Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/include/asm-arm/pgtable.h |
| 3 | * |
| 4 | * Copyright (C) 1995-2002 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | */ |
| 10 | #ifndef _ASMARM_PGTABLE_H |
| 11 | #define _ASMARM_PGTABLE_H |
| 12 | |
| 13 | #include <asm-generic/4level-fixup.h> |
Russell King | 002547b | 2006-06-20 20:46:52 +0100 | [diff] [blame^] | 14 | #include <asm/proc-fns.h> |
| 15 | |
| 16 | #ifndef CONFIG_MMU |
| 17 | |
| 18 | #include "pgtable-nommu.h" |
| 19 | |
| 20 | #else |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 21 | |
| 22 | #include <asm/memory.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 23 | #include <asm/arch/vmalloc.h> |
| 24 | |
| 25 | /* |
Russell King | 5c3073e | 2005-05-03 12:20:29 +0100 | [diff] [blame] | 26 | * Just any arbitrary offset to the start of the vmalloc VM area: the |
| 27 | * current 8MB value just means that there will be a 8MB "hole" after the |
| 28 | * physical memory until the kernel virtual memory starts. That means that |
| 29 | * any out-of-bounds memory accesses will hopefully be caught. |
| 30 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| 31 | * area for the same reason. ;) |
| 32 | * |
| 33 | * Note that platforms may override VMALLOC_START, but they must provide |
| 34 | * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, |
| 35 | * which may not overlap IO space. |
| 36 | */ |
| 37 | #ifndef VMALLOC_START |
| 38 | #define VMALLOC_OFFSET (8*1024*1024) |
| 39 | #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) |
| 40 | #endif |
| 41 | |
| 42 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 43 | * Hardware-wise, we have a two level page table structure, where the first |
| 44 | * level has 4096 entries, and the second level has 256 entries. Each entry |
| 45 | * is one 32-bit word. Most of the bits in the second level entry are used |
| 46 | * by hardware, and there aren't any "accessed" and "dirty" bits. |
| 47 | * |
| 48 | * Linux on the other hand has a three level page table structure, which can |
| 49 | * be wrapped to fit a two level page table structure easily - using the PGD |
| 50 | * and PTE only. However, Linux also expects one "PTE" table per page, and |
| 51 | * at least a "dirty" bit. |
| 52 | * |
| 53 | * Therefore, we tweak the implementation slightly - we tell Linux that we |
| 54 | * have 2048 entries in the first level, each of which is 8 bytes (iow, two |
| 55 | * hardware pointers to the second level.) The second level contains two |
| 56 | * hardware PTE tables arranged contiguously, followed by Linux versions |
| 57 | * which contain the state information Linux needs. We, therefore, end up |
| 58 | * with 512 entries in the "PTE" level. |
| 59 | * |
| 60 | * This leads to the page tables having the following layout: |
| 61 | * |
| 62 | * pgd pte |
| 63 | * | | |
| 64 | * +--------+ +0 |
| 65 | * | |-----> +------------+ +0 |
| 66 | * +- - - - + +4 | h/w pt 0 | |
| 67 | * | |-----> +------------+ +1024 |
| 68 | * +--------+ +8 | h/w pt 1 | |
| 69 | * | | +------------+ +2048 |
| 70 | * +- - - - + | Linux pt 0 | |
| 71 | * | | +------------+ +3072 |
| 72 | * +--------+ | Linux pt 1 | |
| 73 | * | | +------------+ +4096 |
| 74 | * |
| 75 | * See L_PTE_xxx below for definitions of bits in the "Linux pt", and |
| 76 | * PTE_xxx for definitions of bits appearing in the "h/w pt". |
| 77 | * |
| 78 | * PMD_xxx definitions refer to bits in the first level page table. |
| 79 | * |
| 80 | * The "dirty" bit is emulated by only granting hardware write permission |
| 81 | * iff the page is marked "writable" and "dirty" in the Linux PTE. This |
| 82 | * means that a write to a clean page will cause a permission fault, and |
| 83 | * the Linux MM layer will mark the page dirty via handle_pte_fault(). |
| 84 | * For the hardware to notice the permission change, the TLB entry must |
| 85 | * be flushed, and ptep_establish() does that for us. |
| 86 | * |
| 87 | * The "accessed" or "young" bit is emulated by a similar method; we only |
| 88 | * allow accesses to the page if the "young" bit is set. Accesses to the |
| 89 | * page will cause a fault, and handle_pte_fault() will set the young bit |
| 90 | * for us as long as the page is marked present in the corresponding Linux |
| 91 | * PTE entry. Again, ptep_establish() will ensure that the TLB is up to |
| 92 | * date. |
| 93 | * |
| 94 | * However, when the "young" bit is cleared, we deny access to the page |
| 95 | * by clearing the hardware PTE. Currently Linux does not flush the TLB |
| 96 | * for us in this case, which means the TLB will retain the transation |
| 97 | * until either the TLB entry is evicted under pressure, or a context |
| 98 | * switch which changes the user space mapping occurs. |
| 99 | */ |
| 100 | #define PTRS_PER_PTE 512 |
| 101 | #define PTRS_PER_PMD 1 |
| 102 | #define PTRS_PER_PGD 2048 |
| 103 | |
| 104 | /* |
| 105 | * PMD_SHIFT determines the size of the area a second-level page table can map |
| 106 | * PGDIR_SHIFT determines what a third-level page table entry can map |
| 107 | */ |
| 108 | #define PMD_SHIFT 21 |
| 109 | #define PGDIR_SHIFT 21 |
| 110 | |
| 111 | #define LIBRARY_TEXT_START 0x0c000000 |
| 112 | |
| 113 | #ifndef __ASSEMBLY__ |
| 114 | extern void __pte_error(const char *file, int line, unsigned long val); |
| 115 | extern void __pmd_error(const char *file, int line, unsigned long val); |
| 116 | extern void __pgd_error(const char *file, int line, unsigned long val); |
| 117 | |
| 118 | #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) |
| 119 | #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) |
| 120 | #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) |
| 121 | #endif /* !__ASSEMBLY__ */ |
| 122 | |
| 123 | #define PMD_SIZE (1UL << PMD_SHIFT) |
| 124 | #define PMD_MASK (~(PMD_SIZE-1)) |
| 125 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 126 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 127 | |
Hugh Dickins | 6119be0 | 2005-04-19 13:29:21 -0700 | [diff] [blame] | 128 | /* |
| 129 | * This is the lowest virtual address we can permit any user space |
| 130 | * mapping to be mapped at. This is particularly important for |
| 131 | * non-high vector CPUs. |
| 132 | */ |
| 133 | #define FIRST_USER_ADDRESS PAGE_SIZE |
| 134 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 135 | #define FIRST_USER_PGD_NR 1 |
| 136 | #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) |
| 137 | |
| 138 | /* |
| 139 | * ARMv6 supersection address mask and size definitions. |
| 140 | */ |
| 141 | #define SUPERSECTION_SHIFT 24 |
| 142 | #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) |
| 143 | #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) |
| 144 | |
| 145 | /* |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 | * "Linux" PTE definitions. |
| 147 | * |
| 148 | * We keep two sets of PTEs - the hardware and the linux version. |
| 149 | * This allows greater flexibility in the way we map the Linux bits |
| 150 | * onto the hardware tables, and allows us to have YOUNG and DIRTY |
| 151 | * bits. |
| 152 | * |
| 153 | * The PTE table pointer refers to the hardware entries; the "Linux" |
| 154 | * entries are stored 1024 bytes below. |
| 155 | */ |
| 156 | #define L_PTE_PRESENT (1 << 0) |
| 157 | #define L_PTE_FILE (1 << 1) /* only when !PRESENT */ |
| 158 | #define L_PTE_YOUNG (1 << 1) |
| 159 | #define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ |
| 160 | #define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ |
| 161 | #define L_PTE_USER (1 << 4) |
| 162 | #define L_PTE_WRITE (1 << 5) |
| 163 | #define L_PTE_EXEC (1 << 6) |
| 164 | #define L_PTE_DIRTY (1 << 7) |
Lennert Buytenhek | 23759dc | 2006-04-02 00:07:39 +0100 | [diff] [blame] | 165 | #define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */ |
Russell King | 6626a70 | 2005-08-10 16:18:35 +0100 | [diff] [blame] | 166 | #define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */ |
| 167 | #define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 168 | |
| 169 | #ifndef __ASSEMBLY__ |
| 170 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 171 | /* |
| 172 | * The following macros handle the cache and bufferable bits... |
| 173 | */ |
| 174 | #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE |
| 175 | #define _L_PTE_READ L_PTE_USER | L_PTE_EXEC |
| 176 | |
| 177 | extern pgprot_t pgprot_kernel; |
| 178 | |
| 179 | #define PAGE_NONE __pgprot(_L_PTE_DEFAULT) |
| 180 | #define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) |
| 181 | #define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) |
| 182 | #define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) |
| 183 | #define PAGE_KERNEL pgprot_kernel |
| 184 | |
| 185 | #endif /* __ASSEMBLY__ */ |
| 186 | |
| 187 | /* |
| 188 | * The table below defines the page protection levels that we insert into our |
| 189 | * Linux page table version. These get translated into the best that the |
| 190 | * architecture can perform. Note that on most ARM hardware: |
| 191 | * 1) We cannot do execute protection |
| 192 | * 2) If we could do execute protection, then read is implied |
| 193 | * 3) write implies read permissions |
| 194 | */ |
| 195 | #define __P000 PAGE_NONE |
| 196 | #define __P001 PAGE_READONLY |
| 197 | #define __P010 PAGE_COPY |
| 198 | #define __P011 PAGE_COPY |
| 199 | #define __P100 PAGE_READONLY |
| 200 | #define __P101 PAGE_READONLY |
| 201 | #define __P110 PAGE_COPY |
| 202 | #define __P111 PAGE_COPY |
| 203 | |
| 204 | #define __S000 PAGE_NONE |
| 205 | #define __S001 PAGE_READONLY |
| 206 | #define __S010 PAGE_SHARED |
| 207 | #define __S011 PAGE_SHARED |
| 208 | #define __S100 PAGE_READONLY |
| 209 | #define __S101 PAGE_READONLY |
| 210 | #define __S110 PAGE_SHARED |
| 211 | #define __S111 PAGE_SHARED |
| 212 | |
| 213 | #ifndef __ASSEMBLY__ |
| 214 | /* |
| 215 | * ZERO_PAGE is a global shared page that is always zero: used |
| 216 | * for zero-mapped memory areas etc.. |
| 217 | */ |
| 218 | extern struct page *empty_zero_page; |
| 219 | #define ZERO_PAGE(vaddr) (empty_zero_page) |
| 220 | |
| 221 | #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| 222 | #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) |
| 223 | |
| 224 | #define pte_none(pte) (!pte_val(pte)) |
| 225 | #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0)) |
| 226 | #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| 227 | #define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| 228 | #define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| 229 | #define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| 230 | #define pte_unmap(pte) do { } while (0) |
| 231 | #define pte_unmap_nested(pte) do { } while (0) |
| 232 | |
| 233 | #define set_pte(ptep, pte) cpu_set_pte(ptep,pte) |
| 234 | #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| 235 | |
| 236 | /* |
| 237 | * The following only work if pte_present() is true. |
| 238 | * Undefined behaviour if not.. |
| 239 | */ |
| 240 | #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) |
| 241 | #define pte_read(pte) (pte_val(pte) & L_PTE_USER) |
| 242 | #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) |
| 243 | #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC) |
| 244 | #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) |
| 245 | #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) |
| 246 | |
| 247 | /* |
| 248 | * The following only works if pte_present() is not true. |
| 249 | */ |
| 250 | #define pte_file(pte) (pte_val(pte) & L_PTE_FILE) |
| 251 | #define pte_to_pgoff(x) (pte_val(x) >> 2) |
| 252 | #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) |
| 253 | |
| 254 | #define PTE_FILE_MAX_BITS 30 |
| 255 | |
| 256 | #define PTE_BIT_FUNC(fn,op) \ |
| 257 | static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } |
| 258 | |
| 259 | /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/ |
| 260 | /*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/ |
| 261 | PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); |
| 262 | PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); |
| 263 | PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC); |
| 264 | PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC); |
| 265 | PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); |
| 266 | PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); |
| 267 | PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); |
| 268 | PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); |
| 269 | |
| 270 | /* |
| 271 | * Mark the prot value as uncacheable and unbufferable. |
| 272 | */ |
| 273 | #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) |
| 274 | #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) |
| 275 | |
| 276 | #define pmd_none(pmd) (!pmd_val(pmd)) |
| 277 | #define pmd_present(pmd) (pmd_val(pmd)) |
| 278 | #define pmd_bad(pmd) (pmd_val(pmd) & 2) |
| 279 | |
| 280 | #define copy_pmd(pmdpd,pmdps) \ |
| 281 | do { \ |
| 282 | pmdpd[0] = pmdps[0]; \ |
| 283 | pmdpd[1] = pmdps[1]; \ |
| 284 | flush_pmd_entry(pmdpd); \ |
| 285 | } while (0) |
| 286 | |
| 287 | #define pmd_clear(pmdp) \ |
| 288 | do { \ |
| 289 | pmdp[0] = __pmd(0); \ |
| 290 | pmdp[1] = __pmd(0); \ |
| 291 | clean_pmd_entry(pmdp); \ |
| 292 | } while (0) |
| 293 | |
| 294 | static inline pte_t *pmd_page_kernel(pmd_t pmd) |
| 295 | { |
| 296 | unsigned long ptr; |
| 297 | |
| 298 | ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); |
| 299 | ptr += PTRS_PER_PTE * sizeof(void *); |
| 300 | |
| 301 | return __va(ptr); |
| 302 | } |
| 303 | |
| 304 | #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) |
| 305 | |
| 306 | /* |
| 307 | * Permanent address of a page. We never have highmem, so this is trivial. |
| 308 | */ |
| 309 | #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) |
| 310 | |
| 311 | /* |
| 312 | * Conversion functions: convert a page and protection to a page entry, |
| 313 | * and a page entry and page directory to the page they refer to. |
| 314 | */ |
| 315 | #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) |
| 316 | |
| 317 | /* |
| 318 | * The "pgd_xxx()" functions here are trivial for a folded two-level |
| 319 | * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| 320 | * into the pgd entry) |
| 321 | */ |
| 322 | #define pgd_none(pgd) (0) |
| 323 | #define pgd_bad(pgd) (0) |
| 324 | #define pgd_present(pgd) (1) |
| 325 | #define pgd_clear(pgdp) do { } while (0) |
| 326 | #define set_pgd(pgd,pgdp) do { } while (0) |
| 327 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 328 | /* to find an entry in a page-table-directory */ |
| 329 | #define pgd_index(addr) ((addr) >> PGDIR_SHIFT) |
| 330 | |
| 331 | #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) |
| 332 | |
| 333 | /* to find an entry in a kernel page-table-directory */ |
| 334 | #define pgd_offset_k(addr) pgd_offset(&init_mm, addr) |
| 335 | |
| 336 | /* Find an entry in the second-level page table.. */ |
| 337 | #define pmd_offset(dir, addr) ((pmd_t *)(dir)) |
| 338 | |
| 339 | /* Find an entry in the third-level page table.. */ |
| 340 | #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| 341 | |
| 342 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| 343 | { |
| 344 | const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; |
| 345 | pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); |
| 346 | return pte; |
| 347 | } |
| 348 | |
| 349 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| 350 | |
| 351 | /* Encode and decode a swap entry. |
| 352 | * |
| 353 | * We support up to 32GB of swap on 4k machines |
| 354 | */ |
| 355 | #define __swp_type(x) (((x).val >> 2) & 0x7f) |
| 356 | #define __swp_offset(x) ((x).val >> 9) |
| 357 | #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) |
| 358 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| 359 | #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) |
| 360 | |
| 361 | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| 362 | /* FIXME: this is not correct */ |
| 363 | #define kern_addr_valid(addr) (1) |
| 364 | |
| 365 | #include <asm-generic/pgtable.h> |
| 366 | |
| 367 | /* |
| 368 | * We provide our own arch_get_unmapped_area to cope with VIPT caches. |
| 369 | */ |
| 370 | #define HAVE_ARCH_UNMAPPED_AREA |
| 371 | |
| 372 | /* |
Randy Dunlap | 33bf561 | 2005-09-13 01:25:50 -0700 | [diff] [blame] | 373 | * remap a physical page `pfn' of size `size' with page protection `prot' |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 374 | * into virtual address `from' |
| 375 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 376 | #define io_remap_pfn_range(vma,from,pfn,size,prot) \ |
| 377 | remap_pfn_range(vma, from, pfn, size, prot) |
| 378 | |
| 379 | #define MK_IOSPACE_PFN(space, pfn) (pfn) |
| 380 | #define GET_IOSPACE(pfn) 0 |
| 381 | #define GET_PFN(pfn) (pfn) |
| 382 | |
| 383 | #define pgtable_cache_init() do { } while (0) |
| 384 | |
| 385 | #endif /* !__ASSEMBLY__ */ |
| 386 | |
Russell King | 002547b | 2006-06-20 20:46:52 +0100 | [diff] [blame^] | 387 | #endif /* CONFIG_MMU */ |
| 388 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 389 | #endif /* _ASMARM_PGTABLE_H */ |