blob: fd0ef2e16178063bbc921787a20fc7db288f7e56 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002/*
Christoph Lameter2e892f42006-12-13 00:34:23 -08003 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
Christoph Lametercde53532008-07-04 09:59:22 -07005 * (C) SGI 2006, Christoph Lameter
Christoph Lameter2e892f42006-12-13 00:34:23 -08006 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +00008 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
Andrew Morton1b1cec42006-12-06 20:33:22 -080015#include <linux/gfp.h>
Kees Cook49b7f892018-05-08 12:52:32 -070016#include <linux/overflow.h>
Andrew Morton1b1cec42006-12-06 20:33:22 -080017#include <linux/types.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080018#include <linux/workqueue.h>
Roman Gushchinf0a3a242019-07-11 20:56:27 -070019#include <linux/percpu-refcount.h>
Glauber Costa1f458cb2012-12-18 14:22:50 -080020
Linus Torvalds1da177e2005-04-16 15:20:36 -070021
Christoph Lameter2e892f42006-12-13 00:34:23 -080022/*
23 * Flags to pass to kmem_cache_create().
David Rientjes124dee02015-04-14 15:44:28 -070024 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
Alexey Dobriyand50112e2017-11-15 17:32:18 -080026/* DEBUG: Perform (expensive) checks on alloc/free */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080027#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080028/* DEBUG: Red zone objs in a cache */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080029#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080030/* DEBUG: Poison objects */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080031#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080032/* Align objs on cache lines */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080033#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080034/* Use GFP_DMA memory */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080035#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
Nicolas Boichat6d6ea1e2019-03-28 20:43:42 -070036/* Use GFP_DMA32 memory */
37#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080038/* DEBUG: Store the last owner for bug hunting */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080039#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080040/* Panic if kmem_cache_create() fails */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080041#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020042/*
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -080043 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020044 *
45 * This delays freeing the SLAB page by a grace period, it does _NOT_
46 * delay object freeing. This means that if you do kmem_cache_free()
47 * that memory location is free to be reused at any time. Thus it may
48 * be possible to see another object there in the same RCU grace period.
49 *
50 * This feature only ensures the memory location backing the object
51 * stays valid, the trick to using this is relying on an independent
52 * object validation pass. Something like:
53 *
54 * rcu_read_lock()
55 * again:
56 * obj = lockless_lookup(key);
57 * if (obj) {
58 * if (!try_get_ref(obj)) // might fail for free objects
59 * goto again;
60 *
61 * if (obj->key != key) { // not the object we expected
62 * put_ref(obj);
63 * goto again;
64 * }
65 * }
66 * rcu_read_unlock();
67 *
Joonsoo Kim68126702013-10-24 10:07:42 +090068 * This is useful if we need to approach a kernel structure obliquely,
69 * from its address obtained without the usual locking. We can lock
70 * the structure to stabilize it and check it's still at the given address,
71 * only if we can be sure that the memory has not been meanwhile reused
72 * for some other kind of object (which our subsystem's lock might corrupt).
73 *
74 * rcu_read_lock before reading the address, then rcu_read_unlock after
75 * taking the spinlock within the structure expected at that address.
Paul E. McKenney5f0d5a32017-01-18 02:53:44 -080076 *
77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
Peter Zijlstrad7de4c12008-11-13 20:40:12 +020078 */
Alexey Dobriyand50112e2017-11-15 17:32:18 -080079/* Defer freeing slabs to RCU */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080080#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080081/* Spread some memory over cpuset */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080082#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
Alexey Dobriyand50112e2017-11-15 17:32:18 -080083/* Trace allocations and frees */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080084#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
Linus Torvalds1da177e2005-04-16 15:20:36 -070085
Thomas Gleixner30327ac2008-04-30 00:54:59 -070086/* Flag to prevent checks on free */
87#ifdef CONFIG_DEBUG_OBJECTS
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080088# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
Thomas Gleixner30327ac2008-04-30 00:54:59 -070089#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080090# define SLAB_DEBUG_OBJECTS 0
Thomas Gleixner30327ac2008-04-30 00:54:59 -070091#endif
92
Alexey Dobriyand50112e2017-11-15 17:32:18 -080093/* Avoid kmemleak tracing */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080094#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
Catalin Marinasd5cff632009-06-11 13:22:40 +010095
Alexey Dobriyand50112e2017-11-15 17:32:18 -080096/* Fault injection mark */
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030097#ifdef CONFIG_FAILSLAB
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -080098# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +030099#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800100# define SLAB_FAILSLAB 0
Dmitry Monakhov4c13dd32010-02-26 09:36:12 +0300101#endif
Alexey Dobriyand50112e2017-11-15 17:32:18 -0800102/* Account to memcg */
Kirill Tkhai84c07d12018-08-17 15:47:25 -0700103#ifdef CONFIG_MEMCG_KMEM
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800104# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
Vladimir Davydov230e9fc2016-01-14 15:18:15 -0800105#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800106# define SLAB_ACCOUNT 0
Vladimir Davydov230e9fc2016-01-14 15:18:15 -0800107#endif
Vegard Nossum2dff4402008-05-31 15:56:17 +0200108
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700109#ifdef CONFIG_KASAN
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800110#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700111#else
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800112#define SLAB_KASAN 0
Alexander Potapenko7ed2f9e2016-03-25 14:21:59 -0700113#endif
114
Mel Gormane12ba742007-10-16 01:25:52 -0700115/* The following flags affect the page allocator grouping pages by mobility */
Alexey Dobriyand50112e2017-11-15 17:32:18 -0800116/* Objects are reclaimable */
Alexey Dobriyan4fd0b462017-11-15 17:32:21 -0800117#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
Mel Gormane12ba742007-10-16 01:25:52 -0700118#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800119/*
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700120 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
121 *
122 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
123 *
124 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
125 * Both make kfree a no-op.
126 */
127#define ZERO_SIZE_PTR ((void *)16)
128
Roland Dreier1d4ec7b2007-07-20 12:13:20 -0700129#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
Christoph Lameter6cb8f912007-07-17 04:03:22 -0700130 (unsigned long)ZERO_SIZE_PTR)
131
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800132#include <linux/kasan.h>
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500133
Glauber Costa2633d7a2012-12-18 14:22:34 -0800134struct mem_cgroup;
Christoph Lameter3b0efdf2012-06-13 10:24:57 -0500135/*
Christoph Lameter2e892f42006-12-13 00:34:23 -0800136 * struct kmem_cache related prototypes
137 */
138void __init kmem_cache_init(void);
Denis Kirjanovfda90122015-11-05 18:44:59 -0800139bool slab_is_available(void);
Matt Mackall10cef602006-01-08 01:01:45 -0800140
Kees Cook2d891fb2017-11-30 13:04:32 -0800141extern bool usercopy_fallback;
142
Alexey Dobriyanf4957d52018-04-05 16:20:37 -0700143struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
144 unsigned int align, slab_flags_t flags,
David Windsor8eb82842017-06-10 22:50:28 -0400145 void (*ctor)(void *));
146struct kmem_cache *kmem_cache_create_usercopy(const char *name,
Alexey Dobriyanf4957d52018-04-05 16:20:37 -0700147 unsigned int size, unsigned int align,
148 slab_flags_t flags,
Alexey Dobriyan7bbdb812018-04-05 16:21:31 -0700149 unsigned int useroffset, unsigned int usersize,
David Windsor8eb82842017-06-10 22:50:28 -0400150 void (*ctor)(void *));
Christoph Lameter2e892f42006-12-13 00:34:23 -0800151void kmem_cache_destroy(struct kmem_cache *);
152int kmem_cache_shrink(struct kmem_cache *);
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800153
154void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
Roman Gushchinfb2f2b02019-07-11 20:56:34 -0700155void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700157/*
158 * Please use this macro to create slab caches. Simply specify the
159 * name of the structure and maybe some flags that are listed above.
160 *
161 * The alignment of the struct determines object alignment. If you
162 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
163 * then the objects will be properly aligned in SMP configurations.
164 */
David Windsor8eb82842017-06-10 22:50:28 -0400165#define KMEM_CACHE(__struct, __flags) \
166 kmem_cache_create(#__struct, sizeof(struct __struct), \
167 __alignof__(struct __struct), (__flags), NULL)
168
169/*
170 * To whitelist a single field for copying to/from usercopy, use this
171 * macro instead for KMEM_CACHE() above.
172 */
173#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
174 kmem_cache_create_usercopy(#__struct, \
175 sizeof(struct __struct), \
176 __alignof__(struct __struct), (__flags), \
177 offsetof(struct __struct, __field), \
178 sizeof_field(struct __struct, __field), NULL)
Christoph Lameter0a31bd52007-05-06 14:49:57 -0700179
Christoph Lameter2e892f42006-12-13 00:34:23 -0800180/*
Christoph Lameter34504662013-01-10 19:00:53 +0000181 * Common kmalloc functions provided by all allocators
182 */
183void * __must_check __krealloc(const void *, size_t, gfp_t);
184void * __must_check krealloc(const void *, size_t, gfp_t);
185void kfree(const void *);
186void kzfree(const void *);
Marco Elver10d1f8c2019-07-11 20:54:14 -0700187size_t __ksize(const void *);
Christoph Lameter34504662013-01-10 19:00:53 +0000188size_t ksize(const void *);
189
Kees Cookf5509cc2016-06-07 11:05:33 -0700190#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
Kees Cookf4e6e282018-01-10 14:48:22 -0800191void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
192 bool to_user);
Kees Cookf5509cc2016-06-07 11:05:33 -0700193#else
Kees Cookf4e6e282018-01-10 14:48:22 -0800194static inline void __check_heap_object(const void *ptr, unsigned long n,
195 struct page *page, bool to_user) { }
Kees Cookf5509cc2016-06-07 11:05:33 -0700196#endif
197
Christoph Lameterc601fd62013-02-05 16:36:47 +0000198/*
199 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
200 * alignment larger than the alignment of a 64-bit integer.
201 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
202 */
203#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
204#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
205#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
206#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
207#else
208#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
209#endif
210
Christoph Lameter34504662013-01-10 19:00:53 +0000211/*
Rasmus Villemoes94a58c32015-11-20 15:56:48 -0800212 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
213 * Intended for arches that get misalignment faults even for 64 bit integer
214 * aligned buffers.
215 */
216#ifndef ARCH_SLAB_MINALIGN
217#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
218#endif
219
220/*
221 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
222 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
223 * aligned pointers.
224 */
225#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
226#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
227#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
228
229/*
Christoph Lameter95a05b42013-01-10 19:14:19 +0000230 * Kmalloc array related definitions
231 */
232
233#ifdef CONFIG_SLAB
234/*
235 * The largest kmalloc size supported by the SLAB allocators is
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700236 * 32 megabyte (2^25) or the maximum allocatable page order if that is
237 * less than 32 MB.
238 *
239 * WARNING: Its not easy to increase this value since the allocators have
240 * to do various tricks to work around compiler limitations in order to
241 * ensure proper constant folding.
242 */
Christoph Lameterdebee072007-06-23 17:16:43 -0700243#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
244 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
Christoph Lameter95a05b42013-01-10 19:14:19 +0000245#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
Christoph Lameterc601fd62013-02-05 16:36:47 +0000246#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000247#define KMALLOC_SHIFT_LOW 5
Christoph Lameterc601fd62013-02-05 16:36:47 +0000248#endif
Christoph Lameter069e2b352013-06-14 19:55:13 +0000249#endif
250
251#ifdef CONFIG_SLUB
Christoph Lameter95a05b42013-01-10 19:14:19 +0000252/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800253 * SLUB directly allocates requests fitting in to an order-1 page
254 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
Christoph Lameter95a05b42013-01-10 19:14:19 +0000255 */
256#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
Michal Hockobb1107f2017-01-10 16:57:27 -0800257#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
Christoph Lameterc601fd62013-02-05 16:36:47 +0000258#ifndef KMALLOC_SHIFT_LOW
Christoph Lameter95a05b42013-01-10 19:14:19 +0000259#define KMALLOC_SHIFT_LOW 3
260#endif
Christoph Lameterc601fd62013-02-05 16:36:47 +0000261#endif
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700262
Christoph Lameter069e2b352013-06-14 19:55:13 +0000263#ifdef CONFIG_SLOB
264/*
Dave Hansen433a91f2014-01-28 14:24:50 -0800265 * SLOB passes all requests larger than one page to the page allocator.
Christoph Lameter069e2b352013-06-14 19:55:13 +0000266 * No kmalloc array is necessary since objects of different sizes can
267 * be allocated from the same page.
268 */
Christoph Lameter069e2b352013-06-14 19:55:13 +0000269#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
Michal Hockobb1107f2017-01-10 16:57:27 -0800270#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
Christoph Lameter069e2b352013-06-14 19:55:13 +0000271#ifndef KMALLOC_SHIFT_LOW
272#define KMALLOC_SHIFT_LOW 3
273#endif
274#endif
275
Christoph Lameter95a05b42013-01-10 19:14:19 +0000276/* Maximum allocatable size */
277#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
278/* Maximum size for which we actually use a slab cache */
279#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
280/* Maximum order allocatable via the slab allocagtor */
281#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700282
Christoph Lameter90810642011-06-23 09:36:12 -0500283/*
Christoph Lameterce6a5022013-01-10 19:14:19 +0000284 * Kmalloc subsystem.
285 */
Christoph Lameterc601fd62013-02-05 16:36:47 +0000286#ifndef KMALLOC_MIN_SIZE
Christoph Lameter95a05b42013-01-10 19:14:19 +0000287#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000288#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000289
Joonsoo Kim24f870d2014-03-12 17:06:19 +0900290/*
291 * This restriction comes from byte sized index implementation.
292 * Page size is normally 2^12 bytes and, in this case, if we want to use
293 * byte sized index which can represent 2^8 entries, the size of the object
294 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
295 * If minimum size of kmalloc is less than 16, we use it as minimum object
296 * size and give up to use byte sized index.
297 */
298#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
299 (KMALLOC_MIN_SIZE) : 16)
300
Vlastimil Babka12915232018-10-26 15:05:38 -0700301/*
302 * Whenever changing this, take care of that kmalloc_type() and
303 * create_kmalloc_caches() still work as intended.
304 */
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700305enum kmalloc_cache_type {
306 KMALLOC_NORMAL = 0,
Vlastimil Babka12915232018-10-26 15:05:38 -0700307 KMALLOC_RECLAIM,
Christoph Lameter9425c582013-01-10 19:12:17 +0000308#ifdef CONFIG_ZONE_DMA
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700309 KMALLOC_DMA,
Christoph Lameter9425c582013-01-10 19:12:17 +0000310#endif
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700311 NR_KMALLOC_TYPES
312};
313
314#ifndef CONFIG_SLOB
315extern struct kmem_cache *
316kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
317
318static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
319{
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700320#ifdef CONFIG_ZONE_DMA
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800321 /*
322 * The most common case is KMALLOC_NORMAL, so test for it
323 * with a single branch for both flags.
324 */
325 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
326 return KMALLOC_NORMAL;
Vlastimil Babka12915232018-10-26 15:05:38 -0700327
328 /*
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800329 * At least one of the flags has to be set. If both are, __GFP_DMA
330 * is more important.
Vlastimil Babka12915232018-10-26 15:05:38 -0700331 */
Vlastimil Babka4e45f712018-12-28 00:33:17 -0800332 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
333#else
334 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
335#endif
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700336}
Christoph Lameter9425c582013-01-10 19:12:17 +0000337
Christoph Lameterce6a5022013-01-10 19:14:19 +0000338/*
339 * Figure out which kmalloc slab an allocation of a certain size
340 * belongs to.
341 * 0 = zero alloc
342 * 1 = 65 .. 96 bytes
Rasmus Villemoes1ed58b62015-06-24 16:55:59 -0700343 * 2 = 129 .. 192 bytes
344 * n = 2^(n-1)+1 .. 2^n
Christoph Lameterce6a5022013-01-10 19:14:19 +0000345 */
Alexey Dobriyan36071a22018-04-05 16:20:22 -0700346static __always_inline unsigned int kmalloc_index(size_t size)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000347{
348 if (!size)
349 return 0;
350
351 if (size <= KMALLOC_MIN_SIZE)
352 return KMALLOC_SHIFT_LOW;
353
354 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
355 return 1;
356 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
357 return 2;
358 if (size <= 8) return 3;
359 if (size <= 16) return 4;
360 if (size <= 32) return 5;
361 if (size <= 64) return 6;
362 if (size <= 128) return 7;
363 if (size <= 256) return 8;
364 if (size <= 512) return 9;
365 if (size <= 1024) return 10;
366 if (size <= 2 * 1024) return 11;
367 if (size <= 4 * 1024) return 12;
368 if (size <= 8 * 1024) return 13;
369 if (size <= 16 * 1024) return 14;
370 if (size <= 32 * 1024) return 15;
371 if (size <= 64 * 1024) return 16;
372 if (size <= 128 * 1024) return 17;
373 if (size <= 256 * 1024) return 18;
374 if (size <= 512 * 1024) return 19;
375 if (size <= 1024 * 1024) return 20;
376 if (size <= 2 * 1024 * 1024) return 21;
377 if (size <= 4 * 1024 * 1024) return 22;
378 if (size <= 8 * 1024 * 1024) return 23;
379 if (size <= 16 * 1024 * 1024) return 24;
380 if (size <= 32 * 1024 * 1024) return 25;
381 if (size <= 64 * 1024 * 1024) return 26;
382 BUG();
383
384 /* Will never be reached. Needed because the compiler may complain */
385 return -1;
386}
Christoph Lameter069e2b352013-06-14 19:55:13 +0000387#endif /* !CONFIG_SLOB */
Christoph Lameterce6a5022013-01-10 19:14:19 +0000388
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700389void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
390void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
Vladimir Davydov2a4db7e2015-02-12 14:59:32 -0800391void kmem_cache_free(struct kmem_cache *, void *);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000392
Christoph Lameter484748f2015-09-04 15:45:34 -0700393/*
Jesper Dangaard Brouer9f706d62016-03-15 14:54:03 -0700394 * Bulk allocation and freeing operations. These are accelerated in an
Christoph Lameter484748f2015-09-04 15:45:34 -0700395 * allocator specific way to avoid taking locks repeatedly or building
396 * metadata structures unnecessarily.
397 *
398 * Note that interrupts must be enabled when calling these functions.
399 */
400void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
Jesper Dangaard Brouer865762a2015-11-20 15:57:58 -0800401int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
Christoph Lameter484748f2015-09-04 15:45:34 -0700402
Jesper Dangaard Brouerca257192016-03-15 14:54:00 -0700403/*
404 * Caller must not use kfree_bulk() on memory not originally allocated
405 * by kmalloc(), because the SLOB allocator cannot handle this.
406 */
407static __always_inline void kfree_bulk(size_t size, void **p)
408{
409 kmem_cache_free_bulk(NULL, size, p);
410}
411
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000412#ifdef CONFIG_NUMA
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700413void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
414void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000415#else
416static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
417{
418 return __kmalloc(size, flags);
419}
420
421static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
422{
423 return kmem_cache_alloc(s, flags);
424}
425#endif
426
427#ifdef CONFIG_TRACING
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700428extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000429
430#ifdef CONFIG_NUMA
431extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
432 gfp_t gfpflags,
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700433 int node, size_t size) __assume_slab_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000434#else
435static __always_inline void *
436kmem_cache_alloc_node_trace(struct kmem_cache *s,
437 gfp_t gfpflags,
438 int node, size_t size)
439{
440 return kmem_cache_alloc_trace(s, gfpflags, size);
441}
442#endif /* CONFIG_NUMA */
443
444#else /* CONFIG_TRACING */
445static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
446 gfp_t flags, size_t size)
447{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800448 void *ret = kmem_cache_alloc(s, flags);
449
Andrey Konovalov01165232018-12-28 00:29:37 -0800450 ret = kasan_kmalloc(s, ret, size, flags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800451 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000452}
453
454static __always_inline void *
455kmem_cache_alloc_node_trace(struct kmem_cache *s,
456 gfp_t gfpflags,
457 int node, size_t size)
458{
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800459 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
460
Andrey Konovalov01165232018-12-28 00:29:37 -0800461 ret = kasan_kmalloc(s, ret, size, gfpflags);
Andrey Ryabinin0316bec2015-02-13 14:39:42 -0800462 return ret;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000463}
464#endif /* CONFIG_TRACING */
465
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700466extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000467
468#ifdef CONFIG_TRACING
Rasmus Villemoes48a270552016-05-19 17:10:55 -0700469extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000470#else
471static __always_inline void *
472kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
473{
474 return kmalloc_order(size, flags, order);
475}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000476#endif
477
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000478static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
479{
480 unsigned int order = get_order(size);
481 return kmalloc_order_trace(size, flags, order);
482}
483
484/**
485 * kmalloc - allocate memory
486 * @size: how many bytes of memory are required.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800487 * @flags: the type of memory to allocate.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000488 *
489 * kmalloc is the normal method of allocating memory
490 * for objects smaller than page size in the kernel.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800491 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200492 * The @flags argument may be one of the GFP flags defined at
493 * include/linux/gfp.h and described at
494 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800495 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200496 * The recommended usage of the @flags is described at
Jonathan Corbet3870a232018-11-20 09:22:24 -0700497 * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800498 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200499 * Below is a brief outline of the most useful GFP flags
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800500 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200501 * %GFP_KERNEL
502 * Allocate normal kernel ram. May sleep.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800503 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200504 * %GFP_NOWAIT
505 * Allocation will not sleep.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800506 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200507 * %GFP_ATOMIC
508 * Allocation will not sleep. May use emergency pools.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800509 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200510 * %GFP_HIGHUSER
511 * Allocate memory from high memory on behalf of user.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800512 *
513 * Also it is possible to set different flags by OR'ing
514 * in one or more of the following additional @flags:
515 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200516 * %__GFP_HIGH
517 * This allocation has high priority and may use emergency pools.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800518 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200519 * %__GFP_NOFAIL
520 * Indicate that this allocation is in no way allowed to fail
521 * (think twice before using).
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800522 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200523 * %__GFP_NORETRY
524 * If memory is not immediately available,
525 * then give up at once.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800526 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200527 * %__GFP_NOWARN
528 * If allocation fails, don't issue any warnings.
Randy Dunlap7e3528c2013-11-22 18:14:38 -0800529 *
Mike Rapoport01598ba2018-11-11 18:48:44 +0200530 * %__GFP_RETRY_MAYFAIL
531 * Try really hard to succeed the allocation but fail
532 * eventually.
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000533 */
534static __always_inline void *kmalloc(size_t size, gfp_t flags)
535{
536 if (__builtin_constant_p(size)) {
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700537#ifndef CONFIG_SLOB
538 unsigned int index;
539#endif
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000540 if (size > KMALLOC_MAX_CACHE_SIZE)
541 return kmalloc_large(size, flags);
542#ifndef CONFIG_SLOB
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700543 index = kmalloc_index(size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000544
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700545 if (!index)
546 return ZERO_SIZE_PTR;
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000547
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700548 return kmem_cache_alloc_trace(
549 kmalloc_caches[kmalloc_type(flags)][index],
550 flags, size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000551#endif
552 }
553 return __kmalloc(size, flags);
554}
555
Christoph Lameterce6a5022013-01-10 19:14:19 +0000556/*
557 * Determine size used for the nth kmalloc cache.
558 * return size or 0 if a kmalloc cache for that
559 * size does not exist
560 */
Alexey Dobriyan0be70322018-04-05 16:20:26 -0700561static __always_inline unsigned int kmalloc_size(unsigned int n)
Christoph Lameterce6a5022013-01-10 19:14:19 +0000562{
Christoph Lameter069e2b352013-06-14 19:55:13 +0000563#ifndef CONFIG_SLOB
Christoph Lameterce6a5022013-01-10 19:14:19 +0000564 if (n > 2)
Alexey Dobriyan0be70322018-04-05 16:20:26 -0700565 return 1U << n;
Christoph Lameterce6a5022013-01-10 19:14:19 +0000566
567 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
568 return 96;
569
570 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
571 return 192;
Christoph Lameter069e2b352013-06-14 19:55:13 +0000572#endif
Christoph Lameterce6a5022013-01-10 19:14:19 +0000573 return 0;
574}
Christoph Lameterce6a5022013-01-10 19:14:19 +0000575
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000576static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
577{
578#ifndef CONFIG_SLOB
579 if (__builtin_constant_p(size) &&
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700580 size <= KMALLOC_MAX_CACHE_SIZE) {
Alexey Dobriyan36071a22018-04-05 16:20:22 -0700581 unsigned int i = kmalloc_index(size);
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000582
583 if (!i)
584 return ZERO_SIZE_PTR;
585
Vlastimil Babkacc252ea2018-10-26 15:05:34 -0700586 return kmem_cache_alloc_node_trace(
587 kmalloc_caches[kmalloc_type(flags)][i],
Christoph Lameterf1b6eb62013-09-04 16:35:34 +0000588 flags, node, size);
589 }
590#endif
591 return __kmalloc_node(size, flags, node);
592}
593
Vladimir Davydovf7ce3192015-02-12 14:59:20 -0800594struct memcg_cache_array {
595 struct rcu_head rcu;
596 struct kmem_cache *entries[0];
597};
598
Christoph Lameter0aa817f2007-05-16 22:11:01 -0700599/*
Glauber Costaba6c4962012-12-18 14:22:27 -0800600 * This is the main placeholder for memcg-related information in kmem caches.
Glauber Costaba6c4962012-12-18 14:22:27 -0800601 * Both the root cache and the child caches will have it. For the root cache,
602 * this will hold a dynamically allocated array large enough to hold
Vladimir Davydovf8570262014-01-23 15:53:06 -0800603 * information about the currently limited memcgs in the system. To allow the
604 * array to be accessed without taking any locks, on relocation we free the old
605 * version only after a grace period.
Glauber Costaba6c4962012-12-18 14:22:27 -0800606 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800607 * Root and child caches hold different metadata.
Glauber Costaba6c4962012-12-18 14:22:27 -0800608 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800609 * @root_cache: Common to root and child caches. NULL for root, pointer to
610 * the root cache for children.
Vladimir Davydov426589f2015-02-12 14:59:23 -0800611 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800612 * The following fields are specific to root caches.
613 *
614 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
615 * used to index child cachces during allocation and cleared
616 * early during shutdown.
617 *
Tejun Heo510ded32017-02-22 15:41:24 -0800618 * @root_caches_node: List node for slab_root_caches list.
619 *
Tejun Heo9eeadc82017-02-22 15:41:17 -0800620 * @children: List of all child caches. While the child caches are also
621 * reachable through @memcg_caches, a child cache remains on
622 * this list until it is actually destroyed.
623 *
624 * The following fields are specific to child caches.
625 *
626 * @memcg: Pointer to the memcg this cache belongs to.
627 *
628 * @children_node: List node for @root_cache->children list.
Tejun Heobc2791f2017-02-22 15:41:21 -0800629 *
630 * @kmem_caches_node: List node for @memcg->kmem_caches list.
Glauber Costaba6c4962012-12-18 14:22:27 -0800631 */
632struct memcg_cache_params {
Tejun Heo9eeadc82017-02-22 15:41:17 -0800633 struct kmem_cache *root_cache;
Glauber Costaba6c4962012-12-18 14:22:27 -0800634 union {
Tejun Heo9eeadc82017-02-22 15:41:17 -0800635 struct {
636 struct memcg_cache_array __rcu *memcg_caches;
Tejun Heo510ded32017-02-22 15:41:24 -0800637 struct list_head __root_caches_node;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800638 struct list_head children;
Shakeel Butt92ee3832018-06-14 15:26:27 -0700639 bool dying;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800640 };
Glauber Costa2633d7a2012-12-18 14:22:34 -0800641 struct {
642 struct mem_cgroup *memcg;
Tejun Heo9eeadc82017-02-22 15:41:17 -0800643 struct list_head children_node;
Tejun Heobc2791f2017-02-22 15:41:21 -0800644 struct list_head kmem_caches_node;
Roman Gushchinf0a3a242019-07-11 20:56:27 -0700645 struct percpu_ref refcnt;
Tejun Heo01fb58b2017-02-22 15:41:30 -0800646
Roman Gushchin0b14e8a2019-07-11 20:56:06 -0700647 void (*work_fn)(struct kmem_cache *);
Tejun Heo01fb58b2017-02-22 15:41:30 -0800648 union {
Roman Gushchin0b14e8a2019-07-11 20:56:06 -0700649 struct rcu_head rcu_head;
650 struct work_struct work;
Tejun Heo01fb58b2017-02-22 15:41:30 -0800651 };
Glauber Costa2633d7a2012-12-18 14:22:34 -0800652 };
Glauber Costaba6c4962012-12-18 14:22:27 -0800653 };
654};
655
Glauber Costa2633d7a2012-12-18 14:22:34 -0800656int memcg_update_all_caches(int num_memcgs);
657
Christoph Lameter2e892f42006-12-13 00:34:23 -0800658/**
Michael Opdenackere7efa612013-06-25 18:16:55 +0200659 * kmalloc_array - allocate memory for an array.
660 * @n: number of elements.
661 * @size: element size.
662 * @flags: the type of memory to allocate (see kmalloc).
Paul Drynoff800590f2006-06-23 02:03:48 -0700663 */
Xi Wanga8203722012-03-05 15:14:41 -0800664static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700665{
Kees Cook49b7f892018-05-08 12:52:32 -0700666 size_t bytes;
667
668 if (unlikely(check_mul_overflow(n, size, &bytes)))
Paul Mundt6193a2f2007-07-15 23:38:22 -0700669 return NULL;
Alexey Dobriyan91c6a052016-07-26 15:22:08 -0700670 if (__builtin_constant_p(n) && __builtin_constant_p(size))
Kees Cook49b7f892018-05-08 12:52:32 -0700671 return kmalloc(bytes, flags);
672 return __kmalloc(bytes, flags);
Xi Wanga8203722012-03-05 15:14:41 -0800673}
674
675/**
676 * kcalloc - allocate memory for an array. The memory is set to zero.
677 * @n: number of elements.
678 * @size: element size.
679 * @flags: the type of memory to allocate (see kmalloc).
680 */
681static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
682{
683 return kmalloc_array(n, size, flags | __GFP_ZERO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684}
685
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700686/*
687 * kmalloc_track_caller is a special version of kmalloc that records the
688 * calling function of the routine calling it for slab leak tracking instead
689 * of just the calling function (confusing, eh?).
690 * It's useful when the call to kmalloc comes from a widely-used standard
691 * allocator where we care about the real place the memory allocation
692 * request comes from.
693 */
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300694extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -0700695#define kmalloc_track_caller(size, flags) \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300696 __kmalloc_track_caller(size, flags, _RET_IP_)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800698static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
699 int node)
700{
Kees Cook49b7f892018-05-08 12:52:32 -0700701 size_t bytes;
702
703 if (unlikely(check_mul_overflow(n, size, &bytes)))
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800704 return NULL;
705 if (__builtin_constant_p(n) && __builtin_constant_p(size))
Kees Cook49b7f892018-05-08 12:52:32 -0700706 return kmalloc_node(bytes, flags, node);
707 return __kmalloc_node(bytes, flags, node);
Johannes Thumshirn5799b252017-11-15 17:32:29 -0800708}
709
710static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
711{
712 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
713}
714
715
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700716#ifdef CONFIG_NUMA
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300717extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800718#define kmalloc_node_track_caller(size, flags, node) \
719 __kmalloc_node_track_caller(size, flags, node, \
Eduard - Gabriel Munteanuce71e272008-08-19 20:43:25 +0300720 _RET_IP_)
Christoph Lameter2e892f42006-12-13 00:34:23 -0800721
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800722#else /* CONFIG_NUMA */
Christoph Lameter2e892f42006-12-13 00:34:23 -0800723
724#define kmalloc_node_track_caller(size, flags, node) \
725 kmalloc_track_caller(size, flags)
726
Pascal Terjandfcd3612008-11-25 15:08:19 +0100727#endif /* CONFIG_NUMA */
Christoph Hellwig8b98c162006-12-06 20:32:30 -0800728
Christoph Lameter81cda662007-07-17 04:03:29 -0700729/*
730 * Shortcuts
731 */
732static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
733{
734 return kmem_cache_alloc(k, flags | __GFP_ZERO);
735}
736
737/**
738 * kzalloc - allocate memory. The memory is set to zero.
739 * @size: how many bytes of memory are required.
740 * @flags: the type of memory to allocate (see kmalloc).
741 */
742static inline void *kzalloc(size_t size, gfp_t flags)
743{
744 return kmalloc(size, flags | __GFP_ZERO);
745}
746
Jeff Layton979b0fe2008-06-05 22:47:00 -0700747/**
748 * kzalloc_node - allocate zeroed memory from a particular memory node.
749 * @size: how many bytes of memory are required.
750 * @flags: the type of memory to allocate (see kmalloc).
751 * @node: memory node from which to allocate
752 */
753static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
754{
755 return kmalloc_node(size, flags | __GFP_ZERO, node);
756}
757
Joonsoo Kim07f361b2014-10-09 15:26:00 -0700758unsigned int kmem_cache_size(struct kmem_cache *s);
Pekka Enberg7e85ee02009-06-12 14:03:06 +0300759void __init kmem_cache_init_late(void);
760
Sebastian Andrzej Siewior6731d4f2016-08-23 14:53:19 +0200761#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
762int slab_prepare_cpu(unsigned int cpu);
763int slab_dead_cpu(unsigned int cpu);
764#else
765#define slab_prepare_cpu NULL
766#define slab_dead_cpu NULL
767#endif
768
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769#endif /* _LINUX_SLAB_H */