blob: b2478e98c3676cc4ebfa2eaa62aea6a923ac7ee7 [file] [log] [blame]
Alexei Starovoitov1bc38b82018-10-05 16:40:00 -07001// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07002/* Copyright (c) 2018 Facebook */
3
Yonghong Song96408c42019-02-04 11:00:58 -08004#include <stdio.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07005#include <stdlib.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07006#include <string.h>
Andrii Nakryikoe6c64852019-05-24 11:58:57 -07007#include <fcntl.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -07008#include <unistd.h>
9#include <errno.h>
10#include <linux/err.h>
11#include <linux/btf.h>
Andrii Nakryikoe6c64852019-05-24 11:58:57 -070012#include <gelf.h>
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070013#include "btf.h"
14#include "bpf.h"
Yonghong Song8461ef82019-02-01 16:14:14 -080015#include "libbpf.h"
Andrii Nakryikod72386f2019-05-15 20:39:27 -070016#include "libbpf_internal.h"
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -070017#include "hashmap.h"
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070018
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070019#define max(a, b) ((a) > (b) ? (a) : (b))
20#define min(a, b) ((a) < (b) ? (a) : (b))
21
Andrii Nakryiko5aab3922019-02-15 19:52:18 -080022#define BTF_MAX_NR_TYPES 0x7fffffff
23#define BTF_MAX_STR_OFFSET 0x7fffffff
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070024
Okash Khawaja92b57122018-07-13 21:57:02 -070025#define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \
26 ((k) == BTF_KIND_VOLATILE) || \
27 ((k) == BTF_KIND_CONST) || \
28 ((k) == BTF_KIND_RESTRICT))
29
Daniel Borkmann1713d682019-04-09 23:20:14 +020030#define IS_VAR(k) ((k) == BTF_KIND_VAR)
31
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070032static struct btf_type btf_void;
33
34struct btf {
35 union {
36 struct btf_header *hdr;
37 void *data;
38 };
39 struct btf_type **types;
40 const char *strings;
41 void *nohdr_data;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -070042 __u32 nr_types;
43 __u32 types_size;
44 __u32 data_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070045 int fd;
46};
47
Martin KaFai Lau3d650142018-12-07 16:42:31 -080048struct btf_ext_info {
49 /*
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -080050 * info points to the individual info section (e.g. func_info and
51 * line_info) from the .BTF.ext. It does not include the __u32 rec_size.
Martin KaFai Lau3d650142018-12-07 16:42:31 -080052 */
53 void *info;
54 __u32 rec_size;
55 __u32 len;
Yonghong Song2993e052018-11-19 15:29:16 -080056};
57
Martin KaFai Lau3d650142018-12-07 16:42:31 -080058struct btf_ext {
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -080059 union {
60 struct btf_ext_header *hdr;
61 void *data;
62 };
Martin KaFai Lau3d650142018-12-07 16:42:31 -080063 struct btf_ext_info func_info;
64 struct btf_ext_info line_info;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -080065 __u32 data_size;
Martin KaFai Lau3d650142018-12-07 16:42:31 -080066};
67
68struct btf_ext_info_sec {
Martin KaFai Lauf0187f02018-12-07 16:42:29 -080069 __u32 sec_name_off;
Martin KaFai Lau3d650142018-12-07 16:42:31 -080070 __u32 num_info;
71 /* Followed by num_info * record_size number of bytes */
Martin KaFai Lauf0187f02018-12-07 16:42:29 -080072 __u8 data[0];
73};
74
Yonghong Song2993e052018-11-19 15:29:16 -080075/* The minimum bpf_func_info checked by the loader */
76struct bpf_func_info_min {
Martin KaFai Lau84ecc1f2018-12-05 17:35:47 -080077 __u32 insn_off;
Yonghong Song2993e052018-11-19 15:29:16 -080078 __u32 type_id;
79};
80
Martin KaFai Lau3d650142018-12-07 16:42:31 -080081/* The minimum bpf_line_info checked by the loader */
82struct bpf_line_info_min {
83 __u32 insn_off;
84 __u32 file_name_off;
85 __u32 line_off;
86 __u32 line_col;
87};
88
Yonghong Songd7f5b5e2018-11-19 15:29:18 -080089static inline __u64 ptr_to_u64(const void *ptr)
90{
91 return (__u64) (unsigned long) ptr;
92}
93
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070094static int btf_add_type(struct btf *btf, struct btf_type *t)
95{
96 if (btf->types_size - btf->nr_types < 2) {
97 struct btf_type **new_types;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -070098 __u32 expand_by, new_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -070099
100 if (btf->types_size == BTF_MAX_NR_TYPES)
101 return -E2BIG;
102
103 expand_by = max(btf->types_size >> 2, 16);
104 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
105
106 new_types = realloc(btf->types, sizeof(*new_types) * new_size);
107 if (!new_types)
108 return -ENOMEM;
109
110 if (btf->nr_types == 0)
111 new_types[0] = &btf_void;
112
113 btf->types = new_types;
114 btf->types_size = new_size;
115 }
116
117 btf->types[++(btf->nr_types)] = t;
118
119 return 0;
120}
121
Yonghong Song8461ef82019-02-01 16:14:14 -0800122static int btf_parse_hdr(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700123{
124 const struct btf_header *hdr = btf->hdr;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700125 __u32 meta_left;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700126
127 if (btf->data_size < sizeof(struct btf_header)) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800128 pr_debug("BTF header not found\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700129 return -EINVAL;
130 }
131
132 if (hdr->magic != BTF_MAGIC) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800133 pr_debug("Invalid BTF magic:%x\n", hdr->magic);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700134 return -EINVAL;
135 }
136
137 if (hdr->version != BTF_VERSION) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800138 pr_debug("Unsupported BTF version:%u\n", hdr->version);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700139 return -ENOTSUP;
140 }
141
142 if (hdr->flags) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800143 pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700144 return -ENOTSUP;
145 }
146
147 meta_left = btf->data_size - sizeof(*hdr);
148 if (!meta_left) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800149 pr_debug("BTF has no data\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700150 return -EINVAL;
151 }
152
153 if (meta_left < hdr->type_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800154 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700155 return -EINVAL;
156 }
157
158 if (meta_left < hdr->str_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800159 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700160 return -EINVAL;
161 }
162
163 if (hdr->type_off >= hdr->str_off) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800164 pr_debug("BTF type section offset >= string section offset. No type?\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700165 return -EINVAL;
166 }
167
168 if (hdr->type_off & 0x02) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800169 pr_debug("BTF type section is not aligned to 4 bytes\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700170 return -EINVAL;
171 }
172
173 btf->nohdr_data = btf->hdr + 1;
174
175 return 0;
176}
177
Yonghong Song8461ef82019-02-01 16:14:14 -0800178static int btf_parse_str_sec(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700179{
180 const struct btf_header *hdr = btf->hdr;
181 const char *start = btf->nohdr_data + hdr->str_off;
182 const char *end = start + btf->hdr->str_len;
183
Andrii Nakryiko5aab3922019-02-15 19:52:18 -0800184 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700185 start[0] || end[-1]) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800186 pr_debug("Invalid BTF string section\n");
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700187 return -EINVAL;
188 }
189
190 btf->strings = start;
191
192 return 0;
193}
194
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800195static int btf_type_size(struct btf_type *t)
196{
197 int base_size = sizeof(struct btf_type);
198 __u16 vlen = BTF_INFO_VLEN(t->info);
199
200 switch (BTF_INFO_KIND(t->info)) {
201 case BTF_KIND_FWD:
202 case BTF_KIND_CONST:
203 case BTF_KIND_VOLATILE:
204 case BTF_KIND_RESTRICT:
205 case BTF_KIND_PTR:
206 case BTF_KIND_TYPEDEF:
207 case BTF_KIND_FUNC:
208 return base_size;
209 case BTF_KIND_INT:
210 return base_size + sizeof(__u32);
211 case BTF_KIND_ENUM:
212 return base_size + vlen * sizeof(struct btf_enum);
213 case BTF_KIND_ARRAY:
214 return base_size + sizeof(struct btf_array);
215 case BTF_KIND_STRUCT:
216 case BTF_KIND_UNION:
217 return base_size + vlen * sizeof(struct btf_member);
218 case BTF_KIND_FUNC_PROTO:
219 return base_size + vlen * sizeof(struct btf_param);
Daniel Borkmann1713d682019-04-09 23:20:14 +0200220 case BTF_KIND_VAR:
221 return base_size + sizeof(struct btf_var);
222 case BTF_KIND_DATASEC:
223 return base_size + vlen * sizeof(struct btf_var_secinfo);
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800224 default:
225 pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info));
226 return -EINVAL;
227 }
228}
229
Yonghong Song8461ef82019-02-01 16:14:14 -0800230static int btf_parse_type_sec(struct btf *btf)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700231{
232 struct btf_header *hdr = btf->hdr;
233 void *nohdr_data = btf->nohdr_data;
234 void *next_type = nohdr_data + hdr->type_off;
235 void *end_type = nohdr_data + hdr->str_off;
236
237 while (next_type < end_type) {
238 struct btf_type *t = next_type;
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800239 int type_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700240 int err;
241
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800242 type_size = btf_type_size(t);
243 if (type_size < 0)
244 return type_size;
245 next_type += type_size;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700246 err = btf_add_type(btf, t);
247 if (err)
248 return err;
249 }
250
251 return 0;
252}
253
Andrii Nakryiko9c651122019-02-04 17:29:46 -0800254__u32 btf__get_nr_types(const struct btf *btf)
255{
256 return btf->nr_types;
257}
258
Martin KaFai Lau38d5d3b2018-07-24 08:40:22 -0700259const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700260{
261 if (type_id > btf->nr_types)
262 return NULL;
263
264 return btf->types[type_id];
265}
266
267static bool btf_type_is_void(const struct btf_type *t)
268{
269 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
270}
271
272static bool btf_type_is_void_or_null(const struct btf_type *t)
273{
274 return !t || btf_type_is_void(t);
275}
276
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700277#define MAX_RESOLVE_DEPTH 32
278
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700279__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700280{
281 const struct btf_array *array;
282 const struct btf_type *t;
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700283 __u32 nelems = 1;
284 __s64 size = -1;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700285 int i;
286
Okash Khawaja92b57122018-07-13 21:57:02 -0700287 t = btf__type_by_id(btf, type_id);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700288 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
289 i++) {
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700290 switch (BTF_INFO_KIND(t->info)) {
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800291 case BTF_KIND_INT:
292 case BTF_KIND_STRUCT:
293 case BTF_KIND_UNION:
294 case BTF_KIND_ENUM:
Daniel Borkmann1713d682019-04-09 23:20:14 +0200295 case BTF_KIND_DATASEC:
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800296 size = t->size;
297 goto done;
298 case BTF_KIND_PTR:
299 size = sizeof(void *);
300 goto done;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700301 case BTF_KIND_TYPEDEF:
302 case BTF_KIND_VOLATILE:
303 case BTF_KIND_CONST:
304 case BTF_KIND_RESTRICT:
Daniel Borkmann1713d682019-04-09 23:20:14 +0200305 case BTF_KIND_VAR:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700306 type_id = t->type;
307 break;
308 case BTF_KIND_ARRAY:
309 array = (const struct btf_array *)(t + 1);
310 if (nelems && array->nelems > UINT32_MAX / nelems)
311 return -E2BIG;
312 nelems *= array->nelems;
313 type_id = array->type;
314 break;
315 default:
316 return -EINVAL;
317 }
318
Okash Khawaja92b57122018-07-13 21:57:02 -0700319 t = btf__type_by_id(btf, type_id);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700320 }
321
322 if (size < 0)
323 return -EINVAL;
324
Andrii Nakryiko69eaab042019-02-04 17:29:44 -0800325done:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700326 if (nelems && size > UINT32_MAX / nelems)
327 return -E2BIG;
328
329 return nelems * size;
330}
331
Okash Khawaja92b57122018-07-13 21:57:02 -0700332int btf__resolve_type(const struct btf *btf, __u32 type_id)
333{
334 const struct btf_type *t;
335 int depth = 0;
336
337 t = btf__type_by_id(btf, type_id);
338 while (depth < MAX_RESOLVE_DEPTH &&
339 !btf_type_is_void_or_null(t) &&
Daniel Borkmann1713d682019-04-09 23:20:14 +0200340 (IS_MODIFIER(BTF_INFO_KIND(t->info)) ||
341 IS_VAR(BTF_INFO_KIND(t->info)))) {
Okash Khawaja92b57122018-07-13 21:57:02 -0700342 type_id = t->type;
343 t = btf__type_by_id(btf, type_id);
344 depth++;
345 }
346
347 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
348 return -EINVAL;
349
350 return type_id;
351}
352
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700353__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700354{
Martin KaFai Lau5b891af2018-07-24 08:40:21 -0700355 __u32 i;
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700356
357 if (!strcmp(type_name, "void"))
358 return 0;
359
360 for (i = 1; i <= btf->nr_types; i++) {
361 const struct btf_type *t = btf->types[i];
Okash Khawaja92b57122018-07-13 21:57:02 -0700362 const char *name = btf__name_by_offset(btf, t->name_off);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700363
364 if (name && !strcmp(type_name, name))
365 return i;
366 }
367
368 return -ENOENT;
369}
370
371void btf__free(struct btf *btf)
372{
373 if (!btf)
374 return;
375
376 if (btf->fd != -1)
377 close(btf->fd);
378
379 free(btf->data);
380 free(btf->types);
381 free(btf);
382}
383
Yonghong Song8461ef82019-02-01 16:14:14 -0800384struct btf *btf__new(__u8 *data, __u32 size)
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700385{
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700386 struct btf *btf;
387 int err;
388
389 btf = calloc(1, sizeof(struct btf));
390 if (!btf)
391 return ERR_PTR(-ENOMEM);
392
393 btf->fd = -1;
394
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700395 btf->data = malloc(size);
396 if (!btf->data) {
397 err = -ENOMEM;
398 goto done;
399 }
400
401 memcpy(btf->data, data, size);
402 btf->data_size = size;
403
Yonghong Song8461ef82019-02-01 16:14:14 -0800404 err = btf_parse_hdr(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700405 if (err)
406 goto done;
407
Yonghong Song8461ef82019-02-01 16:14:14 -0800408 err = btf_parse_str_sec(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700409 if (err)
410 goto done;
411
Yonghong Song8461ef82019-02-01 16:14:14 -0800412 err = btf_parse_type_sec(btf);
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700413
414done:
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700415 if (err) {
416 btf__free(btf);
417 return ERR_PTR(err);
418 }
419
420 return btf;
421}
422
Andrii Nakryikoe6c64852019-05-24 11:58:57 -0700423static bool btf_check_endianness(const GElf_Ehdr *ehdr)
424{
425#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
426 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
427#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
428 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
429#else
430# error "Unrecognized __BYTE_ORDER__"
431#endif
432}
433
434struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
435{
436 Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
437 int err = 0, fd = -1, idx = 0;
438 struct btf *btf = NULL;
439 Elf_Scn *scn = NULL;
440 Elf *elf = NULL;
441 GElf_Ehdr ehdr;
442
443 if (elf_version(EV_CURRENT) == EV_NONE) {
444 pr_warning("failed to init libelf for %s\n", path);
445 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
446 }
447
448 fd = open(path, O_RDONLY);
449 if (fd < 0) {
450 err = -errno;
451 pr_warning("failed to open %s: %s\n", path, strerror(errno));
452 return ERR_PTR(err);
453 }
454
455 err = -LIBBPF_ERRNO__FORMAT;
456
457 elf = elf_begin(fd, ELF_C_READ, NULL);
458 if (!elf) {
459 pr_warning("failed to open %s as ELF file\n", path);
460 goto done;
461 }
462 if (!gelf_getehdr(elf, &ehdr)) {
463 pr_warning("failed to get EHDR from %s\n", path);
464 goto done;
465 }
466 if (!btf_check_endianness(&ehdr)) {
467 pr_warning("non-native ELF endianness is not supported\n");
468 goto done;
469 }
470 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
471 pr_warning("failed to get e_shstrndx from %s\n", path);
472 goto done;
473 }
474
475 while ((scn = elf_nextscn(elf, scn)) != NULL) {
476 GElf_Shdr sh;
477 char *name;
478
479 idx++;
480 if (gelf_getshdr(scn, &sh) != &sh) {
481 pr_warning("failed to get section(%d) header from %s\n",
482 idx, path);
483 goto done;
484 }
485 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
486 if (!name) {
487 pr_warning("failed to get section(%d) name from %s\n",
488 idx, path);
489 goto done;
490 }
491 if (strcmp(name, BTF_ELF_SEC) == 0) {
492 btf_data = elf_getdata(scn, 0);
493 if (!btf_data) {
494 pr_warning("failed to get section(%d, %s) data from %s\n",
495 idx, name, path);
496 goto done;
497 }
498 continue;
499 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
500 btf_ext_data = elf_getdata(scn, 0);
501 if (!btf_ext_data) {
502 pr_warning("failed to get section(%d, %s) data from %s\n",
503 idx, name, path);
504 goto done;
505 }
506 continue;
507 }
508 }
509
510 err = 0;
511
512 if (!btf_data) {
513 err = -ENOENT;
514 goto done;
515 }
516 btf = btf__new(btf_data->d_buf, btf_data->d_size);
517 if (IS_ERR(btf))
518 goto done;
519
520 if (btf_ext && btf_ext_data) {
521 *btf_ext = btf_ext__new(btf_ext_data->d_buf,
522 btf_ext_data->d_size);
523 if (IS_ERR(*btf_ext))
524 goto done;
525 } else if (btf_ext) {
526 *btf_ext = NULL;
527 }
528done:
529 if (elf)
530 elf_end(elf);
531 close(fd);
532
533 if (err)
534 return ERR_PTR(err);
535 /*
536 * btf is always parsed before btf_ext, so no need to clean up
537 * btf_ext, if btf loading failed
538 */
539 if (IS_ERR(btf))
540 return btf;
541 if (btf_ext && IS_ERR(*btf_ext)) {
542 btf__free(btf);
543 err = PTR_ERR(*btf_ext);
544 return ERR_PTR(err);
545 }
546 return btf;
547}
548
Daniel Borkmann1713d682019-04-09 23:20:14 +0200549static int compare_vsi_off(const void *_a, const void *_b)
550{
551 const struct btf_var_secinfo *a = _a;
552 const struct btf_var_secinfo *b = _b;
553
554 return a->offset - b->offset;
555}
556
557static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
558 struct btf_type *t)
559{
560 __u32 size = 0, off = 0, i, vars = BTF_INFO_VLEN(t->info);
561 const char *name = btf__name_by_offset(btf, t->name_off);
562 const struct btf_type *t_var;
563 struct btf_var_secinfo *vsi;
564 struct btf_var *var;
565 int ret;
566
567 if (!name) {
568 pr_debug("No name found in string section for DATASEC kind.\n");
569 return -ENOENT;
570 }
571
572 ret = bpf_object__section_size(obj, name, &size);
573 if (ret || !size || (t->size && t->size != size)) {
574 pr_debug("Invalid size for section %s: %u bytes\n", name, size);
575 return -ENOENT;
576 }
577
578 t->size = size;
579
580 for (i = 0, vsi = (struct btf_var_secinfo *)(t + 1);
581 i < vars; i++, vsi++) {
582 t_var = btf__type_by_id(btf, vsi->type);
583 var = (struct btf_var *)(t_var + 1);
584
585 if (BTF_INFO_KIND(t_var->info) != BTF_KIND_VAR) {
586 pr_debug("Non-VAR type seen in section %s\n", name);
587 return -EINVAL;
588 }
589
590 if (var->linkage == BTF_VAR_STATIC)
591 continue;
592
593 name = btf__name_by_offset(btf, t_var->name_off);
594 if (!name) {
595 pr_debug("No name found in string section for VAR kind\n");
596 return -ENOENT;
597 }
598
599 ret = bpf_object__variable_offset(obj, name, &off);
600 if (ret) {
601 pr_debug("No offset found in symbol table for VAR %s\n", name);
602 return -ENOENT;
603 }
604
605 vsi->offset = off;
606 }
607
608 qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
609 return 0;
610}
611
612int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
613{
614 int err = 0;
615 __u32 i;
616
617 for (i = 1; i <= btf->nr_types; i++) {
618 struct btf_type *t = btf->types[i];
619
620 /* Loader needs to fix up some of the things compiler
621 * couldn't get its hands on while emitting BTF. This
622 * is section size and global variable offset. We use
623 * the info from the ELF itself for this purpose.
624 */
625 if (BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC) {
626 err = btf_fixup_datasec(obj, btf, t);
627 if (err)
628 break;
629 }
630 }
631
632 return err;
633}
634
Andrii Nakryikod29d87f2019-02-08 11:19:36 -0800635int btf__load(struct btf *btf)
636{
637 __u32 log_buf_size = BPF_LOG_BUF_SIZE;
638 char *log_buf = NULL;
639 int err = 0;
640
641 if (btf->fd >= 0)
642 return -EEXIST;
643
644 log_buf = malloc(log_buf_size);
645 if (!log_buf)
646 return -ENOMEM;
647
648 *log_buf = 0;
649
650 btf->fd = bpf_load_btf(btf->data, btf->data_size,
651 log_buf, log_buf_size, false);
652 if (btf->fd < 0) {
653 err = -errno;
654 pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
655 if (*log_buf)
656 pr_warning("%s\n", log_buf);
657 goto done;
658 }
659
660done:
661 free(log_buf);
662 return err;
663}
664
Martin KaFai Lau8a138ae2018-04-18 15:56:05 -0700665int btf__fd(const struct btf *btf)
666{
667 return btf->fd;
668}
Okash Khawaja92b57122018-07-13 21:57:02 -0700669
Andrii Nakryiko02c87442019-02-08 11:19:37 -0800670const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
671{
672 *size = btf->data_size;
673 return btf->data;
674}
675
Okash Khawaja92b57122018-07-13 21:57:02 -0700676const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
677{
678 if (offset < btf->hdr->str_len)
679 return &btf->strings[offset];
680 else
681 return NULL;
682}
Yonghong Song2993e052018-11-19 15:29:16 -0800683
Martin KaFai Lau1d2f44c2018-11-23 16:44:32 -0800684int btf__get_from_id(__u32 id, struct btf **btf)
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800685{
686 struct bpf_btf_info btf_info = { 0 };
687 __u32 len = sizeof(btf_info);
688 __u32 last_size;
689 int btf_fd;
690 void *ptr;
691 int err;
692
693 err = 0;
694 *btf = NULL;
695 btf_fd = bpf_btf_get_fd_by_id(id);
696 if (btf_fd < 0)
697 return 0;
698
699 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
700 * let's start with a sane default - 4KiB here - and resize it only if
701 * bpf_obj_get_info_by_fd() needs a bigger buffer.
702 */
703 btf_info.btf_size = 4096;
704 last_size = btf_info.btf_size;
705 ptr = malloc(last_size);
706 if (!ptr) {
707 err = -ENOMEM;
708 goto exit_free;
709 }
710
Andrii Nakryiko1ad9cbb2019-02-13 10:25:53 -0800711 memset(ptr, 0, last_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800712 btf_info.btf = ptr_to_u64(ptr);
713 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
714
715 if (!err && btf_info.btf_size > last_size) {
716 void *temp_ptr;
717
718 last_size = btf_info.btf_size;
719 temp_ptr = realloc(ptr, last_size);
720 if (!temp_ptr) {
721 err = -ENOMEM;
722 goto exit_free;
723 }
724 ptr = temp_ptr;
Andrii Nakryiko1ad9cbb2019-02-13 10:25:53 -0800725 memset(ptr, 0, last_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800726 btf_info.btf = ptr_to_u64(ptr);
727 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
728 }
729
730 if (err || btf_info.btf_size > last_size) {
731 err = errno;
732 goto exit_free;
733 }
734
Yonghong Song8461ef82019-02-01 16:14:14 -0800735 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
Yonghong Songd7f5b5e2018-11-19 15:29:18 -0800736 if (IS_ERR(*btf)) {
737 err = PTR_ERR(*btf);
738 *btf = NULL;
739 }
740
741exit_free:
742 close(btf_fd);
743 free(ptr);
744
745 return err;
746}
747
Yonghong Songa6c109a2019-02-05 11:48:22 -0800748int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
Yonghong Song96408c42019-02-04 11:00:58 -0800749 __u32 expected_key_size, __u32 expected_value_size,
750 __u32 *key_type_id, __u32 *value_type_id)
751{
752 const struct btf_type *container_type;
753 const struct btf_member *key, *value;
754 const size_t max_name = 256;
755 char container_name[max_name];
756 __s64 key_size, value_size;
757 __s32 container_id;
758
759 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
760 max_name) {
761 pr_warning("map:%s length of '____btf_map_%s' is too long\n",
762 map_name, map_name);
763 return -EINVAL;
764 }
765
766 container_id = btf__find_by_name(btf, container_name);
767 if (container_id < 0) {
Yonghong Songf7748e22019-02-05 21:38:30 -0800768 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
769 map_name, container_name);
Yonghong Song96408c42019-02-04 11:00:58 -0800770 return container_id;
771 }
772
773 container_type = btf__type_by_id(btf, container_id);
774 if (!container_type) {
775 pr_warning("map:%s cannot find BTF type for container_id:%u\n",
776 map_name, container_id);
777 return -EINVAL;
778 }
779
780 if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT ||
781 BTF_INFO_VLEN(container_type->info) < 2) {
782 pr_warning("map:%s container_name:%s is an invalid container struct\n",
783 map_name, container_name);
784 return -EINVAL;
785 }
786
787 key = (struct btf_member *)(container_type + 1);
788 value = key + 1;
789
790 key_size = btf__resolve_size(btf, key->type);
791 if (key_size < 0) {
792 pr_warning("map:%s invalid BTF key_type_size\n", map_name);
793 return key_size;
794 }
795
796 if (expected_key_size != key_size) {
797 pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
798 map_name, (__u32)key_size, expected_key_size);
799 return -EINVAL;
800 }
801
802 value_size = btf__resolve_size(btf, value->type);
803 if (value_size < 0) {
804 pr_warning("map:%s invalid BTF value_type_size\n", map_name);
805 return value_size;
806 }
807
808 if (expected_value_size != value_size) {
809 pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
810 map_name, (__u32)value_size, expected_value_size);
811 return -EINVAL;
812 }
813
814 *key_type_id = key->type;
815 *value_type_id = value->type;
816
817 return 0;
818}
819
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800820struct btf_ext_sec_setup_param {
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800821 __u32 off;
822 __u32 len;
823 __u32 min_rec_size;
824 struct btf_ext_info *ext_info;
825 const char *desc;
826};
827
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800828static int btf_ext_setup_info(struct btf_ext *btf_ext,
829 struct btf_ext_sec_setup_param *ext_sec)
Yonghong Song2993e052018-11-19 15:29:16 -0800830{
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800831 const struct btf_ext_info_sec *sinfo;
832 struct btf_ext_info *ext_info;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800833 __u32 info_left, record_size;
834 /* The start of the info sec (including the __u32 record_size). */
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800835 void *info;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800836
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800837 if (ext_sec->off & 0x03) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800838 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800839 ext_sec->desc);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800840 return -EINVAL;
841 }
842
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800843 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
844 info_left = ext_sec->len;
845
846 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800847 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800848 ext_sec->desc, ext_sec->off, ext_sec->len);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800849 return -EINVAL;
850 }
851
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800852 /* At least a record size */
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800853 if (info_left < sizeof(__u32)) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800854 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800855 return -EINVAL;
856 }
857
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800858 /* The record size needs to meet the minimum standard */
859 record_size = *(__u32 *)info;
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800860 if (record_size < ext_sec->min_rec_size ||
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800861 record_size & 0x03) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800862 pr_debug("%s section in .BTF.ext has invalid record size %u\n",
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800863 ext_sec->desc, record_size);
Yonghong Song2993e052018-11-19 15:29:16 -0800864 return -EINVAL;
865 }
866
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800867 sinfo = info + sizeof(__u32);
868 info_left -= sizeof(__u32);
Yonghong Song2993e052018-11-19 15:29:16 -0800869
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800870 /* If no records, return failure now so .BTF.ext won't be used. */
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800871 if (!info_left) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800872 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800873 return -EINVAL;
874 }
875
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800876 while (info_left) {
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800877 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800878 __u64 total_record_size;
879 __u32 num_records;
880
881 if (info_left < sec_hdrlen) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800882 pr_debug("%s section header is not found in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800883 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800884 return -EINVAL;
885 }
886
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800887 num_records = sinfo->num_info;
Yonghong Song2993e052018-11-19 15:29:16 -0800888 if (num_records == 0) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800889 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800890 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800891 return -EINVAL;
892 }
893
894 total_record_size = sec_hdrlen +
895 (__u64)num_records * record_size;
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800896 if (info_left < total_record_size) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800897 pr_debug("%s section has incorrect num_records in .BTF.ext\n",
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800898 ext_sec->desc);
Yonghong Song2993e052018-11-19 15:29:16 -0800899 return -EINVAL;
900 }
901
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800902 info_left -= total_record_size;
Yonghong Song2993e052018-11-19 15:29:16 -0800903 sinfo = (void *)sinfo + total_record_size;
904 }
905
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800906 ext_info = ext_sec->ext_info;
907 ext_info->len = ext_sec->len - sizeof(__u32);
908 ext_info->rec_size = record_size;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800909 ext_info->info = info + sizeof(__u32);
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800910
Yonghong Song2993e052018-11-19 15:29:16 -0800911 return 0;
912}
913
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800914static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800915{
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800916 struct btf_ext_sec_setup_param param = {
917 .off = btf_ext->hdr->func_info_off,
918 .len = btf_ext->hdr->func_info_len,
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800919 .min_rec_size = sizeof(struct bpf_func_info_min),
920 .ext_info = &btf_ext->func_info,
921 .desc = "func_info"
922 };
923
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800924 return btf_ext_setup_info(btf_ext, &param);
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800925}
926
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800927static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800928{
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800929 struct btf_ext_sec_setup_param param = {
930 .off = btf_ext->hdr->line_info_off,
931 .len = btf_ext->hdr->line_info_len,
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800932 .min_rec_size = sizeof(struct bpf_line_info_min),
933 .ext_info = &btf_ext->line_info,
934 .desc = "line_info",
935 };
936
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800937 return btf_ext_setup_info(btf_ext, &param);
Martin KaFai Lau3d650142018-12-07 16:42:31 -0800938}
939
Yonghong Song8461ef82019-02-01 16:14:14 -0800940static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
Yonghong Song2993e052018-11-19 15:29:16 -0800941{
942 const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
Yonghong Song2993e052018-11-19 15:29:16 -0800943
944 if (data_size < offsetof(struct btf_ext_header, func_info_off) ||
945 data_size < hdr->hdr_len) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800946 pr_debug("BTF.ext header not found");
Yonghong Song2993e052018-11-19 15:29:16 -0800947 return -EINVAL;
948 }
949
950 if (hdr->magic != BTF_MAGIC) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800951 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
Yonghong Song2993e052018-11-19 15:29:16 -0800952 return -EINVAL;
953 }
954
955 if (hdr->version != BTF_VERSION) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800956 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
Yonghong Song2993e052018-11-19 15:29:16 -0800957 return -ENOTSUP;
958 }
959
960 if (hdr->flags) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800961 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
Yonghong Song2993e052018-11-19 15:29:16 -0800962 return -ENOTSUP;
963 }
964
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800965 if (data_size == hdr->hdr_len) {
Yonghong Song8461ef82019-02-01 16:14:14 -0800966 pr_debug("BTF.ext has no data\n");
Yonghong Song2993e052018-11-19 15:29:16 -0800967 return -EINVAL;
968 }
969
Martin KaFai Lauf0187f02018-12-07 16:42:29 -0800970 return 0;
Yonghong Song2993e052018-11-19 15:29:16 -0800971}
972
973void btf_ext__free(struct btf_ext *btf_ext)
974{
975 if (!btf_ext)
976 return;
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800977 free(btf_ext->data);
Yonghong Song2993e052018-11-19 15:29:16 -0800978 free(btf_ext);
979}
980
Yonghong Song8461ef82019-02-01 16:14:14 -0800981struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
Yonghong Song2993e052018-11-19 15:29:16 -0800982{
Yonghong Song2993e052018-11-19 15:29:16 -0800983 struct btf_ext *btf_ext;
Yonghong Song2993e052018-11-19 15:29:16 -0800984 int err;
985
Yonghong Song8461ef82019-02-01 16:14:14 -0800986 err = btf_ext_parse_hdr(data, size);
Yonghong Song2993e052018-11-19 15:29:16 -0800987 if (err)
988 return ERR_PTR(err);
989
990 btf_ext = calloc(1, sizeof(struct btf_ext));
991 if (!btf_ext)
992 return ERR_PTR(-ENOMEM);
993
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -0800994 btf_ext->data_size = size;
995 btf_ext->data = malloc(size);
996 if (!btf_ext->data) {
997 err = -ENOMEM;
998 goto done;
Yonghong Song2993e052018-11-19 15:29:16 -0800999 }
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001000 memcpy(btf_ext->data, data, size);
Yonghong Song2993e052018-11-19 15:29:16 -08001001
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001002 err = btf_ext_setup_func_info(btf_ext);
1003 if (err)
1004 goto done;
1005
1006 err = btf_ext_setup_line_info(btf_ext);
1007 if (err)
1008 goto done;
1009
1010done:
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001011 if (err) {
1012 btf_ext__free(btf_ext);
1013 return ERR_PTR(err);
1014 }
1015
Yonghong Song2993e052018-11-19 15:29:16 -08001016 return btf_ext;
1017}
1018
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001019const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1020{
1021 *size = btf_ext->data_size;
1022 return btf_ext->data;
1023}
1024
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001025static int btf_ext_reloc_info(const struct btf *btf,
1026 const struct btf_ext_info *ext_info,
1027 const char *sec_name, __u32 insns_cnt,
1028 void **info, __u32 *cnt)
Yonghong Song2993e052018-11-19 15:29:16 -08001029{
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001030 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1031 __u32 i, record_size, existing_len, records_len;
1032 struct btf_ext_info_sec *sinfo;
Yonghong Song2993e052018-11-19 15:29:16 -08001033 const char *info_sec_name;
1034 __u64 remain_len;
1035 void *data;
1036
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001037 record_size = ext_info->rec_size;
1038 sinfo = ext_info->info;
1039 remain_len = ext_info->len;
Yonghong Song2993e052018-11-19 15:29:16 -08001040 while (remain_len > 0) {
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001041 records_len = sinfo->num_info * record_size;
Yonghong Song2993e052018-11-19 15:29:16 -08001042 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1043 if (strcmp(info_sec_name, sec_name)) {
1044 remain_len -= sec_hdrlen + records_len;
1045 sinfo = (void *)sinfo + sec_hdrlen + records_len;
1046 continue;
1047 }
1048
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001049 existing_len = (*cnt) * record_size;
1050 data = realloc(*info, existing_len + records_len);
Yonghong Song2993e052018-11-19 15:29:16 -08001051 if (!data)
1052 return -ENOMEM;
1053
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001054 memcpy(data + existing_len, sinfo->data, records_len);
Martin KaFai Lau84ecc1f2018-12-05 17:35:47 -08001055 /* adjust insn_off only, the rest data will be passed
Yonghong Song2993e052018-11-19 15:29:16 -08001056 * to the kernel.
1057 */
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001058 for (i = 0; i < sinfo->num_info; i++) {
1059 __u32 *insn_off;
Yonghong Song2993e052018-11-19 15:29:16 -08001060
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001061 insn_off = data + existing_len + (i * record_size);
1062 *insn_off = *insn_off / sizeof(struct bpf_insn) +
Yonghong Song2993e052018-11-19 15:29:16 -08001063 insns_cnt;
1064 }
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001065 *info = data;
1066 *cnt += sinfo->num_info;
Yonghong Song2993e052018-11-19 15:29:16 -08001067 return 0;
1068 }
1069
Martin KaFai Lauf0187f02018-12-07 16:42:29 -08001070 return -ENOENT;
1071}
1072
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001073int btf_ext__reloc_func_info(const struct btf *btf,
1074 const struct btf_ext *btf_ext,
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001075 const char *sec_name, __u32 insns_cnt,
1076 void **func_info, __u32 *cnt)
1077{
1078 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1079 insns_cnt, func_info, cnt);
1080}
1081
Andrii Nakryikoae4ab4b2019-02-08 11:19:38 -08001082int btf_ext__reloc_line_info(const struct btf *btf,
1083 const struct btf_ext *btf_ext,
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001084 const char *sec_name, __u32 insns_cnt,
1085 void **line_info, __u32 *cnt)
1086{
1087 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1088 insns_cnt, line_info, cnt);
1089}
1090
Martin KaFai Lauf0187f02018-12-07 16:42:29 -08001091__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1092{
Martin KaFai Lau3d650142018-12-07 16:42:31 -08001093 return btf_ext->func_info.rec_size;
1094}
1095
1096__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1097{
1098 return btf_ext->line_info.rec_size;
Yonghong Song2993e052018-11-19 15:29:16 -08001099}
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001100
1101struct btf_dedup;
1102
1103static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1104 const struct btf_dedup_opts *opts);
1105static void btf_dedup_free(struct btf_dedup *d);
1106static int btf_dedup_strings(struct btf_dedup *d);
1107static int btf_dedup_prim_types(struct btf_dedup *d);
1108static int btf_dedup_struct_types(struct btf_dedup *d);
1109static int btf_dedup_ref_types(struct btf_dedup *d);
1110static int btf_dedup_compact_types(struct btf_dedup *d);
1111static int btf_dedup_remap_types(struct btf_dedup *d);
1112
1113/*
1114 * Deduplicate BTF types and strings.
1115 *
1116 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1117 * section with all BTF type descriptors and string data. It overwrites that
1118 * memory in-place with deduplicated types and strings without any loss of
1119 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1120 * is provided, all the strings referenced from .BTF.ext section are honored
1121 * and updated to point to the right offsets after deduplication.
1122 *
1123 * If function returns with error, type/string data might be garbled and should
1124 * be discarded.
1125 *
1126 * More verbose and detailed description of both problem btf_dedup is solving,
1127 * as well as solution could be found at:
1128 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1129 *
1130 * Problem description and justification
1131 * =====================================
1132 *
1133 * BTF type information is typically emitted either as a result of conversion
1134 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1135 * unit contains information about a subset of all the types that are used
1136 * in an application. These subsets are frequently overlapping and contain a lot
1137 * of duplicated information when later concatenated together into a single
1138 * binary. This algorithm ensures that each unique type is represented by single
1139 * BTF type descriptor, greatly reducing resulting size of BTF data.
1140 *
1141 * Compilation unit isolation and subsequent duplication of data is not the only
1142 * problem. The same type hierarchy (e.g., struct and all the type that struct
1143 * references) in different compilation units can be represented in BTF to
1144 * various degrees of completeness (or, rather, incompleteness) due to
1145 * struct/union forward declarations.
1146 *
1147 * Let's take a look at an example, that we'll use to better understand the
1148 * problem (and solution). Suppose we have two compilation units, each using
1149 * same `struct S`, but each of them having incomplete type information about
1150 * struct's fields:
1151 *
1152 * // CU #1:
1153 * struct S;
1154 * struct A {
1155 * int a;
1156 * struct A* self;
1157 * struct S* parent;
1158 * };
1159 * struct B;
1160 * struct S {
1161 * struct A* a_ptr;
1162 * struct B* b_ptr;
1163 * };
1164 *
1165 * // CU #2:
1166 * struct S;
1167 * struct A;
1168 * struct B {
1169 * int b;
1170 * struct B* self;
1171 * struct S* parent;
1172 * };
1173 * struct S {
1174 * struct A* a_ptr;
1175 * struct B* b_ptr;
1176 * };
1177 *
1178 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1179 * more), but will know the complete type information about `struct A`. While
1180 * for CU #2, it will know full type information about `struct B`, but will
1181 * only know about forward declaration of `struct A` (in BTF terms, it will
1182 * have `BTF_KIND_FWD` type descriptor with name `B`).
1183 *
1184 * This compilation unit isolation means that it's possible that there is no
1185 * single CU with complete type information describing structs `S`, `A`, and
1186 * `B`. Also, we might get tons of duplicated and redundant type information.
1187 *
1188 * Additional complication we need to keep in mind comes from the fact that
1189 * types, in general, can form graphs containing cycles, not just DAGs.
1190 *
1191 * While algorithm does deduplication, it also merges and resolves type
1192 * information (unless disabled throught `struct btf_opts`), whenever possible.
1193 * E.g., in the example above with two compilation units having partial type
1194 * information for structs `A` and `B`, the output of algorithm will emit
1195 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1196 * (as well as type information for `int` and pointers), as if they were defined
1197 * in a single compilation unit as:
1198 *
1199 * struct A {
1200 * int a;
1201 * struct A* self;
1202 * struct S* parent;
1203 * };
1204 * struct B {
1205 * int b;
1206 * struct B* self;
1207 * struct S* parent;
1208 * };
1209 * struct S {
1210 * struct A* a_ptr;
1211 * struct B* b_ptr;
1212 * };
1213 *
1214 * Algorithm summary
1215 * =================
1216 *
1217 * Algorithm completes its work in 6 separate passes:
1218 *
1219 * 1. Strings deduplication.
1220 * 2. Primitive types deduplication (int, enum, fwd).
1221 * 3. Struct/union types deduplication.
1222 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1223 * protos, and const/volatile/restrict modifiers).
1224 * 5. Types compaction.
1225 * 6. Types remapping.
1226 *
1227 * Algorithm determines canonical type descriptor, which is a single
1228 * representative type for each truly unique type. This canonical type is the
1229 * one that will go into final deduplicated BTF type information. For
1230 * struct/unions, it is also the type that algorithm will merge additional type
1231 * information into (while resolving FWDs), as it discovers it from data in
1232 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1233 * that type is canonical, or to some other type, if that type is equivalent
1234 * and was chosen as canonical representative. This mapping is stored in
1235 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1236 * FWD type got resolved to.
1237 *
1238 * To facilitate fast discovery of canonical types, we also maintain canonical
1239 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1240 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1241 * that match that signature. With sufficiently good choice of type signature
1242 * hashing function, we can limit number of canonical types for each unique type
1243 * signature to a very small number, allowing to find canonical type for any
1244 * duplicated type very quickly.
1245 *
1246 * Struct/union deduplication is the most critical part and algorithm for
1247 * deduplicating structs/unions is described in greater details in comments for
1248 * `btf_dedup_is_equiv` function.
1249 */
1250int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1251 const struct btf_dedup_opts *opts)
1252{
1253 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1254 int err;
1255
1256 if (IS_ERR(d)) {
1257 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1258 return -EINVAL;
1259 }
1260
1261 err = btf_dedup_strings(d);
1262 if (err < 0) {
1263 pr_debug("btf_dedup_strings failed:%d\n", err);
1264 goto done;
1265 }
1266 err = btf_dedup_prim_types(d);
1267 if (err < 0) {
1268 pr_debug("btf_dedup_prim_types failed:%d\n", err);
1269 goto done;
1270 }
1271 err = btf_dedup_struct_types(d);
1272 if (err < 0) {
1273 pr_debug("btf_dedup_struct_types failed:%d\n", err);
1274 goto done;
1275 }
1276 err = btf_dedup_ref_types(d);
1277 if (err < 0) {
1278 pr_debug("btf_dedup_ref_types failed:%d\n", err);
1279 goto done;
1280 }
1281 err = btf_dedup_compact_types(d);
1282 if (err < 0) {
1283 pr_debug("btf_dedup_compact_types failed:%d\n", err);
1284 goto done;
1285 }
1286 err = btf_dedup_remap_types(d);
1287 if (err < 0) {
1288 pr_debug("btf_dedup_remap_types failed:%d\n", err);
1289 goto done;
1290 }
1291
1292done:
1293 btf_dedup_free(d);
1294 return err;
1295}
1296
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001297#define BTF_UNPROCESSED_ID ((__u32)-1)
1298#define BTF_IN_PROGRESS_ID ((__u32)-2)
1299
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001300struct btf_dedup {
1301 /* .BTF section to be deduped in-place */
1302 struct btf *btf;
1303 /*
1304 * Optional .BTF.ext section. When provided, any strings referenced
1305 * from it will be taken into account when deduping strings
1306 */
1307 struct btf_ext *btf_ext;
1308 /*
1309 * This is a map from any type's signature hash to a list of possible
1310 * canonical representative type candidates. Hash collisions are
1311 * ignored, so even types of various kinds can share same list of
1312 * candidates, which is fine because we rely on subsequent
1313 * btf_xxx_equal() checks to authoritatively verify type equality.
1314 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001315 struct hashmap *dedup_table;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001316 /* Canonical types map */
1317 __u32 *map;
1318 /* Hypothetical mapping, used during type graph equivalence checks */
1319 __u32 *hypot_map;
1320 __u32 *hypot_list;
1321 size_t hypot_cnt;
1322 size_t hypot_cap;
1323 /* Various option modifying behavior of algorithm */
1324 struct btf_dedup_opts opts;
1325};
1326
1327struct btf_str_ptr {
1328 const char *str;
1329 __u32 new_off;
1330 bool used;
1331};
1332
1333struct btf_str_ptrs {
1334 struct btf_str_ptr *ptrs;
1335 const char *data;
1336 __u32 cnt;
1337 __u32 cap;
1338};
1339
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001340static long hash_combine(long h, long value)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001341{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001342 return h * 31 + value;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001343}
1344
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001345#define for_each_dedup_cand(d, node, hash) \
1346 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001347
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001348static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001349{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001350 return hashmap__append(d->dedup_table,
1351 (void *)hash, (void *)(long)type_id);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001352}
1353
1354static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1355 __u32 from_id, __u32 to_id)
1356{
1357 if (d->hypot_cnt == d->hypot_cap) {
1358 __u32 *new_list;
1359
1360 d->hypot_cap += max(16, d->hypot_cap / 2);
1361 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1362 if (!new_list)
1363 return -ENOMEM;
1364 d->hypot_list = new_list;
1365 }
1366 d->hypot_list[d->hypot_cnt++] = from_id;
1367 d->hypot_map[from_id] = to_id;
1368 return 0;
1369}
1370
1371static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1372{
1373 int i;
1374
1375 for (i = 0; i < d->hypot_cnt; i++)
1376 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1377 d->hypot_cnt = 0;
1378}
1379
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001380static void btf_dedup_free(struct btf_dedup *d)
1381{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001382 hashmap__free(d->dedup_table);
1383 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001384
1385 free(d->map);
1386 d->map = NULL;
1387
1388 free(d->hypot_map);
1389 d->hypot_map = NULL;
1390
1391 free(d->hypot_list);
1392 d->hypot_list = NULL;
1393
1394 free(d);
1395}
1396
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001397static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001398{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001399 return (size_t)key;
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001400}
1401
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001402static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1403{
1404 return 0;
1405}
1406
1407static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1408{
1409 return k1 == k2;
1410}
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001411
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001412static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1413 const struct btf_dedup_opts *opts)
1414{
1415 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001416 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001417 int i, err = 0;
1418
1419 if (!d)
1420 return ERR_PTR(-ENOMEM);
1421
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001422 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001423 /* dedup_table_size is now used only to force collisions in tests */
1424 if (opts && opts->dedup_table_size == 1)
1425 hash_fn = btf_dedup_collision_hash_fn;
Andrii Nakryiko51edf5f2019-02-28 15:31:23 -08001426
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001427 d->btf = btf;
1428 d->btf_ext = btf_ext;
1429
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001430 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1431 if (IS_ERR(d->dedup_table)) {
1432 err = PTR_ERR(d->dedup_table);
1433 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001434 goto done;
1435 }
1436
1437 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1438 if (!d->map) {
1439 err = -ENOMEM;
1440 goto done;
1441 }
1442 /* special BTF "void" type is made canonical immediately */
1443 d->map[0] = 0;
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07001444 for (i = 1; i <= btf->nr_types; i++) {
1445 struct btf_type *t = d->btf->types[i];
1446 __u16 kind = BTF_INFO_KIND(t->info);
1447
1448 /* VAR and DATASEC are never deduped and are self-canonical */
1449 if (kind == BTF_KIND_VAR || kind == BTF_KIND_DATASEC)
1450 d->map[i] = i;
1451 else
1452 d->map[i] = BTF_UNPROCESSED_ID;
1453 }
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001454
1455 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1456 if (!d->hypot_map) {
1457 err = -ENOMEM;
1458 goto done;
1459 }
1460 for (i = 0; i <= btf->nr_types; i++)
1461 d->hypot_map[i] = BTF_UNPROCESSED_ID;
1462
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001463done:
1464 if (err) {
1465 btf_dedup_free(d);
1466 return ERR_PTR(err);
1467 }
1468
1469 return d;
1470}
1471
1472typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1473
1474/*
1475 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1476 * string and pass pointer to it to a provided callback `fn`.
1477 */
1478static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1479{
1480 void *line_data_cur, *line_data_end;
1481 int i, j, r, rec_size;
1482 struct btf_type *t;
1483
1484 for (i = 1; i <= d->btf->nr_types; i++) {
1485 t = d->btf->types[i];
1486 r = fn(&t->name_off, ctx);
1487 if (r)
1488 return r;
1489
1490 switch (BTF_INFO_KIND(t->info)) {
1491 case BTF_KIND_STRUCT:
1492 case BTF_KIND_UNION: {
1493 struct btf_member *m = (struct btf_member *)(t + 1);
1494 __u16 vlen = BTF_INFO_VLEN(t->info);
1495
1496 for (j = 0; j < vlen; j++) {
1497 r = fn(&m->name_off, ctx);
1498 if (r)
1499 return r;
1500 m++;
1501 }
1502 break;
1503 }
1504 case BTF_KIND_ENUM: {
1505 struct btf_enum *m = (struct btf_enum *)(t + 1);
1506 __u16 vlen = BTF_INFO_VLEN(t->info);
1507
1508 for (j = 0; j < vlen; j++) {
1509 r = fn(&m->name_off, ctx);
1510 if (r)
1511 return r;
1512 m++;
1513 }
1514 break;
1515 }
1516 case BTF_KIND_FUNC_PROTO: {
1517 struct btf_param *m = (struct btf_param *)(t + 1);
1518 __u16 vlen = BTF_INFO_VLEN(t->info);
1519
1520 for (j = 0; j < vlen; j++) {
1521 r = fn(&m->name_off, ctx);
1522 if (r)
1523 return r;
1524 m++;
1525 }
1526 break;
1527 }
1528 default:
1529 break;
1530 }
1531 }
1532
1533 if (!d->btf_ext)
1534 return 0;
1535
1536 line_data_cur = d->btf_ext->line_info.info;
1537 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1538 rec_size = d->btf_ext->line_info.rec_size;
1539
1540 while (line_data_cur < line_data_end) {
1541 struct btf_ext_info_sec *sec = line_data_cur;
1542 struct bpf_line_info_min *line_info;
1543 __u32 num_info = sec->num_info;
1544
1545 r = fn(&sec->sec_name_off, ctx);
1546 if (r)
1547 return r;
1548
1549 line_data_cur += sizeof(struct btf_ext_info_sec);
1550 for (i = 0; i < num_info; i++) {
1551 line_info = line_data_cur;
1552 r = fn(&line_info->file_name_off, ctx);
1553 if (r)
1554 return r;
1555 r = fn(&line_info->line_off, ctx);
1556 if (r)
1557 return r;
1558 line_data_cur += rec_size;
1559 }
1560 }
1561
1562 return 0;
1563}
1564
1565static int str_sort_by_content(const void *a1, const void *a2)
1566{
1567 const struct btf_str_ptr *p1 = a1;
1568 const struct btf_str_ptr *p2 = a2;
1569
1570 return strcmp(p1->str, p2->str);
1571}
1572
1573static int str_sort_by_offset(const void *a1, const void *a2)
1574{
1575 const struct btf_str_ptr *p1 = a1;
1576 const struct btf_str_ptr *p2 = a2;
1577
1578 if (p1->str != p2->str)
1579 return p1->str < p2->str ? -1 : 1;
1580 return 0;
1581}
1582
1583static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1584{
1585 const struct btf_str_ptr *p = pelem;
1586
1587 if (str_ptr != p->str)
1588 return (const char *)str_ptr < p->str ? -1 : 1;
1589 return 0;
1590}
1591
1592static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1593{
1594 struct btf_str_ptrs *strs;
1595 struct btf_str_ptr *s;
1596
1597 if (*str_off_ptr == 0)
1598 return 0;
1599
1600 strs = ctx;
1601 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1602 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1603 if (!s)
1604 return -EINVAL;
1605 s->used = true;
1606 return 0;
1607}
1608
1609static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1610{
1611 struct btf_str_ptrs *strs;
1612 struct btf_str_ptr *s;
1613
1614 if (*str_off_ptr == 0)
1615 return 0;
1616
1617 strs = ctx;
1618 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1619 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1620 if (!s)
1621 return -EINVAL;
1622 *str_off_ptr = s->new_off;
1623 return 0;
1624}
1625
1626/*
1627 * Dedup string and filter out those that are not referenced from either .BTF
1628 * or .BTF.ext (if provided) sections.
1629 *
1630 * This is done by building index of all strings in BTF's string section,
1631 * then iterating over all entities that can reference strings (e.g., type
1632 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1633 * strings as used. After that all used strings are deduped and compacted into
1634 * sequential blob of memory and new offsets are calculated. Then all the string
1635 * references are iterated again and rewritten using new offsets.
1636 */
1637static int btf_dedup_strings(struct btf_dedup *d)
1638{
1639 const struct btf_header *hdr = d->btf->hdr;
1640 char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1641 char *end = start + d->btf->hdr->str_len;
1642 char *p = start, *tmp_strs = NULL;
1643 struct btf_str_ptrs strs = {
1644 .cnt = 0,
1645 .cap = 0,
1646 .ptrs = NULL,
1647 .data = start,
1648 };
1649 int i, j, err = 0, grp_idx;
1650 bool grp_used;
1651
1652 /* build index of all strings */
1653 while (p < end) {
1654 if (strs.cnt + 1 > strs.cap) {
1655 struct btf_str_ptr *new_ptrs;
1656
1657 strs.cap += max(strs.cnt / 2, 16);
1658 new_ptrs = realloc(strs.ptrs,
1659 sizeof(strs.ptrs[0]) * strs.cap);
1660 if (!new_ptrs) {
1661 err = -ENOMEM;
1662 goto done;
1663 }
1664 strs.ptrs = new_ptrs;
1665 }
1666
1667 strs.ptrs[strs.cnt].str = p;
1668 strs.ptrs[strs.cnt].used = false;
1669
1670 p += strlen(p) + 1;
1671 strs.cnt++;
1672 }
1673
1674 /* temporary storage for deduplicated strings */
1675 tmp_strs = malloc(d->btf->hdr->str_len);
1676 if (!tmp_strs) {
1677 err = -ENOMEM;
1678 goto done;
1679 }
1680
1681 /* mark all used strings */
1682 strs.ptrs[0].used = true;
1683 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1684 if (err)
1685 goto done;
1686
1687 /* sort strings by context, so that we can identify duplicates */
1688 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1689
1690 /*
1691 * iterate groups of equal strings and if any instance in a group was
1692 * referenced, emit single instance and remember new offset
1693 */
1694 p = tmp_strs;
1695 grp_idx = 0;
1696 grp_used = strs.ptrs[0].used;
1697 /* iterate past end to avoid code duplication after loop */
1698 for (i = 1; i <= strs.cnt; i++) {
1699 /*
1700 * when i == strs.cnt, we want to skip string comparison and go
1701 * straight to handling last group of strings (otherwise we'd
1702 * need to handle last group after the loop w/ duplicated code)
1703 */
1704 if (i < strs.cnt &&
1705 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1706 grp_used = grp_used || strs.ptrs[i].used;
1707 continue;
1708 }
1709
1710 /*
1711 * this check would have been required after the loop to handle
1712 * last group of strings, but due to <= condition in a loop
1713 * we avoid that duplication
1714 */
1715 if (grp_used) {
1716 int new_off = p - tmp_strs;
1717 __u32 len = strlen(strs.ptrs[grp_idx].str);
1718
1719 memmove(p, strs.ptrs[grp_idx].str, len + 1);
1720 for (j = grp_idx; j < i; j++)
1721 strs.ptrs[j].new_off = new_off;
1722 p += len + 1;
1723 }
1724
1725 if (i < strs.cnt) {
1726 grp_idx = i;
1727 grp_used = strs.ptrs[i].used;
1728 }
1729 }
1730
1731 /* replace original strings with deduped ones */
1732 d->btf->hdr->str_len = p - tmp_strs;
1733 memmove(start, tmp_strs, d->btf->hdr->str_len);
1734 end = start + d->btf->hdr->str_len;
1735
1736 /* restore original order for further binary search lookups */
1737 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1738
1739 /* remap string offsets */
1740 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1741 if (err)
1742 goto done;
1743
1744 d->btf->hdr->str_len = end - start;
1745
1746done:
1747 free(tmp_strs);
1748 free(strs.ptrs);
1749 return err;
1750}
1751
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001752static long btf_hash_common(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001753{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001754 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001755
1756 h = hash_combine(0, t->name_off);
1757 h = hash_combine(h, t->info);
1758 h = hash_combine(h, t->size);
1759 return h;
1760}
1761
1762static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1763{
1764 return t1->name_off == t2->name_off &&
1765 t1->info == t2->info &&
1766 t1->size == t2->size;
1767}
1768
1769/* Calculate type signature hash of INT. */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001770static long btf_hash_int(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001771{
1772 __u32 info = *(__u32 *)(t + 1);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001773 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001774
1775 h = btf_hash_common(t);
1776 h = hash_combine(h, info);
1777 return h;
1778}
1779
1780/* Check structural equality of two INTs. */
1781static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1782{
1783 __u32 info1, info2;
1784
1785 if (!btf_equal_common(t1, t2))
1786 return false;
1787 info1 = *(__u32 *)(t1 + 1);
1788 info2 = *(__u32 *)(t2 + 1);
1789 return info1 == info2;
1790}
1791
1792/* Calculate type signature hash of ENUM. */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001793static long btf_hash_enum(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001794{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001795 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001796
Andrii Nakryiko97680952019-03-10 17:44:09 -07001797 /* don't hash vlen and enum members to support enum fwd resolving */
1798 h = hash_combine(0, t->name_off);
1799 h = hash_combine(h, t->info & ~0xffff);
1800 h = hash_combine(h, t->size);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001801 return h;
1802}
1803
1804/* Check structural equality of two ENUMs. */
1805static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1806{
1807 struct btf_enum *m1, *m2;
1808 __u16 vlen;
1809 int i;
1810
1811 if (!btf_equal_common(t1, t2))
1812 return false;
1813
1814 vlen = BTF_INFO_VLEN(t1->info);
1815 m1 = (struct btf_enum *)(t1 + 1);
1816 m2 = (struct btf_enum *)(t2 + 1);
1817 for (i = 0; i < vlen; i++) {
1818 if (m1->name_off != m2->name_off || m1->val != m2->val)
1819 return false;
1820 m1++;
1821 m2++;
1822 }
1823 return true;
1824}
1825
Andrii Nakryiko97680952019-03-10 17:44:09 -07001826static inline bool btf_is_enum_fwd(struct btf_type *t)
1827{
1828 return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM &&
1829 BTF_INFO_VLEN(t->info) == 0;
1830}
1831
1832static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1833{
1834 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1835 return btf_equal_enum(t1, t2);
1836 /* ignore vlen when comparing */
1837 return t1->name_off == t2->name_off &&
1838 (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1839 t1->size == t2->size;
1840}
1841
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001842/*
1843 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1844 * as referenced type IDs equivalence is established separately during type
1845 * graph equivalence check algorithm.
1846 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001847static long btf_hash_struct(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001848{
1849 struct btf_member *member = (struct btf_member *)(t + 1);
1850 __u32 vlen = BTF_INFO_VLEN(t->info);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001851 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001852 int i;
1853
1854 for (i = 0; i < vlen; i++) {
1855 h = hash_combine(h, member->name_off);
1856 h = hash_combine(h, member->offset);
1857 /* no hashing of referenced type ID, it can be unresolved yet */
1858 member++;
1859 }
1860 return h;
1861}
1862
1863/*
1864 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1865 * IDs. This check is performed during type graph equivalence check and
1866 * referenced types equivalence is checked separately.
1867 */
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08001868static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001869{
1870 struct btf_member *m1, *m2;
1871 __u16 vlen;
1872 int i;
1873
1874 if (!btf_equal_common(t1, t2))
1875 return false;
1876
1877 vlen = BTF_INFO_VLEN(t1->info);
1878 m1 = (struct btf_member *)(t1 + 1);
1879 m2 = (struct btf_member *)(t2 + 1);
1880 for (i = 0; i < vlen; i++) {
1881 if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1882 return false;
1883 m1++;
1884 m2++;
1885 }
1886 return true;
1887}
1888
1889/*
1890 * Calculate type signature hash of ARRAY, including referenced type IDs,
1891 * under assumption that they were already resolved to canonical type IDs and
1892 * are not going to change.
1893 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001894static long btf_hash_array(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001895{
1896 struct btf_array *info = (struct btf_array *)(t + 1);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001897 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001898
1899 h = hash_combine(h, info->type);
1900 h = hash_combine(h, info->index_type);
1901 h = hash_combine(h, info->nelems);
1902 return h;
1903}
1904
1905/*
1906 * Check exact equality of two ARRAYs, taking into account referenced
1907 * type IDs, under assumption that they were already resolved to canonical
1908 * type IDs and are not going to change.
1909 * This function is called during reference types deduplication to compare
1910 * ARRAY to potential canonical representative.
1911 */
1912static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1913{
1914 struct btf_array *info1, *info2;
1915
1916 if (!btf_equal_common(t1, t2))
1917 return false;
1918
1919 info1 = (struct btf_array *)(t1 + 1);
1920 info2 = (struct btf_array *)(t2 + 1);
1921 return info1->type == info2->type &&
1922 info1->index_type == info2->index_type &&
1923 info1->nelems == info2->nelems;
1924}
1925
1926/*
1927 * Check structural compatibility of two ARRAYs, ignoring referenced type
1928 * IDs. This check is performed during type graph equivalence check and
1929 * referenced types equivalence is checked separately.
1930 */
1931static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1932{
1933 struct btf_array *info1, *info2;
1934
1935 if (!btf_equal_common(t1, t2))
1936 return false;
1937
1938 info1 = (struct btf_array *)(t1 + 1);
1939 info2 = (struct btf_array *)(t2 + 1);
1940 return info1->nelems == info2->nelems;
1941}
1942
1943/*
1944 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1945 * under assumption that they were already resolved to canonical type IDs and
1946 * are not going to change.
1947 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001948static long btf_hash_fnproto(struct btf_type *t)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001949{
1950 struct btf_param *member = (struct btf_param *)(t + 1);
1951 __u16 vlen = BTF_INFO_VLEN(t->info);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001952 long h = btf_hash_common(t);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001953 int i;
1954
1955 for (i = 0; i < vlen; i++) {
1956 h = hash_combine(h, member->name_off);
1957 h = hash_combine(h, member->type);
1958 member++;
1959 }
1960 return h;
1961}
1962
1963/*
1964 * Check exact equality of two FUNC_PROTOs, taking into account referenced
1965 * type IDs, under assumption that they were already resolved to canonical
1966 * type IDs and are not going to change.
1967 * This function is called during reference types deduplication to compare
1968 * FUNC_PROTO to potential canonical representative.
1969 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001970static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001971{
1972 struct btf_param *m1, *m2;
1973 __u16 vlen;
1974 int i;
1975
1976 if (!btf_equal_common(t1, t2))
1977 return false;
1978
1979 vlen = BTF_INFO_VLEN(t1->info);
1980 m1 = (struct btf_param *)(t1 + 1);
1981 m2 = (struct btf_param *)(t2 + 1);
1982 for (i = 0; i < vlen; i++) {
1983 if (m1->name_off != m2->name_off || m1->type != m2->type)
1984 return false;
1985 m1++;
1986 m2++;
1987 }
1988 return true;
1989}
1990
1991/*
1992 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1993 * IDs. This check is performed during type graph equivalence check and
1994 * referenced types equivalence is checked separately.
1995 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07001996static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08001997{
1998 struct btf_param *m1, *m2;
1999 __u16 vlen;
2000 int i;
2001
2002 /* skip return type ID */
2003 if (t1->name_off != t2->name_off || t1->info != t2->info)
2004 return false;
2005
2006 vlen = BTF_INFO_VLEN(t1->info);
2007 m1 = (struct btf_param *)(t1 + 1);
2008 m2 = (struct btf_param *)(t2 + 1);
2009 for (i = 0; i < vlen; i++) {
2010 if (m1->name_off != m2->name_off)
2011 return false;
2012 m1++;
2013 m2++;
2014 }
2015 return true;
2016}
2017
2018/*
2019 * Deduplicate primitive types, that can't reference other types, by calculating
2020 * their type signature hash and comparing them with any possible canonical
2021 * candidate. If no canonical candidate matches, type itself is marked as
2022 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2023 */
2024static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2025{
2026 struct btf_type *t = d->btf->types[type_id];
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002027 struct hashmap_entry *hash_entry;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002028 struct btf_type *cand;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002029 /* if we don't find equivalent type, then we are canonical */
2030 __u32 new_id = type_id;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002031 __u32 cand_id;
2032 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002033
2034 switch (BTF_INFO_KIND(t->info)) {
2035 case BTF_KIND_CONST:
2036 case BTF_KIND_VOLATILE:
2037 case BTF_KIND_RESTRICT:
2038 case BTF_KIND_PTR:
2039 case BTF_KIND_TYPEDEF:
2040 case BTF_KIND_ARRAY:
2041 case BTF_KIND_STRUCT:
2042 case BTF_KIND_UNION:
2043 case BTF_KIND_FUNC:
2044 case BTF_KIND_FUNC_PROTO:
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002045 case BTF_KIND_VAR:
2046 case BTF_KIND_DATASEC:
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002047 return 0;
2048
2049 case BTF_KIND_INT:
2050 h = btf_hash_int(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002051 for_each_dedup_cand(d, hash_entry, h) {
2052 cand_id = (__u32)(long)hash_entry->value;
2053 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002054 if (btf_equal_int(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002055 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002056 break;
2057 }
2058 }
2059 break;
2060
2061 case BTF_KIND_ENUM:
2062 h = btf_hash_enum(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002063 for_each_dedup_cand(d, hash_entry, h) {
2064 cand_id = (__u32)(long)hash_entry->value;
2065 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002066 if (btf_equal_enum(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002067 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002068 break;
2069 }
Andrii Nakryiko97680952019-03-10 17:44:09 -07002070 if (d->opts.dont_resolve_fwds)
2071 continue;
2072 if (btf_compat_enum(t, cand)) {
2073 if (btf_is_enum_fwd(t)) {
2074 /* resolve fwd to full enum */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002075 new_id = cand_id;
Andrii Nakryiko97680952019-03-10 17:44:09 -07002076 break;
2077 }
2078 /* resolve canonical enum fwd to full enum */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002079 d->map[cand_id] = type_id;
Andrii Nakryiko97680952019-03-10 17:44:09 -07002080 }
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002081 }
2082 break;
2083
2084 case BTF_KIND_FWD:
2085 h = btf_hash_common(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002086 for_each_dedup_cand(d, hash_entry, h) {
2087 cand_id = (__u32)(long)hash_entry->value;
2088 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002089 if (btf_equal_common(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002090 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002091 break;
2092 }
2093 }
2094 break;
2095
2096 default:
2097 return -EINVAL;
2098 }
2099
2100 d->map[type_id] = new_id;
2101 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2102 return -ENOMEM;
2103
2104 return 0;
2105}
2106
2107static int btf_dedup_prim_types(struct btf_dedup *d)
2108{
2109 int i, err;
2110
2111 for (i = 1; i <= d->btf->nr_types; i++) {
2112 err = btf_dedup_prim_type(d, i);
2113 if (err)
2114 return err;
2115 }
2116 return 0;
2117}
2118
2119/*
2120 * Check whether type is already mapped into canonical one (could be to itself).
2121 */
2122static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2123{
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002124 return d->map[type_id] <= BTF_MAX_NR_TYPES;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002125}
2126
2127/*
2128 * Resolve type ID into its canonical type ID, if any; otherwise return original
2129 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2130 * STRUCT/UNION link and resolve it into canonical type ID as well.
2131 */
2132static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2133{
2134 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2135 type_id = d->map[type_id];
2136 return type_id;
2137}
2138
2139/*
2140 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2141 * type ID.
2142 */
2143static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2144{
2145 __u32 orig_type_id = type_id;
2146
2147 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2148 return type_id;
2149
2150 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2151 type_id = d->map[type_id];
2152
2153 if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2154 return type_id;
2155
2156 return orig_type_id;
2157}
2158
2159
2160static inline __u16 btf_fwd_kind(struct btf_type *t)
2161{
2162 return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2163}
2164
2165/*
2166 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2167 * call it "candidate graph" in this description for brevity) to a type graph
2168 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2169 * here, though keep in mind that not all types in canonical graph are
2170 * necessarily canonical representatives themselves, some of them might be
2171 * duplicates or its uniqueness might not have been established yet).
2172 * Returns:
2173 * - >0, if type graphs are equivalent;
2174 * - 0, if not equivalent;
2175 * - <0, on error.
2176 *
2177 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2178 * equivalence of BTF types at each step. If at any point BTF types in candidate
2179 * and canonical graphs are not compatible structurally, whole graphs are
2180 * incompatible. If types are structurally equivalent (i.e., all information
2181 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2182 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2183 * If a type references other types, then those referenced types are checked
2184 * for equivalence recursively.
2185 *
2186 * During DFS traversal, if we find that for current `canon_id` type we
2187 * already have some mapping in hypothetical map, we check for two possible
2188 * situations:
2189 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2190 * happen when type graphs have cycles. In this case we assume those two
2191 * types are equivalent.
2192 * - `canon_id` is mapped to different type. This is contradiction in our
2193 * hypothetical mapping, because same graph in canonical graph corresponds
2194 * to two different types in candidate graph, which for equivalent type
2195 * graphs shouldn't happen. This condition terminates equivalence check
2196 * with negative result.
2197 *
2198 * If type graphs traversal exhausts types to check and find no contradiction,
2199 * then type graphs are equivalent.
2200 *
2201 * When checking types for equivalence, there is one special case: FWD types.
2202 * If FWD type resolution is allowed and one of the types (either from canonical
2203 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2204 * flag) and their names match, hypothetical mapping is updated to point from
2205 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2206 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2207 *
2208 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2209 * if there are two exactly named (or anonymous) structs/unions that are
2210 * compatible structurally, one of which has FWD field, while other is concrete
2211 * STRUCT/UNION, but according to C sources they are different structs/unions
2212 * that are referencing different types with the same name. This is extremely
2213 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2214 * this logic is causing problems.
2215 *
2216 * Doing FWD resolution means that both candidate and/or canonical graphs can
2217 * consists of portions of the graph that come from multiple compilation units.
2218 * This is due to the fact that types within single compilation unit are always
2219 * deduplicated and FWDs are already resolved, if referenced struct/union
2220 * definiton is available. So, if we had unresolved FWD and found corresponding
2221 * STRUCT/UNION, they will be from different compilation units. This
2222 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2223 * type graph will likely have at least two different BTF types that describe
2224 * same type (e.g., most probably there will be two different BTF types for the
2225 * same 'int' primitive type) and could even have "overlapping" parts of type
2226 * graph that describe same subset of types.
2227 *
2228 * This in turn means that our assumption that each type in canonical graph
2229 * must correspond to exactly one type in candidate graph might not hold
2230 * anymore and will make it harder to detect contradictions using hypothetical
2231 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2232 * resolution only in canonical graph. FWDs in candidate graphs are never
2233 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2234 * that can occur:
2235 * - Both types in canonical and candidate graphs are FWDs. If they are
2236 * structurally equivalent, then they can either be both resolved to the
2237 * same STRUCT/UNION or not resolved at all. In both cases they are
2238 * equivalent and there is no need to resolve FWD on candidate side.
2239 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2240 * so nothing to resolve as well, algorithm will check equivalence anyway.
2241 * - Type in canonical graph is FWD, while type in candidate is concrete
2242 * STRUCT/UNION. In this case candidate graph comes from single compilation
2243 * unit, so there is exactly one BTF type for each unique C type. After
2244 * resolving FWD into STRUCT/UNION, there might be more than one BTF type
2245 * in canonical graph mapping to single BTF type in candidate graph, but
2246 * because hypothetical mapping maps from canonical to candidate types, it's
2247 * alright, and we still maintain the property of having single `canon_id`
2248 * mapping to single `cand_id` (there could be two different `canon_id`
2249 * mapped to the same `cand_id`, but it's not contradictory).
2250 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2251 * graph is FWD. In this case we are just going to check compatibility of
2252 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2253 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2254 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2255 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2256 * canonical graph.
2257 */
2258static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2259 __u32 canon_id)
2260{
2261 struct btf_type *cand_type;
2262 struct btf_type *canon_type;
2263 __u32 hypot_type_id;
2264 __u16 cand_kind;
2265 __u16 canon_kind;
2266 int i, eq;
2267
2268 /* if both resolve to the same canonical, they must be equivalent */
2269 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2270 return 1;
2271
2272 canon_id = resolve_fwd_id(d, canon_id);
2273
2274 hypot_type_id = d->hypot_map[canon_id];
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002275 if (hypot_type_id <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002276 return hypot_type_id == cand_id;
2277
2278 if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2279 return -ENOMEM;
2280
2281 cand_type = d->btf->types[cand_id];
2282 canon_type = d->btf->types[canon_id];
2283 cand_kind = BTF_INFO_KIND(cand_type->info);
2284 canon_kind = BTF_INFO_KIND(canon_type->info);
2285
2286 if (cand_type->name_off != canon_type->name_off)
2287 return 0;
2288
2289 /* FWD <--> STRUCT/UNION equivalence check, if enabled */
2290 if (!d->opts.dont_resolve_fwds
2291 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2292 && cand_kind != canon_kind) {
2293 __u16 real_kind;
2294 __u16 fwd_kind;
2295
2296 if (cand_kind == BTF_KIND_FWD) {
2297 real_kind = canon_kind;
2298 fwd_kind = btf_fwd_kind(cand_type);
2299 } else {
2300 real_kind = cand_kind;
2301 fwd_kind = btf_fwd_kind(canon_type);
2302 }
2303 return fwd_kind == real_kind;
2304 }
2305
Andrii Nakryiko9ec71c12019-03-26 22:00:06 -07002306 if (cand_kind != canon_kind)
2307 return 0;
2308
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002309 switch (cand_kind) {
2310 case BTF_KIND_INT:
2311 return btf_equal_int(cand_type, canon_type);
2312
2313 case BTF_KIND_ENUM:
Andrii Nakryiko97680952019-03-10 17:44:09 -07002314 if (d->opts.dont_resolve_fwds)
2315 return btf_equal_enum(cand_type, canon_type);
2316 else
2317 return btf_compat_enum(cand_type, canon_type);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002318
2319 case BTF_KIND_FWD:
2320 return btf_equal_common(cand_type, canon_type);
2321
2322 case BTF_KIND_CONST:
2323 case BTF_KIND_VOLATILE:
2324 case BTF_KIND_RESTRICT:
2325 case BTF_KIND_PTR:
2326 case BTF_KIND_TYPEDEF:
2327 case BTF_KIND_FUNC:
Andrii Nakryiko97680952019-03-10 17:44:09 -07002328 if (cand_type->info != canon_type->info)
2329 return 0;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002330 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2331
2332 case BTF_KIND_ARRAY: {
2333 struct btf_array *cand_arr, *canon_arr;
2334
2335 if (!btf_compat_array(cand_type, canon_type))
2336 return 0;
2337 cand_arr = (struct btf_array *)(cand_type + 1);
2338 canon_arr = (struct btf_array *)(canon_type + 1);
2339 eq = btf_dedup_is_equiv(d,
2340 cand_arr->index_type, canon_arr->index_type);
2341 if (eq <= 0)
2342 return eq;
2343 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2344 }
2345
2346 case BTF_KIND_STRUCT:
2347 case BTF_KIND_UNION: {
2348 struct btf_member *cand_m, *canon_m;
2349 __u16 vlen;
2350
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002351 if (!btf_shallow_equal_struct(cand_type, canon_type))
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002352 return 0;
2353 vlen = BTF_INFO_VLEN(cand_type->info);
2354 cand_m = (struct btf_member *)(cand_type + 1);
2355 canon_m = (struct btf_member *)(canon_type + 1);
2356 for (i = 0; i < vlen; i++) {
2357 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2358 if (eq <= 0)
2359 return eq;
2360 cand_m++;
2361 canon_m++;
2362 }
2363
2364 return 1;
2365 }
2366
2367 case BTF_KIND_FUNC_PROTO: {
2368 struct btf_param *cand_p, *canon_p;
2369 __u16 vlen;
2370
2371 if (!btf_compat_fnproto(cand_type, canon_type))
2372 return 0;
2373 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2374 if (eq <= 0)
2375 return eq;
2376 vlen = BTF_INFO_VLEN(cand_type->info);
2377 cand_p = (struct btf_param *)(cand_type + 1);
2378 canon_p = (struct btf_param *)(canon_type + 1);
2379 for (i = 0; i < vlen; i++) {
2380 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2381 if (eq <= 0)
2382 return eq;
2383 cand_p++;
2384 canon_p++;
2385 }
2386 return 1;
2387 }
2388
2389 default:
2390 return -EINVAL;
2391 }
2392 return 0;
2393}
2394
2395/*
2396 * Use hypothetical mapping, produced by successful type graph equivalence
2397 * check, to augment existing struct/union canonical mapping, where possible.
2398 *
2399 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2400 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2401 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2402 * we are recording the mapping anyway. As opposed to carefulness required
2403 * for struct/union correspondence mapping (described below), for FWD resolution
2404 * it's not important, as by the time that FWD type (reference type) will be
2405 * deduplicated all structs/unions will be deduped already anyway.
2406 *
2407 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2408 * not required for correctness. It needs to be done carefully to ensure that
2409 * struct/union from candidate's type graph is not mapped into corresponding
2410 * struct/union from canonical type graph that itself hasn't been resolved into
2411 * canonical representative. The only guarantee we have is that canonical
2412 * struct/union was determined as canonical and that won't change. But any
2413 * types referenced through that struct/union fields could have been not yet
2414 * resolved, so in case like that it's too early to establish any kind of
2415 * correspondence between structs/unions.
2416 *
2417 * No canonical correspondence is derived for primitive types (they are already
2418 * deduplicated completely already anyway) or reference types (they rely on
2419 * stability of struct/union canonical relationship for equivalence checks).
2420 */
2421static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2422{
2423 __u32 cand_type_id, targ_type_id;
2424 __u16 t_kind, c_kind;
2425 __u32 t_id, c_id;
2426 int i;
2427
2428 for (i = 0; i < d->hypot_cnt; i++) {
2429 cand_type_id = d->hypot_list[i];
2430 targ_type_id = d->hypot_map[cand_type_id];
2431 t_id = resolve_type_id(d, targ_type_id);
2432 c_id = resolve_type_id(d, cand_type_id);
2433 t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info);
2434 c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info);
2435 /*
2436 * Resolve FWD into STRUCT/UNION.
2437 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2438 * mapped to canonical representative (as opposed to
2439 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2440 * eventually that struct is going to be mapped and all resolved
2441 * FWDs will automatically resolve to correct canonical
2442 * representative. This will happen before ref type deduping,
2443 * which critically depends on stability of these mapping. This
2444 * stability is not a requirement for STRUCT/UNION equivalence
2445 * checks, though.
2446 */
2447 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2448 d->map[c_id] = t_id;
2449 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2450 d->map[t_id] = c_id;
2451
2452 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2453 c_kind != BTF_KIND_FWD &&
2454 is_type_mapped(d, c_id) &&
2455 !is_type_mapped(d, t_id)) {
2456 /*
2457 * as a perf optimization, we can map struct/union
2458 * that's part of type graph we just verified for
2459 * equivalence. We can do that for struct/union that has
2460 * canonical representative only, though.
2461 */
2462 d->map[t_id] = c_id;
2463 }
2464 }
2465}
2466
2467/*
2468 * Deduplicate struct/union types.
2469 *
2470 * For each struct/union type its type signature hash is calculated, taking
2471 * into account type's name, size, number, order and names of fields, but
2472 * ignoring type ID's referenced from fields, because they might not be deduped
2473 * completely until after reference types deduplication phase. This type hash
2474 * is used to iterate over all potential canonical types, sharing same hash.
2475 * For each canonical candidate we check whether type graphs that they form
2476 * (through referenced types in fields and so on) are equivalent using algorithm
2477 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2478 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2479 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2480 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2481 * potentially map other structs/unions to their canonical representatives,
2482 * if such relationship hasn't yet been established. This speeds up algorithm
2483 * by eliminating some of the duplicate work.
2484 *
2485 * If no matching canonical representative was found, struct/union is marked
2486 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2487 * for further look ups.
2488 */
2489static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2490{
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002491 struct btf_type *cand_type, *t;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002492 struct hashmap_entry *hash_entry;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002493 /* if we don't find equivalent type, then we are canonical */
2494 __u32 new_id = type_id;
2495 __u16 kind;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002496 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002497
2498 /* already deduped or is in process of deduping (loop detected) */
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002499 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002500 return 0;
2501
2502 t = d->btf->types[type_id];
2503 kind = BTF_INFO_KIND(t->info);
2504
2505 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2506 return 0;
2507
2508 h = btf_hash_struct(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002509 for_each_dedup_cand(d, hash_entry, h) {
2510 __u32 cand_id = (__u32)(long)hash_entry->value;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002511 int eq;
2512
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002513 /*
2514 * Even though btf_dedup_is_equiv() checks for
2515 * btf_shallow_equal_struct() internally when checking two
2516 * structs (unions) for equivalence, we need to guard here
2517 * from picking matching FWD type as a dedup candidate.
2518 * This can happen due to hash collision. In such case just
2519 * relying on btf_dedup_is_equiv() would lead to potentially
2520 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2521 * FWD and compatible STRUCT/UNION are considered equivalent.
2522 */
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002523 cand_type = d->btf->types[cand_id];
Andrii Nakryiko91097fb2019-02-28 15:31:24 -08002524 if (!btf_shallow_equal_struct(t, cand_type))
2525 continue;
2526
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002527 btf_dedup_clear_hypot_map(d);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002528 eq = btf_dedup_is_equiv(d, type_id, cand_id);
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002529 if (eq < 0)
2530 return eq;
2531 if (!eq)
2532 continue;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002533 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002534 btf_dedup_merge_hypot_map(d);
2535 break;
2536 }
2537
2538 d->map[type_id] = new_id;
2539 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2540 return -ENOMEM;
2541
2542 return 0;
2543}
2544
2545static int btf_dedup_struct_types(struct btf_dedup *d)
2546{
2547 int i, err;
2548
2549 for (i = 1; i <= d->btf->nr_types; i++) {
2550 err = btf_dedup_struct_type(d, i);
2551 if (err)
2552 return err;
2553 }
2554 return 0;
2555}
2556
2557/*
2558 * Deduplicate reference type.
2559 *
2560 * Once all primitive and struct/union types got deduplicated, we can easily
2561 * deduplicate all other (reference) BTF types. This is done in two steps:
2562 *
2563 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2564 * resolution can be done either immediately for primitive or struct/union types
2565 * (because they were deduped in previous two phases) or recursively for
2566 * reference types. Recursion will always terminate at either primitive or
2567 * struct/union type, at which point we can "unwind" chain of reference types
2568 * one by one. There is no danger of encountering cycles because in C type
2569 * system the only way to form type cycle is through struct/union, so any chain
2570 * of reference types, even those taking part in a type cycle, will inevitably
2571 * reach struct/union at some point.
2572 *
2573 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2574 * becomes "stable", in the sense that no further deduplication will cause
2575 * any changes to it. With that, it's now possible to calculate type's signature
2576 * hash (this time taking into account referenced type IDs) and loop over all
2577 * potential canonical representatives. If no match was found, current type
2578 * will become canonical representative of itself and will be added into
2579 * btf_dedup->dedup_table as another possible canonical representative.
2580 */
2581static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2582{
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002583 struct hashmap_entry *hash_entry;
2584 __u32 new_id = type_id, cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002585 struct btf_type *t, *cand;
2586 /* if we don't find equivalent type, then we are representative type */
Dan Carpenter3d8669e2019-02-28 21:06:47 +03002587 int ref_type_id;
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002588 long h;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002589
2590 if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2591 return -ELOOP;
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002592 if (d->map[type_id] <= BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002593 return resolve_type_id(d, type_id);
2594
2595 t = d->btf->types[type_id];
2596 d->map[type_id] = BTF_IN_PROGRESS_ID;
2597
2598 switch (BTF_INFO_KIND(t->info)) {
2599 case BTF_KIND_CONST:
2600 case BTF_KIND_VOLATILE:
2601 case BTF_KIND_RESTRICT:
2602 case BTF_KIND_PTR:
2603 case BTF_KIND_TYPEDEF:
2604 case BTF_KIND_FUNC:
2605 ref_type_id = btf_dedup_ref_type(d, t->type);
2606 if (ref_type_id < 0)
2607 return ref_type_id;
2608 t->type = ref_type_id;
2609
2610 h = btf_hash_common(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002611 for_each_dedup_cand(d, hash_entry, h) {
2612 cand_id = (__u32)(long)hash_entry->value;
2613 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002614 if (btf_equal_common(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002615 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002616 break;
2617 }
2618 }
2619 break;
2620
2621 case BTF_KIND_ARRAY: {
2622 struct btf_array *info = (struct btf_array *)(t + 1);
2623
2624 ref_type_id = btf_dedup_ref_type(d, info->type);
2625 if (ref_type_id < 0)
2626 return ref_type_id;
2627 info->type = ref_type_id;
2628
2629 ref_type_id = btf_dedup_ref_type(d, info->index_type);
2630 if (ref_type_id < 0)
2631 return ref_type_id;
2632 info->index_type = ref_type_id;
2633
2634 h = btf_hash_array(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002635 for_each_dedup_cand(d, hash_entry, h) {
2636 cand_id = (__u32)(long)hash_entry->value;
2637 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002638 if (btf_equal_array(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002639 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002640 break;
2641 }
2642 }
2643 break;
2644 }
2645
2646 case BTF_KIND_FUNC_PROTO: {
2647 struct btf_param *param;
2648 __u16 vlen;
2649 int i;
2650
2651 ref_type_id = btf_dedup_ref_type(d, t->type);
2652 if (ref_type_id < 0)
2653 return ref_type_id;
2654 t->type = ref_type_id;
2655
2656 vlen = BTF_INFO_VLEN(t->info);
2657 param = (struct btf_param *)(t + 1);
2658 for (i = 0; i < vlen; i++) {
2659 ref_type_id = btf_dedup_ref_type(d, param->type);
2660 if (ref_type_id < 0)
2661 return ref_type_id;
2662 param->type = ref_type_id;
2663 param++;
2664 }
2665
2666 h = btf_hash_fnproto(t);
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002667 for_each_dedup_cand(d, hash_entry, h) {
2668 cand_id = (__u32)(long)hash_entry->value;
2669 cand = d->btf->types[cand_id];
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002670 if (btf_equal_fnproto(t, cand)) {
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002671 new_id = cand_id;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002672 break;
2673 }
2674 }
2675 break;
2676 }
2677
2678 default:
2679 return -EINVAL;
2680 }
2681
2682 d->map[type_id] = new_id;
2683 if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2684 return -ENOMEM;
2685
2686 return new_id;
2687}
2688
2689static int btf_dedup_ref_types(struct btf_dedup *d)
2690{
2691 int i, err;
2692
2693 for (i = 1; i <= d->btf->nr_types; i++) {
2694 err = btf_dedup_ref_type(d, i);
2695 if (err < 0)
2696 return err;
2697 }
Andrii Nakryiko2fc3fc02019-05-24 11:59:02 -07002698 /* we won't need d->dedup_table anymore */
2699 hashmap__free(d->dedup_table);
2700 d->dedup_table = NULL;
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002701 return 0;
2702}
2703
2704/*
2705 * Compact types.
2706 *
2707 * After we established for each type its corresponding canonical representative
2708 * type, we now can eliminate types that are not canonical and leave only
2709 * canonical ones layed out sequentially in memory by copying them over
2710 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2711 * a map from original type ID to a new compacted type ID, which will be used
2712 * during next phase to "fix up" type IDs, referenced from struct/union and
2713 * reference types.
2714 */
2715static int btf_dedup_compact_types(struct btf_dedup *d)
2716{
2717 struct btf_type **new_types;
2718 __u32 next_type_id = 1;
2719 char *types_start, *p;
2720 int i, len;
2721
2722 /* we are going to reuse hypot_map to store compaction remapping */
2723 d->hypot_map[0] = 0;
2724 for (i = 1; i <= d->btf->nr_types; i++)
2725 d->hypot_map[i] = BTF_UNPROCESSED_ID;
2726
2727 types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2728 p = types_start;
2729
2730 for (i = 1; i <= d->btf->nr_types; i++) {
2731 if (d->map[i] != i)
2732 continue;
2733
2734 len = btf_type_size(d->btf->types[i]);
2735 if (len < 0)
2736 return len;
2737
2738 memmove(p, d->btf->types[i], len);
2739 d->hypot_map[i] = next_type_id;
2740 d->btf->types[next_type_id] = (struct btf_type *)p;
2741 p += len;
2742 next_type_id++;
2743 }
2744
2745 /* shrink struct btf's internal types index and update btf_header */
2746 d->btf->nr_types = next_type_id - 1;
2747 d->btf->types_size = d->btf->nr_types;
2748 d->btf->hdr->type_len = p - types_start;
2749 new_types = realloc(d->btf->types,
2750 (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2751 if (!new_types)
2752 return -ENOMEM;
2753 d->btf->types = new_types;
2754
2755 /* make sure string section follows type information without gaps */
2756 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2757 memmove(p, d->btf->strings, d->btf->hdr->str_len);
2758 d->btf->strings = p;
2759 p += d->btf->hdr->str_len;
2760
2761 d->btf->data_size = p - (char *)d->btf->data;
2762 return 0;
2763}
2764
2765/*
2766 * Figure out final (deduplicated and compacted) type ID for provided original
2767 * `type_id` by first resolving it into corresponding canonical type ID and
2768 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2769 * which is populated during compaction phase.
2770 */
2771static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2772{
2773 __u32 resolved_type_id, new_type_id;
2774
2775 resolved_type_id = resolve_type_id(d, type_id);
2776 new_type_id = d->hypot_map[resolved_type_id];
Andrii Nakryiko5aab3922019-02-15 19:52:18 -08002777 if (new_type_id > BTF_MAX_NR_TYPES)
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002778 return -EINVAL;
2779 return new_type_id;
2780}
2781
2782/*
2783 * Remap referenced type IDs into deduped type IDs.
2784 *
2785 * After BTF types are deduplicated and compacted, their final type IDs may
2786 * differ from original ones. The map from original to a corresponding
2787 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2788 * compaction phase. During remapping phase we are rewriting all type IDs
2789 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2790 * their final deduped type IDs.
2791 */
2792static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2793{
2794 struct btf_type *t = d->btf->types[type_id];
2795 int i, r;
2796
2797 switch (BTF_INFO_KIND(t->info)) {
2798 case BTF_KIND_INT:
2799 case BTF_KIND_ENUM:
2800 break;
2801
2802 case BTF_KIND_FWD:
2803 case BTF_KIND_CONST:
2804 case BTF_KIND_VOLATILE:
2805 case BTF_KIND_RESTRICT:
2806 case BTF_KIND_PTR:
2807 case BTF_KIND_TYPEDEF:
2808 case BTF_KIND_FUNC:
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002809 case BTF_KIND_VAR:
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002810 r = btf_dedup_remap_type_id(d, t->type);
2811 if (r < 0)
2812 return r;
2813 t->type = r;
2814 break;
2815
2816 case BTF_KIND_ARRAY: {
2817 struct btf_array *arr_info = (struct btf_array *)(t + 1);
2818
2819 r = btf_dedup_remap_type_id(d, arr_info->type);
2820 if (r < 0)
2821 return r;
2822 arr_info->type = r;
2823 r = btf_dedup_remap_type_id(d, arr_info->index_type);
2824 if (r < 0)
2825 return r;
2826 arr_info->index_type = r;
2827 break;
2828 }
2829
2830 case BTF_KIND_STRUCT:
2831 case BTF_KIND_UNION: {
2832 struct btf_member *member = (struct btf_member *)(t + 1);
2833 __u16 vlen = BTF_INFO_VLEN(t->info);
2834
2835 for (i = 0; i < vlen; i++) {
2836 r = btf_dedup_remap_type_id(d, member->type);
2837 if (r < 0)
2838 return r;
2839 member->type = r;
2840 member++;
2841 }
2842 break;
2843 }
2844
2845 case BTF_KIND_FUNC_PROTO: {
2846 struct btf_param *param = (struct btf_param *)(t + 1);
2847 __u16 vlen = BTF_INFO_VLEN(t->info);
2848
2849 r = btf_dedup_remap_type_id(d, t->type);
2850 if (r < 0)
2851 return r;
2852 t->type = r;
2853
2854 for (i = 0; i < vlen; i++) {
2855 r = btf_dedup_remap_type_id(d, param->type);
2856 if (r < 0)
2857 return r;
2858 param->type = r;
2859 param++;
2860 }
2861 break;
2862 }
2863
Andrii Nakryiko189cf5a2019-04-15 16:48:07 -07002864 case BTF_KIND_DATASEC: {
2865 struct btf_var_secinfo *var = (struct btf_var_secinfo *)(t + 1);
2866 __u16 vlen = BTF_INFO_VLEN(t->info);
2867
2868 for (i = 0; i < vlen; i++) {
2869 r = btf_dedup_remap_type_id(d, var->type);
2870 if (r < 0)
2871 return r;
2872 var->type = r;
2873 var++;
2874 }
2875 break;
2876 }
2877
Andrii Nakryikod5caef52019-02-04 17:29:45 -08002878 default:
2879 return -EINVAL;
2880 }
2881
2882 return 0;
2883}
2884
2885static int btf_dedup_remap_types(struct btf_dedup *d)
2886{
2887 int i, r;
2888
2889 for (i = 1; i <= d->btf->nr_types; i++) {
2890 r = btf_dedup_remap_type(d, i);
2891 if (r < 0)
2892 return r;
2893 }
2894 return 0;
2895}