blob: f1956b27ae5a27e5ba7f41d30adad53f922ed5d2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Russell King4baa9922008-08-02 10:55:55 +01002 * arch/arm/include/asm/pgtable.h
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_PGTABLE_H
11#define _ASMARM_PGTABLE_H
12
Russell Kingf6e33542010-11-16 00:22:09 +000013#include <linux/const.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070014#include <asm-generic/4level-fixup.h>
Russell King002547b2006-06-20 20:46:52 +010015#include <asm/proc-fns.h>
16
17#ifndef CONFIG_MMU
18
19#include "pgtable-nommu.h"
20
21#else
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23#include <asm/memory.h>
Russell Kinga09e64f2008-08-05 16:14:15 +010024#include <mach/vmalloc.h>
Russell Kingad1ae2f2006-12-13 14:34:43 +000025#include <asm/pgtable-hwdef.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026
27/*
Russell King5c3073e2005-05-03 12:20:29 +010028 * Just any arbitrary offset to the start of the vmalloc VM area: the
29 * current 8MB value just means that there will be a 8MB "hole" after the
30 * physical memory until the kernel virtual memory starts. That means that
31 * any out-of-bounds memory accesses will hopefully be caught.
32 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
33 * area for the same reason. ;)
34 *
35 * Note that platforms may override VMALLOC_START, but they must provide
36 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
37 * which may not overlap IO space.
38 */
39#ifndef VMALLOC_START
40#define VMALLOC_OFFSET (8*1024*1024)
41#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
42#endif
43
44/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070045 * Hardware-wise, we have a two level page table structure, where the first
46 * level has 4096 entries, and the second level has 256 entries. Each entry
47 * is one 32-bit word. Most of the bits in the second level entry are used
48 * by hardware, and there aren't any "accessed" and "dirty" bits.
49 *
50 * Linux on the other hand has a three level page table structure, which can
51 * be wrapped to fit a two level page table structure easily - using the PGD
52 * and PTE only. However, Linux also expects one "PTE" table per page, and
53 * at least a "dirty" bit.
54 *
55 * Therefore, we tweak the implementation slightly - we tell Linux that we
56 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
57 * hardware pointers to the second level.) The second level contains two
Russell Kingd30e45e2010-11-16 00:16:01 +000058 * hardware PTE tables arranged contiguously, preceded by Linux versions
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * which contain the state information Linux needs. We, therefore, end up
60 * with 512 entries in the "PTE" level.
61 *
62 * This leads to the page tables having the following layout:
63 *
64 * pgd pte
65 * | |
Russell Kingd30e45e2010-11-16 00:16:01 +000066 * +--------+
67 * | | +------------+ +0
Linus Torvalds1da177e2005-04-16 15:20:36 -070068 * +- - - - + | Linux pt 0 |
Russell Kingd30e45e2010-11-16 00:16:01 +000069 * | | +------------+ +1024
70 * +--------+ +0 | Linux pt 1 |
71 * | |-----> +------------+ +2048
72 * +- - - - + +4 | h/w pt 0 |
73 * | |-----> +------------+ +3072
74 * +--------+ +8 | h/w pt 1 |
Linus Torvalds1da177e2005-04-16 15:20:36 -070075 * | | +------------+ +4096
76 *
77 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
78 * PTE_xxx for definitions of bits appearing in the "h/w pt".
79 *
80 * PMD_xxx definitions refer to bits in the first level page table.
81 *
82 * The "dirty" bit is emulated by only granting hardware write permission
83 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
84 * means that a write to a clean page will cause a permission fault, and
85 * the Linux MM layer will mark the page dirty via handle_pte_fault().
86 * For the hardware to notice the permission change, the TLB entry must
Martin Schwidefskyf0e47c22007-07-17 04:03:03 -070087 * be flushed, and ptep_set_access_flags() does that for us.
Linus Torvalds1da177e2005-04-16 15:20:36 -070088 *
89 * The "accessed" or "young" bit is emulated by a similar method; we only
90 * allow accesses to the page if the "young" bit is set. Accesses to the
91 * page will cause a fault, and handle_pte_fault() will set the young bit
92 * for us as long as the page is marked present in the corresponding Linux
Martin Schwidefskyf0e47c22007-07-17 04:03:03 -070093 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
94 * up to date.
Linus Torvalds1da177e2005-04-16 15:20:36 -070095 *
96 * However, when the "young" bit is cleared, we deny access to the page
97 * by clearing the hardware PTE. Currently Linux does not flush the TLB
98 * for us in this case, which means the TLB will retain the transation
99 * until either the TLB entry is evicted under pressure, or a context
100 * switch which changes the user space mapping occurs.
101 */
102#define PTRS_PER_PTE 512
103#define PTRS_PER_PMD 1
104#define PTRS_PER_PGD 2048
105
Russell Kingd30e45e2010-11-16 00:16:01 +0000106#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
107#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
108#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
109
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110/*
111 * PMD_SHIFT determines the size of the area a second-level page table can map
112 * PGDIR_SHIFT determines what a third-level page table entry can map
113 */
114#define PMD_SHIFT 21
115#define PGDIR_SHIFT 21
116
117#define LIBRARY_TEXT_START 0x0c000000
118
119#ifndef __ASSEMBLY__
Russell King69529c02010-11-16 00:19:55 +0000120extern void __pte_error(const char *file, int line, pte_t);
121extern void __pmd_error(const char *file, int line, pmd_t);
122extern void __pgd_error(const char *file, int line, pgd_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123
Russell King69529c02010-11-16 00:19:55 +0000124#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
125#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
126#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127#endif /* !__ASSEMBLY__ */
128
129#define PMD_SIZE (1UL << PMD_SHIFT)
130#define PMD_MASK (~(PMD_SIZE-1))
131#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
132#define PGDIR_MASK (~(PGDIR_SIZE-1))
133
Hugh Dickins6119be02005-04-19 13:29:21 -0700134/*
135 * This is the lowest virtual address we can permit any user space
136 * mapping to be mapped at. This is particularly important for
137 * non-high vector CPUs.
138 */
139#define FIRST_USER_ADDRESS PAGE_SIZE
140
Russell Kinge926f442010-11-21 11:55:37 +0000141#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142
143/*
George G. Davis4052ebb2006-09-22 18:36:38 +0100144 * section address mask and size definitions.
145 */
146#define SECTION_SHIFT 20
147#define SECTION_SIZE (1UL << SECTION_SHIFT)
148#define SECTION_MASK (~(SECTION_SIZE-1))
149
150/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 * ARMv6 supersection address mask and size definitions.
152 */
153#define SUPERSECTION_SHIFT 24
154#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
155#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
156
157/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 * "Linux" PTE definitions.
159 *
160 * We keep two sets of PTEs - the hardware and the linux version.
161 * This allows greater flexibility in the way we map the Linux bits
162 * onto the hardware tables, and allows us to have YOUNG and DIRTY
163 * bits.
164 *
165 * The PTE table pointer refers to the hardware entries; the "Linux"
166 * entries are stored 1024 bytes below.
167 */
Russell Kingf6e33542010-11-16 00:22:09 +0000168#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
169#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
170#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
171#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
Russell King36bb94b2010-11-16 08:40:36 +0000172#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
Russell Kingf6e33542010-11-16 00:22:09 +0000173#define L_PTE_USER (_AT(pteval_t, 1) << 8)
Russell King9522d7e2010-11-16 00:23:31 +0000174#define L_PTE_XN (_AT(pteval_t, 1) << 9)
Russell Kingf6e33542010-11-16 00:22:09 +0000175#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Russell Kingbb30f362008-09-06 20:04:59 +0100177/*
178 * These are the memory types, defined to be compatible with
179 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
Russell Kingbb30f362008-09-06 20:04:59 +0100180 */
Russell Kingf6e33542010-11-16 00:22:09 +0000181#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
182#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
183#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
184#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
185#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
186#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
187#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
188#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
189#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
190#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
191#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
Russell Kingbb30f362008-09-06 20:04:59 +0100192
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193#ifndef __ASSEMBLY__
194
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195/*
Imre_Deak44b18692007-02-11 13:45:13 +0100196 * The pgprot_* and protection_map entries will be fixed up in runtime
197 * to include the cachable and bufferable bits based on memory policy,
198 * as well as any architecture dependent bits like global/ASID and SMP
199 * shared mapping bits.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200 */
Russell Kingbb30f362008-09-06 20:04:59 +0100201#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202
Imre_Deak44b18692007-02-11 13:45:13 +0100203extern pgprot_t pgprot_user;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204extern pgprot_t pgprot_kernel;
205
Russell King8ec53662008-09-07 17:16:54 +0100206#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207
Russell King36bb94b2010-11-16 08:40:36 +0000208#define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
209#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
210#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
211#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
212#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
213#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
214#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
Russell King9522d7e2010-11-16 00:23:31 +0000215#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
216#define PAGE_KERNEL_EXEC pgprot_kernel
Russell King8ec53662008-09-07 17:16:54 +0100217
Russell King36bb94b2010-11-16 08:40:36 +0000218#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
219#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
220#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
221#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
222#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
223#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
224#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
Imre_Deak44b18692007-02-11 13:45:13 +0100225
Russell Kingeb9b2b62010-11-26 17:39:28 +0000226#define __pgprot_modify(prot,mask,bits) \
227 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
228
229#define pgprot_noncached(prot) \
230 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
231
232#define pgprot_writecombine(prot) \
233 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
234
Santosh Shilimkar8fb54282011-06-28 12:42:56 -0700235#define pgprot_stronglyordered(prot) \
236 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
237
Russell Kingeb9b2b62010-11-26 17:39:28 +0000238#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
239#define pgprot_dmacoherent(prot) \
Russell King9522d7e2010-11-16 00:23:31 +0000240 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
Russell Kingeb9b2b62010-11-26 17:39:28 +0000241#define __HAVE_PHYS_MEM_ACCESS_PROT
242struct file;
243extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
244 unsigned long size, pgprot_t vma_prot);
245#else
246#define pgprot_dmacoherent(prot) \
Russell King9522d7e2010-11-16 00:23:31 +0000247 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
Russell Kingeb9b2b62010-11-26 17:39:28 +0000248#endif
249
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250#endif /* __ASSEMBLY__ */
251
252/*
253 * The table below defines the page protection levels that we insert into our
254 * Linux page table version. These get translated into the best that the
255 * architecture can perform. Note that on most ARM hardware:
256 * 1) We cannot do execute protection
257 * 2) If we could do execute protection, then read is implied
258 * 3) write implies read permissions
259 */
Imre_Deak44b18692007-02-11 13:45:13 +0100260#define __P000 __PAGE_NONE
261#define __P001 __PAGE_READONLY
262#define __P010 __PAGE_COPY
263#define __P011 __PAGE_COPY
Russell King8ec53662008-09-07 17:16:54 +0100264#define __P100 __PAGE_READONLY_EXEC
265#define __P101 __PAGE_READONLY_EXEC
266#define __P110 __PAGE_COPY_EXEC
267#define __P111 __PAGE_COPY_EXEC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268
Imre_Deak44b18692007-02-11 13:45:13 +0100269#define __S000 __PAGE_NONE
270#define __S001 __PAGE_READONLY
271#define __S010 __PAGE_SHARED
272#define __S011 __PAGE_SHARED
Russell King8ec53662008-09-07 17:16:54 +0100273#define __S100 __PAGE_READONLY_EXEC
274#define __S101 __PAGE_READONLY_EXEC
275#define __S110 __PAGE_SHARED_EXEC
276#define __S111 __PAGE_SHARED_EXEC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277
278#ifndef __ASSEMBLY__
279/*
280 * ZERO_PAGE is a global shared page that is always zero: used
281 * for zero-mapped memory areas etc..
282 */
283extern struct page *empty_zero_page;
284#define ZERO_PAGE(vaddr) (empty_zero_page)
285
Russell King4eec4b12010-11-26 20:12:12 +0000286
287extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
288
289/* to find an entry in a page-table-directory */
290#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
291
292#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
293
294/* to find an entry in a kernel page-table-directory */
295#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
296
297/*
298 * The "pgd_xxx()" functions here are trivial for a folded two-level
299 * setup: the pgd is never bad, and a pmd always exists (as it's folded
300 * into the pgd entry)
301 */
302#define pgd_none(pgd) (0)
303#define pgd_bad(pgd) (0)
304#define pgd_present(pgd) (1)
305#define pgd_clear(pgdp) do { } while (0)
306#define set_pgd(pgd,pgdp) do { } while (0)
Russell King516295e2010-11-21 16:27:49 +0000307#define set_pud(pud,pudp) do { } while (0)
Russell King4eec4b12010-11-26 20:12:12 +0000308
309
Russell Kingb510b0492010-11-26 20:35:25 +0000310/* Find an entry in the second-level page table.. */
311#define pmd_offset(dir, addr) ((pmd_t *)(dir))
Nick Piggin7e675132008-04-28 02:13:00 -0700312
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313#define pmd_none(pmd) (!pmd_val(pmd))
314#define pmd_present(pmd) (pmd_val(pmd))
315#define pmd_bad(pmd) (pmd_val(pmd) & 2)
316
317#define copy_pmd(pmdpd,pmdps) \
318 do { \
319 pmdpd[0] = pmdps[0]; \
320 pmdpd[1] = pmdps[1]; \
321 flush_pmd_entry(pmdpd); \
322 } while (0)
323
324#define pmd_clear(pmdp) \
325 do { \
326 pmdp[0] = __pmd(0); \
327 pmdp[1] = __pmd(0); \
328 clean_pmd_entry(pmdp); \
329 } while (0)
330
Dave McCracken46a82b22006-09-25 23:31:48 -0700331static inline pte_t *pmd_page_vaddr(pmd_t pmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700332{
Russell Kingd30e45e2010-11-16 00:16:01 +0000333 return __va(pmd_val(pmd) & PAGE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334}
335
Russell King924a1582009-04-26 13:14:52 +0100336#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700337
Russell Kingc0ba10b2010-11-21 14:42:47 +0000338/* we don't need complex calculations here as the pmd is folded into the pgd */
339#define pmd_addr_end(addr,end) (end)
340
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341
Russell Kingb510b0492010-11-26 20:35:25 +0000342#ifndef CONFIG_HIGHPTE
343#define __pte_map(pmd) pmd_page_vaddr(*(pmd))
344#define __pte_unmap(pte) do { } while (0)
345#else
Russell Kingd30e45e2010-11-16 00:16:01 +0000346#define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
347#define __pte_unmap(pte) kunmap_atomic(pte)
Russell Kingb510b0492010-11-26 20:35:25 +0000348#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700349
Russell Kingb510b0492010-11-26 20:35:25 +0000350#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
351
352#define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
353
354#define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
355#define pte_unmap(pte) __pte_unmap(pte)
356
357#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
Will Deaconcae62922011-02-15 12:42:57 +0100358#define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
Russell Kingb510b0492010-11-26 20:35:25 +0000359
360#define pte_page(pte) pfn_to_page(pte_pfn(pte))
361#define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
362
363#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
364#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
365
366#if __LINUX_ARM_ARCH__ < 6
367static inline void __sync_icache_dcache(pte_t pteval)
368{
369}
370#else
371extern void __sync_icache_dcache(pte_t pteval);
372#endif
373
374static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
375 pte_t *ptep, pte_t pteval)
376{
377 if (addr >= TASK_SIZE)
378 set_pte_ext(ptep, pteval, 0);
379 else {
380 __sync_icache_dcache(pteval);
381 set_pte_ext(ptep, pteval, PTE_EXT_NG);
382 }
383}
384
385#define pte_none(pte) (!pte_val(pte))
386#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
Russell King36bb94b2010-11-16 08:40:36 +0000387#define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
Russell Kingb510b0492010-11-26 20:35:25 +0000388#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
389#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
Russell King9522d7e2010-11-16 00:23:31 +0000390#define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
Russell Kingb510b0492010-11-26 20:35:25 +0000391#define pte_special(pte) (0)
392
393#define pte_present_user(pte) \
394 ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
395 (L_PTE_PRESENT | L_PTE_USER))
396
397#define PTE_BIT_FUNC(fn,op) \
398static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
399
Russell King36bb94b2010-11-16 08:40:36 +0000400PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
401PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
Russell Kingb510b0492010-11-26 20:35:25 +0000402PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
403PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
404PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
405PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
406
407static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
410{
Russell King36bb94b2010-11-16 08:40:36 +0000411 const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
413 return pte;
414}
415
Russell Kingfb93a1c2009-07-05 11:30:15 +0100416/*
417 * Encode and decode a swap entry. Swap entries are stored in the Linux
418 * page tables as follows:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 *
Russell Kingfb93a1c2009-07-05 11:30:15 +0100420 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
421 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Russell King6a00cde2009-07-11 16:57:20 +0100422 * <--------------- offset --------------------> <- type --> 0 0 0
Russell Kingfb93a1c2009-07-05 11:30:15 +0100423 *
Russell King6a00cde2009-07-11 16:57:20 +0100424 * This gives us up to 63 swap files and 32GB per swap file. Note that
Russell Kingfb93a1c2009-07-05 11:30:15 +0100425 * the offset field is always non-zero.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426 */
Russell King6a00cde2009-07-11 16:57:20 +0100427#define __SWP_TYPE_SHIFT 3
428#define __SWP_TYPE_BITS 6
Russell Kingfb93a1c2009-07-05 11:30:15 +0100429#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
430#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
431
432#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
433#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
434#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
435
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
437#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
438
Russell Kingfb93a1c2009-07-05 11:30:15 +0100439/*
440 * It is an error for the kernel to have more swap files than we can
441 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
442 * is increased beyond what we presently support.
443 */
444#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
445
Russell King65b1bfc2009-07-05 11:52:21 +0100446/*
447 * Encode and decode a file entry. File entries are stored in the Linux
448 * page tables as follows:
449 *
450 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
451 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
Russell King6a00cde2009-07-11 16:57:20 +0100452 * <----------------------- offset ------------------------> 1 0 0
Russell King65b1bfc2009-07-05 11:52:21 +0100453 */
454#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
Russell King6a00cde2009-07-11 16:57:20 +0100455#define pte_to_pgoff(x) (pte_val(x) >> 3)
456#define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
Russell King65b1bfc2009-07-05 11:52:21 +0100457
Russell King6a00cde2009-07-11 16:57:20 +0100458#define PTE_FILE_MAX_BITS 29
Russell King65b1bfc2009-07-05 11:52:21 +0100459
Linus Torvalds1da177e2005-04-16 15:20:36 -0700460/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
461/* FIXME: this is not correct */
462#define kern_addr_valid(addr) (1)
463
464#include <asm-generic/pgtable.h>
465
466/*
467 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
468 */
469#define HAVE_ARCH_UNMAPPED_AREA
470
471/*
Randy Dunlap33bf5612005-09-13 01:25:50 -0700472 * remap a physical page `pfn' of size `size' with page protection `prot'
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 * into virtual address `from'
474 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475#define io_remap_pfn_range(vma,from,pfn,size,prot) \
476 remap_pfn_range(vma, from, pfn, size, prot)
477
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#define pgtable_cache_init() do { } while (0)
479
Russell King614dd052010-11-21 11:41:57 +0000480void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
481void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
482
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483#endif /* !__ASSEMBLY__ */
484
Russell King002547b2006-06-20 20:46:52 +0100485#endif /* CONFIG_MMU */
486
Linus Torvalds1da177e2005-04-16 15:20:36 -0700487#endif /* _ASMARM_PGTABLE_H */