blob: 56c9c7eed34edf8869830fab1f2d24b71b5177c6 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002/*
Christoph Lameter2e892f42006-12-13 00:34:23 -08003 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
Christoph Lametercde53532008-07-04 09:59:22 -07005 * (C) SGI 2006, Christoph Lameter
Christoph Lameter2e892f42006-12-13 00:34:23 -08006 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +00008 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
Andrew Morton1b1cec42006-12-06 20:33:22 -080015#include <linux/gfp.h>
Kees Cook49b7f892018-05-08 12:52:32 -070016#include <linux/overflow.h>
Andrew Morton1b1cec42006-12-06 20:33:22 -080017#include <linux/types.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080018#include <linux/workqueue.h>
Roman Gushchinf0a3a242019-07-11 20:56:27 -070019#include <linux/percpu-refcount.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080020
Linus Torvalds1da177e2005-04-16 15:20:36 -070021
Christoph Lameter2e892f42006-12-13 00:34:23 -080022/*
23 * Flags to pass to kmem_cache_create().
David Rientjes124dee02015-04-14 15:44:28 -070024 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
Alexey Dobriyand50112e2017-11-15 17:32:18 -080026/* DEBUG: Perform (expensive) checks on alloc/free */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080027#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080028/* DEBUG: Red zone objs in a cache */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080029#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080030/* DEBUG: Poison objects */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080031#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080032/* Align objs on cache lines */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080033#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080034/* Use GFP_DMA memory */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080035#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
Nicolas Boichat6d6ea1e2019-03-28 20:43:42 -070036/* Use GFP_DMA32 memory */
37#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080038/* DEBUG: Store the last owner for bug hunting */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080039#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080040/* Panic if kmem_cache_create() fails */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080041#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020042/*
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -080043 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020044 *
45 * This delays freeing the SLAB page by a grace period, it does _NOT_
46 * delay object freeing. This means that if you do kmem_cache_free()
47 * that memory location is free to be reused at any time. Thus it may
48 * be possible to see another object there in the same RCU grace period.
49 *
50 * This feature only ensures the memory location backing the object
51 * stays valid, the trick to using this is relying on an independent
52 * object validation pass. Something like:
53 *
54 * rcu_read_lock()
55 * again:
56 * obj = lockless_lookup(key);
57 * if (obj) {
58 * if (!try_get_ref(obj)) // might fail for free objects
59 * goto again;
60 *
61 * if (obj->key != key) { // not the object we expected
62 * put_ref(obj);
63 * goto again;
64 * }
65 * }
66 * rcu_read_unlock();
67 *
Joonsoo Kim68126702013-10-24 10:07:42 +090068 * This is useful if we need to approach a kernel structure obliquely,
69 * from its address obtained without the usual locking. We can lock
70 * the structure to stabilize it and check it's still at the given address,
71 * only if we can be sure that the memory has not been meanwhile reused
72 * for some other kind of object (which our subsystem's lock might corrupt).
73 *
74 * rcu_read_lock before reading the address, then rcu_read_unlock after
75 * taking the spinlock within the structure expected at that address.
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -080076 *
77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020078 */
Alexey Dobriyand50112e2017-11-15 17:32:18 -080079/* Defer freeing slabs to RCU */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080080#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080081/* Spread some memory over cpuset */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080082#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080083/* Trace allocations and frees */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080084#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
Linus Torvalds1da177e2005-04-16 15:20:36 -070085
Thomas Gleixner30327ac2008-04-30 00:54:59 -070086/* Flag to prevent checks on free */
87#ifdef CONFIG_DEBUG_OBJECTS
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080088# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
Thomas Gleixner30327ac2008-04-30 00:54:59 -070089#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080090# define SLAB_DEBUG_OBJECTS 0
Thomas Gleixner30327ac2008-04-30 00:54:59 -070091#endif
92
Alexey Dobriyand50112e2017-11-15 17:32:18 -080093/* Avoid kmemleak tracing */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080094#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
Catalin Marinasd5cff632009-06-11 13:22:40 +010095
Alexey Dobriyand50112e2017-11-15 17:32:18 -080096/* Fault injection mark */
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030097#ifdef CONFIG_FAILSLAB
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080098# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030099#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800100# define SLAB_FAILSLAB 0
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +0300101#endif
Alexey Dobriyand50112e2017-11-15 17:32:18 -0800102/* Account to memcg */
Kirill Tkhai84c07d12018-08-17 15:47:25 -0700103#ifdef CONFIG_MEMCG_KMEM
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800104# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
Vladimir Davydov230e9fc2016-01-14 15:18:15 -0800105#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800106# define SLAB_ACCOUNT 0
Vladimir Davydov230e9fc2016-01-14 15:18:15 -0800107#endif
Vegard Nossum2dff4402008-05-31 15:56:17 +0200108
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700109#ifdef CONFIG_KASAN
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800110#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700111#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800112#define SLAB_KASAN 0
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700113#endif
114
Mel Gormane12ba742007-10-16 01:25:52 -0700115/* The following flags affect the page allocator grouping pages by mobility */
Alexey Dobriyand50112e2017-11-15 17:32:18 -0800116/* Objects are reclaimable */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800117#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
Mel Gormane12ba742007-10-16 01:25:52 -0700118#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
Waiman Longfcf8a1e2019-07-11 20:56:38 -0700119
120/* Slab deactivation flag */
121#define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U)
122
Christoph Lameter2e892f42006-12-13 00:34:23 -0800123/*
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700124 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
125 *
126 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
127 *
128 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
129 * Both make kfree a no-op.
130 */
131#define ZERO_SIZE_PTR ((void *)16)
132
Roland Dreier1d4ec7b2007-07-20 12:13:20 -0700133#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700134 (unsigned long)ZERO_SIZE_PTR)
135
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800136#include <linux/kasan.h>
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500137
Glauber Costa2633d7a2012-12-18 14:22:34 -0800138struct mem_cgroup;
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500139/*
Christoph Lameter2e892f42006-12-13 00:34:23 -0800140 * struct kmem_cache related prototypes
141 */
142void __init kmem_cache_init(void);
Denis Kirjanovfda90122015-11-05 18:44:59 -0800143bool slab_is_available(void);
Matt Mackall10cef602006-01-08 01:01:45 -0800144
Kees Cook2d891fb2017-11-30 13:04:32 -0800145extern bool usercopy_fallback;
146
Alexey Dobriyanf4957d52018-04-05 16:20:37 -0700147struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
148 unsigned int align, slab_flags_t flags,
David Windsor8eb82842017-06-10 22:50:28 -0400149 void (*ctor)(void *));
150struct kmem_cache *kmem_cache_create_usercopy(const char *name,
Alexey Dobriyanf4957d52018-04-05 16:20:37 -0700151 unsigned int size, unsigned int align,
152 slab_flags_t flags,
Alexey Dobriyan7bbdb812018-04-05 16:21:31 -0700153 unsigned int useroffset, unsigned int usersize,
David Windsor8eb82842017-06-10 22:50:28 -0400154 void (*ctor)(void *));
Christoph Lameter2e892f42006-12-13 00:34:23 -0800155void kmem_cache_destroy(struct kmem_cache *);
156int kmem_cache_shrink(struct kmem_cache *);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800157
158void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
Roman Gushchinfb2f2b02019-07-11 20:56:34 -0700159void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700161/*
162 * Please use this macro to create slab caches. Simply specify the
163 * name of the structure and maybe some flags that are listed above.
164 *
165 * The alignment of the struct determines object alignment. If you
166 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
167 * then the objects will be properly aligned in SMP configurations.
168 */
David Windsor8eb82842017-06-10 22:50:28 -0400169#define KMEM_CACHE(__struct, __flags) \
170 kmem_cache_create(#__struct, sizeof(struct __struct), \
171 __alignof__(struct __struct), (__flags), NULL)
172
173/*
174 * To whitelist a single field for copying to/from usercopy, use this
175 * macro instead for KMEM_CACHE() above.
176 */
177#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
178 kmem_cache_create_usercopy(#__struct, \
179 sizeof(struct __struct), \
180 __alignof__(struct __struct), (__flags), \
181 offsetof(struct __struct, __field), \
182 sizeof_field(struct __struct, __field), NULL)
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700183
Christoph Lameter2e892f42006-12-13 00:34:23 -0800184/*
Christoph Lameter34504662013-01-10 19:00:53 +0000185 * Common kmalloc functions provided by all allocators
186 */
187void * __must_check __krealloc(const void *, size_t, gfp_t);
188void * __must_check krealloc(const void *, size_t, gfp_t);
189void kfree(const void *);
190void kzfree(const void *);
Marco Elver10d1f8c2019-07-11 20:54:14 -0700191size_t __ksize(const void *);
Christoph Lameter34504662013-01-10 19:00:53 +0000192size_t ksize(const void *);
193
Kees Cookf5509cc2016-06-07 11:05:33 -0700194#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
Kees Cookf4e6e282018-01-10 14:48:22 -0800195void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
196 bool to_user);
Kees Cookf5509cc2016-06-07 11:05:33 -0700197#else
Kees Cookf4e6e282018-01-10 14:48:22 -0800198static inline void __check_heap_object(const void *ptr, unsigned long n,
199 struct page *page, bool to_user) { }
Kees Cookf5509cc2016-06-07 11:05:33 -0700200#endif
201
Christoph Lameterc601fd62013-02-05 16:36:47 +0000202/*
203 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
204 * alignment larger than the alignment of a 64-bit integer.
205 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
206 */
207#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
208#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
209#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
210#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
211#else
212#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
213#endif
214
Christoph Lameter34504662013-01-10 19:00:53 +0000215/*
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800216 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
217 * Intended for arches that get misalignment faults even for 64 bit integer
218 * aligned buffers.
219 */
220#ifndef ARCH_SLAB_MINALIGN
221#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
222#endif
223
224/*
225 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
226 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
227 * aligned pointers.
228 */
229#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
230#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
231#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
232
233/*
Christoph Lameter95a05b42013-01-10 19:14:19 +0000234 * Kmalloc array related definitions
235 */
236
237#ifdef CONFIG_SLAB
238/*
239 * The largest kmalloc size supported by the SLAB allocators is
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700240 * 32 megabyte (2^25) or the maximum allocatable page order if that is
241 * less than 32 MB.
242 *
243 * WARNING: Its not easy to increase this value since the allocators have
244 * to do various tricks to work around compiler limitations in order to
245 * ensure proper constant folding.
246 */
Christoph Lameterdebee072007-06-23 17:16:43 -0700247#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
248 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
Christoph Lameter95a05b42013-01-10 19:14:19 +0000249#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
Christoph Lameterc601fd62013-02-05 16:36:47 +0000250#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000251#define KMALLOC_SHIFT_LOW 5
Christoph Lameterc601fd62013-02-05 16:36:47 +0000252#endif
Christoph Lameter069e2b352013-06-14 19:55:13 +0000253#endif
254
255#ifdef CONFIG_SLUB
Christoph Lameter95a05b42013-01-10 19:14:19 +0000256/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800257 * SLUB directly allocates requests fitting in to an order-1 page
258 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
Christoph Lameter95a05b42013-01-10 19:14:19 +0000259 */
260#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
Michal Hockobb1107f2017-01-10 16:57:27 -0800261#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
Christoph Lameterc601fd62013-02-05 16:36:47 +0000262#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000263#define KMALLOC_SHIFT_LOW 3
264#endif
Christoph Lameterc601fd62013-02-05 16:36:47 +0000265#endif
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700266
Christoph Lameter069e2b352013-06-14 19:55:13 +0000267#ifdef CONFIG_SLOB
268/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800269 * SLOB passes all requests larger than one page to the page allocator.
Christoph Lameter069e2b352013-06-14 19:55:13 +0000270 * No kmalloc array is necessary since objects of different sizes can
271 * be allocated from the same page.
272 */
Christoph Lameter069e2b352013-06-14 19:55:13 +0000273#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
Michal Hockobb1107f2017-01-10 16:57:27 -0800274#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
Christoph Lameter069e2b352013-06-14 19:55:13 +0000275#ifndef KMALLOC_SHIFT_LOW
276#define KMALLOC_SHIFT_LOW 3
277#endif
278#endif
279
Christoph Lameter95a05b42013-01-10 19:14:19 +0000280/* Maximum allocatable size */
281#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
282/* Maximum size for which we actually use a slab cache */
283#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
284/* Maximum order allocatable via the slab allocagtor */
285#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700286
Christoph Lameter90810642011-06-23 09:36:12 -0500287/*
Christoph Lameterce6a5022013-01-10 19:14:19 +0000288 * Kmalloc subsystem.
289 */
Christoph Lameterc601fd62013-02-05 16:36:47 +0000290#ifndef KMALLOC_MIN_SIZE
Christoph Lameter95a05b42013-01-10 19:14:19 +0000291#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000292#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000293
Joonsoo Kim24f870d2014-03-12 17:06:19 +0900294/*
295 * This restriction comes from byte sized index implementation.
296 * Page size is normally 2^12 bytes and, in this case, if we want to use
297 * byte sized index which can represent 2^8 entries, the size of the object
298 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
299 * If minimum size of kmalloc is less than 16, we use it as minimum object
300 * size and give up to use byte sized index.
301 */
302#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
303 (KMALLOC_MIN_SIZE) : 16)
304
Vlastimil Babka12915232018-10-26 15:05:38 -0700305/*
306 * Whenever changing this, take care of that kmalloc_type() and
307 * create_kmalloc_caches() still work as intended.
308 */
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700309enum kmalloc_cache_type {
310 KMALLOC_NORMAL = 0,
Vlastimil Babka12915232018-10-26 15:05:38 -0700311 KMALLOC_RECLAIM,
Christoph Lameter9425c582013-01-10 19:12:17 +0000312#ifdef CONFIG_ZONE_DMA
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700313 KMALLOC_DMA,
Christoph Lameter9425c582013-01-10 19:12:17 +0000314#endif
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700315 NR_KMALLOC_TYPES
316};
317
318#ifndef CONFIG_SLOB
319extern struct kmem_cache *
320kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
321
322static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
323{
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700324#ifdef CONFIG_ZONE_DMA
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800325 /*
326 * The most common case is KMALLOC_NORMAL, so test for it
327 * with a single branch for both flags.
328 */
329 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
330 return KMALLOC_NORMAL;
Vlastimil Babka12915232018-10-26 15:05:38 -0700331
332 /*
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800333 * At least one of the flags has to be set. If both are, __GFP_DMA
334 * is more important.
Vlastimil Babka12915232018-10-26 15:05:38 -0700335 */
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800336 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
337#else
338 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
339#endif
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700340}
Christoph Lameter9425c582013-01-10 19:12:17 +0000341
Christoph Lameterce6a5022013-01-10 19:14:19 +0000342/*
343 * Figure out which kmalloc slab an allocation of a certain size
344 * belongs to.
345 * 0 = zero alloc
346 * 1 = 65 .. 96 bytes
Rasmus Villemoes1ed58b62015-06-24 16:55:59 -0700347 * 2 = 129 .. 192 bytes
348 * n = 2^(n-1)+1 .. 2^n
Christoph Lameterce6a5022013-01-10 19:14:19 +0000349 */
Alexey Dobriyan36071a22018-04-05 16:20:22 -0700350static __always_inline unsigned int kmalloc_index(size_t size)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000351{
352 if (!size)
353 return 0;
354
355 if (size <= KMALLOC_MIN_SIZE)
356 return KMALLOC_SHIFT_LOW;
357
358 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
359 return 1;
360 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
361 return 2;
362 if (size <= 8) return 3;
363 if (size <= 16) return 4;
364 if (size <= 32) return 5;
365 if (size <= 64) return 6;
366 if (size <= 128) return 7;
367 if (size <= 256) return 8;
368 if (size <= 512) return 9;
369 if (size <= 1024) return 10;
370 if (size <= 2 * 1024) return 11;
371 if (size <= 4 * 1024) return 12;
372 if (size <= 8 * 1024) return 13;
373 if (size <= 16 * 1024) return 14;
374 if (size <= 32 * 1024) return 15;
375 if (size <= 64 * 1024) return 16;
376 if (size <= 128 * 1024) return 17;
377 if (size <= 256 * 1024) return 18;
378 if (size <= 512 * 1024) return 19;
379 if (size <= 1024 * 1024) return 20;
380 if (size <= 2 * 1024 * 1024) return 21;
381 if (size <= 4 * 1024 * 1024) return 22;
382 if (size <= 8 * 1024 * 1024) return 23;
383 if (size <= 16 * 1024 * 1024) return 24;
384 if (size <= 32 * 1024 * 1024) return 25;
385 if (size <= 64 * 1024 * 1024) return 26;
386 BUG();
387
388 /* Will never be reached. Needed because the compiler may complain */
389 return -1;
390}
Christoph Lameter069e2b352013-06-14 19:55:13 +0000391#endif /* !CONFIG_SLOB */
Christoph Lameterce6a5022013-01-10 19:14:19 +0000392
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700393void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
394void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800395void kmem_cache_free(struct kmem_cache *, void *);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000396
Christoph Lameter484748f2015-09-04 15:45:34 -0700397/*
Jesper Dangaard Brouer9f706d62016-03-15 14:54:03 -0700398 * Bulk allocation and freeing operations. These are accelerated in an
Christoph Lameter484748f2015-09-04 15:45:34 -0700399 * allocator specific way to avoid taking locks repeatedly or building
400 * metadata structures unnecessarily.
401 *
402 * Note that interrupts must be enabled when calling these functions.
403 */
404void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
Jesper Dangaard Brouer865762a2015-11-20 15:57:58 -0800405int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
Christoph Lameter484748f2015-09-04 15:45:34 -0700406
Jesper Dangaard Brouerca257192016-03-15 14:54:00 -0700407/*
408 * Caller must not use kfree_bulk() on memory not originally allocated
409 * by kmalloc(), because the SLOB allocator cannot handle this.
410 */
411static __always_inline void kfree_bulk(size_t size, void **p)
412{
413 kmem_cache_free_bulk(NULL, size, p);
414}
415
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000416#ifdef CONFIG_NUMA
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700417void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
418void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000419#else
420static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
421{
422 return __kmalloc(size, flags);
423}
424
425static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
426{
427 return kmem_cache_alloc(s, flags);
428}
429#endif
430
431#ifdef CONFIG_TRACING
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700432extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000433
434#ifdef CONFIG_NUMA
435extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
436 gfp_t gfpflags,
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700437 int node, size_t size) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000438#else
439static __always_inline void *
440kmem_cache_alloc_node_trace(struct kmem_cache *s,
441 gfp_t gfpflags,
442 int node, size_t size)
443{
444 return kmem_cache_alloc_trace(s, gfpflags, size);
445}
446#endif /* CONFIG_NUMA */
447
448#else /* CONFIG_TRACING */
449static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
450 gfp_t flags, size_t size)
451{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800452 void *ret = kmem_cache_alloc(s, flags);
453
Andrey Konovalov01165232018-12-28 00:29:37 -0800454 ret = kasan_kmalloc(s, ret, size, flags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800455 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000456}
457
458static __always_inline void *
459kmem_cache_alloc_node_trace(struct kmem_cache *s,
460 gfp_t gfpflags,
461 int node, size_t size)
462{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800463 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
464
Andrey Konovalov01165232018-12-28 00:29:37 -0800465 ret = kasan_kmalloc(s, ret, size, gfpflags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800466 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000467}
468#endif /* CONFIG_TRACING */
469
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700470extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000471
472#ifdef CONFIG_TRACING
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700473extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000474#else
475static __always_inline void *
476kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
477{
478 return kmalloc_order(size, flags, order);
479}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000480#endif
481
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000482static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
483{
484 unsigned int order = get_order(size);
485 return kmalloc_order_trace(size, flags, order);
486}
487
488/**
489 * kmalloc - allocate memory
490 * @size: how many bytes of memory are required.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800491 * @flags: the type of memory to allocate.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000492 *
493 * kmalloc is the normal method of allocating memory
494 * for objects smaller than page size in the kernel.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800495 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200496 * The @flags argument may be one of the GFP flags defined at
497 * include/linux/gfp.h and described at
498 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800499 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200500 * The recommended usage of the @flags is described at
Jonathan Corbet3870a232018-11-20 09:22:24 -0700501 * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800502 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200503 * Below is a brief outline of the most useful GFP flags
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800504 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200505 * %GFP_KERNEL
506 * Allocate normal kernel ram. May sleep.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800507 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200508 * %GFP_NOWAIT
509 * Allocation will not sleep.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800510 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200511 * %GFP_ATOMIC
512 * Allocation will not sleep. May use emergency pools.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800513 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200514 * %GFP_HIGHUSER
515 * Allocate memory from high memory on behalf of user.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800516 *
517 * Also it is possible to set different flags by OR'ing
518 * in one or more of the following additional @flags:
519 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200520 * %__GFP_HIGH
521 * This allocation has high priority and may use emergency pools.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800522 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200523 * %__GFP_NOFAIL
524 * Indicate that this allocation is in no way allowed to fail
525 * (think twice before using).
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800526 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200527 * %__GFP_NORETRY
528 * If memory is not immediately available,
529 * then give up at once.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800530 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200531 * %__GFP_NOWARN
532 * If allocation fails, don't issue any warnings.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800533 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200534 * %__GFP_RETRY_MAYFAIL
535 * Try really hard to succeed the allocation but fail
536 * eventually.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000537 */
538static __always_inline void *kmalloc(size_t size, gfp_t flags)
539{
540 if (__builtin_constant_p(size)) {
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700541#ifndef CONFIG_SLOB
542 unsigned int index;
543#endif
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000544 if (size > KMALLOC_MAX_CACHE_SIZE)
545 return kmalloc_large(size, flags);
546#ifndef CONFIG_SLOB
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700547 index = kmalloc_index(size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000548
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700549 if (!index)
550 return ZERO_SIZE_PTR;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000551
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700552 return kmem_cache_alloc_trace(
553 kmalloc_caches[kmalloc_type(flags)][index],
554 flags, size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000555#endif
556 }
557 return __kmalloc(size, flags);
558}
559
Christoph Lameterce6a5022013-01-10 19:14:19 +0000560/*
561 * Determine size used for the nth kmalloc cache.
562 * return size or 0 if a kmalloc cache for that
563 * size does not exist
564 */
Alexey Dobriyan0be70322018-04-05 16:20:26 -0700565static __always_inline unsigned int kmalloc_size(unsigned int n)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000566{
Christoph Lameter069e2b352013-06-14 19:55:13 +0000567#ifndef CONFIG_SLOB
Christoph Lameterce6a5022013-01-10 19:14:19 +0000568 if (n > 2)
Alexey Dobriyan0be70322018-04-05 16:20:26 -0700569 return 1U << n;
Christoph Lameterce6a5022013-01-10 19:14:19 +0000570
571 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
572 return 96;
573
574 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
575 return 192;
Christoph Lameter069e2b352013-06-14 19:55:13 +0000576#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000577 return 0;
578}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000579
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000580static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
581{
582#ifndef CONFIG_SLOB
583 if (__builtin_constant_p(size) &&
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700584 size <= KMALLOC_MAX_CACHE_SIZE) {
Alexey Dobriyan36071a22018-04-05 16:20:22 -0700585 unsigned int i = kmalloc_index(size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000586
587 if (!i)
588 return ZERO_SIZE_PTR;
589
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700590 return kmem_cache_alloc_node_trace(
591 kmalloc_caches[kmalloc_type(flags)][i],
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000592 flags, node, size);
593 }
594#endif
595 return __kmalloc_node(size, flags, node);
596}
597
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800598struct memcg_cache_array {
599 struct rcu_head rcu;
600 struct kmem_cache *entries[0];
601};
602
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700603/*
Glauber Costaba6c4962012-12-18 14:22:27 -0800604 * This is the main placeholder for memcg-related information in kmem caches.
Glauber Costaba6c4962012-12-18 14:22:27 -0800605 * Both the root cache and the child caches will have it. For the root cache,
606 * this will hold a dynamically allocated array large enough to hold
Vladimir Davydovf8570262014-01-23 15:53:06 -0800607 * information about the currently limited memcgs in the system. To allow the
608 * array to be accessed without taking any locks, on relocation we free the old
609 * version only after a grace period.
Glauber Costaba6c4962012-12-18 14:22:27 -0800610 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800611 * Root and child caches hold different metadata.
Glauber Costaba6c4962012-12-18 14:22:27 -0800612 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800613 * @root_cache: Common to root and child caches. NULL for root, pointer to
614 * the root cache for children.
Vladimir Davydov426589f2015-02-12 14:59:23 -0800615 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800616 * The following fields are specific to root caches.
617 *
618 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
619 * used to index child cachces during allocation and cleared
620 * early during shutdown.
621 *
Tejun Heo510ded32017-02-22 15:41:24 -0800622 * @root_caches_node: List node for slab_root_caches list.
623 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800624 * @children: List of all child caches. While the child caches are also
625 * reachable through @memcg_caches, a child cache remains on
626 * this list until it is actually destroyed.
627 *
628 * The following fields are specific to child caches.
629 *
630 * @memcg: Pointer to the memcg this cache belongs to.
631 *
632 * @children_node: List node for @root_cache->children list.
Tejun Heobc2791f2017-02-22 15:41:21 -0800633 *
634 * @kmem_caches_node: List node for @memcg->kmem_caches list.
Glauber Costaba6c4962012-12-18 14:22:27 -0800635 */
636struct memcg_cache_params {
Tejun Heo9eeadc82017-02-22 15:41:17 -0800637 struct kmem_cache *root_cache;
Glauber Costaba6c4962012-12-18 14:22:27 -0800638 union {
Tejun Heo9eeadc82017-02-22 15:41:17 -0800639 struct {
640 struct memcg_cache_array __rcu *memcg_caches;
Tejun Heo510ded32017-02-22 15:41:24 -0800641 struct list_head __root_caches_node;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800642 struct list_head children;
Shakeel Butt92ee3832018-06-14 15:26:27 -0700643 bool dying;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800644 };
Glauber Costa2633d7a2012-12-18 14:22:34 -0800645 struct {
646 struct mem_cgroup *memcg;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800647 struct list_head children_node;
Tejun Heobc2791f2017-02-22 15:41:21 -0800648 struct list_head kmem_caches_node;
Roman Gushchinf0a3a242019-07-11 20:56:27 -0700649 struct percpu_ref refcnt;
Tejun Heo01fb58b2017-02-22 15:41:30 -0800650
Roman Gushchin0b14e8a2019-07-11 20:56:06 -0700651 void (*work_fn)(struct kmem_cache *);
Tejun Heo01fb58b2017-02-22 15:41:30 -0800652 union {
Roman Gushchin0b14e8a2019-07-11 20:56:06 -0700653 struct rcu_head rcu_head;
654 struct work_struct work;
Tejun Heo01fb58b2017-02-22 15:41:30 -0800655 };
Glauber Costa2633d7a2012-12-18 14:22:34 -0800656 };
Glauber Costaba6c4962012-12-18 14:22:27 -0800657 };
658};
659
Glauber Costa2633d7a2012-12-18 14:22:34 -0800660int memcg_update_all_caches(int num_memcgs);
661
Christoph Lameter2e892f42006-12-13 00:34:23 -0800662/**
Michael Opdenackere7efa612013-06-25 18:16:55 +0200663 * kmalloc_array - allocate memory for an array.
664 * @n: number of elements.
665 * @size: element size.
666 * @flags: the type of memory to allocate (see kmalloc).
Paul Drynoff800590f2006-06-23 02:03:48 -0700667 */
Xi Wanga8203722012-03-05 15:14:41 -0800668static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669{
Kees Cook49b7f892018-05-08 12:52:32 -0700670 size_t bytes;
671
672 if (unlikely(check_mul_overflow(n, size, &bytes)))
Paul Mundt6193a2f2007-07-15 23:38:22 -0700673 return NULL;
Alexey Dobriyan91c6a052016-07-26 15:22:08 -0700674 if (__builtin_constant_p(n) && __builtin_constant_p(size))
Kees Cook49b7f892018-05-08 12:52:32 -0700675 return kmalloc(bytes, flags);
676 return __kmalloc(bytes, flags);
Xi Wanga8203722012-03-05 15:14:41 -0800677}
678
679/**
680 * kcalloc - allocate memory for an array. The memory is set to zero.
681 * @n: number of elements.
682 * @size: element size.
683 * @flags: the type of memory to allocate (see kmalloc).
684 */
685static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
686{
687 return kmalloc_array(n, size, flags | __GFP_ZERO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688}
689
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700690/*
691 * kmalloc_track_caller is a special version of kmalloc that records the
692 * calling function of the routine calling it for slab leak tracking instead
693 * of just the calling function (confusing, eh?).
694 * It's useful when the call to kmalloc comes from a widely-used standard
695 * allocator where we care about the real place the memory allocation
696 * request comes from.
697 */
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300698extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700699#define kmalloc_track_caller(size, flags) \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300700 __kmalloc_track_caller(size, flags, _RET_IP_)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800702static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
703 int node)
704{
Kees Cook49b7f892018-05-08 12:52:32 -0700705 size_t bytes;
706
707 if (unlikely(check_mul_overflow(n, size, &bytes)))
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800708 return NULL;
709 if (__builtin_constant_p(n) && __builtin_constant_p(size))
Kees Cook49b7f892018-05-08 12:52:32 -0700710 return kmalloc_node(bytes, flags, node);
711 return __kmalloc_node(bytes, flags, node);
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800712}
713
714static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
715{
716 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
717}
718
719
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700720#ifdef CONFIG_NUMA
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300721extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800722#define kmalloc_node_track_caller(size, flags, node) \
723 __kmalloc_node_track_caller(size, flags, node, \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300724 _RET_IP_)
Christoph Lameter2e892f42006-12-13 00:34:23 -0800725
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800726#else /* CONFIG_NUMA */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800727
728#define kmalloc_node_track_caller(size, flags, node) \
729 kmalloc_track_caller(size, flags)
730
Pascal Terjandfcd3612008-11-25 15:08:19 +0100731#endif /* CONFIG_NUMA */
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800732
Christoph Lameter81cda662007-07-17 04:03:29 -0700733/*
734 * Shortcuts
735 */
736static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
737{
738 return kmem_cache_alloc(k, flags | __GFP_ZERO);
739}
740
741/**
742 * kzalloc - allocate memory. The memory is set to zero.
743 * @size: how many bytes of memory are required.
744 * @flags: the type of memory to allocate (see kmalloc).
745 */
746static inline void *kzalloc(size_t size, gfp_t flags)
747{
748 return kmalloc(size, flags | __GFP_ZERO);
749}
750
Jeff Layton979b0fe2008-06-05 22:47:00 -0700751/**
752 * kzalloc_node - allocate zeroed memory from a particular memory node.
753 * @size: how many bytes of memory are required.
754 * @flags: the type of memory to allocate (see kmalloc).
755 * @node: memory node from which to allocate
756 */
757static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
758{
759 return kmalloc_node(size, flags | __GFP_ZERO, node);
760}
761
Joonsoo Kim07f361b2014-10-09 15:26:00 -0700762unsigned int kmem_cache_size(struct kmem_cache *s);
Pekka Enberg7e85ee02009-06-12 14:03:06 +0300763void __init kmem_cache_init_late(void);
764
Sebastian Andrzej Siewior6731d4f2016-08-23 14:53:19 +0200765#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
766int slab_prepare_cpu(unsigned int cpu);
767int slab_dead_cpu(unsigned int cpu);
768#else
769#define slab_prepare_cpu NULL
770#define slab_dead_cpu NULL
771#endif
772
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773#endif /* _LINUX_SLAB_H */