blob: 3c708e8b5e2d340f20d05183906cfc057bee481c [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Kent Overstreetcafe5632013-03-23 16:11:31 -07002#ifndef _BCACHE_H
3#define _BCACHE_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
Joe Perches46f5aa82020-05-27 12:01:52 +0800179#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
Kent Overstreetcafe5632013-03-23 16:11:31 -0700180
Kent Overstreet81ab4192013-10-31 15:46:42 -0700181#include <linux/bcache.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700182#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700183#include <linux/kobject.h>
184#include <linux/list.h>
185#include <linux/mutex.h>
186#include <linux/rbtree.h>
187#include <linux/rwsem.h>
Elena Reshetova3b304d22017-10-30 14:46:32 -0700188#include <linux/refcount.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700189#include <linux/types.h>
190#include <linux/workqueue.h>
Coly Li771f3932018-03-18 17:36:17 -0700191#include <linux/kthread.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700192
Kent Overstreet67539e82013-09-10 22:53:34 -0700193#include "bset.h"
Kent Overstreetcafe5632013-03-23 16:11:31 -0700194#include "util.h"
195#include "closure.h"
196
197struct bucket {
198 atomic_t pin;
199 uint16_t prio;
200 uint8_t gen;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700201 uint8_t last_gc; /* Most out of date gen in the btree */
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800202 uint16_t gc_mark; /* Bitfield used by GC. See below for field */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700203};
204
205/*
206 * I'd use bitfields for these, but I don't trust the compiler not to screw me
207 * as multiple threads touch struct bucket without locking
208 */
209
210BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
Kent Overstreet4fe6a812014-03-13 13:46:29 -0700211#define GC_MARK_RECLAIMABLE 1
212#define GC_MARK_DIRTY 2
213#define GC_MARK_METADATA 3
Darrick J. Wong94717442014-01-28 16:57:39 -0800214#define GC_SECTORS_USED_SIZE 13
215#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
216BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800217BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700218
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219#include "journal.h"
220#include "stats.h"
221struct search;
222struct btree;
223struct keybuf;
224
225struct keybuf_key {
226 struct rb_node node;
227 BKEY_PADDED(key);
228 void *private;
229};
230
Kent Overstreetcafe5632013-03-23 16:11:31 -0700231struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700232 struct bkey last_scanned;
233 spinlock_t lock;
234
235 /*
236 * Beginning and end of range in rb tree - so that we can skip taking
237 * lock and checking the rb tree when we need to check for overlapping
238 * keys.
239 */
240 struct bkey start;
241 struct bkey end;
242
243 struct rb_root keys;
244
Kent Overstreet48a915a2013-10-31 15:43:22 -0700245#define KEYBUF_NR 500
Kent Overstreetcafe5632013-03-23 16:11:31 -0700246 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
247};
248
Kent Overstreetcafe5632013-03-23 16:11:31 -0700249struct bcache_device {
250 struct closure cl;
251
252 struct kobject kobj;
253
254 struct cache_set *c;
Coly Li6f10f7d2018-08-11 13:19:44 +0800255 unsigned int id;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700256#define BCACHEDEVNAME_SIZE 12
257 char name[BCACHEDEVNAME_SIZE];
258
259 struct gendisk *disk;
260
Kent Overstreetc4d951d2013-08-21 17:49:09 -0700261 unsigned long flags;
Coly Li3fd47bf2018-03-18 17:36:16 -0700262#define BCACHE_DEV_CLOSING 0
263#define BCACHE_DEV_DETACHING 1
264#define BCACHE_DEV_UNLINK_DONE 2
265#define BCACHE_DEV_WB_RUNNING 3
266#define BCACHE_DEV_RATE_DW_RUNNING 4
Coly Li6f10f7d2018-08-11 13:19:44 +0800267 unsigned int nr_stripes;
268 unsigned int stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700269 atomic_t *stripe_sectors_dirty;
Kent Overstreet48a915a2013-10-31 15:43:22 -0700270 unsigned long *full_dirty_stripes;
Kent Overstreet279afba2013-06-05 06:21:07 -0700271
Kent Overstreetd19936a2018-05-20 18:25:51 -0400272 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700273
Coly Li6f10f7d2018-08-11 13:19:44 +0800274 unsigned int data_csum:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700275
Coly Lifc2d5982018-08-11 13:19:46 +0800276 int (*cache_miss)(struct btree *b, struct search *s,
277 struct bio *bio, unsigned int sectors);
Coly Lid0c1b892018-08-11 13:19:59 +0800278 int (*ioctl)(struct bcache_device *d, fmode_t mode,
279 unsigned int cmd, unsigned long arg);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700280};
281
282struct io {
283 /* Used to track sequential IO so it can be skipped */
284 struct hlist_node hash;
285 struct list_head lru;
286
287 unsigned long jiffies;
Coly Li6f10f7d2018-08-11 13:19:44 +0800288 unsigned int sequential;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700289 sector_t last;
290};
291
Coly Li7e027ca2018-03-18 17:36:18 -0700292enum stop_on_failure {
293 BCH_CACHED_DEV_STOP_AUTO = 0,
294 BCH_CACHED_DEV_STOP_ALWAYS,
295 BCH_CACHED_DEV_STOP_MODE_MAX,
296};
297
Kent Overstreetcafe5632013-03-23 16:11:31 -0700298struct cached_dev {
299 struct list_head list;
300 struct bcache_device disk;
301 struct block_device *bdev;
302
303 struct cache_sb sb;
Christoph Hellwig475389a2020-01-24 01:01:33 +0800304 struct cache_sb_disk *sb_disk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700305 struct bio sb_bio;
306 struct bio_vec sb_bv[1];
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800307 struct closure sb_write;
308 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700309
310 /* Refcount on the cache set. Always nonzero when we're caching. */
Elena Reshetova3b304d22017-10-30 14:46:32 -0700311 refcount_t count;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700312 struct work_struct detach;
313
314 /*
315 * Device might not be running if it's dirty and the cache set hasn't
316 * showed up yet.
317 */
318 atomic_t running;
319
320 /*
321 * Writes take a shared lock from start to finish; scanning for dirty
322 * data to refill the rb tree requires an exclusive lock.
323 */
324 struct rw_semaphore writeback_lock;
325
326 /*
327 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
328 * data in the cache. Protected by writeback_lock; must have an
329 * shared lock to set and exclusive lock to clear.
330 */
331 atomic_t has_dirty;
332
Coly Li038ba8c2020-02-01 22:42:33 +0800333#define BCH_CACHE_READA_ALL 0
334#define BCH_CACHE_READA_META_ONLY 1
335 unsigned int cache_readahead_policy;
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700336 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700337 struct delayed_work writeback_rate_update;
338
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700339 /* Limit number of writeback bios in flight */
340 struct semaphore in_flight;
Kent Overstreet5e6926da2013-07-24 17:50:06 -0700341 struct task_struct *writeback_thread;
Tang Junhui9baf3092017-09-06 14:25:59 +0800342 struct workqueue_struct *writeback_write_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700343
344 struct keybuf writeback_keys;
345
Coly Li0f0709e2018-05-28 15:37:41 +0800346 struct task_struct *status_update_thread;
Michael Lyle6e6ccc62018-01-08 12:21:23 -0800347 /*
348 * Order the write-half of writeback operations strongly in dispatch
349 * order. (Maintain LBA order; don't allow reads completing out of
350 * order to re-order the writes...)
351 */
352 struct closure_waitlist writeback_ordering_wait;
353 atomic_t writeback_sequence_next;
354
Kent Overstreetcafe5632013-03-23 16:11:31 -0700355 /* For tracking sequential IO */
356#define RECENT_IO_BITS 7
357#define RECENT_IO (1 << RECENT_IO_BITS)
358 struct io io[RECENT_IO];
359 struct hlist_head io_hash[RECENT_IO + 1];
360 struct list_head io_lru;
361 spinlock_t io_lock;
362
363 struct cache_accounting accounting;
364
365 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800366 unsigned int sequential_cutoff;
367 unsigned int readahead;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700368
Coly Li6f10f7d2018-08-11 13:19:44 +0800369 unsigned int io_disable:1;
370 unsigned int verify:1;
371 unsigned int bypass_torture_test:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700372
Coly Li6f10f7d2018-08-11 13:19:44 +0800373 unsigned int partial_stripes_expensive:1;
374 unsigned int writeback_metadata:1;
375 unsigned int writeback_running:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700376 unsigned char writeback_percent;
Coly Li6f10f7d2018-08-11 13:19:44 +0800377 unsigned int writeback_delay;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700378
Kent Overstreetcafe5632013-03-23 16:11:31 -0700379 uint64_t writeback_rate_target;
Kent Overstreet16749c22013-11-11 13:58:34 -0800380 int64_t writeback_rate_proportional;
Michael Lyle1d316e62017-10-13 16:35:36 -0700381 int64_t writeback_rate_integral;
382 int64_t writeback_rate_integral_scaled;
Michael Lylee41166c2017-10-13 16:35:38 -0700383 int32_t writeback_rate_change;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700384
Coly Li6f10f7d2018-08-11 13:19:44 +0800385 unsigned int writeback_rate_update_seconds;
386 unsigned int writeback_rate_i_term_inverse;
387 unsigned int writeback_rate_p_term_inverse;
388 unsigned int writeback_rate_minimum;
Coly Li7e027ca2018-03-18 17:36:18 -0700389
390 enum stop_on_failure stop_when_cache_set_failed;
Coly Lic7b7bd02018-03-18 17:36:25 -0700391#define DEFAULT_CACHED_DEV_ERROR_LIMIT 64
392 atomic_t io_errors;
Coly Li6f10f7d2018-08-11 13:19:44 +0800393 unsigned int error_limit;
394 unsigned int offline_seconds;
Coly Li6e916a72018-05-03 18:51:32 +0800395
396 char backing_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700397};
398
Kent Overstreet78365412013-12-17 01:29:34 -0800399enum alloc_reserve {
400 RESERVE_BTREE,
401 RESERVE_PRIO,
402 RESERVE_MOVINGGC,
403 RESERVE_NONE,
404 RESERVE_NR,
Kent Overstreetcafe5632013-03-23 16:11:31 -0700405};
406
407struct cache {
408 struct cache_set *set;
409 struct cache_sb sb;
Christoph Hellwig475389a2020-01-24 01:01:33 +0800410 struct cache_sb_disk *sb_disk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700411 struct bio sb_bio;
412 struct bio_vec sb_bv[1];
413
414 struct kobject kobj;
415 struct block_device *bdev;
416
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700417 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700418
419 struct closure prio;
420 struct prio_set *disk_buckets;
421
422 /*
423 * When allocating new buckets, prio_write() gets first dibs - since we
424 * may not be allocate at all without writing priorities and gens.
Coly Licb329de2018-08-09 15:48:46 +0800425 * prio_last_buckets[] contains the last buckets we wrote priorities to
426 * (so gc can mark them as metadata), prio_buckets[] contains the
427 * buckets allocated for the next prio write.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700428 */
429 uint64_t *prio_buckets;
430 uint64_t *prio_last_buckets;
431
432 /*
433 * free: Buckets that are ready to be used
434 *
435 * free_inc: Incoming buckets - these are buckets that currently have
436 * cached data in them, and we can't reuse them until after we write
437 * their new gen to disk. After prio_write() finishes writing the new
438 * gens/prios, they'll be moved to the free list (and possibly discarded
439 * in the process)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700440 */
Kent Overstreet78365412013-12-17 01:29:34 -0800441 DECLARE_FIFO(long, free)[RESERVE_NR];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700442 DECLARE_FIFO(long, free_inc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700443
444 size_t fifo_last_bucket;
445
446 /* Allocation stuff: */
447 struct bucket *buckets;
448
449 DECLARE_HEAP(struct bucket *, heap);
450
451 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700452 * If nonzero, we know we aren't going to find any buckets to invalidate
453 * until a gc finishes - otherwise we could pointlessly burn a ton of
454 * cpu
455 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800456 unsigned int invalidate_needs_gc;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700457
458 bool discard; /* Get rid of? */
459
Kent Overstreetcafe5632013-03-23 16:11:31 -0700460 struct journal_device journal;
461
462 /* The rest of this all shows up in sysfs */
463#define IO_ERROR_SHIFT 20
464 atomic_t io_errors;
465 atomic_t io_count;
466
467 atomic_long_t meta_sectors_written;
468 atomic_long_t btree_sectors_written;
469 atomic_long_t sectors_written;
Coly Li6e916a72018-05-03 18:51:32 +0800470
471 char cache_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700472};
473
474struct gc_stat {
475 size_t nodes;
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800476 size_t nodes_pre;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700477 size_t key_bytes;
478
479 size_t nkeys;
480 uint64_t data; /* sectors */
Coly Li6f10f7d2018-08-11 13:19:44 +0800481 unsigned int in_use; /* percent */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700482};
483
484/*
485 * Flag bits, for how the cache set is shutting down, and what phase it's at:
486 *
487 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
488 * all the backing devices first (their cached data gets invalidated, and they
489 * won't automatically reattach).
490 *
491 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
492 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
493 * flushing dirty data).
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700494 *
495 * CACHE_SET_RUNNING means all cache devices have been registered and journal
496 * replay is complete.
Coly Li771f3932018-03-18 17:36:17 -0700497 *
498 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
499 * external and internal I/O should be denied when this flag is set.
500 *
Kent Overstreetcafe5632013-03-23 16:11:31 -0700501 */
502#define CACHE_SET_UNREGISTERING 0
503#define CACHE_SET_STOPPING 1
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700504#define CACHE_SET_RUNNING 2
Coly Li771f3932018-03-18 17:36:17 -0700505#define CACHE_SET_IO_DISABLE 3
Kent Overstreetcafe5632013-03-23 16:11:31 -0700506
507struct cache_set {
508 struct closure cl;
509
510 struct list_head list;
511 struct kobject kobj;
512 struct kobject internal;
513 struct dentry *debug;
514 struct cache_accounting accounting;
515
516 unsigned long flags;
Coly Liea8c53562018-08-09 15:48:49 +0800517 atomic_t idle_counter;
518 atomic_t at_max_writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700519
520 struct cache_sb sb;
521
522 struct cache *cache[MAX_CACHES_PER_SET];
523 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
524 int caches_loaded;
525
526 struct bcache_device **devices;
Coly Li6f10f7d2018-08-11 13:19:44 +0800527 unsigned int devices_max_used;
Coly Liea8c53562018-08-09 15:48:49 +0800528 atomic_t attached_dev_nr;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700529 struct list_head cached_devs;
530 uint64_t cached_dev_sectors;
Tang Junhui99a27d52018-07-26 12:17:33 +0800531 atomic_long_t flash_dev_dirty_sectors;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700532 struct closure caching;
533
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800534 struct closure sb_write;
535 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700536
Kent Overstreetd19936a2018-05-20 18:25:51 -0400537 mempool_t search;
538 mempool_t bio_meta;
539 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700540
541 /* For the btree cache */
542 struct shrinker shrink;
543
Kent Overstreetcafe5632013-03-23 16:11:31 -0700544 /* For the btree cache and anything allocation related */
545 struct mutex bucket_lock;
546
547 /* log2(bucket_size), in sectors */
548 unsigned short bucket_bits;
549
550 /* log2(block_size), in sectors */
551 unsigned short block_bits;
552
553 /*
554 * Default number of pages for a new btree node - may be less than a
555 * full bucket
556 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800557 unsigned int btree_pages;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700558
559 /*
560 * Lists of struct btrees; lru is the list for structs that have memory
561 * allocated for actual btree node, freed is for structs that do not.
562 *
563 * We never free a struct btree, except on shutdown - we just put it on
564 * the btree_cache_freed list and reuse it later. This simplifies the
565 * code, and it doesn't cost us much memory as the memory usage is
566 * dominated by buffers that hold the actual btree node data and those
567 * can be freed - and the number of struct btrees allocated is
568 * effectively bounded.
569 *
570 * btree_cache_freeable effectively is a small cache - we use it because
571 * high order page allocations can be rather expensive, and it's quite
572 * common to delete and allocate btree nodes in quick succession. It
573 * should never grow past ~2-3 nodes in practice.
574 */
575 struct list_head btree_cache;
576 struct list_head btree_cache_freeable;
577 struct list_head btree_cache_freed;
578
579 /* Number of elements in btree_cache + btree_cache_freeable lists */
Coly Li6f10f7d2018-08-11 13:19:44 +0800580 unsigned int btree_cache_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700581
582 /*
583 * If we need to allocate memory for a new btree node and that
584 * allocation fails, we can cannibalize another node in the btree cache
Kent Overstreet0a63b662014-03-17 17:15:53 -0700585 * to satisfy the allocation - lock to guarantee only one thread does
586 * this at a time:
Kent Overstreetcafe5632013-03-23 16:11:31 -0700587 */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700588 wait_queue_head_t btree_cache_wait;
589 struct task_struct *btree_cache_alloc_lock;
Guoju Fang34cf78b2019-11-13 16:03:16 +0800590 spinlock_t btree_cannibalize_lock;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700591
592 /*
593 * When we free a btree node, we increment the gen of the bucket the
594 * node is in - but we can't rewrite the prios and gens until we
595 * finished whatever it is we were doing, otherwise after a crash the
596 * btree node would be freed but for say a split, we might not have the
597 * pointers to the new nodes inserted into the btree yet.
598 *
599 * This is a refcount that blocks prio_write() until the new keys are
600 * written.
601 */
602 atomic_t prio_blocked;
Kent Overstreet35fcd842013-07-24 17:29:09 -0700603 wait_queue_head_t bucket_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700604
605 /*
606 * For any bio we don't skip we subtract the number of sectors from
607 * rescale; when it hits 0 we rescale all the bucket priorities.
608 */
609 atomic_t rescale;
610 /*
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800611 * used for GC, identify if any front side I/Os is inflight
612 */
613 atomic_t search_inflight;
614 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700615 * When we invalidate buckets, we use both the priority and the amount
616 * of good data to determine which buckets to reuse first - to weight
617 * those together consistently we keep track of the smallest nonzero
618 * priority of any bucket.
619 */
620 uint16_t min_prio;
621
622 /*
Coly Lib0d30982018-08-11 13:19:47 +0800623 * max(gen - last_gc) for all buckets. When it gets too big we have to
624 * gc to keep gens from wrapping around.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700625 */
626 uint8_t need_gc;
627 struct gc_stat gc_stats;
628 size_t nbuckets;
Tang Junhuid44c2f92017-10-30 14:46:33 -0700629 size_t avail_nbuckets;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700630
Kent Overstreet72a44512013-10-24 17:19:26 -0700631 struct task_struct *gc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700632 /* Where in the btree gc currently is */
633 struct bkey gc_done;
634
635 /*
Coly Li7a671d82018-12-13 22:53:53 +0800636 * For automatical garbage collection after writeback completed, this
637 * varialbe is used as bit fields,
638 * - 0000 0001b (BCH_ENABLE_AUTO_GC): enable gc after writeback
639 * - 0000 0010b (BCH_DO_AUTO_GC): do gc after writeback
640 * This is an optimization for following write request after writeback
641 * finished, but read hit rate dropped due to clean data on cache is
642 * discarded. Unless user explicitly sets it via sysfs, it won't be
643 * enabled.
644 */
645#define BCH_ENABLE_AUTO_GC 1
646#define BCH_DO_AUTO_GC 2
647 uint8_t gc_after_writeback;
648
649 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700650 * The allocation code needs gc_mark in struct bucket to be correct, but
651 * it's not while a gc is in progress. Protected by bucket_lock.
652 */
653 int gc_mark_valid;
654
655 /* Counts how many sectors bio_insert has added to the cache */
656 atomic_t sectors_to_gc;
Kent Overstreetbe628be2016-10-26 20:31:17 -0700657 wait_queue_head_t gc_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700658
Kent Overstreetcafe5632013-03-23 16:11:31 -0700659 struct keybuf moving_gc_keys;
660 /* Number of moving GC bios in flight */
Kent Overstreet72a44512013-10-24 17:19:26 -0700661 struct semaphore moving_in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700662
Nicholas Swensonda415a02014-01-09 16:03:04 -0800663 struct workqueue_struct *moving_gc_wq;
664
Kent Overstreetcafe5632013-03-23 16:11:31 -0700665 struct btree *root;
666
667#ifdef CONFIG_BCACHE_DEBUG
668 struct btree *verify_data;
Kent Overstreet78b77bf2013-12-17 22:49:08 -0800669 struct bset *verify_ondisk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700670 struct mutex verify_lock;
671#endif
672
Coly Li6f10f7d2018-08-11 13:19:44 +0800673 unsigned int nr_uuids;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700674 struct uuid_entry *uuids;
675 BKEY_PADDED(uuid_bucket);
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800676 struct closure uuid_write;
677 struct semaphore uuid_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700678
679 /*
680 * A btree node on disk could have too many bsets for an iterator to fit
Shenghui Wangd2f96f42018-12-13 22:53:46 +0800681 * on the stack - have to dynamically allocate them.
682 * bch_cache_set_alloc() will make sure the pool can allocate iterators
683 * equipped with enough room that can host
684 * (sb.bucket_size / sb.block_size)
685 * btree_iter_sets, which is more than static MAX_BSETS.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700686 */
Kent Overstreetd19936a2018-05-20 18:25:51 -0400687 mempool_t fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700688
Kent Overstreet67539e82013-09-10 22:53:34 -0700689 struct bset_sort_state sort;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700690
691 /* List of buckets we're currently writing data to */
692 struct list_head data_buckets;
693 spinlock_t data_bucket_lock;
694
695 struct journal journal;
696
697#define CONGESTED_MAX 1024
Coly Li6f10f7d2018-08-11 13:19:44 +0800698 unsigned int congested_last_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700699 atomic_t congested;
700
701 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800702 unsigned int congested_read_threshold_us;
703 unsigned int congested_write_threshold_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700704
Kent Overstreetcafe5632013-03-23 16:11:31 -0700705 struct time_stats btree_gc_time;
706 struct time_stats btree_split_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700707 struct time_stats btree_read_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700708
709 atomic_long_t cache_read_races;
710 atomic_long_t writeback_keys_done;
711 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700712
Tang Junhuia728eac2018-02-07 11:41:39 -0800713 atomic_long_t reclaim;
Coly Lidff90d52019-06-28 20:00:00 +0800714 atomic_long_t reclaimed_journal_buckets;
Tang Junhuia728eac2018-02-07 11:41:39 -0800715 atomic_long_t flush_write;
Tang Junhuia728eac2018-02-07 11:41:39 -0800716
Kent Overstreet77c320e2013-07-11 19:42:51 -0700717 enum {
718 ON_ERROR_UNREGISTER,
719 ON_ERROR_PANIC,
720 } on_error;
Coly Li7ba0d832018-02-07 11:41:42 -0800721#define DEFAULT_IO_ERROR_LIMIT 8
Coly Li6f10f7d2018-08-11 13:19:44 +0800722 unsigned int error_limit;
723 unsigned int error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700724
Kent Overstreetcafe5632013-03-23 16:11:31 -0700725 unsigned short journal_delay_ms;
Kent Overstreeta85e9682013-12-20 17:28:16 -0800726 bool expensive_debug_checks;
Coly Li6f10f7d2018-08-11 13:19:44 +0800727 unsigned int verify:1;
728 unsigned int key_merging_disabled:1;
729 unsigned int gc_always_rewrite:1;
730 unsigned int shrinker_disabled:1;
731 unsigned int copy_gc_enabled:1;
Coly Lic5fcded2019-11-13 16:03:23 +0800732 unsigned int idle_max_writeback_rate_enabled:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700733
734#define BUCKET_HASH_BITS 12
735 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
736};
737
Kent Overstreetcafe5632013-03-23 16:11:31 -0700738struct bbio {
Coly Li6f10f7d2018-08-11 13:19:44 +0800739 unsigned int submit_time_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700740 union {
741 struct bkey key;
742 uint64_t _pad[3];
743 /*
744 * We only need pad = 3 here because we only ever carry around a
745 * single pointer - i.e. the pointer we're doing io to/from.
746 */
747 };
748 struct bio bio;
749};
750
Kent Overstreetcafe5632013-03-23 16:11:31 -0700751#define BTREE_PRIO USHRT_MAX
Kent Overstreete0a985a2013-11-12 13:49:10 -0800752#define INITIAL_PRIO 32768U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700753
754#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
755#define btree_blocks(b) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800756 ((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700757
758#define btree_default_blocks(c) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800759 ((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700760
761#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
762#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
763#define block_bytes(c) ((c)->sb.block_size << 9)
764
Kent Overstreetcafe5632013-03-23 16:11:31 -0700765#define prios_per_bucket(c) \
766 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
767 sizeof(struct bucket_disk))
768#define prio_buckets(c) \
769 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
770
Kent Overstreetcafe5632013-03-23 16:11:31 -0700771static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
772{
773 return s >> c->bucket_bits;
774}
775
776static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
777{
778 return ((sector_t) b) << c->bucket_bits;
779}
780
781static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
782{
783 return s & (c->sb.bucket_size - 1);
784}
785
786static inline struct cache *PTR_CACHE(struct cache_set *c,
787 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800788 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700789{
790 return c->cache[PTR_DEV(k, ptr)];
791}
792
793static inline size_t PTR_BUCKET_NR(struct cache_set *c,
794 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800795 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700796{
797 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
798}
799
800static inline struct bucket *PTR_BUCKET(struct cache_set *c,
801 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800802 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700803{
804 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
805}
806
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800807static inline uint8_t gen_after(uint8_t a, uint8_t b)
808{
809 uint8_t r = a - b;
Coly Li1fae7cf2018-08-11 13:19:45 +0800810
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800811 return r > 128U ? 0 : r;
812}
813
814static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800815 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800816{
817 return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
818}
819
820static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800821 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800822{
823 return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
824}
825
Kent Overstreetcafe5632013-03-23 16:11:31 -0700826/* Btree key macros */
827
Kent Overstreetcafe5632013-03-23 16:11:31 -0700828/*
829 * This is used for various on disk data structures - cache_sb, prio_set, bset,
830 * jset: The checksum is _always_ the first 8 bytes of these structs
831 */
832#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600833 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetfafff812013-12-17 21:56:21 -0800834 ((void *) bset_bkey_last(i)) - \
835 (((void *) (i)) + sizeof(uint64_t)))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700836
837/* Error handling macros */
838
839#define btree_bug(b, ...) \
840do { \
841 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
842 dump_stack(); \
843} while (0)
844
845#define cache_bug(c, ...) \
846do { \
847 if (bch_cache_set_error(c, __VA_ARGS__)) \
848 dump_stack(); \
849} while (0)
850
851#define btree_bug_on(cond, b, ...) \
852do { \
853 if (cond) \
854 btree_bug(b, __VA_ARGS__); \
855} while (0)
856
857#define cache_bug_on(cond, c, ...) \
858do { \
859 if (cond) \
860 cache_bug(c, __VA_ARGS__); \
861} while (0)
862
863#define cache_set_err_on(cond, c, ...) \
864do { \
865 if (cond) \
866 bch_cache_set_error(c, __VA_ARGS__); \
867} while (0)
868
869/* Looping macros */
870
871#define for_each_cache(ca, cs, iter) \
872 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
873
874#define for_each_bucket(b, ca) \
875 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
876 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
877
Kent Overstreetcafe5632013-03-23 16:11:31 -0700878static inline void cached_dev_put(struct cached_dev *dc)
879{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700880 if (refcount_dec_and_test(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700881 schedule_work(&dc->detach);
882}
883
884static inline bool cached_dev_get(struct cached_dev *dc)
885{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700886 if (!refcount_inc_not_zero(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700887 return false;
888
889 /* Paired with the mb in cached_dev_attach */
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100890 smp_mb__after_atomic();
Kent Overstreetcafe5632013-03-23 16:11:31 -0700891 return true;
892}
893
894/*
895 * bucket_gc_gen() returns the difference between the bucket's current gen and
896 * the oldest gen of any pointer into that bucket in the btree (last_gc).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700897 */
898
899static inline uint8_t bucket_gc_gen(struct bucket *b)
900{
901 return b->gen - b->last_gc;
902}
903
Kent Overstreetcafe5632013-03-23 16:11:31 -0700904#define BUCKET_GC_GEN_MAX 96U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700905
906#define kobj_attribute_write(n, fn) \
Coly Li958bf492018-08-11 13:19:48 +0800907 static struct kobj_attribute ksysfs_##n = __ATTR(n, 0200, NULL, fn)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700908
909#define kobj_attribute_rw(n, show, store) \
910 static struct kobj_attribute ksysfs_##n = \
Coly Li958bf492018-08-11 13:19:48 +0800911 __ATTR(n, 0600, show, store)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700912
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700913static inline void wake_up_allocators(struct cache_set *c)
914{
915 struct cache *ca;
Coly Li6f10f7d2018-08-11 13:19:44 +0800916 unsigned int i;
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700917
918 for_each_cache(ca, c, i)
919 wake_up_process(ca->alloc_thread);
920}
921
Coly Li771f3932018-03-18 17:36:17 -0700922static inline void closure_bio_submit(struct cache_set *c,
923 struct bio *bio,
924 struct closure *cl)
925{
926 closure_get(cl);
927 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
928 bio->bi_status = BLK_STS_IOERR;
929 bio_endio(bio);
930 return;
931 }
Christoph Hellwiged00aab2020-07-01 10:59:44 +0200932 submit_bio_noacct(bio);
Coly Li771f3932018-03-18 17:36:17 -0700933}
934
935/*
936 * Prevent the kthread exits directly, and make sure when kthread_stop()
937 * is called to stop a kthread, it is still alive. If a kthread might be
938 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
939 * necessary before the kthread returns.
940 */
941static inline void wait_for_kthread_stop(void)
942{
943 while (!kthread_should_stop()) {
944 set_current_state(TASK_INTERRUPTIBLE);
945 schedule();
946 }
947}
948
Kent Overstreetcafe5632013-03-23 16:11:31 -0700949/* Forward declarations */
950
Coly Lic7b7bd02018-03-18 17:36:25 -0700951void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
Coly Lifc2d5982018-08-11 13:19:46 +0800952void bch_count_io_errors(struct cache *ca, blk_status_t error,
953 int is_read, const char *m);
954void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
955 blk_status_t error, const char *m);
956void bch_bbio_endio(struct cache_set *c, struct bio *bio,
957 blk_status_t error, const char *m);
958void bch_bbio_free(struct bio *bio, struct cache_set *c);
959struct bio *bch_bbio_alloc(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700960
Coly Lifc2d5982018-08-11 13:19:46 +0800961void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
962void bch_submit_bbio(struct bio *bio, struct cache_set *c,
963 struct bkey *k, unsigned int ptr);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700964
Coly Lifc2d5982018-08-11 13:19:46 +0800965uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
966void bch_rescale_priorities(struct cache_set *c, int sectors);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700967
Coly Lifc2d5982018-08-11 13:19:46 +0800968bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
969void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700970
Coly Lifc2d5982018-08-11 13:19:46 +0800971void __bch_bucket_free(struct cache *ca, struct bucket *b);
972void bch_bucket_free(struct cache_set *c, struct bkey *k);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700973
Coly Lifc2d5982018-08-11 13:19:46 +0800974long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
975int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
976 struct bkey *k, int n, bool wait);
977int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
978 struct bkey *k, int n, bool wait);
979bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
980 unsigned int sectors, unsigned int write_point,
981 unsigned int write_prio, bool wait);
Coly Lic7b7bd02018-03-18 17:36:25 -0700982bool bch_cached_dev_error(struct cached_dev *dc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700983
984__printf(2, 3)
Coly Lifc2d5982018-08-11 13:19:46 +0800985bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700986
Andrea Righi84c529a2019-11-13 16:03:21 +0800987int bch_prio_write(struct cache *ca, bool wait);
Coly Lifc2d5982018-08-11 13:19:46 +0800988void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700989
Kent Overstreet72a44512013-10-24 17:19:26 -0700990extern struct workqueue_struct *bcache_wq;
Guoju Fang0f843e62018-09-27 23:41:46 +0800991extern struct workqueue_struct *bch_journal_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700992extern struct mutex bch_register_lock;
993extern struct list_head bch_cache_sets;
994
995extern struct kobj_type bch_cached_dev_ktype;
996extern struct kobj_type bch_flash_dev_ktype;
997extern struct kobj_type bch_cache_set_ktype;
998extern struct kobj_type bch_cache_set_internal_ktype;
999extern struct kobj_type bch_cache_ktype;
1000
Coly Lifc2d5982018-08-11 13:19:46 +08001001void bch_cached_dev_release(struct kobject *kobj);
1002void bch_flash_dev_release(struct kobject *kobj);
1003void bch_cache_set_release(struct kobject *kobj);
1004void bch_cache_release(struct kobject *kobj);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001005
Coly Lifc2d5982018-08-11 13:19:46 +08001006int bch_uuid_write(struct cache_set *c);
1007void bcache_write_super(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001008
1009int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1010
Coly Lifc2d5982018-08-11 13:19:46 +08001011int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1012 uint8_t *set_uuid);
1013void bch_cached_dev_detach(struct cached_dev *dc);
Coly Li0b13efe2019-06-28 19:59:33 +08001014int bch_cached_dev_run(struct cached_dev *dc);
Coly Lifc2d5982018-08-11 13:19:46 +08001015void bcache_device_stop(struct bcache_device *d);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001016
Coly Lifc2d5982018-08-11 13:19:46 +08001017void bch_cache_set_unregister(struct cache_set *c);
1018void bch_cache_set_stop(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001019
Coly Lifc2d5982018-08-11 13:19:46 +08001020struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
1021void bch_btree_cache_free(struct cache_set *c);
1022int bch_btree_cache_alloc(struct cache_set *c);
1023void bch_moving_init_cache_set(struct cache_set *c);
1024int bch_open_buckets_alloc(struct cache_set *c);
1025void bch_open_buckets_free(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001026
Kent Overstreet119ba0f2013-04-24 19:01:12 -07001027int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001028
1029void bch_debug_exit(void);
Dongbo Cao91bafdf2018-10-08 20:41:17 +08001030void bch_debug_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001031void bch_request_exit(void);
1032int bch_request_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001033
1034#endif /* _BCACHE_H */