEN(len), |
| 1819 | eth ? SGE_RX_DROP_THRES : 0); |
| 1820 | if (!skb) |
| 1821 | q->rx_drops++; |
| 1822 | else if (r->rss_hdr.opcode == CPL_TRACE_PKT) |
| 1823 | __skb_pull(skb, 2); |
| 1824 | ethpad = 2; |
| 1825 | if (++fl->cidx == fl->size) |
| 1826 | fl->cidx = 0; |
| 1827 | } else |
| 1828 | q->pure_rsps++; |
| 1829 | |
| 1830 | if (flags & RSPD_CTRL_MASK) { |
| 1831 | sleeping |= flags & RSPD_GTS_MASK; |
| 1832 | handle_rsp_cntrl_info(qs, flags, tx_completed); |
| 1833 | } |
| 1834 | |
| 1835 | r++; |
| 1836 | if (unlikely(++q->cidx == q->size)) { |
| 1837 | q->cidx = 0; |
| 1838 | q->gen ^= 1; |
| 1839 | r = q->desc; |
| 1840 | } |
| 1841 | prefetch(r); |
| 1842 | |
| 1843 | if (++q->credits >= (q->size / 4)) { |
| 1844 | refill_rspq(adap, q, q->credits); |
| 1845 | q->credits = 0; |
| 1846 | } |
| 1847 | |
| 1848 | if (likely(skb != NULL)) { |
| 1849 | if (eth) |
| 1850 | rx_eth(adap, q, skb, ethpad); |
| 1851 | else { |
| 1852 | /* Preserve the RSS info in csum & priority */ |
| 1853 | skb->csum = rss_hi; |
| 1854 | skb->priority = rss_lo; |
| 1855 | ngathered = rx_offload(&adap->tdev, q, skb, |
| 1856 | offload_skbs, ngathered); |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | --budget_left; |
| 1861 | } |
| 1862 | |
| 1863 | flush_tx_completed(qs, tx_completed); |
| 1864 | deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); |
| 1865 | if (sleeping) |
| 1866 | check_ring_db(adap, qs, sleeping); |
| 1867 | |
| 1868 | smp_mb(); /* commit Tx queue .processed updates */ |
| 1869 | if (unlikely(qs->txq_stopped != 0)) |
| 1870 | restart_tx(qs); |
| 1871 | |
| 1872 | budget -= budget_left; |
| 1873 | return budget; |
| 1874 | } |
| 1875 | |
| 1876 | static inline int is_pure_response(const struct rsp_desc *r) |
| 1877 | { |
| 1878 | u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); |
| 1879 | |
| 1880 | return (n | r->len_cq) == 0; |
| 1881 | } |
| 1882 | |
| 1883 | /** |
| 1884 | * napi_rx_handler - the NAPI handler for Rx processing |
| 1885 | * @dev: the net device |
| 1886 | * @budget: how many packets we can process in this round |
| 1887 | * |
| 1888 | * Handler for new data events when using NAPI. |
| 1889 | */ |
| 1890 | static int napi_rx_handler(struct net_device *dev, int *budget) |
| 1891 | { |
| 1892 | struct adapter *adap = dev->priv; |
| 1893 | struct sge_qset *qs = dev2qset(dev); |
| 1894 | int effective_budget = min(*budget, dev->quota); |
| 1895 | |
| 1896 | int work_done = process_responses(adap, qs, effective_budget); |
| 1897 | *budget -= work_done; |
| 1898 | dev->quota -= work_done; |
| 1899 | |
| 1900 | if (work_done >= effective_budget) |
| 1901 | return 1; |
| 1902 | |
| 1903 | netif_rx_complete(dev); |
| 1904 | |
| 1905 | /* |
| 1906 | * Because we don't atomically flush the following write it is |
| 1907 | * possible that in very rare cases it can reach the device in a way |
| 1908 | * that races with a new response being written plus an error interrupt |
| 1909 | * causing the NAPI interrupt handler below to return unhandled status |
| 1910 | * to the OS. To protect against this would require flushing the write |
| 1911 | * and doing both the write and the flush with interrupts off. Way too |
| 1912 | * expensive and unjustifiable given the rarity of the race. |
| 1913 | * |
| 1914 | * The race cannot happen at all with MSI-X. |
| 1915 | */ |
| 1916 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | |
| 1917 | V_NEWTIMER(qs->rspq.next_holdoff) | |
| 1918 | V_NEWINDEX(qs->rspq.cidx)); |
| 1919 | return 0; |
| 1920 | } |
| 1921 | |
| 1922 | /* |
| 1923 | * Returns true if the device is already scheduled for polling. |
| 1924 | */ |
| 1925 | static inline int napi_is_scheduled(struct net_device *dev) |
| 1926 | { |
| 1927 | return test_bit(__LINK_STATE_RX_SCHED, &dev->state); |
| 1928 | } |
| 1929 | |
| 1930 | /** |
| 1931 | * process_pure_responses - process pure responses from a response queue |
| 1932 | * @adap: the adapter |
| 1933 | * @qs: the queue set owning the response queue |
| 1934 | * @r: the first pure response to process |
| 1935 | * |
| 1936 | * A simpler version of process_responses() that handles only pure (i.e., |
| 1937 | * non data-carrying) responses. Such respones are too light-weight to |
| 1938 | * justify calling a softirq under NAPI, so we handle them specially in |
| 1939 | * the interrupt handler. The function is called with a pointer to a |
| 1940 | * response, which the caller must ensure is a valid pure response. |
| 1941 | * |
| 1942 | * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. |
| 1943 | */ |
| 1944 | static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, |
| 1945 | struct rsp_desc *r) |
| 1946 | { |
| 1947 | struct sge_rspq *q = &qs->rspq; |
| 1948 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; |
| 1949 | |
| 1950 | do { |
| 1951 | u32 flags = ntohl(r->flags); |
| 1952 | |
| 1953 | r++; |
| 1954 | if (unlikely(++q->cidx == q->size)) { |
| 1955 | q->cidx = 0; |
| 1956 | q->gen ^= 1; |
| 1957 | r = q->desc; |
| 1958 | } |
| 1959 | prefetch(r); |
| 1960 | |
| 1961 | if (flags & RSPD_CTRL_MASK) { |
| 1962 | sleeping |= flags & RSPD_GTS_MASK; |
| 1963 | handle_rsp_cntrl_info(qs, flags, tx_completed); |
| 1964 | } |
| 1965 | |
| 1966 | q->pure_rsps++; |
| 1967 | if (++q->credits >= (q->size / 4)) { |
| 1968 | refill_rspq(adap, q, q->credits); |
| 1969 | q->credits = 0; |
| 1970 | } |
| 1971 | } while (is_new_response(r, q) && is_pure_response(r)); |
| 1972 | |
| 1973 | flush_tx_completed(qs, tx_completed); |
| 1974 | |
| 1975 | if (sleeping) |
| 1976 | check_ring_db(adap, qs, sleeping); |
| 1977 | |
| 1978 | smp_mb(); /* commit Tx queue .processed updates */ |
| 1979 | if (unlikely(qs->txq_stopped != 0)) |
| 1980 | restart_tx(qs); |
| 1981 | |
| 1982 | return is_new_response(r, q); |
| 1983 | } |
| 1984 | |
| 1985 | /** |
| 1986 | * handle_responses - decide what to do with new responses in NAPI mode |
| 1987 | * @adap: the adapter |
| 1988 | * @q: the response queue |
| 1989 | * |
| 1990 | * This is used by the NAPI interrupt handlers to decide what to do with |
| 1991 | * new SGE responses. If there are no new responses it returns -1. If |
| 1992 | * there are new responses and they are pure (i.e., non-data carrying) |
| 1993 | * it handles them straight in hard interrupt context as they are very |
| 1994 | * cheap and don't deliver any packets. Finally, if there are any data |
| 1995 | * signaling responses it schedules the NAPI handler. Returns 1 if it |
| 1996 | * schedules NAPI, 0 if all new responses were pure. |
| 1997 | * |
| 1998 | * The caller must ascertain NAPI is not already running. |
| 1999 | */ |
| 2000 | static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) |
| 2001 | { |
| 2002 | struct sge_qset *qs = rspq_to_qset(q); |
| 2003 | struct rsp_desc *r = &q->desc[q->cidx]; |
| 2004 | |
| 2005 | if (!is_new_response(r, q)) |
| 2006 | return -1; |
| 2007 | if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { |
| 2008 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| 2009 | V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); |
| 2010 | return 0; |
| 2011 | } |
| 2012 | if (likely(__netif_rx_schedule_prep(qs->netdev))) |
| 2013 | __netif_rx_schedule(qs->netdev); |
| 2014 | return 1; |
| 2015 | } |
| 2016 | |
| 2017 | /* |
| 2018 | * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case |
| 2019 | * (i.e., response queue serviced in hard interrupt). |
| 2020 | */ |
| 2021 | irqreturn_t t3_sge_intr_msix(int irq, void *cookie) |
| 2022 | { |
| 2023 | struct sge_qset *qs = cookie; |
| 2024 | struct adapter *adap = qs->netdev->priv; |
| 2025 | struct sge_rspq *q = &qs->rspq; |
| 2026 | |
| 2027 | spin_lock(&q->lock); |
| 2028 | if (process_responses(adap, qs, -1) == 0) |
| 2029 | q->unhandled_irqs++; |
| 2030 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| 2031 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); |
| 2032 | spin_unlock(&q->lock); |
| 2033 | return IRQ_HANDLED; |
| 2034 | } |
| 2035 | |
| 2036 | /* |
| 2037 | * The MSI-X interrupt handler for an SGE response queue for the NAPI case |
| 2038 | * (i.e., response queue serviced by NAPI polling). |
| 2039 | */ |
| 2040 | irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) |
| 2041 | { |
| 2042 | struct sge_qset *qs = cookie; |
| 2043 | struct adapter *adap = qs->netdev->priv; |
| 2044 | struct sge_rspq *q = &qs->rspq; |
| 2045 | |
| 2046 | spin_lock(&q->lock); |
| 2047 | BUG_ON(napi_is_scheduled(qs->netdev)); |
| 2048 | |
| 2049 | if (handle_responses(adap, q) < 0) |
| 2050 | q->unhandled_irqs++; |
| 2051 | spin_unlock(&q->lock); |
| 2052 | return IRQ_HANDLED; |
| 2053 | } |
| 2054 | |
| 2055 | /* |
| 2056 | * The non-NAPI MSI interrupt handler. This needs to handle data events from |
| 2057 | * SGE response queues as well as error and other async events as they all use |
| 2058 | * the same MSI vector. We use one SGE response queue per port in this mode |
| 2059 | * and protect all response queues with queue 0's lock. |
| 2060 | */ |
| 2061 | static irqreturn_t t3_intr_msi(int irq, void *cookie) |
| 2062 | { |
| 2063 | int new_packets = 0; |
| 2064 | struct adapter *adap = cookie; |
| 2065 | struct sge_rspq *q = &adap->sge.qs[0].rspq; |
| 2066 | |
| 2067 | spin_lock(&q->lock); |
| 2068 | |
| 2069 | if (process_responses(adap, &adap->sge.qs[0], -1)) { |
| 2070 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | |
| 2071 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); |
| 2072 | new_packets = 1; |
| 2073 | } |
| 2074 | |
| 2075 | if (adap->params.nports == 2 && |
| 2076 | process_responses(adap, &adap->sge.qs[1], -1)) { |
| 2077 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; |
| 2078 | |
| 2079 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | |
| 2080 | V_NEWTIMER(q1->next_holdoff) | |
| 2081 | V_NEWINDEX(q1->cidx)); |
| 2082 | new_packets = 1; |
| 2083 | } |
| 2084 | |
| 2085 | if (!new_packets && t3_slow_intr_handler(adap) == 0) |
| 2086 | q->unhandled_irqs++; |
| 2087 | |
| 2088 | spin_unlock(&q->lock); |
| 2089 | return IRQ_HANDLED; |
| 2090 | } |
| 2091 | |
| 2092 | static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q) |
| 2093 | { |
| 2094 | if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) { |
| 2095 | if (likely(__netif_rx_schedule_prep(dev))) |
| 2096 | __netif_rx_schedule(dev); |
| 2097 | return 1; |
| 2098 | } |
| 2099 | return 0; |
| 2100 | } |
| 2101 | |
| 2102 | /* |
| 2103 | * The MSI interrupt handler for the NAPI case (i.e., response queues serviced |
| 2104 | * by NAPI polling). Handles data events from SGE response queues as well as |
| 2105 | * error and other async events as they all use the same MSI vector. We use |
| 2106 | * one SGE response queue per port in this mode and protect all response |
| 2107 | * queues with queue 0's lock. |
| 2108 | */ |
| 2109 | irqreturn_t t3_intr_msi_napi(int irq, void *cookie) |
| 2110 | { |
| 2111 | int new_packets; |
| 2112 | struct adapter *adap = cookie; |
| 2113 | struct sge_rspq *q = &adap->sge.qs[0].rspq; |
| 2114 | |
| 2115 | spin_lock(&q->lock); |
| 2116 | |
| 2117 | new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q); |
| 2118 | if (adap->params.nports == 2) |
| 2119 | new_packets += rspq_check_napi(adap->sge.qs[1].netdev, |
| 2120 | &adap->sge.qs[1].rspq); |
| 2121 | if (!new_packets && t3_slow_intr_handler(adap) == 0) |
| 2122 | q->unhandled_irqs++; |
| 2123 | |
| 2124 | spin_unlock(&q->lock); |
| 2125 | return IRQ_HANDLED; |
| 2126 | } |
| 2127 | |
| 2128 | /* |
| 2129 | * A helper function that processes responses and issues GTS. |
| 2130 | */ |
| 2131 | static inline int process_responses_gts(struct adapter *adap, |
| 2132 | struct sge_rspq *rq) |
| 2133 | { |
| 2134 | int work; |
| 2135 | |
| 2136 | work = process_responses(adap, rspq_to_qset(rq), -1); |
| 2137 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | |
| 2138 | V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); |
| 2139 | return work; |
| 2140 | } |
| 2141 | |
| 2142 | /* |
| 2143 | * The legacy INTx interrupt handler. This needs to handle data events from |
| 2144 | * SGE response queues as well as error and other async events as they all use |
| 2145 | * the same interrupt pin. We use one SGE response queue per port in this mode |
| 2146 | * and protect all response queues with queue 0's lock. |
| 2147 | */ |
| 2148 | static irqreturn_t t3_intr(int irq, void *cookie) |
| 2149 | { |
| 2150 | int work_done, w0, w1; |
| 2151 | struct adapter *adap = cookie; |
| 2152 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; |
| 2153 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; |
| 2154 | |
| 2155 | spin_lock(&q0->lock); |
| 2156 | |
| 2157 | w0 = is_new_response(&q0->desc[q0->cidx], q0); |
| 2158 | w1 = adap->params.nports == 2 && |
| 2159 | is_new_response(&q1->desc[q1->cidx], q1); |
| 2160 | |
| 2161 | if (likely(w0 | w1)) { |
| 2162 | t3_write_reg(adap, A_PL_CLI, 0); |
| 2163 | t3_read_reg(adap, A_PL_CLI); /* flush */ |
| 2164 | |
| 2165 | if (likely(w0)) |
| 2166 | process_responses_gts(adap, q0); |
| 2167 | |
| 2168 | if (w1) |
| 2169 | process_responses_gts(adap, q1); |
| 2170 | |
| 2171 | work_done = w0 | w1; |
| 2172 | } else |
| 2173 | work_done = t3_slow_intr_handler(adap); |
| 2174 | |
| 2175 | spin_unlock(&q0->lock); |
| 2176 | return IRQ_RETVAL(work_done != 0); |
| 2177 | } |
| 2178 | |
| 2179 | /* |
| 2180 | * Interrupt handler for legacy INTx interrupts for T3B-based cards. |
| 2181 | * Handles data events from SGE response queues as well as error and other |
| 2182 | * async events as they all use the same interrupt pin. We use one SGE |
| 2183 | * response queue per port in this mode and protect all response queues with |
| 2184 | * queue 0's lock. |
| 2185 | */ |
| 2186 | static irqreturn_t t3b_intr(int irq, void *cookie) |
| 2187 | { |
| 2188 | u32 map; |
| 2189 | struct adapter *adap = cookie; |
| 2190 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; |
| 2191 | |
| 2192 | t3_write_reg(adap, A_PL_CLI, 0); |
| 2193 | map = t3_read_reg(adap, A_SG_DATA_INTR); |
| 2194 | |
| 2195 | if (unlikely(!map)) /* shared interrupt, most likely */ |
| 2196 | return IRQ_NONE; |
| 2197 | |
| 2198 | spin_lock(&q0->lock); |
| 2199 | |
| 2200 | if (unlikely(map & F_ERRINTR)) |
| 2201 | t3_slow_intr_handler(adap); |
| 2202 | |
| 2203 | if (likely(map & 1)) |
| 2204 | process_responses_gts(adap, q0); |
| 2205 | |
| 2206 | if (map & 2) |
| 2207 | process_responses_gts(adap, &adap->sge.qs[1].rspq); |
| 2208 | |
| 2209 | spin_unlock(&q0->lock); |
| 2210 | return IRQ_HANDLED; |
| 2211 | } |
| 2212 | |
| 2213 | /* |
| 2214 | * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. |
| 2215 | * Handles data events from SGE response queues as well as error and other |
| 2216 | * async events as they all use the same interrupt pin. We use one SGE |
| 2217 | * response queue per port in this mode and protect all response queues with |
| 2218 | * queue 0's lock. |
| 2219 | */ |
| 2220 | static irqreturn_t t3b_intr_napi(int irq, void *cookie) |
| 2221 | { |
| 2222 | u32 map; |
| 2223 | struct net_device *dev; |
| 2224 | struct adapter *adap = cookie; |
| 2225 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; |
| 2226 | |
| 2227 | t3_write_reg(adap, A_PL_CLI, 0); |
| 2228 | map = t3_read_reg(adap, A_SG_DATA_INTR); |
| 2229 | |
| 2230 | if (unlikely(!map)) /* shared interrupt, most likely */ |
| 2231 | return IRQ_NONE; |
| 2232 | |
| 2233 | spin_lock(&q0->lock); |
| 2234 | |
| 2235 | if (unlikely(map & F_ERRINTR)) |
| 2236 | t3_slow_intr_handler(adap); |
| 2237 | |
| 2238 | if (likely(map & 1)) { |
| 2239 | dev = adap->sge.qs[0].netdev; |
| 2240 | |
| 2241 | BUG_ON(napi_is_scheduled(dev)); |
| 2242 | if (likely(__netif_rx_schedule_prep(dev))) |
| 2243 | __netif_rx_schedule(dev); |
| 2244 | } |
| 2245 | if (map & 2) { |
| 2246 | dev = adap->sge.qs[1].netdev; |
| 2247 | |
| 2248 | BUG_ON(napi_is_scheduled(dev)); |
| 2249 | if (likely(__netif_rx_schedule_prep(dev))) |
| 2250 | __netif_rx_schedule(dev); |
| 2251 | } |
| 2252 | |
| 2253 | spin_unlock(&q0->lock); |
| 2254 | return IRQ_HANDLED; |
| 2255 | } |
| 2256 | |
| 2257 | /** |
| 2258 | * t3_intr_handler - select the top-level interrupt handler |
| 2259 | * @adap: the adapter |
| 2260 | * @polling: whether using NAPI to service response queues |
| 2261 | * |
| 2262 | * Selects the top-level interrupt handler based on the type of interrupts |
| 2263 | * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the |
| 2264 | * response queues. |
| 2265 | */ |
| 2266 | intr_handler_t t3_intr_handler(struct adapter *adap, int polling) |
| 2267 | { |
| 2268 | if (adap->flags & USING_MSIX) |
| 2269 | return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; |
| 2270 | if (adap->flags & USING_MSI) |
| 2271 | return polling ? t3_intr_msi_napi : t3_intr_msi; |
| 2272 | if (adap->params.rev > 0) |
| 2273 | return polling ? t3b_intr_napi : t3b_intr; |
| 2274 | return t3_intr; |
| 2275 | } |
| 2276 | |
| 2277 | /** |
| 2278 | * t3_sge_err_intr_handler - SGE async event interrupt handler |
| 2279 | * @adapter: the adapter |
| 2280 | * |
| 2281 | * Interrupt handler for SGE asynchronous (non-data) events. |
| 2282 | */ |
| 2283 | void t3_sge_err_intr_handler(struct adapter *adapter) |
| 2284 | { |
| 2285 | unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE); |
| 2286 | |
| 2287 | if (status & F_RSPQCREDITOVERFOW) |
| 2288 | CH_ALERT(adapter, "SGE response queue credit overflow\n"); |
| 2289 | |
| 2290 | if (status & F_RSPQDISABLED) { |
| 2291 | v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); |
| 2292 | |
| 2293 | CH_ALERT(adapter, |
| 2294 | "packet delivered to disabled response queue " |
| 2295 | "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); |
| 2296 | } |
| 2297 | |
| 2298 | t3_write_reg(adapter, A_SG_INT_CAUSE, status); |
| 2299 | if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED)) |
| 2300 | t3_fatal_err(adapter); |
| 2301 | } |
| 2302 | |
| 2303 | /** |
| 2304 | * sge_timer_cb - perform periodic maintenance of an SGE qset |
| 2305 | * @data: the SGE queue set to maintain |
| 2306 | * |
| 2307 | * Runs periodically from a timer to perform maintenance of an SGE queue |
| 2308 | * set. It performs two tasks: |
| 2309 | * |
| 2310 | * a) Cleans up any completed Tx descriptors that may still be pending. |
| 2311 | * Normal descriptor cleanup happens when new packets are added to a Tx |
| 2312 | * queue so this timer is relatively infrequent and does any cleanup only |
| 2313 | * if the Tx queue has not seen any new packets in a while. We make a |
| 2314 | * best effort attempt to reclaim descriptors, in that we don't wait |
| 2315 | * around if we cannot get a queue's lock (which most likely is because |
| 2316 | * someone else is queueing new packets and so will also handle the clean |
| 2317 | * up). Since control queues use immediate data exclusively we don't |
| 2318 | * bother cleaning them up here. |
| 2319 | * |
| 2320 | * b) Replenishes Rx queues that have run out due to memory shortage. |
| 2321 | * Normally new Rx buffers are added when existing ones are consumed but |
| 2322 | * when out of memory a queue can become empty. We try to add only a few |
| 2323 | * buffers here, the queue will be replenished fully as these new buffers |
| 2324 | * are used up if memory shortage has subsided. |
| 2325 | */ |
| 2326 | static void sge_timer_cb(unsigned long data) |
| 2327 | { |
| 2328 | spinlock_t *lock; |
| 2329 | struct sge_qset *qs = (struct sge_qset *)data; |
| 2330 | struct adapter *adap = qs->netdev->priv; |
| 2331 | |
| 2332 | if (spin_trylock(&qs->txq[TXQ_ETH].lock)) { |
| 2333 | reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]); |
| 2334 | spin_unlock(&qs->txq[TXQ_ETH].lock); |
| 2335 | } |
| 2336 | if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { |
| 2337 | reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]); |
| 2338 | spin_unlock(&qs->txq[TXQ_OFLD].lock); |
| 2339 | } |
| 2340 | lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock : |
| 2341 | &adap->sge.qs[0].rspq.lock; |
| 2342 | if (spin_trylock_irq(lock)) { |
| 2343 | if (!napi_is_scheduled(qs->netdev)) { |
| 2344 | if (qs->fl[0].credits < qs->fl[0].size) |
| 2345 | __refill_fl(adap, &qs->fl[0]); |
| 2346 | if (qs->fl[1].credits < qs->fl[1].size) |
| 2347 | __refill_fl(adap, &qs->fl[1]); |
| 2348 | } |
| 2349 | spin_unlock_irq(lock); |
| 2350 | } |
| 2351 | mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); |
| 2352 | } |
| 2353 | |
| 2354 | /** |
| 2355 | * t3_update_qset_coalesce - update coalescing settings for a queue set |
| 2356 | * @qs: the SGE queue set |
| 2357 | * @p: new queue set parameters |
| 2358 | * |
| 2359 | * Update the coalescing settings for an SGE queue set. Nothing is done |
| 2360 | * if the queue set is not initialized yet. |
| 2361 | */ |
| 2362 | void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) |
| 2363 | { |
| 2364 | if (!qs->netdev) |
| 2365 | return; |
| 2366 | |
| 2367 | qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ |
| 2368 | qs->rspq.polling = p->polling; |
| 2369 | qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll; |
| 2370 | } |
| 2371 | |
| 2372 | /** |
| 2373 | * t3_sge_alloc_qset - initialize an SGE queue set |
| 2374 | * @adapter: the adapter |
| 2375 | * @id: the queue set id |
| 2376 | * @nports: how many Ethernet ports will be using this queue set |
| 2377 | * @irq_vec_idx: the IRQ vector index for response queue interrupts |
| 2378 | * @p: configuration parameters for this queue set |
| 2379 | * @ntxq: number of Tx queues for the queue set |
| 2380 | * @netdev: net device associated with this queue set |
| 2381 | * |
| 2382 | * Allocate resources and initialize an SGE queue set. A queue set |
| 2383 | * comprises a response queue, two Rx free-buffer queues, and up to 3 |
| 2384 | * Tx queues. The Tx queues are assigned roles in the order Ethernet |
| 2385 | * queue, offload queue, and control queue. |
| 2386 | */ |
| 2387 | int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, |
| 2388 | int irq_vec_idx, const struct qset_params *p, |
| 2389 | int ntxq, struct net_device *netdev) |
| 2390 | { |
| 2391 | int i, ret = -ENOMEM; |
| 2392 | struct sge_qset *q = &adapter->sge.qs[id]; |
| 2393 | |
| 2394 | init_qset_cntxt(q, id); |
| 2395 | init_timer(&q->tx_reclaim_timer); |
| 2396 | q->tx_reclaim_timer.data = (unsigned long)q; |
| 2397 | q->tx_reclaim_timer.function = sge_timer_cb; |
| 2398 | |
| 2399 | q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, |
| 2400 | sizeof(struct rx_desc), |
| 2401 | sizeof(struct rx_sw_desc), |
| 2402 | &q->fl[0].phys_addr, &q->fl[0].sdesc); |
| 2403 | if (!q->fl[0].desc) |
| 2404 | goto err; |
| 2405 | |
| 2406 | q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, |
| 2407 | sizeof(struct rx_desc), |
| 2408 | sizeof(struct rx_sw_desc), |
| 2409 | &q->fl[1].phys_addr, &q->fl[1].sdesc); |
| 2410 | if (!q->fl[1].desc) |
| 2411 | goto err; |
| 2412 | |
| 2413 | q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, |
| 2414 | sizeof(struct rsp_desc), 0, |
| 2415 | &q->rspq.phys_addr, NULL); |
| 2416 | if (!q->rspq.desc) |
| 2417 | goto err; |
| 2418 | |
| 2419 | for (i = 0; i < ntxq; ++i) { |
| 2420 | /* |
| 2421 | * The control queue always uses immediate data so does not |
| 2422 | * need to keep track of any sk_buffs. |
| 2423 | */ |
| 2424 | size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); |
| 2425 | |
| 2426 | q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], |
| 2427 | sizeof(struct tx_desc), sz, |
| 2428 | &q->txq[i].phys_addr, |
| 2429 | &q->txq[i].sdesc); |
| 2430 | if (!q->txq[i].desc) |
| 2431 | goto err; |
| 2432 | |
| 2433 | q->txq[i].gen = 1; |
| 2434 | q->txq[i].size = p->txq_size[i]; |
| 2435 | spin_lock_init(&q->txq[i].lock); |
| 2436 | skb_queue_head_init(&q->txq[i].sendq); |
| 2437 | } |
| 2438 | |
| 2439 | tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, |
| 2440 | (unsigned long)q); |
| 2441 | tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, |
| 2442 | (unsigned long)q); |
| 2443 | |
| 2444 | q->fl[0].gen = q->fl[1].gen = 1; |
| 2445 | q->fl[0].size = p->fl_size; |
| 2446 | q->fl[1].size = p->jumbo_size; |
| 2447 | |
| 2448 | q->rspq.gen = 1; |
| 2449 | q->rspq.size = p->rspq_size; |
| 2450 | spin_lock_init(&q->rspq.lock); |
| 2451 | |
| 2452 | q->txq[TXQ_ETH].stop_thres = nports * |
| 2453 | flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); |
| 2454 | |
| 2455 | if (ntxq == 1) { |
| 2456 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 + |
| 2457 | sizeof(struct cpl_rx_pkt); |
| 2458 | q->fl[1].buf_size = MAX_FRAME_SIZE + 2 + |
| 2459 | sizeof(struct cpl_rx_pkt); |
| 2460 | } else { |
| 2461 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + |
| 2462 | sizeof(struct cpl_rx_data); |
| 2463 | q->fl[1].buf_size = (16 * 1024) - |
| 2464 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| 2465 | } |
| 2466 | |
| 2467 | spin_lock(&adapter->sge.reg_lock); |
| 2468 | |
| 2469 | /* FL threshold comparison uses < */ |
| 2470 | ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, |
| 2471 | q->rspq.phys_addr, q->rspq.size, |
| 2472 | q->fl[0].buf_size, 1, 0); |
| 2473 | if (ret) |
| 2474 | goto err_unlock; |
| 2475 | |
| 2476 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) { |
| 2477 | ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, |
| 2478 | q->fl[i].phys_addr, q->fl[i].size, |
| 2479 | q->fl[i].buf_size, p->cong_thres, 1, |
| 2480 | 0); |
| 2481 | if (ret) |
| 2482 | goto err_unlock; |
| 2483 | } |
| 2484 | |
| 2485 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, |
| 2486 | SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, |
| 2487 | q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, |
| 2488 | 1, 0); |
| 2489 | if (ret) |
| 2490 | goto err_unlock; |
| 2491 | |
| 2492 | if (ntxq > 1) { |
| 2493 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, |
| 2494 | USE_GTS, SGE_CNTXT_OFLD, id, |
| 2495 | q->txq[TXQ_OFLD].phys_addr, |
| 2496 | q->txq[TXQ_OFLD].size, 0, 1, 0); |
| 2497 | if (ret) |
| 2498 | goto err_unlock; |
| 2499 | } |
| 2500 | |
| 2501 | if (ntxq > 2) { |
| 2502 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, |
| 2503 | SGE_CNTXT_CTRL, id, |
| 2504 | q->txq[TXQ_CTRL].phys_addr, |
| 2505 | q->txq[TXQ_CTRL].size, |
| 2506 | q->txq[TXQ_CTRL].token, 1, 0); |
| 2507 | if (ret) |
| 2508 | goto err_unlock; |
| 2509 | } |
| 2510 | |
| 2511 | spin_unlock(&adapter->sge.reg_lock); |
| 2512 | q->netdev = netdev; |
| 2513 | t3_update_qset_coalesce(q, p); |
| 2514 | |
| 2515 | /* |
| 2516 | * We use atalk_ptr as a backpointer to a qset. In case a device is |
| 2517 | * associated with multiple queue sets only the first one sets |
| 2518 | * atalk_ptr. |
| 2519 | */ |
| 2520 | if (netdev->atalk_ptr == NULL) |
| 2521 | netdev->atalk_ptr = q; |
| 2522 | |
| 2523 | refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL); |
| 2524 | refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL); |
| 2525 | refill_rspq(adapter, &q->rspq, q->rspq.size - 1); |
| 2526 | |
| 2527 | t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | |
| 2528 | V_NEWTIMER(q->rspq.holdoff_tmr)); |
| 2529 | |
| 2530 | mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); |
| 2531 | return 0; |
| 2532 | |
| 2533 | err_unlock: |
| 2534 | spin_unlock(&adapter->sge.reg_lock); |
| 2535 | err: |
| 2536 | t3_free_qset(adapter, q); |
| 2537 | return ret; |
| 2538 | } |
| 2539 | |
| 2540 | /** |
| 2541 | * t3_free_sge_resources - free SGE resources |
| 2542 | * @adap: the adapter |
| 2543 | * |
| 2544 | * Frees resources used by the SGE queue sets. |
| 2545 | */ |
| 2546 | void t3_free_sge_resources(struct adapter *adap) |
| 2547 | { |
| 2548 | int i; |
| 2549 | |
| 2550 | for (i = 0; i < SGE_QSETS; ++i) |
| 2551 | t3_free_qset(adap, &adap->sge.qs[i]); |
| 2552 | } |
| 2553 | |
| 2554 | /** |
| 2555 | * t3_sge_start - enable SGE |
| 2556 | * @adap: the adapter |
| 2557 | * |
| 2558 | * Enables the SGE for DMAs. This is the last step in starting packet |
| 2559 | * transfers. |
| 2560 | */ |
| 2561 | void t3_sge_start(struct adapter *adap) |
| 2562 | { |
| 2563 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); |
| 2564 | } |
| 2565 | |
| 2566 | /** |
| 2567 | * t3_sge_stop - disable SGE operation |
| 2568 | * @adap: the adapter |
| 2569 | * |
| 2570 | * Disables the DMA engine. This can be called in emeregencies (e.g., |
| 2571 | * from error interrupts) or from normal process context. In the latter |
| 2572 | * case it also disables any pending queue restart tasklets. Note that |
| 2573 | * if it is called in interrupt context it cannot disable the restart |
| 2574 | * tasklets as it cannot wait, however the tasklets will have no effect |
| 2575 | * since the doorbells are disabled and the driver will call this again |
| 2576 | * later from process context, at which time the tasklets will be stopped |
| 2577 | * if they are still running. |
| 2578 | */ |
| 2579 | void t3_sge_stop(struct adapter *adap) |
| 2580 | { |
| 2581 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); |
| 2582 | if (!in_interrupt()) { |
| 2583 | int i; |
| 2584 | |
| 2585 | for (i = 0; i < SGE_QSETS; ++i) { |
| 2586 | struct sge_qset *qs = &adap->sge.qs[i]; |
| 2587 | |
| 2588 | tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); |
| 2589 | tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); |
| 2590 | } |
| 2591 | } |
| 2592 | } |
| 2593 | |
| 2594 | /** |
| 2595 | * t3_sge_init - initialize SGE |
| 2596 | * @adap: the adapter |
| 2597 | * @p: the SGE parameters |
| 2598 | * |
| 2599 | * Performs SGE initialization needed every time after a chip reset. |
| 2600 | * We do not initialize any of the queue sets here, instead the driver |
| 2601 | * top-level must request those individually. We also do not enable DMA |
| 2602 | * here, that should be done after the queues have been set up. |
| 2603 | */ |
| 2604 | void t3_sge_init(struct adapter *adap, struct sge_params *p) |
| 2605 | { |
| 2606 | unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); |
| 2607 | |
| 2608 | ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | |
| 2609 | F_CQCRDTCTRL | |
| 2610 | V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | |
| 2611 | V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; |
| 2612 | #if SGE_NUM_GENBITS == 1 |
| 2613 | ctrl |= F_EGRGENCTRL; |
| 2614 | #endif |
| 2615 | if (adap->params.rev > 0) { |
| 2616 | if (!(adap->flags & (USING_MSIX | USING_MSI))) |
| 2617 | ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; |
| 2618 | ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL; |
| 2619 | } |
| 2620 | t3_write_reg(adap, A_SG_CONTROL, ctrl); |
| 2621 | t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | |
| 2622 | V_LORCQDRBTHRSH(512)); |
| 2623 | t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); |
| 2624 | t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | |
| 2625 | V_TIMEOUT(100 * core_ticks_per_usec(adap))); |
| 2626 | t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000); |
| 2627 | t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); |
| 2628 | t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); |
| 2629 | t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); |
| 2630 | t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); |
| 2631 | t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); |
| 2632 | } |
| 2633 | |
| 2634 | /** |
| 2635 | * t3_sge_prep - one-time SGE initialization |
| 2636 | * @adap: the associated adapter |
| 2637 | * @p: SGE parameters |
| 2638 | * |
| 2639 | * Performs one-time initialization of SGE SW state. Includes determining |
| 2640 | * defaults for the assorted SGE parameters, which admins can change until |
| 2641 | * they are used to initialize the SGE. |
| 2642 | */ |
| 2643 | void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p) |
| 2644 | { |
| 2645 | int i; |
| 2646 | |
| 2647 | p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - |
| 2648 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| 2649 | |
| 2650 | for (i = 0; i < SGE_QSETS; ++i) { |
| 2651 | struct qset_params *q = p->qset + i; |
| 2652 | |
| 2653 | q->polling = adap->params.rev > 0; |
| 2654 | q->coalesce_usecs = 5; |
| 2655 | q->rspq_size = 1024; |
| 2656 | q->fl_size = 4096; |
| 2657 | q->jumbo_size = 512; |
| 2658 | q->txq_size[TXQ_ETH] = 1024; |
| 2659 | q->txq_size[TXQ_OFLD] = 1024; |
| 2660 | q->txq_size[TXQ_CTRL] = 256; |
| 2661 | q->cong_thres = 0; |
| 2662 | } |
| 2663 | |
| 2664 | spin_lock_init(&adap->sge.reg_lock); |
| 2665 | } |
| 2666 | |
| 2667 | /** |
| 2668 | * t3_get_desc - dump an SGE descriptor for debugging purposes |
| 2669 | * @qs: the queue set |
| 2670 | * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx) |
| 2671 | * @idx: the descriptor index in the queue |
| 2672 | * @data: where to dump the descriptor contents |
| 2673 | * |
| 2674 | * Dumps the contents of a HW descriptor of an SGE queue. Returns the |
| 2675 | * size of the descriptor. |
| 2676 | */ |
| 2677 | int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, |
| 2678 | unsigned char *data) |
| 2679 | { |
| 2680 | if (qnum >= 6) |
| 2681 | return -EINVAL; |
| 2682 | |
| 2683 | if (qnum < 3) { |
| 2684 | if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size) |
| 2685 | return -EINVAL; |
| 2686 | memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc)); |
| 2687 | return sizeof(struct tx_desc); |
| 2688 | } |
| 2689 | |
| 2690 | if (qnum == 3) { |
| 2691 | if (!qs->rspq.desc || idx >= qs->rspq.size) |
| 2692 | return -EINVAL; |
| 2693 | memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc)); |
| 2694 | return sizeof(struct rsp_desc); |
| 2695 | } |
| 2696 | |
| 2697 | qnum -= 4; |
| 2698 | if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size) |
| 2699 | return -EINVAL; |
| 2700 | memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc)); |
| 2701 | return sizeof(struct rx_desc); |
| 2702 | } |