blob: cfeb6a44480bb7fd367068c7630bdab03e3eb751 [file] [log] [blame]
Alexei Starovoitov1bc38b82018-10-05 16:40:00 -07001// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07002/* Copyright (c) 2018 Facebook */
3
Arnaldo Carvalho de Melocdb2f922019-07-19 11:34:06 -03004#include <endian.h>
Yonghong Song96408c42019-02-04 11:00:58 -08005#include <stdio.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07006#include <stdlib.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07007#include <string.h>
Andrii Nakryikoe6c64852019-05-24 11:58:57 -07008#include <fcntl.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07009#include <unistd.h>
10#include <errno.h>
11#include <linux/err.h>
12#include <linux/btf.h>
Andrii Nakryikoe6c64852019-05-24 11:58:57 -070013#include <gelf.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070014#include "btf.h"
15#include "bpf.h"
Yonghong Song8461ef82019-02-01 16:14:14 -080016#include "libbpf.h"
Andrii Nakryikod72386f2019-05-15 20:39:27 -070017#include "libbpf_internal.h"
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -070018#include "hashmap.h"
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070019
Andrii Nakryiko1d1a3bc2020-01-10 10:19:16 -080020/* make sure libbpf doesn't use kernel-only integer typedefs */
21#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
22
Andrii Nakryiko5aab3922019-02-15 19:52:18 -080023#define BTF_MAX_NR_TYPES 0x7fffffff
24#define BTF_MAX_STR_OFFSET 0x7fffffff
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070025
26static struct btf_type btf_void;
27
28struct btf {
29 union {
30 struct btf_header *hdr;
31 void *data;
32 };
33 struct btf_type **types;
34 const char *strings;
35 void *nohdr_data;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -070036 __u32 nr_types;
37 __u32 types_size;
38 __u32 data_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070039 int fd;
40};
41
Yonghong Songd7f5b5e2018-11-19 15:29:18 -080042static inline __u64 ptr_to_u64(const void *ptr)
43{
44 return (__u64) (unsigned long) ptr;
45}
46
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070047static int btf_add_type(struct btf *btf, struct btf_type *t)
48{
49 if (btf->types_size - btf->nr_types < 2) {
50 struct btf_type **new_types;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -070051 __u32 expand_by, new_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070052
53 if (btf->types_size == BTF_MAX_NR_TYPES)
54 return -E2BIG;
55
56 expand_by = max(btf->types_size >> 2, 16);
57 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
58
59 new_types = realloc(btf->types, sizeof(*new_types) * new_size);
60 if (!new_types)
61 return -ENOMEM;
62
63 if (btf->nr_types == 0)
64 new_types[0] = &btf_void;
65
66 btf->types = new_types;
67 btf->types_size = new_size;
68 }
69
70 btf->types[++(btf->nr_types)] = t;
71
72 return 0;
73}
74
Yonghong Song8461ef82019-02-01 16:14:14 -080075static int btf_parse_hdr(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070076{
77 const struct btf_header *hdr = btf->hdr;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -070078 __u32 meta_left;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070079
80 if (btf->data_size < sizeof(struct btf_header)) {
Yonghong Song8461ef82019-02-01 16:14:14 -080081 pr_debug("BTF header not found\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070082 return -EINVAL;
83 }
84
85 if (hdr->magic != BTF_MAGIC) {
Yonghong Song8461ef82019-02-01 16:14:14 -080086 pr_debug("Invalid BTF magic:%x\n", hdr->magic);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070087 return -EINVAL;
88 }
89
90 if (hdr->version != BTF_VERSION) {
Yonghong Song8461ef82019-02-01 16:14:14 -080091 pr_debug("Unsupported BTF version:%u\n", hdr->version);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070092 return -ENOTSUP;
93 }
94
95 if (hdr->flags) {
Yonghong Song8461ef82019-02-01 16:14:14 -080096 pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070097 return -ENOTSUP;
98 }
99
100 meta_left = btf->data_size - sizeof(*hdr);
101 if (!meta_left) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800102 pr_debug("BTF has no data\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700103 return -EINVAL;
104 }
105
106 if (meta_left < hdr->type_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800107 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700108 return -EINVAL;
109 }
110
111 if (meta_left < hdr->str_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800112 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700113 return -EINVAL;
114 }
115
116 if (hdr->type_off >= hdr->str_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800117 pr_debug("BTF type section offset >= string section offset. No type?\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700118 return -EINVAL;
119 }
120
121 if (hdr->type_off & 0x02) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800122 pr_debug("BTF type section is not aligned to 4 bytes\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700123 return -EINVAL;
124 }
125
126 btf->nohdr_data = btf->hdr + 1;
127
128 return 0;
129}
130
Yonghong Song8461ef82019-02-01 16:14:14 -0800131static int btf_parse_str_sec(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700132{
133 const struct btf_header *hdr = btf->hdr;
134 const char *start = btf->nohdr_data + hdr->str_off;
135 const char *end = start + btf->hdr->str_len;
136
Andrii Nakryiko5aab3922019-02-15 19:52:18 -0800137 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700138 start[0] || end[-1]) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800139 pr_debug("Invalid BTF string section\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700140 return -EINVAL;
141 }
142
143 btf->strings = start;
144
145 return 0;
146}
147
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800148static int btf_type_size(struct btf_type *t)
149{
150 int base_size = sizeof(struct btf_type);
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700151 __u16 vlen = btf_vlen(t);
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800152
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700153 switch (btf_kind(t)) {
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800154 case BTF_KIND_FWD:
155 case BTF_KIND_CONST:
156 case BTF_KIND_VOLATILE:
157 case BTF_KIND_RESTRICT:
158 case BTF_KIND_PTR:
159 case BTF_KIND_TYPEDEF:
160 case BTF_KIND_FUNC:
161 return base_size;
162 case BTF_KIND_INT:
163 return base_size + sizeof(__u32);
164 case BTF_KIND_ENUM:
165 return base_size + vlen * sizeof(struct btf_enum);
166 case BTF_KIND_ARRAY:
167 return base_size + sizeof(struct btf_array);
168 case BTF_KIND_STRUCT:
169 case BTF_KIND_UNION:
170 return base_size + vlen * sizeof(struct btf_member);
171 case BTF_KIND_FUNC_PROTO:
172 return base_size + vlen * sizeof(struct btf_param);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200173 case BTF_KIND_VAR:
174 return base_size + sizeof(struct btf_var);
175 case BTF_KIND_DATASEC:
176 return base_size + vlen * sizeof(struct btf_var_secinfo);
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800177 default:
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700178 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800179 return -EINVAL;
180 }
181}
182
Yonghong Song8461ef82019-02-01 16:14:14 -0800183static int btf_parse_type_sec(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700184{
185 struct btf_header *hdr = btf->hdr;
186 void *nohdr_data = btf->nohdr_data;
187 void *next_type = nohdr_data + hdr->type_off;
188 void *end_type = nohdr_data + hdr->str_off;
189
190 while (next_type < end_type) {
191 struct btf_type *t = next_type;
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800192 int type_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700193 int err;
194
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800195 type_size = btf_type_size(t);
196 if (type_size < 0)
197 return type_size;
198 next_type += type_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700199 err = btf_add_type(btf, t);
200 if (err)
201 return err;
202 }
203
204 return 0;
205}
206
Andrii Nakryiko9c651122019-02-04 17:29:46 -0800207__u32 btf__get_nr_types(const struct btf *btf)
208{
209 return btf->nr_types;
210}
211
Martin KaFai Lau38d5d3b2018-07-24 08:40:22 -0700212const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700213{
214 if (type_id > btf->nr_types)
215 return NULL;
216
217 return btf->types[type_id];
218}
219
220static bool btf_type_is_void(const struct btf_type *t)
221{
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700222 return t == &btf_void || btf_is_fwd(t);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700223}
224
225static bool btf_type_is_void_or_null(const struct btf_type *t)
226{
227 return !t || btf_type_is_void(t);
228}
229
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700230#define MAX_RESOLVE_DEPTH 32
231
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700232__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700233{
234 const struct btf_array *array;
235 const struct btf_type *t;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700236 __u32 nelems = 1;
237 __s64 size = -1;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700238 int i;
239
Okash Khawaja92b57122018-07-13 21:57:02 -0700240 t = btf__type_by_id(btf, type_id);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700241 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
242 i++) {
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700243 switch (btf_kind(t)) {
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800244 case BTF_KIND_INT:
245 case BTF_KIND_STRUCT:
246 case BTF_KIND_UNION:
247 case BTF_KIND_ENUM:
Daniel Borkmann1713d682019-04-09 23:20:14 +0200248 case BTF_KIND_DATASEC:
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800249 size = t->size;
250 goto done;
251 case BTF_KIND_PTR:
252 size = sizeof(void *);
253 goto done;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700254 case BTF_KIND_TYPEDEF:
255 case BTF_KIND_VOLATILE:
256 case BTF_KIND_CONST:
257 case BTF_KIND_RESTRICT:
Daniel Borkmann1713d682019-04-09 23:20:14 +0200258 case BTF_KIND_VAR:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700259 type_id = t->type;
260 break;
261 case BTF_KIND_ARRAY:
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700262 array = btf_array(t);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700263 if (nelems && array->nelems > UINT32_MAX / nelems)
264 return -E2BIG;
265 nelems *= array->nelems;
266 type_id = array->type;
267 break;
268 default:
269 return -EINVAL;
270 }
271
Okash Khawaja92b57122018-07-13 21:57:02 -0700272 t = btf__type_by_id(btf, type_id);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700273 }
274
Andrii Nakryiko994021a2019-11-06 18:08:54 -0800275done:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700276 if (size < 0)
277 return -EINVAL;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700278 if (nelems && size > UINT32_MAX / nelems)
279 return -E2BIG;
280
281 return nelems * size;
282}
283
Andrii Nakryiko3d208f42019-12-13 17:43:30 -0800284int btf__align_of(const struct btf *btf, __u32 id)
285{
286 const struct btf_type *t = btf__type_by_id(btf, id);
287 __u16 kind = btf_kind(t);
288
289 switch (kind) {
290 case BTF_KIND_INT:
291 case BTF_KIND_ENUM:
292 return min(sizeof(void *), t->size);
293 case BTF_KIND_PTR:
294 return sizeof(void *);
295 case BTF_KIND_TYPEDEF:
296 case BTF_KIND_VOLATILE:
297 case BTF_KIND_CONST:
298 case BTF_KIND_RESTRICT:
299 return btf__align_of(btf, t->type);
300 case BTF_KIND_ARRAY:
301 return btf__align_of(btf, btf_array(t)->type);
302 case BTF_KIND_STRUCT:
303 case BTF_KIND_UNION: {
304 const struct btf_member *m = btf_members(t);
305 __u16 vlen = btf_vlen(t);
Prashant Bholea79ac2d2019-12-16 17:27:38 +0900306 int i, max_align = 1, align;
Andrii Nakryiko3d208f42019-12-13 17:43:30 -0800307
308 for (i = 0; i < vlen; i++, m++) {
Prashant Bholea79ac2d2019-12-16 17:27:38 +0900309 align = btf__align_of(btf, m->type);
310 if (align <= 0)
311 return align;
312 max_align = max(max_align, align);
Andrii Nakryiko3d208f42019-12-13 17:43:30 -0800313 }
314
Prashant Bholea79ac2d2019-12-16 17:27:38 +0900315 return max_align;
Andrii Nakryiko3d208f42019-12-13 17:43:30 -0800316 }
317 default:
318 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
319 return 0;
320 }
321}
322
Okash Khawaja92b57122018-07-13 21:57:02 -0700323int btf__resolve_type(const struct btf *btf, __u32 type_id)
324{
325 const struct btf_type *t;
326 int depth = 0;
327
328 t = btf__type_by_id(btf, type_id);
329 while (depth < MAX_RESOLVE_DEPTH &&
330 !btf_type_is_void_or_null(t) &&
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700331 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
Okash Khawaja92b57122018-07-13 21:57:02 -0700332 type_id = t->type;
333 t = btf__type_by_id(btf, type_id);
334 depth++;
335 }
336
337 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
338 return -EINVAL;
339
340 return type_id;
341}
342
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700343__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700344{
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700345 __u32 i;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700346
347 if (!strcmp(type_name, "void"))
348 return 0;
349
350 for (i = 1; i <= btf->nr_types; i++) {
351 const struct btf_type *t = btf->types[i];
Okash Khawaja92b57122018-07-13 21:57:02 -0700352 const char *name = btf__name_by_offset(btf, t->name_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700353
354 if (name && !strcmp(type_name, name))
355 return i;
356 }
357
358 return -ENOENT;
359}
360
Alexei Starovoitov1442e282019-11-14 10:57:05 -0800361__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
362 __u32 kind)
363{
364 __u32 i;
365
366 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
367 return 0;
368
369 for (i = 1; i <= btf->nr_types; i++) {
370 const struct btf_type *t = btf->types[i];
371 const char *name;
372
373 if (btf_kind(t) != kind)
374 continue;
375 name = btf__name_by_offset(btf, t->name_off);
376 if (name && !strcmp(type_name, name))
377 return i;
378 }
379
380 return -ENOENT;
381}
382
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700383void btf__free(struct btf *btf)
384{
385 if (!btf)
386 return;
387
388 if (btf->fd != -1)
389 close(btf->fd);
390
391 free(btf->data);
392 free(btf->types);
393 free(btf);
394}
395
Yonghong Song8461ef82019-02-01 16:14:14 -0800396struct btf *btf__new(__u8 *data, __u32 size)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700397{
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700398 struct btf *btf;
399 int err;
400
401 btf = calloc(1, sizeof(struct btf));
402 if (!btf)
403 return ERR_PTR(-ENOMEM);
404
405 btf->fd = -1;
406
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700407 btf->data = malloc(size);
408 if (!btf->data) {
409 err = -ENOMEM;
410 goto done;
411 }
412
413 memcpy(btf->data, data, size);
414 btf->data_size = size;
415
Yonghong Song8461ef82019-02-01 16:14:14 -0800416 err = btf_parse_hdr(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700417 if (err)
418 goto done;
419
Yonghong Song8461ef82019-02-01 16:14:14 -0800420 err = btf_parse_str_sec(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700421 if (err)
422 goto done;
423
Yonghong Song8461ef82019-02-01 16:14:14 -0800424 err = btf_parse_type_sec(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700425
426done:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700427 if (err) {
428 btf__free(btf);
429 return ERR_PTR(err);
430 }
431
432 return btf;
433}
434
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700435static bool btf_check_endianness(const GElf_Ehdr *ehdr)
436{
Arnaldo Carvalho de Melocdb2f922019-07-19 11:34:06 -0300437#if __BYTE_ORDER == __LITTLE_ENDIAN
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700438 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
Arnaldo Carvalho de Melocdb2f922019-07-19 11:34:06 -0300439#elif __BYTE_ORDER == __BIG_ENDIAN
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700440 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
441#else
442# error "Unrecognized __BYTE_ORDER__"
443#endif
444}
445
446struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
447{
448 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
449 int err = 0, fd = -1, idx = 0;
450 struct btf *btf = NULL;
451 Elf_Scn *scn = NULL;
452 Elf *elf = NULL;
453 GElf_Ehdr ehdr;
454
455 if (elf_version(EV_CURRENT) == EV_NONE) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800456 pr_warn("failed to init libelf for %s\n", path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700457 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
458 }
459
460 fd = open(path, O_RDONLY);
461 if (fd < 0) {
462 err = -errno;
Kefeng Wangbe180102019-10-21 13:55:32 +0800463 pr_warn("failed to open %s: %s\n", path, strerror(errno));
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700464 return ERR_PTR(err);
465 }
466
467 err = -LIBBPF_ERRNO__FORMAT;
468
469 elf = elf_begin(fd, ELF_C_READ, NULL);
470 if (!elf) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800471 pr_warn("failed to open %s as ELF file\n", path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700472 goto done;
473 }
474 if (!gelf_getehdr(elf, &ehdr)) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800475 pr_warn("failed to get EHDR from %s\n", path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700476 goto done;
477 }
478 if (!btf_check_endianness(&ehdr)) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800479 pr_warn("non-native ELF endianness is not supported\n");
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700480 goto done;
481 }
482 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800483 pr_warn("failed to get e_shstrndx from %s\n", path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700484 goto done;
485 }
486
487 while ((scn = elf_nextscn(elf, scn)) != NULL) {
488 GElf_Shdr sh;
489 char *name;
490
491 idx++;
492 if (gelf_getshdr(scn, &sh) != &sh) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800493 pr_warn("failed to get section(%d) header from %s\n",
494 idx, path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700495 goto done;
496 }
497 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
498 if (!name) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800499 pr_warn("failed to get section(%d) name from %s\n",
500 idx, path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700501 goto done;
502 }
503 if (strcmp(name, BTF_ELF_SEC) == 0) {
504 btf_data = elf_getdata(scn, 0);
505 if (!btf_data) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800506 pr_warn("failed to get section(%d, %s) data from %s\n",
507 idx, name, path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700508 goto done;
509 }
510 continue;
511 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
512 btf_ext_data = elf_getdata(scn, 0);
513 if (!btf_ext_data) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800514 pr_warn("failed to get section(%d, %s) data from %s\n",
515 idx, name, path);
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700516 goto done;
517 }
518 continue;
519 }
520 }
521
522 err = 0;
523
524 if (!btf_data) {
525 err = -ENOENT;
526 goto done;
527 }
528 btf = btf__new(btf_data->d_buf, btf_data->d_size);
529 if (IS_ERR(btf))
530 goto done;
531
532 if (btf_ext && btf_ext_data) {
533 *btf_ext = btf_ext__new(btf_ext_data->d_buf,
534 btf_ext_data->d_size);
535 if (IS_ERR(*btf_ext))
536 goto done;
537 } else if (btf_ext) {
538 *btf_ext = NULL;
539 }
540done:
541 if (elf)
542 elf_end(elf);
543 close(fd);
544
545 if (err)
546 return ERR_PTR(err);
547 /*
548 * btf is always parsed before btf_ext, so no need to clean up
549 * btf_ext, if btf loading failed
550 */
551 if (IS_ERR(btf))
552 return btf;
553 if (btf_ext && IS_ERR(*btf_ext)) {
554 btf__free(btf);
555 err = PTR_ERR(*btf_ext);
556 return ERR_PTR(err);
557 }
558 return btf;
559}
560
Daniel Borkmann1713d682019-04-09 23:20:14 +0200561static int compare_vsi_off(const void *_a, const void *_b)
562{
563 const struct btf_var_secinfo *a = _a;
564 const struct btf_var_secinfo *b = _b;
565
566 return a->offset - b->offset;
567}
568
569static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
570 struct btf_type *t)
571{
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700572 __u32 size = 0, off = 0, i, vars = btf_vlen(t);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200573 const char *name = btf__name_by_offset(btf, t->name_off);
574 const struct btf_type *t_var;
575 struct btf_var_secinfo *vsi;
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700576 const struct btf_var *var;
Daniel Borkmann1713d682019-04-09 23:20:14 +0200577 int ret;
578
579 if (!name) {
580 pr_debug("No name found in string section for DATASEC kind.\n");
581 return -ENOENT;
582 }
583
Andrii Nakryiko166750b2019-12-13 17:47:08 -0800584 /* .extern datasec size and var offsets were set correctly during
585 * extern collection step, so just skip straight to sorting variables
586 */
587 if (t->size)
588 goto sort_vars;
589
Daniel Borkmann1713d682019-04-09 23:20:14 +0200590 ret = bpf_object__section_size(obj, name, &size);
591 if (ret || !size || (t->size && t->size != size)) {
592 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
593 return -ENOENT;
594 }
595
596 t->size = size;
597
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700598 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
Daniel Borkmann1713d682019-04-09 23:20:14 +0200599 t_var = btf__type_by_id(btf, vsi->type);
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700600 var = btf_var(t_var);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200601
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700602 if (!btf_is_var(t_var)) {
Daniel Borkmann1713d682019-04-09 23:20:14 +0200603 pr_debug("Non-VAR type seen in section %s\n", name);
604 return -EINVAL;
605 }
606
607 if (var->linkage == BTF_VAR_STATIC)
608 continue;
609
610 name = btf__name_by_offset(btf, t_var->name_off);
611 if (!name) {
612 pr_debug("No name found in string section for VAR kind\n");
613 return -ENOENT;
614 }
615
616 ret = bpf_object__variable_offset(obj, name, &off);
617 if (ret) {
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700618 pr_debug("No offset found in symbol table for VAR %s\n",
619 name);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200620 return -ENOENT;
621 }
622
623 vsi->offset = off;
624 }
625
Andrii Nakryiko166750b2019-12-13 17:47:08 -0800626sort_vars:
627 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200628 return 0;
629}
630
631int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
632{
633 int err = 0;
634 __u32 i;
635
636 for (i = 1; i <= btf->nr_types; i++) {
637 struct btf_type *t = btf->types[i];
638
639 /* Loader needs to fix up some of the things compiler
640 * couldn't get its hands on while emitting BTF. This
641 * is section size and global variable offset. We use
642 * the info from the ELF itself for this purpose.
643 */
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700644 if (btf_is_datasec(t)) {
Daniel Borkmann1713d682019-04-09 23:20:14 +0200645 err = btf_fixup_datasec(obj, btf, t);
646 if (err)
647 break;
648 }
649 }
650
651 return err;
652}
653
Andrii Nakryikod29d87f2019-02-08 11:19:36 -0800654int btf__load(struct btf *btf)
655{
656 __u32 log_buf_size = BPF_LOG_BUF_SIZE;
657 char *log_buf = NULL;
658 int err = 0;
659
660 if (btf->fd >= 0)
661 return -EEXIST;
662
663 log_buf = malloc(log_buf_size);
664 if (!log_buf)
665 return -ENOMEM;
666
667 *log_buf = 0;
668
669 btf->fd = bpf_load_btf(btf->data, btf->data_size,
670 log_buf, log_buf_size, false);
671 if (btf->fd < 0) {
672 err = -errno;
Kefeng Wangbe180102019-10-21 13:55:32 +0800673 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
Andrii Nakryikod29d87f2019-02-08 11:19:36 -0800674 if (*log_buf)
Kefeng Wangbe180102019-10-21 13:55:32 +0800675 pr_warn("%s\n", log_buf);
Andrii Nakryikod29d87f2019-02-08 11:19:36 -0800676 goto done;
677 }
678
679done:
680 free(log_buf);
681 return err;
682}
683
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700684int btf__fd(const struct btf *btf)
685{
686 return btf->fd;
687}
Okash Khawaja92b57122018-07-13 21:57:02 -0700688
Andrii Nakryiko02c87442019-02-08 11:19:37 -0800689const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
690{
691 *size = btf->data_size;
692 return btf->data;
693}
694
Okash Khawaja92b57122018-07-13 21:57:02 -0700695const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
696{
697 if (offset < btf->hdr->str_len)
698 return &btf->strings[offset];
699 else
700 return NULL;
701}
Yonghong Song2993e052018-11-19 15:29:16 -0800702
Martin KaFai Lau1d2f44c2018-11-23 16:44:32 -0800703int btf__get_from_id(__u32 id, struct btf **btf)
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800704{
705 struct bpf_btf_info btf_info = { 0 };
706 __u32 len = sizeof(btf_info);
707 __u32 last_size;
708 int btf_fd;
709 void *ptr;
710 int err;
711
712 err = 0;
713 *btf = NULL;
714 btf_fd = bpf_btf_get_fd_by_id(id);
715 if (btf_fd < 0)
716 return 0;
717
718 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
719 * let's start with a sane default - 4KiB here - and resize it only if
720 * bpf_obj_get_info_by_fd() needs a bigger buffer.
721 */
722 btf_info.btf_size = 4096;
723 last_size = btf_info.btf_size;
724 ptr = malloc(last_size);
725 if (!ptr) {
726 err = -ENOMEM;
727 goto exit_free;
728 }
729
Andrii Nakryiko1ad9cbb2019-02-13 10:25:53 -0800730 memset(ptr, 0, last_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800731 btf_info.btf = ptr_to_u64(ptr);
732 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
733
734 if (!err && btf_info.btf_size > last_size) {
735 void *temp_ptr;
736
737 last_size = btf_info.btf_size;
738 temp_ptr = realloc(ptr, last_size);
739 if (!temp_ptr) {
740 err = -ENOMEM;
741 goto exit_free;
742 }
743 ptr = temp_ptr;
Andrii Nakryiko1ad9cbb2019-02-13 10:25:53 -0800744 memset(ptr, 0, last_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800745 btf_info.btf = ptr_to_u64(ptr);
746 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
747 }
748
749 if (err || btf_info.btf_size > last_size) {
750 err = errno;
751 goto exit_free;
752 }
753
Yonghong Song8461ef82019-02-01 16:14:14 -0800754 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800755 if (IS_ERR(*btf)) {
756 err = PTR_ERR(*btf);
757 *btf = NULL;
758 }
759
760exit_free:
761 close(btf_fd);
762 free(ptr);
763
764 return err;
765}
766
Yonghong Songa6c109a2019-02-05 11:48:22 -0800767int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
Yonghong Song96408c42019-02-04 11:00:58 -0800768 __u32 expected_key_size, __u32 expected_value_size,
769 __u32 *key_type_id, __u32 *value_type_id)
770{
771 const struct btf_type *container_type;
772 const struct btf_member *key, *value;
773 const size_t max_name = 256;
774 char container_name[max_name];
775 __s64 key_size, value_size;
776 __s32 container_id;
777
778 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
779 max_name) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800780 pr_warn("map:%s length of '____btf_map_%s' is too long\n",
781 map_name, map_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800782 return -EINVAL;
783 }
784
785 container_id = btf__find_by_name(btf, container_name);
786 if (container_id < 0) {
Yonghong Songf7748e22019-02-05 21:38:30 -0800787 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
788 map_name, container_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800789 return container_id;
790 }
791
792 container_type = btf__type_by_id(btf, container_id);
793 if (!container_type) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800794 pr_warn("map:%s cannot find BTF type for container_id:%u\n",
795 map_name, container_id);
Yonghong Song96408c42019-02-04 11:00:58 -0800796 return -EINVAL;
797 }
798
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700799 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800800 pr_warn("map:%s container_name:%s is an invalid container struct\n",
801 map_name, container_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800802 return -EINVAL;
803 }
804
Andrii Nakryikob03bc682019-08-07 14:39:49 -0700805 key = btf_members(container_type);
Yonghong Song96408c42019-02-04 11:00:58 -0800806 value = key + 1;
807
808 key_size = btf__resolve_size(btf, key->type);
809 if (key_size < 0) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800810 pr_warn("map:%s invalid BTF key_type_size\n", map_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800811 return key_size;
812 }
813
814 if (expected_key_size != key_size) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800815 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
816 map_name, (__u32)key_size, expected_key_size);
Yonghong Song96408c42019-02-04 11:00:58 -0800817 return -EINVAL;
818 }
819
820 value_size = btf__resolve_size(btf, value->type);
821 if (value_size < 0) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800822 pr_warn("map:%s invalid BTF value_type_size\n", map_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800823 return value_size;
824 }
825
826 if (expected_value_size != value_size) {
Kefeng Wangbe180102019-10-21 13:55:32 +0800827 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
828 map_name, (__u32)value_size, expected_value_size);
Yonghong Song96408c42019-02-04 11:00:58 -0800829 return -EINVAL;
830 }
831
832 *key_type_id = key->type;
833 *value_type_id = value->type;
834
835 return 0;
836}
837
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800838struct btf_ext_sec_setup_param {
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800839 __u32 off;
840 __u32 len;
841 __u32 min_rec_size;
842 struct btf_ext_info *ext_info;
843 const char *desc;
844};
845
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800846static int btf_ext_setup_info(struct btf_ext *btf_ext,
847 struct btf_ext_sec_setup_param *ext_sec)
Yonghong Song2993e052018-11-19 15:29:16 -0800848{
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800849 const struct btf_ext_info_sec *sinfo;
850 struct btf_ext_info *ext_info;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800851 __u32 info_left, record_size;
852 /* The start of the info sec (including the __u32 record_size). */
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800853 void *info;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800854
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -0700855 if (ext_sec->len == 0)
856 return 0;
857
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800858 if (ext_sec->off & 0x03) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800859 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800860 ext_sec->desc);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800861 return -EINVAL;
862 }
863
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800864 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
865 info_left = ext_sec->len;
866
867 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800868 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800869 ext_sec->desc, ext_sec->off, ext_sec->len);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800870 return -EINVAL;
871 }
872
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800873 /* At least a record size */
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800874 if (info_left < sizeof(__u32)) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800875 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800876 return -EINVAL;
877 }
878
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800879 /* The record size needs to meet the minimum standard */
880 record_size = *(__u32 *)info;
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800881 if (record_size < ext_sec->min_rec_size ||
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800882 record_size & 0x03) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800883 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800884 ext_sec->desc, record_size);
Yonghong Song2993e052018-11-19 15:29:16 -0800885 return -EINVAL;
886 }
887
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800888 sinfo = info + sizeof(__u32);
889 info_left -= sizeof(__u32);
Yonghong Song2993e052018-11-19 15:29:16 -0800890
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800891 /* If no records, return failure now so .BTF.ext won't be used. */
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800892 if (!info_left) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800893 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800894 return -EINVAL;
895 }
896
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800897 while (info_left) {
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800898 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800899 __u64 total_record_size;
900 __u32 num_records;
901
902 if (info_left < sec_hdrlen) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800903 pr_debug("%s section header is not found in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800904 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800905 return -EINVAL;
906 }
907
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800908 num_records = sinfo->num_info;
Yonghong Song2993e052018-11-19 15:29:16 -0800909 if (num_records == 0) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800910 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800911 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800912 return -EINVAL;
913 }
914
915 total_record_size = sec_hdrlen +
916 (__u64)num_records * record_size;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800917 if (info_left < total_record_size) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800918 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800919 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800920 return -EINVAL;
921 }
922
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800923 info_left -= total_record_size;
Yonghong Song2993e052018-11-19 15:29:16 -0800924 sinfo = (void *)sinfo + total_record_size;
925 }
926
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800927 ext_info = ext_sec->ext_info;
928 ext_info->len = ext_sec->len - sizeof(__u32);
929 ext_info->rec_size = record_size;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800930 ext_info->info = info + sizeof(__u32);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800931
Yonghong Song2993e052018-11-19 15:29:16 -0800932 return 0;
933}
934
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800935static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800936{
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800937 struct btf_ext_sec_setup_param param = {
938 .off = btf_ext->hdr->func_info_off,
939 .len = btf_ext->hdr->func_info_len,
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800940 .min_rec_size = sizeof(struct bpf_func_info_min),
941 .ext_info = &btf_ext->func_info,
942 .desc = "func_info"
943 };
944
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800945 return btf_ext_setup_info(btf_ext, &param);
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800946}
947
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800948static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800949{
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800950 struct btf_ext_sec_setup_param param = {
951 .off = btf_ext->hdr->line_info_off,
952 .len = btf_ext->hdr->line_info_len,
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800953 .min_rec_size = sizeof(struct bpf_line_info_min),
954 .ext_info = &btf_ext->line_info,
955 .desc = "line_info",
956 };
957
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800958 return btf_ext_setup_info(btf_ext, &param);
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800959}
960
Andrii Nakryiko511bb002019-10-15 11:28:45 -0700961static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -0700962{
963 struct btf_ext_sec_setup_param param = {
Andrii Nakryiko511bb002019-10-15 11:28:45 -0700964 .off = btf_ext->hdr->field_reloc_off,
965 .len = btf_ext->hdr->field_reloc_len,
966 .min_rec_size = sizeof(struct bpf_field_reloc),
967 .ext_info = &btf_ext->field_reloc_info,
968 .desc = "field_reloc",
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -0700969 };
970
971 return btf_ext_setup_info(btf_ext, &param);
972}
973
Yonghong Song8461ef82019-02-01 16:14:14 -0800974static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
Yonghong Song2993e052018-11-19 15:29:16 -0800975{
976 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
Yonghong Song2993e052018-11-19 15:29:16 -0800977
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -0700978 if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
Yonghong Song2993e052018-11-19 15:29:16 -0800979 data_size < hdr->hdr_len) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800980 pr_debug("BTF.ext header not found");
Yonghong Song2993e052018-11-19 15:29:16 -0800981 return -EINVAL;
982 }
983
984 if (hdr->magic != BTF_MAGIC) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800985 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
Yonghong Song2993e052018-11-19 15:29:16 -0800986 return -EINVAL;
987 }
988
989 if (hdr->version != BTF_VERSION) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800990 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
Yonghong Song2993e052018-11-19 15:29:16 -0800991 return -ENOTSUP;
992 }
993
994 if (hdr->flags) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800995 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
Yonghong Song2993e052018-11-19 15:29:16 -0800996 return -ENOTSUP;
997 }
998
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800999 if (data_size == hdr->hdr_len) {
Yonghong Song8461ef82019-02-01 16:14:14 -08001000 pr_debug("BTF.ext has no data\n");
Yonghong Song2993e052018-11-19 15:29:16 -08001001 return -EINVAL;
1002 }
1003
Martin KaFai Lauf0187f02018-12-07 16:42:29 -08001004 return 0;
Yonghong Song2993e052018-11-19 15:29:16 -08001005}
1006
1007void btf_ext__free(struct btf_ext *btf_ext)
1008{
1009 if (!btf_ext)
1010 return;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001011 free(btf_ext->data);
Yonghong Song2993e052018-11-19 15:29:16 -08001012 free(btf_ext);
1013}
1014
Yonghong Song8461ef82019-02-01 16:14:14 -08001015struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
Yonghong Song2993e052018-11-19 15:29:16 -08001016{
Yonghong Song2993e052018-11-19 15:29:16 -08001017 struct btf_ext *btf_ext;
Yonghong Song2993e052018-11-19 15:29:16 -08001018 int err;
1019
Yonghong Song8461ef82019-02-01 16:14:14 -08001020 err = btf_ext_parse_hdr(data, size);
Yonghong Song2993e052018-11-19 15:29:16 -08001021 if (err)
1022 return ERR_PTR(err);
1023
1024 btf_ext = calloc(1, sizeof(struct btf_ext));
1025 if (!btf_ext)
1026 return ERR_PTR(-ENOMEM);
1027
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001028 btf_ext->data_size = size;
1029 btf_ext->data = malloc(size);
1030 if (!btf_ext->data) {
1031 err = -ENOMEM;
1032 goto done;
Yonghong Song2993e052018-11-19 15:29:16 -08001033 }
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001034 memcpy(btf_ext->data, data, size);
Yonghong Song2993e052018-11-19 15:29:16 -08001035
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -07001036 if (btf_ext->hdr->hdr_len <
1037 offsetofend(struct btf_ext_header, line_info_len))
1038 goto done;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001039 err = btf_ext_setup_func_info(btf_ext);
1040 if (err)
1041 goto done;
1042
1043 err = btf_ext_setup_line_info(btf_ext);
1044 if (err)
1045 goto done;
1046
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -07001047 if (btf_ext->hdr->hdr_len <
Andrii Nakryiko511bb002019-10-15 11:28:45 -07001048 offsetofend(struct btf_ext_header, field_reloc_len))
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -07001049 goto done;
Andrii Nakryiko511bb002019-10-15 11:28:45 -07001050 err = btf_ext_setup_field_reloc(btf_ext);
Andrii Nakryiko4cedc0d2019-08-07 14:39:50 -07001051 if (err)
1052 goto done;
1053
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001054done:
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001055 if (err) {
1056 btf_ext__free(btf_ext);
1057 return ERR_PTR(err);
1058 }
1059
Yonghong Song2993e052018-11-19 15:29:16 -08001060 return btf_ext;
1061}
1062
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001063const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1064{
1065 *size = btf_ext->data_size;
1066 return btf_ext->data;
1067}
1068
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001069static int btf_ext_reloc_info(const struct btf *btf,
1070 const struct btf_ext_info *ext_info,
1071 const char *sec_name, __u32 insns_cnt,
1072 void **info, __u32 *cnt)
Yonghong Song2993e052018-11-19 15:29:16 -08001073{
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001074 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1075 __u32 i, record_size, existing_len, records_len;
1076 struct btf_ext_info_sec *sinfo;
Yonghong Song2993e052018-11-19 15:29:16 -08001077 const char *info_sec_name;
1078 __u64 remain_len;
1079 void *data;
1080
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001081 record_size = ext_info->rec_size;
1082 sinfo = ext_info->info;
1083 remain_len = ext_info->len;
Yonghong Song2993e052018-11-19 15:29:16 -08001084 while (remain_len > 0) {
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001085 records_len = sinfo->num_info * record_size;
Yonghong Song2993e052018-11-19 15:29:16 -08001086 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1087 if (strcmp(info_sec_name, sec_name)) {
1088 remain_len -= sec_hdrlen + records_len;
1089 sinfo = (void *)sinfo + sec_hdrlen + records_len;
1090 continue;
1091 }
1092
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001093 existing_len = (*cnt) * record_size;
1094 data = realloc(*info, existing_len + records_len);
Yonghong Song2993e052018-11-19 15:29:16 -08001095 if (!data)
1096 return -ENOMEM;
1097
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001098 memcpy(data + existing_len, sinfo->data, records_len);
Martin KaFai Lau84ecc1f2018-12-05 17:35:47 -08001099 /* adjust insn_off only, the rest data will be passed
Yonghong Song2993e052018-11-19 15:29:16 -08001100 * to the kernel.
1101 */
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001102 for (i = 0; i < sinfo->num_info; i++) {
1103 __u32 *insn_off;
Yonghong Song2993e052018-11-19 15:29:16 -08001104
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001105 insn_off = data + existing_len + (i * record_size);
1106 *insn_off = *insn_off / sizeof(struct bpf_insn) +
Yonghong Song2993e052018-11-19 15:29:16 -08001107 insns_cnt;
1108 }
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001109 *info = data;
1110 *cnt += sinfo->num_info;
Yonghong Song2993e052018-11-19 15:29:16 -08001111 return 0;
1112 }
1113
Martin KaFai Lauf0187f02018-12-07 16:42:29 -08001114 return -ENOENT;
1115}
1116
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001117int btf_ext__reloc_func_info(const struct btf *btf,
1118 const struct btf_ext *btf_ext,
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001119 const char *sec_name, __u32 insns_cnt,
1120 void **func_info, __u32 *cnt)
1121{
1122 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1123 insns_cnt, func_info, cnt);
1124}
1125
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001126int btf_ext__reloc_line_info(const struct btf *btf,
1127 const struct btf_ext *btf_ext,
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001128 const char *sec_name, __u32 insns_cnt,
1129 void **line_info, __u32 *cnt)
1130{
1131 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1132 insns_cnt, line_info, cnt);
1133}
1134
Martin KaFai Lauf0187f02018-12-07 16:42:29 -08001135__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1136{
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001137 return btf_ext->func_info.rec_size;
1138}
1139
1140__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1141{
1142 return btf_ext->line_info.rec_size;
Yonghong Song2993e052018-11-19 15:29:16 -08001143}
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001144
1145struct btf_dedup;
1146
1147static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1148 const struct btf_dedup_opts *opts);
1149static void btf_dedup_free(struct btf_dedup *d);
1150static int btf_dedup_strings(struct btf_dedup *d);
1151static int btf_dedup_prim_types(struct btf_dedup *d);
1152static int btf_dedup_struct_types(struct btf_dedup *d);
1153static int btf_dedup_ref_types(struct btf_dedup *d);
1154static int btf_dedup_compact_types(struct btf_dedup *d);
1155static int btf_dedup_remap_types(struct btf_dedup *d);
1156
1157/*
1158 * Deduplicate BTF types and strings.
1159 *
1160 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1161 * section with all BTF type descriptors and string data. It overwrites that
1162 * memory in-place with deduplicated types and strings without any loss of
1163 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1164 * is provided, all the strings referenced from .BTF.ext section are honored
1165 * and updated to point to the right offsets after deduplication.
1166 *
1167 * If function returns with error, type/string data might be garbled and should
1168 * be discarded.
1169 *
1170 * More verbose and detailed description of both problem btf_dedup is solving,
1171 * as well as solution could be found at:
1172 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1173 *
1174 * Problem description and justification
1175 * =====================================
1176 *
1177 * BTF type information is typically emitted either as a result of conversion
1178 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1179 * unit contains information about a subset of all the types that are used
1180 * in an application. These subsets are frequently overlapping and contain a lot
1181 * of duplicated information when later concatenated together into a single
1182 * binary. This algorithm ensures that each unique type is represented by single
1183 * BTF type descriptor, greatly reducing resulting size of BTF data.
1184 *
1185 * Compilation unit isolation and subsequent duplication of data is not the only
1186 * problem. The same type hierarchy (e.g., struct and all the type that struct
1187 * references) in different compilation units can be represented in BTF to
1188 * various degrees of completeness (or, rather, incompleteness) due to
1189 * struct/union forward declarations.
1190 *
1191 * Let's take a look at an example, that we'll use to better understand the
1192 * problem (and solution). Suppose we have two compilation units, each using
1193 * same `struct S`, but each of them having incomplete type information about
1194 * struct's fields:
1195 *
1196 * // CU #1:
1197 * struct S;
1198 * struct A {
1199 * int a;
1200 * struct A* self;
1201 * struct S* parent;
1202 * };
1203 * struct B;
1204 * struct S {
1205 * struct A* a_ptr;
1206 * struct B* b_ptr;
1207 * };
1208 *
1209 * // CU #2:
1210 * struct S;
1211 * struct A;
1212 * struct B {
1213 * int b;
1214 * struct B* self;
1215 * struct S* parent;
1216 * };
1217 * struct S {
1218 * struct A* a_ptr;
1219 * struct B* b_ptr;
1220 * };
1221 *
1222 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1223 * more), but will know the complete type information about `struct A`. While
1224 * for CU #2, it will know full type information about `struct B`, but will
1225 * only know about forward declaration of `struct A` (in BTF terms, it will
1226 * have `BTF_KIND_FWD` type descriptor with name `B`).
1227 *
1228 * This compilation unit isolation means that it's possible that there is no
1229 * single CU with complete type information describing structs `S`, `A`, and
1230 * `B`. Also, we might get tons of duplicated and redundant type information.
1231 *
1232 * Additional complication we need to keep in mind comes from the fact that
1233 * types, in general, can form graphs containing cycles, not just DAGs.
1234 *
1235 * While algorithm does deduplication, it also merges and resolves type
1236 * information (unless disabled throught `struct btf_opts`), whenever possible.
1237 * E.g., in the example above with two compilation units having partial type
1238 * information for structs `A` and `B`, the output of algorithm will emit
1239 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1240 * (as well as type information for `int` and pointers), as if they were defined
1241 * in a single compilation unit as:
1242 *
1243 * struct A {
1244 * int a;
1245 * struct A* self;
1246 * struct S* parent;
1247 * };
1248 * struct B {
1249 * int b;
1250 * struct B* self;
1251 * struct S* parent;
1252 * };
1253 * struct S {
1254 * struct A* a_ptr;
1255 * struct B* b_ptr;
1256 * };
1257 *
1258 * Algorithm summary
1259 * =================
1260 *
1261 * Algorithm completes its work in 6 separate passes:
1262 *
1263 * 1. Strings deduplication.
1264 * 2. Primitive types deduplication (int, enum, fwd).
1265 * 3. Struct/union types deduplication.
1266 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1267 * protos, and const/volatile/restrict modifiers).
1268 * 5. Types compaction.
1269 * 6. Types remapping.
1270 *
1271 * Algorithm determines canonical type descriptor, which is a single
1272 * representative type for each truly unique type. This canonical type is the
1273 * one that will go into final deduplicated BTF type information. For
1274 * struct/unions, it is also the type that algorithm will merge additional type
1275 * information into (while resolving FWDs), as it discovers it from data in
1276 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1277 * that type is canonical, or to some other type, if that type is equivalent
1278 * and was chosen as canonical representative. This mapping is stored in
1279 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1280 * FWD type got resolved to.
1281 *
1282 * To facilitate fast discovery of canonical types, we also maintain canonical
1283 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1284 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1285 * that match that signature. With sufficiently good choice of type signature
1286 * hashing function, we can limit number of canonical types for each unique type
1287 * signature to a very small number, allowing to find canonical type for any
1288 * duplicated type very quickly.
1289 *
1290 * Struct/union deduplication is the most critical part and algorithm for
1291 * deduplicating structs/unions is described in greater details in comments for
1292 * `btf_dedup_is_equiv` function.
1293 */
1294int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1295 const struct btf_dedup_opts *opts)
1296{
1297 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1298 int err;
1299
1300 if (IS_ERR(d)) {
1301 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1302 return -EINVAL;
1303 }
1304
1305 err = btf_dedup_strings(d);
1306 if (err < 0) {
1307 pr_debug("btf_dedup_strings failed:%d\n", err);
1308 goto done;
1309 }
1310 err = btf_dedup_prim_types(d);
1311 if (err < 0) {
1312 pr_debug("btf_dedup_prim_types failed:%d\n", err);
1313 goto done;
1314 }
1315 err = btf_dedup_struct_types(d);
1316 if (err < 0) {
1317 pr_debug("btf_dedup_struct_types failed:%d\n", err);
1318 goto done;
1319 }
1320 err = btf_dedup_ref_types(d);
1321 if (err < 0) {
1322 pr_debug("btf_dedup_ref_types failed:%d\n", err);
1323 goto done;
1324 }
1325 err = btf_dedup_compact_types(d);
1326 if (err < 0) {
1327 pr_debug("btf_dedup_compact_types failed:%d\n", err);
1328 goto done;
1329 }
1330 err = btf_dedup_remap_types(d);
1331 if (err < 0) {
1332 pr_debug("btf_dedup_remap_types failed:%d\n", err);
1333 goto done;
1334 }
1335
1336done:
1337 btf_dedup_free(d);
1338 return err;
1339}
1340
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001341#define BTF_UNPROCESSED_ID ((__u32)-1)
1342#define BTF_IN_PROGRESS_ID ((__u32)-2)
1343
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001344struct btf_dedup {
1345 /* .BTF section to be deduped in-place */
1346 struct btf *btf;
1347 /*
1348 * Optional .BTF.ext section. When provided, any strings referenced
1349 * from it will be taken into account when deduping strings
1350 */
1351 struct btf_ext *btf_ext;
1352 /*
1353 * This is a map from any type's signature hash to a list of possible
1354 * canonical representative type candidates. Hash collisions are
1355 * ignored, so even types of various kinds can share same list of
1356 * candidates, which is fine because we rely on subsequent
1357 * btf_xxx_equal() checks to authoritatively verify type equality.
1358 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001359 struct hashmap *dedup_table;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001360 /* Canonical types map */
1361 __u32 *map;
1362 /* Hypothetical mapping, used during type graph equivalence checks */
1363 __u32 *hypot_map;
1364 __u32 *hypot_list;
1365 size_t hypot_cnt;
1366 size_t hypot_cap;
1367 /* Various option modifying behavior of algorithm */
1368 struct btf_dedup_opts opts;
1369};
1370
1371struct btf_str_ptr {
1372 const char *str;
1373 __u32 new_off;
1374 bool used;
1375};
1376
1377struct btf_str_ptrs {
1378 struct btf_str_ptr *ptrs;
1379 const char *data;
1380 __u32 cnt;
1381 __u32 cap;
1382};
1383
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001384static long hash_combine(long h, long value)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001385{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001386 return h * 31 + value;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001387}
1388
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001389#define for_each_dedup_cand(d, node, hash) \
1390 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001391
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001392static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001393{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001394 return hashmap__append(d->dedup_table,
1395 (void *)hash, (void *)(long)type_id);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001396}
1397
1398static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1399 __u32 from_id, __u32 to_id)
1400{
1401 if (d->hypot_cnt == d->hypot_cap) {
1402 __u32 *new_list;
1403
1404 d->hypot_cap += max(16, d->hypot_cap / 2);
1405 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1406 if (!new_list)
1407 return -ENOMEM;
1408 d->hypot_list = new_list;
1409 }
1410 d->hypot_list[d->hypot_cnt++] = from_id;
1411 d->hypot_map[from_id] = to_id;
1412 return 0;
1413}
1414
1415static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1416{
1417 int i;
1418
1419 for (i = 0; i < d->hypot_cnt; i++)
1420 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1421 d->hypot_cnt = 0;
1422}
1423
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001424static void btf_dedup_free(struct btf_dedup *d)
1425{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001426 hashmap__free(d->dedup_table);
1427 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001428
1429 free(d->map);
1430 d->map = NULL;
1431
1432 free(d->hypot_map);
1433 d->hypot_map = NULL;
1434
1435 free(d->hypot_list);
1436 d->hypot_list = NULL;
1437
1438 free(d);
1439}
1440
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001441static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001442{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001443 return (size_t)key;
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001444}
1445
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001446static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1447{
1448 return 0;
1449}
1450
1451static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1452{
1453 return k1 == k2;
1454}
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001455
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001456static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1457 const struct btf_dedup_opts *opts)
1458{
1459 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001460 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001461 int i, err = 0;
1462
1463 if (!d)
1464 return ERR_PTR(-ENOMEM);
1465
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001466 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001467 /* dedup_table_size is now used only to force collisions in tests */
1468 if (opts && opts->dedup_table_size == 1)
1469 hash_fn = btf_dedup_collision_hash_fn;
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001470
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001471 d->btf = btf;
1472 d->btf_ext = btf_ext;
1473
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001474 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1475 if (IS_ERR(d->dedup_table)) {
1476 err = PTR_ERR(d->dedup_table);
1477 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001478 goto done;
1479 }
1480
1481 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1482 if (!d->map) {
1483 err = -ENOMEM;
1484 goto done;
1485 }
1486 /* special BTF "void" type is made canonical immediately */
1487 d->map[0] = 0;
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07001488 for (i = 1; i <= btf->nr_types; i++) {
1489 struct btf_type *t = d->btf->types[i];
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07001490
1491 /* VAR and DATASEC are never deduped and are self-canonical */
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001492 if (btf_is_var(t) || btf_is_datasec(t))
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07001493 d->map[i] = i;
1494 else
1495 d->map[i] = BTF_UNPROCESSED_ID;
1496 }
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001497
1498 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1499 if (!d->hypot_map) {
1500 err = -ENOMEM;
1501 goto done;
1502 }
1503 for (i = 0; i <= btf->nr_types; i++)
1504 d->hypot_map[i] = BTF_UNPROCESSED_ID;
1505
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001506done:
1507 if (err) {
1508 btf_dedup_free(d);
1509 return ERR_PTR(err);
1510 }
1511
1512 return d;
1513}
1514
1515typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1516
1517/*
1518 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1519 * string and pass pointer to it to a provided callback `fn`.
1520 */
1521static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1522{
1523 void *line_data_cur, *line_data_end;
1524 int i, j, r, rec_size;
1525 struct btf_type *t;
1526
1527 for (i = 1; i <= d->btf->nr_types; i++) {
1528 t = d->btf->types[i];
1529 r = fn(&t->name_off, ctx);
1530 if (r)
1531 return r;
1532
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001533 switch (btf_kind(t)) {
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001534 case BTF_KIND_STRUCT:
1535 case BTF_KIND_UNION: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001536 struct btf_member *m = btf_members(t);
1537 __u16 vlen = btf_vlen(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001538
1539 for (j = 0; j < vlen; j++) {
1540 r = fn(&m->name_off, ctx);
1541 if (r)
1542 return r;
1543 m++;
1544 }
1545 break;
1546 }
1547 case BTF_KIND_ENUM: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001548 struct btf_enum *m = btf_enum(t);
1549 __u16 vlen = btf_vlen(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001550
1551 for (j = 0; j < vlen; j++) {
1552 r = fn(&m->name_off, ctx);
1553 if (r)
1554 return r;
1555 m++;
1556 }
1557 break;
1558 }
1559 case BTF_KIND_FUNC_PROTO: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001560 struct btf_param *m = btf_params(t);
1561 __u16 vlen = btf_vlen(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001562
1563 for (j = 0; j < vlen; j++) {
1564 r = fn(&m->name_off, ctx);
1565 if (r)
1566 return r;
1567 m++;
1568 }
1569 break;
1570 }
1571 default:
1572 break;
1573 }
1574 }
1575
1576 if (!d->btf_ext)
1577 return 0;
1578
1579 line_data_cur = d->btf_ext->line_info.info;
1580 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1581 rec_size = d->btf_ext->line_info.rec_size;
1582
1583 while (line_data_cur < line_data_end) {
1584 struct btf_ext_info_sec *sec = line_data_cur;
1585 struct bpf_line_info_min *line_info;
1586 __u32 num_info = sec->num_info;
1587
1588 r = fn(&sec->sec_name_off, ctx);
1589 if (r)
1590 return r;
1591
1592 line_data_cur += sizeof(struct btf_ext_info_sec);
1593 for (i = 0; i < num_info; i++) {
1594 line_info = line_data_cur;
1595 r = fn(&line_info->file_name_off, ctx);
1596 if (r)
1597 return r;
1598 r = fn(&line_info->line_off, ctx);
1599 if (r)
1600 return r;
1601 line_data_cur += rec_size;
1602 }
1603 }
1604
1605 return 0;
1606}
1607
1608static int str_sort_by_content(const void *a1, const void *a2)
1609{
1610 const struct btf_str_ptr *p1 = a1;
1611 const struct btf_str_ptr *p2 = a2;
1612
1613 return strcmp(p1->str, p2->str);
1614}
1615
1616static int str_sort_by_offset(const void *a1, const void *a2)
1617{
1618 const struct btf_str_ptr *p1 = a1;
1619 const struct btf_str_ptr *p2 = a2;
1620
1621 if (p1->str != p2->str)
1622 return p1->str < p2->str ? -1 : 1;
1623 return 0;
1624}
1625
1626static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1627{
1628 const struct btf_str_ptr *p = pelem;
1629
1630 if (str_ptr != p->str)
1631 return (const char *)str_ptr < p->str ? -1 : 1;
1632 return 0;
1633}
1634
1635static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1636{
1637 struct btf_str_ptrs *strs;
1638 struct btf_str_ptr *s;
1639
1640 if (*str_off_ptr == 0)
1641 return 0;
1642
1643 strs = ctx;
1644 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1645 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1646 if (!s)
1647 return -EINVAL;
1648 s->used = true;
1649 return 0;
1650}
1651
1652static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1653{
1654 struct btf_str_ptrs *strs;
1655 struct btf_str_ptr *s;
1656
1657 if (*str_off_ptr == 0)
1658 return 0;
1659
1660 strs = ctx;
1661 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1662 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1663 if (!s)
1664 return -EINVAL;
1665 *str_off_ptr = s->new_off;
1666 return 0;
1667}
1668
1669/*
1670 * Dedup string and filter out those that are not referenced from either .BTF
1671 * or .BTF.ext (if provided) sections.
1672 *
1673 * This is done by building index of all strings in BTF's string section,
1674 * then iterating over all entities that can reference strings (e.g., type
1675 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1676 * strings as used. After that all used strings are deduped and compacted into
1677 * sequential blob of memory and new offsets are calculated. Then all the string
1678 * references are iterated again and rewritten using new offsets.
1679 */
1680static int btf_dedup_strings(struct btf_dedup *d)
1681{
1682 const struct btf_header *hdr = d->btf->hdr;
1683 char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1684 char *end = start + d->btf->hdr->str_len;
1685 char *p = start, *tmp_strs = NULL;
1686 struct btf_str_ptrs strs = {
1687 .cnt = 0,
1688 .cap = 0,
1689 .ptrs = NULL,
1690 .data = start,
1691 };
1692 int i, j, err = 0, grp_idx;
1693 bool grp_used;
1694
1695 /* build index of all strings */
1696 while (p < end) {
1697 if (strs.cnt + 1 > strs.cap) {
1698 struct btf_str_ptr *new_ptrs;
1699
1700 strs.cap += max(strs.cnt / 2, 16);
1701 new_ptrs = realloc(strs.ptrs,
1702 sizeof(strs.ptrs[0]) * strs.cap);
1703 if (!new_ptrs) {
1704 err = -ENOMEM;
1705 goto done;
1706 }
1707 strs.ptrs = new_ptrs;
1708 }
1709
1710 strs.ptrs[strs.cnt].str = p;
1711 strs.ptrs[strs.cnt].used = false;
1712
1713 p += strlen(p) + 1;
1714 strs.cnt++;
1715 }
1716
1717 /* temporary storage for deduplicated strings */
1718 tmp_strs = malloc(d->btf->hdr->str_len);
1719 if (!tmp_strs) {
1720 err = -ENOMEM;
1721 goto done;
1722 }
1723
1724 /* mark all used strings */
1725 strs.ptrs[0].used = true;
1726 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1727 if (err)
1728 goto done;
1729
1730 /* sort strings by context, so that we can identify duplicates */
1731 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1732
1733 /*
1734 * iterate groups of equal strings and if any instance in a group was
1735 * referenced, emit single instance and remember new offset
1736 */
1737 p = tmp_strs;
1738 grp_idx = 0;
1739 grp_used = strs.ptrs[0].used;
1740 /* iterate past end to avoid code duplication after loop */
1741 for (i = 1; i <= strs.cnt; i++) {
1742 /*
1743 * when i == strs.cnt, we want to skip string comparison and go
1744 * straight to handling last group of strings (otherwise we'd
1745 * need to handle last group after the loop w/ duplicated code)
1746 */
1747 if (i < strs.cnt &&
1748 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1749 grp_used = grp_used || strs.ptrs[i].used;
1750 continue;
1751 }
1752
1753 /*
1754 * this check would have been required after the loop to handle
1755 * last group of strings, but due to <= condition in a loop
1756 * we avoid that duplication
1757 */
1758 if (grp_used) {
1759 int new_off = p - tmp_strs;
1760 __u32 len = strlen(strs.ptrs[grp_idx].str);
1761
1762 memmove(p, strs.ptrs[grp_idx].str, len + 1);
1763 for (j = grp_idx; j < i; j++)
1764 strs.ptrs[j].new_off = new_off;
1765 p += len + 1;
1766 }
1767
1768 if (i < strs.cnt) {
1769 grp_idx = i;
1770 grp_used = strs.ptrs[i].used;
1771 }
1772 }
1773
1774 /* replace original strings with deduped ones */
1775 d->btf->hdr->str_len = p - tmp_strs;
1776 memmove(start, tmp_strs, d->btf->hdr->str_len);
1777 end = start + d->btf->hdr->str_len;
1778
1779 /* restore original order for further binary search lookups */
1780 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1781
1782 /* remap string offsets */
1783 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1784 if (err)
1785 goto done;
1786
1787 d->btf->hdr->str_len = end - start;
1788
1789done:
1790 free(tmp_strs);
1791 free(strs.ptrs);
1792 return err;
1793}
1794
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001795static long btf_hash_common(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001796{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001797 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001798
1799 h = hash_combine(0, t->name_off);
1800 h = hash_combine(h, t->info);
1801 h = hash_combine(h, t->size);
1802 return h;
1803}
1804
1805static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1806{
1807 return t1->name_off == t2->name_off &&
1808 t1->info == t2->info &&
1809 t1->size == t2->size;
1810}
1811
1812/* Calculate type signature hash of INT. */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001813static long btf_hash_int(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001814{
1815 __u32 info = *(__u32 *)(t + 1);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001816 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001817
1818 h = btf_hash_common(t);
1819 h = hash_combine(h, info);
1820 return h;
1821}
1822
1823/* Check structural equality of two INTs. */
1824static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1825{
1826 __u32 info1, info2;
1827
1828 if (!btf_equal_common(t1, t2))
1829 return false;
1830 info1 = *(__u32 *)(t1 + 1);
1831 info2 = *(__u32 *)(t2 + 1);
1832 return info1 == info2;
1833}
1834
1835/* Calculate type signature hash of ENUM. */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001836static long btf_hash_enum(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001837{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001838 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001839
Andrii Nakryiko97680952019-03-10 17:44:09 -07001840 /* don't hash vlen and enum members to support enum fwd resolving */
1841 h = hash_combine(0, t->name_off);
1842 h = hash_combine(h, t->info & ~0xffff);
1843 h = hash_combine(h, t->size);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001844 return h;
1845}
1846
1847/* Check structural equality of two ENUMs. */
1848static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1849{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001850 const struct btf_enum *m1, *m2;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001851 __u16 vlen;
1852 int i;
1853
1854 if (!btf_equal_common(t1, t2))
1855 return false;
1856
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001857 vlen = btf_vlen(t1);
1858 m1 = btf_enum(t1);
1859 m2 = btf_enum(t2);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001860 for (i = 0; i < vlen; i++) {
1861 if (m1->name_off != m2->name_off || m1->val != m2->val)
1862 return false;
1863 m1++;
1864 m2++;
1865 }
1866 return true;
1867}
1868
Andrii Nakryiko97680952019-03-10 17:44:09 -07001869static inline bool btf_is_enum_fwd(struct btf_type *t)
1870{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001871 return btf_is_enum(t) && btf_vlen(t) == 0;
Andrii Nakryiko97680952019-03-10 17:44:09 -07001872}
1873
1874static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1875{
1876 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1877 return btf_equal_enum(t1, t2);
1878 /* ignore vlen when comparing */
1879 return t1->name_off == t2->name_off &&
1880 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1881 t1->size == t2->size;
1882}
1883
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001884/*
1885 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1886 * as referenced type IDs equivalence is established separately during type
1887 * graph equivalence check algorithm.
1888 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001889static long btf_hash_struct(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001890{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001891 const struct btf_member *member = btf_members(t);
1892 __u32 vlen = btf_vlen(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001893 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001894 int i;
1895
1896 for (i = 0; i < vlen; i++) {
1897 h = hash_combine(h, member->name_off);
1898 h = hash_combine(h, member->offset);
1899 /* no hashing of referenced type ID, it can be unresolved yet */
1900 member++;
1901 }
1902 return h;
1903}
1904
1905/*
1906 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1907 * IDs. This check is performed during type graph equivalence check and
1908 * referenced types equivalence is checked separately.
1909 */
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08001910static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001911{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001912 const struct btf_member *m1, *m2;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001913 __u16 vlen;
1914 int i;
1915
1916 if (!btf_equal_common(t1, t2))
1917 return false;
1918
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001919 vlen = btf_vlen(t1);
1920 m1 = btf_members(t1);
1921 m2 = btf_members(t2);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001922 for (i = 0; i < vlen; i++) {
1923 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1924 return false;
1925 m1++;
1926 m2++;
1927 }
1928 return true;
1929}
1930
1931/*
1932 * Calculate type signature hash of ARRAY, including referenced type IDs,
1933 * under assumption that they were already resolved to canonical type IDs and
1934 * are not going to change.
1935 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001936static long btf_hash_array(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001937{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001938 const struct btf_array *info = btf_array(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001939 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001940
1941 h = hash_combine(h, info->type);
1942 h = hash_combine(h, info->index_type);
1943 h = hash_combine(h, info->nelems);
1944 return h;
1945}
1946
1947/*
1948 * Check exact equality of two ARRAYs, taking into account referenced
1949 * type IDs, under assumption that they were already resolved to canonical
1950 * type IDs and are not going to change.
1951 * This function is called during reference types deduplication to compare
1952 * ARRAY to potential canonical representative.
1953 */
1954static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1955{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001956 const struct btf_array *info1, *info2;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001957
1958 if (!btf_equal_common(t1, t2))
1959 return false;
1960
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001961 info1 = btf_array(t1);
1962 info2 = btf_array(t2);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001963 return info1->type == info2->type &&
1964 info1->index_type == info2->index_type &&
1965 info1->nelems == info2->nelems;
1966}
1967
1968/*
1969 * Check structural compatibility of two ARRAYs, ignoring referenced type
1970 * IDs. This check is performed during type graph equivalence check and
1971 * referenced types equivalence is checked separately.
1972 */
1973static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1974{
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001975 if (!btf_equal_common(t1, t2))
1976 return false;
1977
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001978 return btf_array(t1)->nelems == btf_array(t2)->nelems;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001979}
1980
1981/*
1982 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1983 * under assumption that they were already resolved to canonical type IDs and
1984 * are not going to change.
1985 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001986static long btf_hash_fnproto(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001987{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07001988 const struct btf_param *member = btf_params(t);
1989 __u16 vlen = btf_vlen(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001990 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001991 int i;
1992
1993 for (i = 0; i < vlen; i++) {
1994 h = hash_combine(h, member->name_off);
1995 h = hash_combine(h, member->type);
1996 member++;
1997 }
1998 return h;
1999}
2000
2001/*
2002 * Check exact equality of two FUNC_PROTOs, taking into account referenced
2003 * type IDs, under assumption that they were already resolved to canonical
2004 * type IDs and are not going to change.
2005 * This function is called during reference types deduplication to compare
2006 * FUNC_PROTO to potential canonical representative.
2007 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002008static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002009{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002010 const struct btf_param *m1, *m2;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002011 __u16 vlen;
2012 int i;
2013
2014 if (!btf_equal_common(t1, t2))
2015 return false;
2016
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002017 vlen = btf_vlen(t1);
2018 m1 = btf_params(t1);
2019 m2 = btf_params(t2);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002020 for (i = 0; i < vlen; i++) {
2021 if (m1->name_off != m2->name_off || m1->type != m2->type)
2022 return false;
2023 m1++;
2024 m2++;
2025 }
2026 return true;
2027}
2028
2029/*
2030 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
2031 * IDs. This check is performed during type graph equivalence check and
2032 * referenced types equivalence is checked separately.
2033 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002034static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002035{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002036 const struct btf_param *m1, *m2;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002037 __u16 vlen;
2038 int i;
2039
2040 /* skip return type ID */
2041 if (t1->name_off != t2->name_off || t1->info != t2->info)
2042 return false;
2043
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002044 vlen = btf_vlen(t1);
2045 m1 = btf_params(t1);
2046 m2 = btf_params(t2);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002047 for (i = 0; i < vlen; i++) {
2048 if (m1->name_off != m2->name_off)
2049 return false;
2050 m1++;
2051 m2++;
2052 }
2053 return true;
2054}
2055
2056/*
2057 * Deduplicate primitive types, that can't reference other types, by calculating
2058 * their type signature hash and comparing them with any possible canonical
2059 * candidate. If no canonical candidate matches, type itself is marked as
2060 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2061 */
2062static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2063{
2064 struct btf_type *t = d->btf->types[type_id];
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002065 struct hashmap_entry *hash_entry;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002066 struct btf_type *cand;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002067 /* if we don't find equivalent type, then we are canonical */
2068 __u32 new_id = type_id;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002069 __u32 cand_id;
2070 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002071
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002072 switch (btf_kind(t)) {
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002073 case BTF_KIND_CONST:
2074 case BTF_KIND_VOLATILE:
2075 case BTF_KIND_RESTRICT:
2076 case BTF_KIND_PTR:
2077 case BTF_KIND_TYPEDEF:
2078 case BTF_KIND_ARRAY:
2079 case BTF_KIND_STRUCT:
2080 case BTF_KIND_UNION:
2081 case BTF_KIND_FUNC:
2082 case BTF_KIND_FUNC_PROTO:
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002083 case BTF_KIND_VAR:
2084 case BTF_KIND_DATASEC:
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002085 return 0;
2086
2087 case BTF_KIND_INT:
2088 h = btf_hash_int(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002089 for_each_dedup_cand(d, hash_entry, h) {
2090 cand_id = (__u32)(long)hash_entry->value;
2091 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002092 if (btf_equal_int(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002093 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002094 break;
2095 }
2096 }
2097 break;
2098
2099 case BTF_KIND_ENUM:
2100 h = btf_hash_enum(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002101 for_each_dedup_cand(d, hash_entry, h) {
2102 cand_id = (__u32)(long)hash_entry->value;
2103 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002104 if (btf_equal_enum(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002105 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002106 break;
2107 }
Andrii Nakryiko97680952019-03-10 17:44:09 -07002108 if (d->opts.dont_resolve_fwds)
2109 continue;
2110 if (btf_compat_enum(t, cand)) {
2111 if (btf_is_enum_fwd(t)) {
2112 /* resolve fwd to full enum */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002113 new_id = cand_id;
Andrii Nakryiko97680952019-03-10 17:44:09 -07002114 break;
2115 }
2116 /* resolve canonical enum fwd to full enum */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002117 d->map[cand_id] = type_id;
Andrii Nakryiko97680952019-03-10 17:44:09 -07002118 }
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002119 }
2120 break;
2121
2122 case BTF_KIND_FWD:
2123 h = btf_hash_common(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002124 for_each_dedup_cand(d, hash_entry, h) {
2125 cand_id = (__u32)(long)hash_entry->value;
2126 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002127 if (btf_equal_common(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002128 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002129 break;
2130 }
2131 }
2132 break;
2133
2134 default:
2135 return -EINVAL;
2136 }
2137
2138 d->map[type_id] = new_id;
2139 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2140 return -ENOMEM;
2141
2142 return 0;
2143}
2144
2145static int btf_dedup_prim_types(struct btf_dedup *d)
2146{
2147 int i, err;
2148
2149 for (i = 1; i <= d->btf->nr_types; i++) {
2150 err = btf_dedup_prim_type(d, i);
2151 if (err)
2152 return err;
2153 }
2154 return 0;
2155}
2156
2157/*
2158 * Check whether type is already mapped into canonical one (could be to itself).
2159 */
2160static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2161{
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002162 return d->map[type_id] <= BTF_MAX_NR_TYPES;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002163}
2164
2165/*
2166 * Resolve type ID into its canonical type ID, if any; otherwise return original
2167 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2168 * STRUCT/UNION link and resolve it into canonical type ID as well.
2169 */
2170static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2171{
2172 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2173 type_id = d->map[type_id];
2174 return type_id;
2175}
2176
2177/*
2178 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2179 * type ID.
2180 */
2181static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2182{
2183 __u32 orig_type_id = type_id;
2184
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002185 if (!btf_is_fwd(d->btf->types[type_id]))
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002186 return type_id;
2187
2188 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2189 type_id = d->map[type_id];
2190
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002191 if (!btf_is_fwd(d->btf->types[type_id]))
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002192 return type_id;
2193
2194 return orig_type_id;
2195}
2196
2197
2198static inline __u16 btf_fwd_kind(struct btf_type *t)
2199{
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002200 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002201}
2202
2203/*
2204 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2205 * call it "candidate graph" in this description for brevity) to a type graph
2206 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2207 * here, though keep in mind that not all types in canonical graph are
2208 * necessarily canonical representatives themselves, some of them might be
2209 * duplicates or its uniqueness might not have been established yet).
2210 * Returns:
2211 * - >0, if type graphs are equivalent;
2212 * - 0, if not equivalent;
2213 * - <0, on error.
2214 *
2215 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2216 * equivalence of BTF types at each step. If at any point BTF types in candidate
2217 * and canonical graphs are not compatible structurally, whole graphs are
2218 * incompatible. If types are structurally equivalent (i.e., all information
2219 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2220 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2221 * If a type references other types, then those referenced types are checked
2222 * for equivalence recursively.
2223 *
2224 * During DFS traversal, if we find that for current `canon_id` type we
2225 * already have some mapping in hypothetical map, we check for two possible
2226 * situations:
2227 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2228 * happen when type graphs have cycles. In this case we assume those two
2229 * types are equivalent.
2230 * - `canon_id` is mapped to different type. This is contradiction in our
2231 * hypothetical mapping, because same graph in canonical graph corresponds
2232 * to two different types in candidate graph, which for equivalent type
2233 * graphs shouldn't happen. This condition terminates equivalence check
2234 * with negative result.
2235 *
2236 * If type graphs traversal exhausts types to check and find no contradiction,
2237 * then type graphs are equivalent.
2238 *
2239 * When checking types for equivalence, there is one special case: FWD types.
2240 * If FWD type resolution is allowed and one of the types (either from canonical
2241 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2242 * flag) and their names match, hypothetical mapping is updated to point from
2243 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2244 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2245 *
2246 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2247 * if there are two exactly named (or anonymous) structs/unions that are
2248 * compatible structurally, one of which has FWD field, while other is concrete
2249 * STRUCT/UNION, but according to C sources they are different structs/unions
2250 * that are referencing different types with the same name. This is extremely
2251 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2252 * this logic is causing problems.
2253 *
2254 * Doing FWD resolution means that both candidate and/or canonical graphs can
2255 * consists of portions of the graph that come from multiple compilation units.
2256 * This is due to the fact that types within single compilation unit are always
2257 * deduplicated and FWDs are already resolved, if referenced struct/union
2258 * definiton is available. So, if we had unresolved FWD and found corresponding
2259 * STRUCT/UNION, they will be from different compilation units. This
2260 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2261 * type graph will likely have at least two different BTF types that describe
2262 * same type (e.g., most probably there will be two different BTF types for the
2263 * same 'int' primitive type) and could even have "overlapping" parts of type
2264 * graph that describe same subset of types.
2265 *
2266 * This in turn means that our assumption that each type in canonical graph
2267 * must correspond to exactly one type in candidate graph might not hold
2268 * anymore and will make it harder to detect contradictions using hypothetical
2269 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2270 * resolution only in canonical graph. FWDs in candidate graphs are never
2271 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2272 * that can occur:
2273 * - Both types in canonical and candidate graphs are FWDs. If they are
2274 * structurally equivalent, then they can either be both resolved to the
2275 * same STRUCT/UNION or not resolved at all. In both cases they are
2276 * equivalent and there is no need to resolve FWD on candidate side.
2277 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2278 * so nothing to resolve as well, algorithm will check equivalence anyway.
2279 * - Type in canonical graph is FWD, while type in candidate is concrete
2280 * STRUCT/UNION. In this case candidate graph comes from single compilation
2281 * unit, so there is exactly one BTF type for each unique C type. After
2282 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
2283 * in canonical graph mapping to single BTF type in candidate graph, but
2284 * because hypothetical mapping maps from canonical to candidate types, it's
2285 * alright, and we still maintain the property of having single `canon_id`
2286 * mapping to single `cand_id` (there could be two different `canon_id`
2287 * mapped to the same `cand_id`, but it's not contradictory).
2288 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2289 * graph is FWD. In this case we are just going to check compatibility of
2290 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2291 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2292 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2293 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2294 * canonical graph.
2295 */
2296static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2297 __u32 canon_id)
2298{
2299 struct btf_type *cand_type;
2300 struct btf_type *canon_type;
2301 __u32 hypot_type_id;
2302 __u16 cand_kind;
2303 __u16 canon_kind;
2304 int i, eq;
2305
2306 /* if both resolve to the same canonical, they must be equivalent */
2307 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2308 return 1;
2309
2310 canon_id = resolve_fwd_id(d, canon_id);
2311
2312 hypot_type_id = d->hypot_map[canon_id];
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002313 if (hypot_type_id <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002314 return hypot_type_id == cand_id;
2315
2316 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2317 return -ENOMEM;
2318
2319 cand_type = d->btf->types[cand_id];
2320 canon_type = d->btf->types[canon_id];
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002321 cand_kind = btf_kind(cand_type);
2322 canon_kind = btf_kind(canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002323
2324 if (cand_type->name_off != canon_type->name_off)
2325 return 0;
2326
2327 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
2328 if (!d->opts.dont_resolve_fwds
2329 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2330 && cand_kind != canon_kind) {
2331 __u16 real_kind;
2332 __u16 fwd_kind;
2333
2334 if (cand_kind == BTF_KIND_FWD) {
2335 real_kind = canon_kind;
2336 fwd_kind = btf_fwd_kind(cand_type);
2337 } else {
2338 real_kind = cand_kind;
2339 fwd_kind = btf_fwd_kind(canon_type);
2340 }
2341 return fwd_kind == real_kind;
2342 }
2343
Andrii Nakryiko9ec71c12019-03-26 22:00:06 -07002344 if (cand_kind != canon_kind)
2345 return 0;
2346
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002347 switch (cand_kind) {
2348 case BTF_KIND_INT:
2349 return btf_equal_int(cand_type, canon_type);
2350
2351 case BTF_KIND_ENUM:
Andrii Nakryiko97680952019-03-10 17:44:09 -07002352 if (d->opts.dont_resolve_fwds)
2353 return btf_equal_enum(cand_type, canon_type);
2354 else
2355 return btf_compat_enum(cand_type, canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002356
2357 case BTF_KIND_FWD:
2358 return btf_equal_common(cand_type, canon_type);
2359
2360 case BTF_KIND_CONST:
2361 case BTF_KIND_VOLATILE:
2362 case BTF_KIND_RESTRICT:
2363 case BTF_KIND_PTR:
2364 case BTF_KIND_TYPEDEF:
2365 case BTF_KIND_FUNC:
Andrii Nakryiko97680952019-03-10 17:44:09 -07002366 if (cand_type->info != canon_type->info)
2367 return 0;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002368 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2369
2370 case BTF_KIND_ARRAY: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002371 const struct btf_array *cand_arr, *canon_arr;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002372
2373 if (!btf_compat_array(cand_type, canon_type))
2374 return 0;
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002375 cand_arr = btf_array(cand_type);
2376 canon_arr = btf_array(canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002377 eq = btf_dedup_is_equiv(d,
2378 cand_arr->index_type, canon_arr->index_type);
2379 if (eq <= 0)
2380 return eq;
2381 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2382 }
2383
2384 case BTF_KIND_STRUCT:
2385 case BTF_KIND_UNION: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002386 const struct btf_member *cand_m, *canon_m;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002387 __u16 vlen;
2388
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002389 if (!btf_shallow_equal_struct(cand_type, canon_type))
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002390 return 0;
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002391 vlen = btf_vlen(cand_type);
2392 cand_m = btf_members(cand_type);
2393 canon_m = btf_members(canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002394 for (i = 0; i < vlen; i++) {
2395 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2396 if (eq <= 0)
2397 return eq;
2398 cand_m++;
2399 canon_m++;
2400 }
2401
2402 return 1;
2403 }
2404
2405 case BTF_KIND_FUNC_PROTO: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002406 const struct btf_param *cand_p, *canon_p;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002407 __u16 vlen;
2408
2409 if (!btf_compat_fnproto(cand_type, canon_type))
2410 return 0;
2411 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2412 if (eq <= 0)
2413 return eq;
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002414 vlen = btf_vlen(cand_type);
2415 cand_p = btf_params(cand_type);
2416 canon_p = btf_params(canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002417 for (i = 0; i < vlen; i++) {
2418 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2419 if (eq <= 0)
2420 return eq;
2421 cand_p++;
2422 canon_p++;
2423 }
2424 return 1;
2425 }
2426
2427 default:
2428 return -EINVAL;
2429 }
2430 return 0;
2431}
2432
2433/*
2434 * Use hypothetical mapping, produced by successful type graph equivalence
2435 * check, to augment existing struct/union canonical mapping, where possible.
2436 *
2437 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2438 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2439 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2440 * we are recording the mapping anyway. As opposed to carefulness required
2441 * for struct/union correspondence mapping (described below), for FWD resolution
2442 * it's not important, as by the time that FWD type (reference type) will be
2443 * deduplicated all structs/unions will be deduped already anyway.
2444 *
2445 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2446 * not required for correctness. It needs to be done carefully to ensure that
2447 * struct/union from candidate's type graph is not mapped into corresponding
2448 * struct/union from canonical type graph that itself hasn't been resolved into
2449 * canonical representative. The only guarantee we have is that canonical
2450 * struct/union was determined as canonical and that won't change. But any
2451 * types referenced through that struct/union fields could have been not yet
2452 * resolved, so in case like that it's too early to establish any kind of
2453 * correspondence between structs/unions.
2454 *
2455 * No canonical correspondence is derived for primitive types (they are already
2456 * deduplicated completely already anyway) or reference types (they rely on
2457 * stability of struct/union canonical relationship for equivalence checks).
2458 */
2459static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2460{
2461 __u32 cand_type_id, targ_type_id;
2462 __u16 t_kind, c_kind;
2463 __u32 t_id, c_id;
2464 int i;
2465
2466 for (i = 0; i < d->hypot_cnt; i++) {
2467 cand_type_id = d->hypot_list[i];
2468 targ_type_id = d->hypot_map[cand_type_id];
2469 t_id = resolve_type_id(d, targ_type_id);
2470 c_id = resolve_type_id(d, cand_type_id);
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002471 t_kind = btf_kind(d->btf->types[t_id]);
2472 c_kind = btf_kind(d->btf->types[c_id]);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002473 /*
2474 * Resolve FWD into STRUCT/UNION.
2475 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2476 * mapped to canonical representative (as opposed to
2477 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2478 * eventually that struct is going to be mapped and all resolved
2479 * FWDs will automatically resolve to correct canonical
2480 * representative. This will happen before ref type deduping,
2481 * which critically depends on stability of these mapping. This
2482 * stability is not a requirement for STRUCT/UNION equivalence
2483 * checks, though.
2484 */
2485 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2486 d->map[c_id] = t_id;
2487 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2488 d->map[t_id] = c_id;
2489
2490 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2491 c_kind != BTF_KIND_FWD &&
2492 is_type_mapped(d, c_id) &&
2493 !is_type_mapped(d, t_id)) {
2494 /*
2495 * as a perf optimization, we can map struct/union
2496 * that's part of type graph we just verified for
2497 * equivalence. We can do that for struct/union that has
2498 * canonical representative only, though.
2499 */
2500 d->map[t_id] = c_id;
2501 }
2502 }
2503}
2504
2505/*
2506 * Deduplicate struct/union types.
2507 *
2508 * For each struct/union type its type signature hash is calculated, taking
2509 * into account type's name, size, number, order and names of fields, but
2510 * ignoring type ID's referenced from fields, because they might not be deduped
2511 * completely until after reference types deduplication phase. This type hash
2512 * is used to iterate over all potential canonical types, sharing same hash.
2513 * For each canonical candidate we check whether type graphs that they form
2514 * (through referenced types in fields and so on) are equivalent using algorithm
2515 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2516 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2517 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2518 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2519 * potentially map other structs/unions to their canonical representatives,
2520 * if such relationship hasn't yet been established. This speeds up algorithm
2521 * by eliminating some of the duplicate work.
2522 *
2523 * If no matching canonical representative was found, struct/union is marked
2524 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2525 * for further look ups.
2526 */
2527static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2528{
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002529 struct btf_type *cand_type, *t;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002530 struct hashmap_entry *hash_entry;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002531 /* if we don't find equivalent type, then we are canonical */
2532 __u32 new_id = type_id;
2533 __u16 kind;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002534 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002535
2536 /* already deduped or is in process of deduping (loop detected) */
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002537 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002538 return 0;
2539
2540 t = d->btf->types[type_id];
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002541 kind = btf_kind(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002542
2543 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2544 return 0;
2545
2546 h = btf_hash_struct(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002547 for_each_dedup_cand(d, hash_entry, h) {
2548 __u32 cand_id = (__u32)(long)hash_entry->value;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002549 int eq;
2550
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002551 /*
2552 * Even though btf_dedup_is_equiv() checks for
2553 * btf_shallow_equal_struct() internally when checking two
2554 * structs (unions) for equivalence, we need to guard here
2555 * from picking matching FWD type as a dedup candidate.
2556 * This can happen due to hash collision. In such case just
2557 * relying on btf_dedup_is_equiv() would lead to potentially
2558 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2559 * FWD and compatible STRUCT/UNION are considered equivalent.
2560 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002561 cand_type = d->btf->types[cand_id];
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002562 if (!btf_shallow_equal_struct(t, cand_type))
2563 continue;
2564
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002565 btf_dedup_clear_hypot_map(d);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002566 eq = btf_dedup_is_equiv(d, type_id, cand_id);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002567 if (eq < 0)
2568 return eq;
2569 if (!eq)
2570 continue;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002571 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002572 btf_dedup_merge_hypot_map(d);
2573 break;
2574 }
2575
2576 d->map[type_id] = new_id;
2577 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2578 return -ENOMEM;
2579
2580 return 0;
2581}
2582
2583static int btf_dedup_struct_types(struct btf_dedup *d)
2584{
2585 int i, err;
2586
2587 for (i = 1; i <= d->btf->nr_types; i++) {
2588 err = btf_dedup_struct_type(d, i);
2589 if (err)
2590 return err;
2591 }
2592 return 0;
2593}
2594
2595/*
2596 * Deduplicate reference type.
2597 *
2598 * Once all primitive and struct/union types got deduplicated, we can easily
2599 * deduplicate all other (reference) BTF types. This is done in two steps:
2600 *
2601 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2602 * resolution can be done either immediately for primitive or struct/union types
2603 * (because they were deduped in previous two phases) or recursively for
2604 * reference types. Recursion will always terminate at either primitive or
2605 * struct/union type, at which point we can "unwind" chain of reference types
2606 * one by one. There is no danger of encountering cycles because in C type
2607 * system the only way to form type cycle is through struct/union, so any chain
2608 * of reference types, even those taking part in a type cycle, will inevitably
2609 * reach struct/union at some point.
2610 *
2611 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2612 * becomes "stable", in the sense that no further deduplication will cause
2613 * any changes to it. With that, it's now possible to calculate type's signature
2614 * hash (this time taking into account referenced type IDs) and loop over all
2615 * potential canonical representatives. If no match was found, current type
2616 * will become canonical representative of itself and will be added into
2617 * btf_dedup->dedup_table as another possible canonical representative.
2618 */
2619static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2620{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002621 struct hashmap_entry *hash_entry;
2622 __u32 new_id = type_id, cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002623 struct btf_type *t, *cand;
2624 /* if we don't find equivalent type, then we are representative type */
Dan Carpenter3d8669e2019-02-28 21:06:47 +03002625 int ref_type_id;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002626 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002627
2628 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2629 return -ELOOP;
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002630 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002631 return resolve_type_id(d, type_id);
2632
2633 t = d->btf->types[type_id];
2634 d->map[type_id] = BTF_IN_PROGRESS_ID;
2635
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002636 switch (btf_kind(t)) {
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002637 case BTF_KIND_CONST:
2638 case BTF_KIND_VOLATILE:
2639 case BTF_KIND_RESTRICT:
2640 case BTF_KIND_PTR:
2641 case BTF_KIND_TYPEDEF:
2642 case BTF_KIND_FUNC:
2643 ref_type_id = btf_dedup_ref_type(d, t->type);
2644 if (ref_type_id < 0)
2645 return ref_type_id;
2646 t->type = ref_type_id;
2647
2648 h = btf_hash_common(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002649 for_each_dedup_cand(d, hash_entry, h) {
2650 cand_id = (__u32)(long)hash_entry->value;
2651 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002652 if (btf_equal_common(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002653 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002654 break;
2655 }
2656 }
2657 break;
2658
2659 case BTF_KIND_ARRAY: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002660 struct btf_array *info = btf_array(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002661
2662 ref_type_id = btf_dedup_ref_type(d, info->type);
2663 if (ref_type_id < 0)
2664 return ref_type_id;
2665 info->type = ref_type_id;
2666
2667 ref_type_id = btf_dedup_ref_type(d, info->index_type);
2668 if (ref_type_id < 0)
2669 return ref_type_id;
2670 info->index_type = ref_type_id;
2671
2672 h = btf_hash_array(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002673 for_each_dedup_cand(d, hash_entry, h) {
2674 cand_id = (__u32)(long)hash_entry->value;
2675 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002676 if (btf_equal_array(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002677 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002678 break;
2679 }
2680 }
2681 break;
2682 }
2683
2684 case BTF_KIND_FUNC_PROTO: {
2685 struct btf_param *param;
2686 __u16 vlen;
2687 int i;
2688
2689 ref_type_id = btf_dedup_ref_type(d, t->type);
2690 if (ref_type_id < 0)
2691 return ref_type_id;
2692 t->type = ref_type_id;
2693
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002694 vlen = btf_vlen(t);
2695 param = btf_params(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002696 for (i = 0; i < vlen; i++) {
2697 ref_type_id = btf_dedup_ref_type(d, param->type);
2698 if (ref_type_id < 0)
2699 return ref_type_id;
2700 param->type = ref_type_id;
2701 param++;
2702 }
2703
2704 h = btf_hash_fnproto(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002705 for_each_dedup_cand(d, hash_entry, h) {
2706 cand_id = (__u32)(long)hash_entry->value;
2707 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002708 if (btf_equal_fnproto(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002709 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002710 break;
2711 }
2712 }
2713 break;
2714 }
2715
2716 default:
2717 return -EINVAL;
2718 }
2719
2720 d->map[type_id] = new_id;
2721 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2722 return -ENOMEM;
2723
2724 return new_id;
2725}
2726
2727static int btf_dedup_ref_types(struct btf_dedup *d)
2728{
2729 int i, err;
2730
2731 for (i = 1; i <= d->btf->nr_types; i++) {
2732 err = btf_dedup_ref_type(d, i);
2733 if (err < 0)
2734 return err;
2735 }
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002736 /* we won't need d->dedup_table anymore */
2737 hashmap__free(d->dedup_table);
2738 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002739 return 0;
2740}
2741
2742/*
2743 * Compact types.
2744 *
2745 * After we established for each type its corresponding canonical representative
2746 * type, we now can eliminate types that are not canonical and leave only
2747 * canonical ones layed out sequentially in memory by copying them over
2748 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2749 * a map from original type ID to a new compacted type ID, which will be used
2750 * during next phase to "fix up" type IDs, referenced from struct/union and
2751 * reference types.
2752 */
2753static int btf_dedup_compact_types(struct btf_dedup *d)
2754{
2755 struct btf_type **new_types;
2756 __u32 next_type_id = 1;
2757 char *types_start, *p;
2758 int i, len;
2759
2760 /* we are going to reuse hypot_map to store compaction remapping */
2761 d->hypot_map[0] = 0;
2762 for (i = 1; i <= d->btf->nr_types; i++)
2763 d->hypot_map[i] = BTF_UNPROCESSED_ID;
2764
2765 types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2766 p = types_start;
2767
2768 for (i = 1; i <= d->btf->nr_types; i++) {
2769 if (d->map[i] != i)
2770 continue;
2771
2772 len = btf_type_size(d->btf->types[i]);
2773 if (len < 0)
2774 return len;
2775
2776 memmove(p, d->btf->types[i], len);
2777 d->hypot_map[i] = next_type_id;
2778 d->btf->types[next_type_id] = (struct btf_type *)p;
2779 p += len;
2780 next_type_id++;
2781 }
2782
2783 /* shrink struct btf's internal types index and update btf_header */
2784 d->btf->nr_types = next_type_id - 1;
2785 d->btf->types_size = d->btf->nr_types;
2786 d->btf->hdr->type_len = p - types_start;
2787 new_types = realloc(d->btf->types,
2788 (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2789 if (!new_types)
2790 return -ENOMEM;
2791 d->btf->types = new_types;
2792
2793 /* make sure string section follows type information without gaps */
2794 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2795 memmove(p, d->btf->strings, d->btf->hdr->str_len);
2796 d->btf->strings = p;
2797 p += d->btf->hdr->str_len;
2798
2799 d->btf->data_size = p - (char *)d->btf->data;
2800 return 0;
2801}
2802
2803/*
2804 * Figure out final (deduplicated and compacted) type ID for provided original
2805 * `type_id` by first resolving it into corresponding canonical type ID and
2806 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2807 * which is populated during compaction phase.
2808 */
2809static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2810{
2811 __u32 resolved_type_id, new_type_id;
2812
2813 resolved_type_id = resolve_type_id(d, type_id);
2814 new_type_id = d->hypot_map[resolved_type_id];
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002815 if (new_type_id > BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002816 return -EINVAL;
2817 return new_type_id;
2818}
2819
2820/*
2821 * Remap referenced type IDs into deduped type IDs.
2822 *
2823 * After BTF types are deduplicated and compacted, their final type IDs may
2824 * differ from original ones. The map from original to a corresponding
2825 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2826 * compaction phase. During remapping phase we are rewriting all type IDs
2827 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2828 * their final deduped type IDs.
2829 */
2830static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2831{
2832 struct btf_type *t = d->btf->types[type_id];
2833 int i, r;
2834
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002835 switch (btf_kind(t)) {
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002836 case BTF_KIND_INT:
2837 case BTF_KIND_ENUM:
2838 break;
2839
2840 case BTF_KIND_FWD:
2841 case BTF_KIND_CONST:
2842 case BTF_KIND_VOLATILE:
2843 case BTF_KIND_RESTRICT:
2844 case BTF_KIND_PTR:
2845 case BTF_KIND_TYPEDEF:
2846 case BTF_KIND_FUNC:
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002847 case BTF_KIND_VAR:
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002848 r = btf_dedup_remap_type_id(d, t->type);
2849 if (r < 0)
2850 return r;
2851 t->type = r;
2852 break;
2853
2854 case BTF_KIND_ARRAY: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002855 struct btf_array *arr_info = btf_array(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002856
2857 r = btf_dedup_remap_type_id(d, arr_info->type);
2858 if (r < 0)
2859 return r;
2860 arr_info->type = r;
2861 r = btf_dedup_remap_type_id(d, arr_info->index_type);
2862 if (r < 0)
2863 return r;
2864 arr_info->index_type = r;
2865 break;
2866 }
2867
2868 case BTF_KIND_STRUCT:
2869 case BTF_KIND_UNION: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002870 struct btf_member *member = btf_members(t);
2871 __u16 vlen = btf_vlen(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002872
2873 for (i = 0; i < vlen; i++) {
2874 r = btf_dedup_remap_type_id(d, member->type);
2875 if (r < 0)
2876 return r;
2877 member->type = r;
2878 member++;
2879 }
2880 break;
2881 }
2882
2883 case BTF_KIND_FUNC_PROTO: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002884 struct btf_param *param = btf_params(t);
2885 __u16 vlen = btf_vlen(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002886
2887 r = btf_dedup_remap_type_id(d, t->type);
2888 if (r < 0)
2889 return r;
2890 t->type = r;
2891
2892 for (i = 0; i < vlen; i++) {
2893 r = btf_dedup_remap_type_id(d, param->type);
2894 if (r < 0)
2895 return r;
2896 param->type = r;
2897 param++;
2898 }
2899 break;
2900 }
2901
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002902 case BTF_KIND_DATASEC: {
Andrii Nakryikob03bc682019-08-07 14:39:49 -07002903 struct btf_var_secinfo *var = btf_var_secinfos(t);
2904 __u16 vlen = btf_vlen(t);
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002905
2906 for (i = 0; i < vlen; i++) {
2907 r = btf_dedup_remap_type_id(d, var->type);
2908 if (r < 0)
2909 return r;
2910 var->type = r;
2911 var++;
2912 }
2913 break;
2914 }
2915
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002916 default:
2917 return -EINVAL;
2918 }
2919
2920 return 0;
2921}
2922
2923static int btf_dedup_remap_types(struct btf_dedup *d)
2924{
2925 int i, r;
2926
2927 for (i = 1; i <= d->btf->nr_types; i++) {
2928 r = btf_dedup_remap_type(d, i);
2929 if (r < 0)
2930 return r;
2931 }
2932 return 0;
2933}