blob: 50241e045c701f1771dd950c8eef33160c095f67 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Kent Overstreetcafe5632013-03-23 16:11:31 -07002#ifndef _BCACHE_H
3#define _BCACHE_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
179#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
180
Kent Overstreet81ab4192013-10-31 15:46:42 -0700181#include <linux/bcache.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700182#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700183#include <linux/kobject.h>
184#include <linux/list.h>
185#include <linux/mutex.h>
186#include <linux/rbtree.h>
187#include <linux/rwsem.h>
Elena Reshetova3b304d22017-10-30 14:46:32 -0700188#include <linux/refcount.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700189#include <linux/types.h>
190#include <linux/workqueue.h>
Coly Li771f3932018-03-18 17:36:17 -0700191#include <linux/kthread.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700192
Kent Overstreet67539e82013-09-10 22:53:34 -0700193#include "bset.h"
Kent Overstreetcafe5632013-03-23 16:11:31 -0700194#include "util.h"
195#include "closure.h"
196
197struct bucket {
198 atomic_t pin;
199 uint16_t prio;
200 uint8_t gen;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700201 uint8_t last_gc; /* Most out of date gen in the btree */
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800202 uint16_t gc_mark; /* Bitfield used by GC. See below for field */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700203};
204
205/*
206 * I'd use bitfields for these, but I don't trust the compiler not to screw me
207 * as multiple threads touch struct bucket without locking
208 */
209
210BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
Kent Overstreet4fe6a812014-03-13 13:46:29 -0700211#define GC_MARK_RECLAIMABLE 1
212#define GC_MARK_DIRTY 2
213#define GC_MARK_METADATA 3
Darrick J. Wong94717442014-01-28 16:57:39 -0800214#define GC_SECTORS_USED_SIZE 13
215#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
216BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800217BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700218
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219#include "journal.h"
220#include "stats.h"
221struct search;
222struct btree;
223struct keybuf;
224
225struct keybuf_key {
226 struct rb_node node;
227 BKEY_PADDED(key);
228 void *private;
229};
230
Kent Overstreetcafe5632013-03-23 16:11:31 -0700231struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700232 struct bkey last_scanned;
233 spinlock_t lock;
234
235 /*
236 * Beginning and end of range in rb tree - so that we can skip taking
237 * lock and checking the rb tree when we need to check for overlapping
238 * keys.
239 */
240 struct bkey start;
241 struct bkey end;
242
243 struct rb_root keys;
244
Kent Overstreet48a915a2013-10-31 15:43:22 -0700245#define KEYBUF_NR 500
Kent Overstreetcafe5632013-03-23 16:11:31 -0700246 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
247};
248
Kent Overstreetcafe5632013-03-23 16:11:31 -0700249struct bcache_device {
250 struct closure cl;
251
252 struct kobject kobj;
253
254 struct cache_set *c;
Coly Li6f10f7d2018-08-11 13:19:44 +0800255 unsigned int id;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700256#define BCACHEDEVNAME_SIZE 12
257 char name[BCACHEDEVNAME_SIZE];
258
259 struct gendisk *disk;
260
Kent Overstreetc4d951d2013-08-21 17:49:09 -0700261 unsigned long flags;
Coly Li3fd47bf2018-03-18 17:36:16 -0700262#define BCACHE_DEV_CLOSING 0
263#define BCACHE_DEV_DETACHING 1
264#define BCACHE_DEV_UNLINK_DONE 2
265#define BCACHE_DEV_WB_RUNNING 3
266#define BCACHE_DEV_RATE_DW_RUNNING 4
Coly Li6f10f7d2018-08-11 13:19:44 +0800267 unsigned int nr_stripes;
268 unsigned int stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700269 atomic_t *stripe_sectors_dirty;
Kent Overstreet48a915a2013-10-31 15:43:22 -0700270 unsigned long *full_dirty_stripes;
Kent Overstreet279afba2013-06-05 06:21:07 -0700271
Kent Overstreetd19936a2018-05-20 18:25:51 -0400272 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700273
Coly Li6f10f7d2018-08-11 13:19:44 +0800274 unsigned int data_csum:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700275
Coly Lifc2d5982018-08-11 13:19:46 +0800276 int (*cache_miss)(struct btree *b, struct search *s,
277 struct bio *bio, unsigned int sectors);
Coly Lid0c1b892018-08-11 13:19:59 +0800278 int (*ioctl)(struct bcache_device *d, fmode_t mode,
279 unsigned int cmd, unsigned long arg);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700280};
281
282struct io {
283 /* Used to track sequential IO so it can be skipped */
284 struct hlist_node hash;
285 struct list_head lru;
286
287 unsigned long jiffies;
Coly Li6f10f7d2018-08-11 13:19:44 +0800288 unsigned int sequential;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700289 sector_t last;
290};
291
Coly Li7e027ca2018-03-18 17:36:18 -0700292enum stop_on_failure {
293 BCH_CACHED_DEV_STOP_AUTO = 0,
294 BCH_CACHED_DEV_STOP_ALWAYS,
295 BCH_CACHED_DEV_STOP_MODE_MAX,
296};
297
Kent Overstreetcafe5632013-03-23 16:11:31 -0700298struct cached_dev {
299 struct list_head list;
300 struct bcache_device disk;
301 struct block_device *bdev;
302
303 struct cache_sb sb;
304 struct bio sb_bio;
305 struct bio_vec sb_bv[1];
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800306 struct closure sb_write;
307 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700308
309 /* Refcount on the cache set. Always nonzero when we're caching. */
Elena Reshetova3b304d22017-10-30 14:46:32 -0700310 refcount_t count;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700311 struct work_struct detach;
312
313 /*
314 * Device might not be running if it's dirty and the cache set hasn't
315 * showed up yet.
316 */
317 atomic_t running;
318
319 /*
320 * Writes take a shared lock from start to finish; scanning for dirty
321 * data to refill the rb tree requires an exclusive lock.
322 */
323 struct rw_semaphore writeback_lock;
324
325 /*
326 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
327 * data in the cache. Protected by writeback_lock; must have an
328 * shared lock to set and exclusive lock to clear.
329 */
330 atomic_t has_dirty;
331
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700332 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700333 struct delayed_work writeback_rate_update;
334
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700335 /* Limit number of writeback bios in flight */
336 struct semaphore in_flight;
Kent Overstreet5e6926da2013-07-24 17:50:06 -0700337 struct task_struct *writeback_thread;
Tang Junhui9baf3092017-09-06 14:25:59 +0800338 struct workqueue_struct *writeback_write_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700339
340 struct keybuf writeback_keys;
341
Coly Li0f0709e2018-05-28 15:37:41 +0800342 struct task_struct *status_update_thread;
Michael Lyle6e6ccc62018-01-08 12:21:23 -0800343 /*
344 * Order the write-half of writeback operations strongly in dispatch
345 * order. (Maintain LBA order; don't allow reads completing out of
346 * order to re-order the writes...)
347 */
348 struct closure_waitlist writeback_ordering_wait;
349 atomic_t writeback_sequence_next;
350
Kent Overstreetcafe5632013-03-23 16:11:31 -0700351 /* For tracking sequential IO */
352#define RECENT_IO_BITS 7
353#define RECENT_IO (1 << RECENT_IO_BITS)
354 struct io io[RECENT_IO];
355 struct hlist_head io_hash[RECENT_IO + 1];
356 struct list_head io_lru;
357 spinlock_t io_lock;
358
359 struct cache_accounting accounting;
360
361 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800362 unsigned int sequential_cutoff;
363 unsigned int readahead;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700364
Coly Li6f10f7d2018-08-11 13:19:44 +0800365 unsigned int io_disable:1;
366 unsigned int verify:1;
367 unsigned int bypass_torture_test:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700368
Coly Li6f10f7d2018-08-11 13:19:44 +0800369 unsigned int partial_stripes_expensive:1;
370 unsigned int writeback_metadata:1;
371 unsigned int writeback_running:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700372 unsigned char writeback_percent;
Coly Li6f10f7d2018-08-11 13:19:44 +0800373 unsigned int writeback_delay;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700374
Kent Overstreetcafe5632013-03-23 16:11:31 -0700375 uint64_t writeback_rate_target;
Kent Overstreet16749c22013-11-11 13:58:34 -0800376 int64_t writeback_rate_proportional;
Michael Lyle1d316e62017-10-13 16:35:36 -0700377 int64_t writeback_rate_integral;
378 int64_t writeback_rate_integral_scaled;
Michael Lylee41166c2017-10-13 16:35:38 -0700379 int32_t writeback_rate_change;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700380
Coly Li6f10f7d2018-08-11 13:19:44 +0800381 unsigned int writeback_rate_update_seconds;
382 unsigned int writeback_rate_i_term_inverse;
383 unsigned int writeback_rate_p_term_inverse;
384 unsigned int writeback_rate_minimum;
Coly Li7e027ca2018-03-18 17:36:18 -0700385
386 enum stop_on_failure stop_when_cache_set_failed;
Coly Lic7b7bd02018-03-18 17:36:25 -0700387#define DEFAULT_CACHED_DEV_ERROR_LIMIT 64
388 atomic_t io_errors;
Coly Li6f10f7d2018-08-11 13:19:44 +0800389 unsigned int error_limit;
390 unsigned int offline_seconds;
Coly Li6e916a72018-05-03 18:51:32 +0800391
392 char backing_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700393};
394
Kent Overstreet78365412013-12-17 01:29:34 -0800395enum alloc_reserve {
396 RESERVE_BTREE,
397 RESERVE_PRIO,
398 RESERVE_MOVINGGC,
399 RESERVE_NONE,
400 RESERVE_NR,
Kent Overstreetcafe5632013-03-23 16:11:31 -0700401};
402
403struct cache {
404 struct cache_set *set;
405 struct cache_sb sb;
406 struct bio sb_bio;
407 struct bio_vec sb_bv[1];
408
409 struct kobject kobj;
410 struct block_device *bdev;
411
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700412 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700413
414 struct closure prio;
415 struct prio_set *disk_buckets;
416
417 /*
418 * When allocating new buckets, prio_write() gets first dibs - since we
419 * may not be allocate at all without writing priorities and gens.
Coly Licb329de2018-08-09 15:48:46 +0800420 * prio_last_buckets[] contains the last buckets we wrote priorities to
421 * (so gc can mark them as metadata), prio_buckets[] contains the
422 * buckets allocated for the next prio write.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700423 */
424 uint64_t *prio_buckets;
425 uint64_t *prio_last_buckets;
426
427 /*
428 * free: Buckets that are ready to be used
429 *
430 * free_inc: Incoming buckets - these are buckets that currently have
431 * cached data in them, and we can't reuse them until after we write
432 * their new gen to disk. After prio_write() finishes writing the new
433 * gens/prios, they'll be moved to the free list (and possibly discarded
434 * in the process)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700435 */
Kent Overstreet78365412013-12-17 01:29:34 -0800436 DECLARE_FIFO(long, free)[RESERVE_NR];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700437 DECLARE_FIFO(long, free_inc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700438
439 size_t fifo_last_bucket;
440
441 /* Allocation stuff: */
442 struct bucket *buckets;
443
444 DECLARE_HEAP(struct bucket *, heap);
445
446 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700447 * If nonzero, we know we aren't going to find any buckets to invalidate
448 * until a gc finishes - otherwise we could pointlessly burn a ton of
449 * cpu
450 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800451 unsigned int invalidate_needs_gc;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700452
453 bool discard; /* Get rid of? */
454
Kent Overstreetcafe5632013-03-23 16:11:31 -0700455 struct journal_device journal;
456
457 /* The rest of this all shows up in sysfs */
458#define IO_ERROR_SHIFT 20
459 atomic_t io_errors;
460 atomic_t io_count;
461
462 atomic_long_t meta_sectors_written;
463 atomic_long_t btree_sectors_written;
464 atomic_long_t sectors_written;
Coly Li6e916a72018-05-03 18:51:32 +0800465
466 char cache_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700467};
468
469struct gc_stat {
470 size_t nodes;
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800471 size_t nodes_pre;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700472 size_t key_bytes;
473
474 size_t nkeys;
475 uint64_t data; /* sectors */
Coly Li6f10f7d2018-08-11 13:19:44 +0800476 unsigned int in_use; /* percent */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700477};
478
479/*
480 * Flag bits, for how the cache set is shutting down, and what phase it's at:
481 *
482 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
483 * all the backing devices first (their cached data gets invalidated, and they
484 * won't automatically reattach).
485 *
486 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
487 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
488 * flushing dirty data).
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700489 *
490 * CACHE_SET_RUNNING means all cache devices have been registered and journal
491 * replay is complete.
Coly Li771f3932018-03-18 17:36:17 -0700492 *
493 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
494 * external and internal I/O should be denied when this flag is set.
495 *
Kent Overstreetcafe5632013-03-23 16:11:31 -0700496 */
497#define CACHE_SET_UNREGISTERING 0
498#define CACHE_SET_STOPPING 1
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700499#define CACHE_SET_RUNNING 2
Coly Li771f3932018-03-18 17:36:17 -0700500#define CACHE_SET_IO_DISABLE 3
Kent Overstreetcafe5632013-03-23 16:11:31 -0700501
502struct cache_set {
503 struct closure cl;
504
505 struct list_head list;
506 struct kobject kobj;
507 struct kobject internal;
508 struct dentry *debug;
509 struct cache_accounting accounting;
510
511 unsigned long flags;
Coly Liea8c53562018-08-09 15:48:49 +0800512 atomic_t idle_counter;
513 atomic_t at_max_writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700514
515 struct cache_sb sb;
516
517 struct cache *cache[MAX_CACHES_PER_SET];
518 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
519 int caches_loaded;
520
521 struct bcache_device **devices;
Coly Li6f10f7d2018-08-11 13:19:44 +0800522 unsigned int devices_max_used;
Coly Liea8c53562018-08-09 15:48:49 +0800523 atomic_t attached_dev_nr;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700524 struct list_head cached_devs;
525 uint64_t cached_dev_sectors;
Tang Junhui99a27d52018-07-26 12:17:33 +0800526 atomic_long_t flash_dev_dirty_sectors;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700527 struct closure caching;
528
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800529 struct closure sb_write;
530 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700531
Kent Overstreetd19936a2018-05-20 18:25:51 -0400532 mempool_t search;
533 mempool_t bio_meta;
534 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700535
536 /* For the btree cache */
537 struct shrinker shrink;
538
Kent Overstreetcafe5632013-03-23 16:11:31 -0700539 /* For the btree cache and anything allocation related */
540 struct mutex bucket_lock;
541
542 /* log2(bucket_size), in sectors */
543 unsigned short bucket_bits;
544
545 /* log2(block_size), in sectors */
546 unsigned short block_bits;
547
548 /*
549 * Default number of pages for a new btree node - may be less than a
550 * full bucket
551 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800552 unsigned int btree_pages;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700553
554 /*
555 * Lists of struct btrees; lru is the list for structs that have memory
556 * allocated for actual btree node, freed is for structs that do not.
557 *
558 * We never free a struct btree, except on shutdown - we just put it on
559 * the btree_cache_freed list and reuse it later. This simplifies the
560 * code, and it doesn't cost us much memory as the memory usage is
561 * dominated by buffers that hold the actual btree node data and those
562 * can be freed - and the number of struct btrees allocated is
563 * effectively bounded.
564 *
565 * btree_cache_freeable effectively is a small cache - we use it because
566 * high order page allocations can be rather expensive, and it's quite
567 * common to delete and allocate btree nodes in quick succession. It
568 * should never grow past ~2-3 nodes in practice.
569 */
570 struct list_head btree_cache;
571 struct list_head btree_cache_freeable;
572 struct list_head btree_cache_freed;
573
574 /* Number of elements in btree_cache + btree_cache_freeable lists */
Coly Li6f10f7d2018-08-11 13:19:44 +0800575 unsigned int btree_cache_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700576
577 /*
578 * If we need to allocate memory for a new btree node and that
579 * allocation fails, we can cannibalize another node in the btree cache
Kent Overstreet0a63b662014-03-17 17:15:53 -0700580 * to satisfy the allocation - lock to guarantee only one thread does
581 * this at a time:
Kent Overstreetcafe5632013-03-23 16:11:31 -0700582 */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700583 wait_queue_head_t btree_cache_wait;
584 struct task_struct *btree_cache_alloc_lock;
Guoju Fang34cf78b2019-11-13 16:03:16 +0800585 spinlock_t btree_cannibalize_lock;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700586
587 /*
588 * When we free a btree node, we increment the gen of the bucket the
589 * node is in - but we can't rewrite the prios and gens until we
590 * finished whatever it is we were doing, otherwise after a crash the
591 * btree node would be freed but for say a split, we might not have the
592 * pointers to the new nodes inserted into the btree yet.
593 *
594 * This is a refcount that blocks prio_write() until the new keys are
595 * written.
596 */
597 atomic_t prio_blocked;
Kent Overstreet35fcd842013-07-24 17:29:09 -0700598 wait_queue_head_t bucket_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700599
600 /*
601 * For any bio we don't skip we subtract the number of sectors from
602 * rescale; when it hits 0 we rescale all the bucket priorities.
603 */
604 atomic_t rescale;
605 /*
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800606 * used for GC, identify if any front side I/Os is inflight
607 */
608 atomic_t search_inflight;
609 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700610 * When we invalidate buckets, we use both the priority and the amount
611 * of good data to determine which buckets to reuse first - to weight
612 * those together consistently we keep track of the smallest nonzero
613 * priority of any bucket.
614 */
615 uint16_t min_prio;
616
617 /*
Coly Lib0d30982018-08-11 13:19:47 +0800618 * max(gen - last_gc) for all buckets. When it gets too big we have to
619 * gc to keep gens from wrapping around.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700620 */
621 uint8_t need_gc;
622 struct gc_stat gc_stats;
623 size_t nbuckets;
Tang Junhuid44c2f92017-10-30 14:46:33 -0700624 size_t avail_nbuckets;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700625
Kent Overstreet72a44512013-10-24 17:19:26 -0700626 struct task_struct *gc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700627 /* Where in the btree gc currently is */
628 struct bkey gc_done;
629
630 /*
Coly Li7a671d82018-12-13 22:53:53 +0800631 * For automatical garbage collection after writeback completed, this
632 * varialbe is used as bit fields,
633 * - 0000 0001b (BCH_ENABLE_AUTO_GC): enable gc after writeback
634 * - 0000 0010b (BCH_DO_AUTO_GC): do gc after writeback
635 * This is an optimization for following write request after writeback
636 * finished, but read hit rate dropped due to clean data on cache is
637 * discarded. Unless user explicitly sets it via sysfs, it won't be
638 * enabled.
639 */
640#define BCH_ENABLE_AUTO_GC 1
641#define BCH_DO_AUTO_GC 2
642 uint8_t gc_after_writeback;
643
644 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700645 * The allocation code needs gc_mark in struct bucket to be correct, but
646 * it's not while a gc is in progress. Protected by bucket_lock.
647 */
648 int gc_mark_valid;
649
650 /* Counts how many sectors bio_insert has added to the cache */
651 atomic_t sectors_to_gc;
Kent Overstreetbe628be2016-10-26 20:31:17 -0700652 wait_queue_head_t gc_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700653
Kent Overstreetcafe5632013-03-23 16:11:31 -0700654 struct keybuf moving_gc_keys;
655 /* Number of moving GC bios in flight */
Kent Overstreet72a44512013-10-24 17:19:26 -0700656 struct semaphore moving_in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700657
Nicholas Swensonda415a02014-01-09 16:03:04 -0800658 struct workqueue_struct *moving_gc_wq;
659
Kent Overstreetcafe5632013-03-23 16:11:31 -0700660 struct btree *root;
661
662#ifdef CONFIG_BCACHE_DEBUG
663 struct btree *verify_data;
Kent Overstreet78b77bf2013-12-17 22:49:08 -0800664 struct bset *verify_ondisk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700665 struct mutex verify_lock;
666#endif
667
Coly Li6f10f7d2018-08-11 13:19:44 +0800668 unsigned int nr_uuids;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700669 struct uuid_entry *uuids;
670 BKEY_PADDED(uuid_bucket);
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800671 struct closure uuid_write;
672 struct semaphore uuid_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700673
674 /*
675 * A btree node on disk could have too many bsets for an iterator to fit
Shenghui Wangd2f96f42018-12-13 22:53:46 +0800676 * on the stack - have to dynamically allocate them.
677 * bch_cache_set_alloc() will make sure the pool can allocate iterators
678 * equipped with enough room that can host
679 * (sb.bucket_size / sb.block_size)
680 * btree_iter_sets, which is more than static MAX_BSETS.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700681 */
Kent Overstreetd19936a2018-05-20 18:25:51 -0400682 mempool_t fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700683
Kent Overstreet67539e82013-09-10 22:53:34 -0700684 struct bset_sort_state sort;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700685
686 /* List of buckets we're currently writing data to */
687 struct list_head data_buckets;
688 spinlock_t data_bucket_lock;
689
690 struct journal journal;
691
692#define CONGESTED_MAX 1024
Coly Li6f10f7d2018-08-11 13:19:44 +0800693 unsigned int congested_last_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700694 atomic_t congested;
695
696 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800697 unsigned int congested_read_threshold_us;
698 unsigned int congested_write_threshold_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700699
Kent Overstreetcafe5632013-03-23 16:11:31 -0700700 struct time_stats btree_gc_time;
701 struct time_stats btree_split_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700702 struct time_stats btree_read_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700703
704 atomic_long_t cache_read_races;
705 atomic_long_t writeback_keys_done;
706 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700707
Tang Junhuia728eac2018-02-07 11:41:39 -0800708 atomic_long_t reclaim;
Coly Lidff90d52019-06-28 20:00:00 +0800709 atomic_long_t reclaimed_journal_buckets;
Tang Junhuia728eac2018-02-07 11:41:39 -0800710 atomic_long_t flush_write;
Tang Junhuia728eac2018-02-07 11:41:39 -0800711
Kent Overstreet77c320e2013-07-11 19:42:51 -0700712 enum {
713 ON_ERROR_UNREGISTER,
714 ON_ERROR_PANIC,
715 } on_error;
Coly Li7ba0d832018-02-07 11:41:42 -0800716#define DEFAULT_IO_ERROR_LIMIT 8
Coly Li6f10f7d2018-08-11 13:19:44 +0800717 unsigned int error_limit;
718 unsigned int error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700719
Kent Overstreetcafe5632013-03-23 16:11:31 -0700720 unsigned short journal_delay_ms;
Kent Overstreeta85e9682013-12-20 17:28:16 -0800721 bool expensive_debug_checks;
Coly Li6f10f7d2018-08-11 13:19:44 +0800722 unsigned int verify:1;
723 unsigned int key_merging_disabled:1;
724 unsigned int gc_always_rewrite:1;
725 unsigned int shrinker_disabled:1;
726 unsigned int copy_gc_enabled:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700727
728#define BUCKET_HASH_BITS 12
729 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
730};
731
Kent Overstreetcafe5632013-03-23 16:11:31 -0700732struct bbio {
Coly Li6f10f7d2018-08-11 13:19:44 +0800733 unsigned int submit_time_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700734 union {
735 struct bkey key;
736 uint64_t _pad[3];
737 /*
738 * We only need pad = 3 here because we only ever carry around a
739 * single pointer - i.e. the pointer we're doing io to/from.
740 */
741 };
742 struct bio bio;
743};
744
Kent Overstreetcafe5632013-03-23 16:11:31 -0700745#define BTREE_PRIO USHRT_MAX
Kent Overstreete0a985a2013-11-12 13:49:10 -0800746#define INITIAL_PRIO 32768U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700747
748#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
749#define btree_blocks(b) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800750 ((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700751
752#define btree_default_blocks(c) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800753 ((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700754
755#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
756#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
757#define block_bytes(c) ((c)->sb.block_size << 9)
758
Kent Overstreetcafe5632013-03-23 16:11:31 -0700759#define prios_per_bucket(c) \
760 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
761 sizeof(struct bucket_disk))
762#define prio_buckets(c) \
763 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
764
Kent Overstreetcafe5632013-03-23 16:11:31 -0700765static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
766{
767 return s >> c->bucket_bits;
768}
769
770static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
771{
772 return ((sector_t) b) << c->bucket_bits;
773}
774
775static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
776{
777 return s & (c->sb.bucket_size - 1);
778}
779
780static inline struct cache *PTR_CACHE(struct cache_set *c,
781 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800782 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700783{
784 return c->cache[PTR_DEV(k, ptr)];
785}
786
787static inline size_t PTR_BUCKET_NR(struct cache_set *c,
788 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800789 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700790{
791 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
792}
793
794static inline struct bucket *PTR_BUCKET(struct cache_set *c,
795 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800796 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700797{
798 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
799}
800
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800801static inline uint8_t gen_after(uint8_t a, uint8_t b)
802{
803 uint8_t r = a - b;
Coly Li1fae7cf2018-08-11 13:19:45 +0800804
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800805 return r > 128U ? 0 : r;
806}
807
808static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800809 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800810{
811 return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
812}
813
814static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800815 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800816{
817 return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
818}
819
Kent Overstreetcafe5632013-03-23 16:11:31 -0700820/* Btree key macros */
821
Kent Overstreetcafe5632013-03-23 16:11:31 -0700822/*
823 * This is used for various on disk data structures - cache_sb, prio_set, bset,
824 * jset: The checksum is _always_ the first 8 bytes of these structs
825 */
826#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600827 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetfafff812013-12-17 21:56:21 -0800828 ((void *) bset_bkey_last(i)) - \
829 (((void *) (i)) + sizeof(uint64_t)))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700830
831/* Error handling macros */
832
833#define btree_bug(b, ...) \
834do { \
835 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
836 dump_stack(); \
837} while (0)
838
839#define cache_bug(c, ...) \
840do { \
841 if (bch_cache_set_error(c, __VA_ARGS__)) \
842 dump_stack(); \
843} while (0)
844
845#define btree_bug_on(cond, b, ...) \
846do { \
847 if (cond) \
848 btree_bug(b, __VA_ARGS__); \
849} while (0)
850
851#define cache_bug_on(cond, c, ...) \
852do { \
853 if (cond) \
854 cache_bug(c, __VA_ARGS__); \
855} while (0)
856
857#define cache_set_err_on(cond, c, ...) \
858do { \
859 if (cond) \
860 bch_cache_set_error(c, __VA_ARGS__); \
861} while (0)
862
863/* Looping macros */
864
865#define for_each_cache(ca, cs, iter) \
866 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
867
868#define for_each_bucket(b, ca) \
869 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
870 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
871
Kent Overstreetcafe5632013-03-23 16:11:31 -0700872static inline void cached_dev_put(struct cached_dev *dc)
873{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700874 if (refcount_dec_and_test(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700875 schedule_work(&dc->detach);
876}
877
878static inline bool cached_dev_get(struct cached_dev *dc)
879{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700880 if (!refcount_inc_not_zero(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700881 return false;
882
883 /* Paired with the mb in cached_dev_attach */
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100884 smp_mb__after_atomic();
Kent Overstreetcafe5632013-03-23 16:11:31 -0700885 return true;
886}
887
888/*
889 * bucket_gc_gen() returns the difference between the bucket's current gen and
890 * the oldest gen of any pointer into that bucket in the btree (last_gc).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700891 */
892
893static inline uint8_t bucket_gc_gen(struct bucket *b)
894{
895 return b->gen - b->last_gc;
896}
897
Kent Overstreetcafe5632013-03-23 16:11:31 -0700898#define BUCKET_GC_GEN_MAX 96U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700899
900#define kobj_attribute_write(n, fn) \
Coly Li958bf492018-08-11 13:19:48 +0800901 static struct kobj_attribute ksysfs_##n = __ATTR(n, 0200, NULL, fn)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700902
903#define kobj_attribute_rw(n, show, store) \
904 static struct kobj_attribute ksysfs_##n = \
Coly Li958bf492018-08-11 13:19:48 +0800905 __ATTR(n, 0600, show, store)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700906
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700907static inline void wake_up_allocators(struct cache_set *c)
908{
909 struct cache *ca;
Coly Li6f10f7d2018-08-11 13:19:44 +0800910 unsigned int i;
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700911
912 for_each_cache(ca, c, i)
913 wake_up_process(ca->alloc_thread);
914}
915
Coly Li771f3932018-03-18 17:36:17 -0700916static inline void closure_bio_submit(struct cache_set *c,
917 struct bio *bio,
918 struct closure *cl)
919{
920 closure_get(cl);
921 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
922 bio->bi_status = BLK_STS_IOERR;
923 bio_endio(bio);
924 return;
925 }
926 generic_make_request(bio);
927}
928
929/*
930 * Prevent the kthread exits directly, and make sure when kthread_stop()
931 * is called to stop a kthread, it is still alive. If a kthread might be
932 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
933 * necessary before the kthread returns.
934 */
935static inline void wait_for_kthread_stop(void)
936{
937 while (!kthread_should_stop()) {
938 set_current_state(TASK_INTERRUPTIBLE);
939 schedule();
940 }
941}
942
Kent Overstreetcafe5632013-03-23 16:11:31 -0700943/* Forward declarations */
944
Coly Lic7b7bd02018-03-18 17:36:25 -0700945void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
Coly Lifc2d5982018-08-11 13:19:46 +0800946void bch_count_io_errors(struct cache *ca, blk_status_t error,
947 int is_read, const char *m);
948void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
949 blk_status_t error, const char *m);
950void bch_bbio_endio(struct cache_set *c, struct bio *bio,
951 blk_status_t error, const char *m);
952void bch_bbio_free(struct bio *bio, struct cache_set *c);
953struct bio *bch_bbio_alloc(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700954
Coly Lifc2d5982018-08-11 13:19:46 +0800955void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
956void bch_submit_bbio(struct bio *bio, struct cache_set *c,
957 struct bkey *k, unsigned int ptr);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700958
Coly Lifc2d5982018-08-11 13:19:46 +0800959uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
960void bch_rescale_priorities(struct cache_set *c, int sectors);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700961
Coly Lifc2d5982018-08-11 13:19:46 +0800962bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
963void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700964
Coly Lifc2d5982018-08-11 13:19:46 +0800965void __bch_bucket_free(struct cache *ca, struct bucket *b);
966void bch_bucket_free(struct cache_set *c, struct bkey *k);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700967
Coly Lifc2d5982018-08-11 13:19:46 +0800968long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
969int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
970 struct bkey *k, int n, bool wait);
971int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
972 struct bkey *k, int n, bool wait);
973bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
974 unsigned int sectors, unsigned int write_point,
975 unsigned int write_prio, bool wait);
Coly Lic7b7bd02018-03-18 17:36:25 -0700976bool bch_cached_dev_error(struct cached_dev *dc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700977
978__printf(2, 3)
Coly Lifc2d5982018-08-11 13:19:46 +0800979bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700980
Andrea Righi84c529a2019-11-13 16:03:21 +0800981int bch_prio_write(struct cache *ca, bool wait);
Coly Lifc2d5982018-08-11 13:19:46 +0800982void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700983
Kent Overstreet72a44512013-10-24 17:19:26 -0700984extern struct workqueue_struct *bcache_wq;
Guoju Fang0f843e62018-09-27 23:41:46 +0800985extern struct workqueue_struct *bch_journal_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700986extern struct mutex bch_register_lock;
987extern struct list_head bch_cache_sets;
988
989extern struct kobj_type bch_cached_dev_ktype;
990extern struct kobj_type bch_flash_dev_ktype;
991extern struct kobj_type bch_cache_set_ktype;
992extern struct kobj_type bch_cache_set_internal_ktype;
993extern struct kobj_type bch_cache_ktype;
994
Coly Lifc2d5982018-08-11 13:19:46 +0800995void bch_cached_dev_release(struct kobject *kobj);
996void bch_flash_dev_release(struct kobject *kobj);
997void bch_cache_set_release(struct kobject *kobj);
998void bch_cache_release(struct kobject *kobj);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700999
Coly Lifc2d5982018-08-11 13:19:46 +08001000int bch_uuid_write(struct cache_set *c);
1001void bcache_write_super(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001002
1003int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1004
Coly Lifc2d5982018-08-11 13:19:46 +08001005int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1006 uint8_t *set_uuid);
1007void bch_cached_dev_detach(struct cached_dev *dc);
Coly Li0b13efe2019-06-28 19:59:33 +08001008int bch_cached_dev_run(struct cached_dev *dc);
Coly Lifc2d5982018-08-11 13:19:46 +08001009void bcache_device_stop(struct bcache_device *d);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001010
Coly Lifc2d5982018-08-11 13:19:46 +08001011void bch_cache_set_unregister(struct cache_set *c);
1012void bch_cache_set_stop(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001013
Coly Lifc2d5982018-08-11 13:19:46 +08001014struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
1015void bch_btree_cache_free(struct cache_set *c);
1016int bch_btree_cache_alloc(struct cache_set *c);
1017void bch_moving_init_cache_set(struct cache_set *c);
1018int bch_open_buckets_alloc(struct cache_set *c);
1019void bch_open_buckets_free(struct cache_set *c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001020
Kent Overstreet119ba0f2013-04-24 19:01:12 -07001021int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001022
1023void bch_debug_exit(void);
Dongbo Cao91bafdf2018-10-08 20:41:17 +08001024void bch_debug_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001025void bch_request_exit(void);
1026int bch_request_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001027
1028#endif /* _BCACHE_H */