blob: 3e984afc199c9f2d86bc95ee596d7c4ca253dc62 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800392
Andrew Mortona737b3e2006-03-22 00:08:11 -0800393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800396/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800398 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800401 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Andrew Mortona737b3e2006-03-22 00:08:11 -0800403 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800404 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800405 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800407 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
412 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800415/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800416 const char *name;
417 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800419/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700430 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#endif
436#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445#endif
Eric Dumazet8da34302007-05-06 14:49:29 -0700446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100467 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700502#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700506#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800508#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517/*
518 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800532 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533}
534
Pekka Enberg343e0d72006-02-01 03:05:50 -0800535static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800537 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538}
539
Pekka Enberg343e0d72006-02-01 03:05:50 -0800540static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800543 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544}
545
Pekka Enberg343e0d72006-02-01 03:05:50 -0800546static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547{
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800550 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800551 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800552 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553}
554
Pekka Enberg343e0d72006-02-01 03:05:50 -0800555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559}
560
561#else
562
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
Andrew Mortona737b3e2006-03-22 00:08:11 -0800593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
Christoph Lameterd85f3382007-05-06 14:49:39 -0700605 page = compound_head(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700606 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
Pekka Enbergddc2e812006-06-23 02:03:40 -0700617 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800618 return (struct slab *)page->lru.prev;
619}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800621static inline struct kmem_cache *virt_to_cache(const void *obj)
622{
Christoph Lameterb49af682007-05-06 14:49:41 -0700623 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800624 return page_get_cache(page);
625}
626
627static inline struct slab *virt_to_slab(const void *obj)
628{
Christoph Lameterb49af682007-05-06 14:49:41 -0700629 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800630 return page_get_slab(page);
631}
632
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800633static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
635{
636 return slab->s_mem + cache->buffer_size * idx;
637}
638
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800639/*
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 */
645static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800647{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800650}
651
Andrew Mortona737b3e2006-03-22 00:08:11 -0800652/*
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655struct cache_sizes malloc_sizes[] = {
656#define CACHE(x) { .cs_size = (x) },
657#include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659#undef CACHE
660};
661EXPORT_SYMBOL(malloc_sizes);
662
663/* Must match cache_sizes above. Out of line to keep cache footprint low. */
664struct cache_names {
665 char *name;
666 char *name_dma;
667};
668
669static struct cache_names __initdata cache_names[] = {
670#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800672 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673#undef CACHE
674};
675
676static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680
681/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800682static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800686 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800687 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688};
689
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700690#define BAD_ALIEN_MAGIC 0x01020304ul
691
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200692#ifdef CONFIG_LOCKDEP
693
694/*
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700700 *
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200704 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700705static struct lock_class_key on_slab_l3_key;
706static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200707
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700708static inline void init_lock_keys(void)
709
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200710{
711 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700712 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200713
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
723 /*
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
729 */
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
736 }
737 }
738 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200739 }
740}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200741#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700742static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200743{
744}
745#endif
746
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800747/*
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800751static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752static struct list_head cache_chain;
753
754/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700760 PARTIAL_AC,
761 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700762 FULL
763} g_cpucache_up;
764
Mike Kravetz39d24e62006-05-15 09:44:13 -0700765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
David Howells52bad642006-11-22 14:54:01 +0000773static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774
Pekka Enberg343e0d72006-02-01 03:05:50 -0800775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776{
777 return cachep->array[smp_processor_id()];
778}
779
Andrew Mortona737b3e2006-03-22 00:08:11 -0800780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791#endif
792 while (size > csizep->cs_size)
793 csizep++;
794
795 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700796 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 * has cs_{dma,}cachep==NULL. Thus no special case
798 * for large kmalloc calls required.
799 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800800#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801 if (unlikely(gfpflags & GFP_DMA))
802 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800803#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804 return csizep->cs_cachep;
805}
806
Adrian Bunkb2213852006-09-25 23:31:02 -0700807static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700808{
809 return __find_general_cachep(size, gfpflags);
810}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700811
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800812static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800814 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
815}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816
Andrew Mortona737b3e2006-03-22 00:08:11 -0800817/*
818 * Calculate the number of objects and left-over bytes for a given buffer size.
819 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800820static void cache_estimate(unsigned long gfporder, size_t buffer_size,
821 size_t align, int flags, size_t *left_over,
822 unsigned int *num)
823{
824 int nr_objs;
825 size_t mgmt_size;
826 size_t slab_size = PAGE_SIZE << gfporder;
827
828 /*
829 * The slab management structure can be either off the slab or
830 * on it. For the latter case, the memory allocated for a
831 * slab is used for:
832 *
833 * - The struct slab
834 * - One kmem_bufctl_t for each object
835 * - Padding to respect alignment of @align
836 * - @buffer_size bytes for each object
837 *
838 * If the slab management structure is off the slab, then the
839 * alignment will already be calculated into the size. Because
840 * the slabs are all pages aligned, the objects will be at the
841 * correct alignment when allocated.
842 */
843 if (flags & CFLGS_OFF_SLAB) {
844 mgmt_size = 0;
845 nr_objs = slab_size / buffer_size;
846
847 if (nr_objs > SLAB_LIMIT)
848 nr_objs = SLAB_LIMIT;
849 } else {
850 /*
851 * Ignore padding for the initial guess. The padding
852 * is at most @align-1 bytes, and @buffer_size is at
853 * least @align. In the worst case, this result will
854 * be one greater than the number of objects that fit
855 * into the memory allocation when taking the padding
856 * into account.
857 */
858 nr_objs = (slab_size - sizeof(struct slab)) /
859 (buffer_size + sizeof(kmem_bufctl_t));
860
861 /*
862 * This calculated number will be either the right
863 * amount, or one greater than what we want.
864 */
865 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
866 > slab_size)
867 nr_objs--;
868
869 if (nr_objs > SLAB_LIMIT)
870 nr_objs = SLAB_LIMIT;
871
872 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800874 *num = nr_objs;
875 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876}
877
878#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
879
Andrew Mortona737b3e2006-03-22 00:08:11 -0800880static void __slab_error(const char *function, struct kmem_cache *cachep,
881 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882{
883 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800884 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 dump_stack();
886}
887
Paul Menage3395ee02006-12-06 20:32:16 -0800888/*
889 * By default on NUMA we use alien caches to stage the freeing of
890 * objects allocated from other nodes. This causes massive memory
891 * inefficiencies when using fake NUMA setup to split memory into a
892 * large number of small nodes, so it can be disabled on the command
893 * line
894 */
895
896static int use_alien_caches __read_mostly = 1;
897static int __init noaliencache_setup(char *s)
898{
899 use_alien_caches = 0;
900 return 1;
901}
902__setup("noaliencache", noaliencache_setup);
903
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800904#ifdef CONFIG_NUMA
905/*
906 * Special reaping functions for NUMA systems called from cache_reap().
907 * These take care of doing round robin flushing of alien caches (containing
908 * objects freed on different nodes from which they were allocated) and the
909 * flushing of remote pcps by calling drain_node_pages.
910 */
911static DEFINE_PER_CPU(unsigned long, reap_node);
912
913static void init_reap_node(int cpu)
914{
915 int node;
916
917 node = next_node(cpu_to_node(cpu), node_online_map);
918 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800919 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800920
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800921 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800922}
923
924static void next_reap_node(void)
925{
926 int node = __get_cpu_var(reap_node);
927
928 /*
929 * Also drain per cpu pages on remote zones
930 */
931 if (node != numa_node_id())
932 drain_node_pages(node);
933
934 node = next_node(node, node_online_map);
935 if (unlikely(node >= MAX_NUMNODES))
936 node = first_node(node_online_map);
937 __get_cpu_var(reap_node) = node;
938}
939
940#else
941#define init_reap_node(cpu) do { } while (0)
942#define next_reap_node(void) do { } while (0)
943#endif
944
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945/*
946 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
947 * via the workqueue/eventd.
948 * Add the CPU number into the expiration time to minimize the possibility of
949 * the CPUs getting into lockstep and contending for the global cache chain
950 * lock.
951 */
952static void __devinit start_cpu_timer(int cpu)
953{
David Howells52bad642006-11-22 14:54:01 +0000954 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955
956 /*
957 * When this gets called from do_initcalls via cpucache_init(),
958 * init_workqueues() has already run, so keventd will be setup
959 * at that time.
960 */
David Howells52bad642006-11-22 14:54:01 +0000961 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800962 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000963 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800964 schedule_delayed_work_on(cpu, reap_work,
965 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700966 }
967}
968
Christoph Lametere498be72005-09-09 13:03:32 -0700969static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800970 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800972 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973 struct array_cache *nc = NULL;
974
Christoph Lametere498be72005-09-09 13:03:32 -0700975 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 if (nc) {
977 nc->avail = 0;
978 nc->limit = entries;
979 nc->batchcount = batchcount;
980 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700981 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700982 }
983 return nc;
984}
985
Christoph Lameter3ded1752006-03-25 03:06:44 -0800986/*
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
989 *
990 * Return the number of entries transferred.
991 */
992static int transfer_objects(struct array_cache *to,
993 struct array_cache *from, unsigned int max)
994{
995 /* Figure out how many entries to transfer */
996 int nr = min(min(from->avail, max), to->limit - to->avail);
997
998 if (!nr)
999 return 0;
1000
1001 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1002 sizeof(void *) *nr);
1003
1004 from->avail -= nr;
1005 to->avail += nr;
1006 to->touched = 1;
1007 return nr;
1008}
1009
Christoph Lameter765c4502006-09-27 01:50:08 -07001010#ifndef CONFIG_NUMA
1011
1012#define drain_alien_cache(cachep, alien) do { } while (0)
1013#define reap_alien(cachep, l3) do { } while (0)
1014
1015static inline struct array_cache **alloc_alien_cache(int node, int limit)
1016{
1017 return (struct array_cache **)BAD_ALIEN_MAGIC;
1018}
1019
1020static inline void free_alien_cache(struct array_cache **ac_ptr)
1021{
1022}
1023
1024static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1025{
1026 return 0;
1027}
1028
1029static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1030 gfp_t flags)
1031{
1032 return NULL;
1033}
1034
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001035static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001036 gfp_t flags, int nodeid)
1037{
1038 return NULL;
1039}
1040
1041#else /* CONFIG_NUMA */
1042
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001043static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001044static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001045
Pekka Enberg5295a742006-02-01 03:05:48 -08001046static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001047{
1048 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001049 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001050 int i;
1051
1052 if (limit > 1)
1053 limit = 12;
1054 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1055 if (ac_ptr) {
1056 for_each_node(i) {
1057 if (i == node || !node_online(i)) {
1058 ac_ptr[i] = NULL;
1059 continue;
1060 }
1061 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1062 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001063 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001064 kfree(ac_ptr[i]);
1065 kfree(ac_ptr);
1066 return NULL;
1067 }
1068 }
1069 }
1070 return ac_ptr;
1071}
1072
Pekka Enberg5295a742006-02-01 03:05:48 -08001073static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001074{
1075 int i;
1076
1077 if (!ac_ptr)
1078 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001079 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001080 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001081 kfree(ac_ptr);
1082}
1083
Pekka Enberg343e0d72006-02-01 03:05:50 -08001084static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001085 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001086{
1087 struct kmem_list3 *rl3 = cachep->nodelists[node];
1088
1089 if (ac->avail) {
1090 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001091 /*
1092 * Stuff objects into the remote nodes shared array first.
1093 * That way we could avoid the overhead of putting the objects
1094 * into the free lists and getting them back later.
1095 */
shin, jacob693f7d32006-04-28 10:54:37 -05001096 if (rl3->shared)
1097 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001098
Christoph Lameterff694162005-09-22 21:44:02 -07001099 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001100 ac->avail = 0;
1101 spin_unlock(&rl3->list_lock);
1102 }
1103}
1104
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001105/*
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1107 */
1108static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1109{
1110 int node = __get_cpu_var(reap_node);
1111
1112 if (l3->alien) {
1113 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001114
1115 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001116 __drain_alien_cache(cachep, ac, node);
1117 spin_unlock_irq(&ac->lock);
1118 }
1119 }
1120}
1121
Andrew Mortona737b3e2006-03-22 00:08:11 -08001122static void drain_alien_cache(struct kmem_cache *cachep,
1123 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001124{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001125 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001126 struct array_cache *ac;
1127 unsigned long flags;
1128
1129 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001130 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001131 if (ac) {
1132 spin_lock_irqsave(&ac->lock, flags);
1133 __drain_alien_cache(cachep, ac, i);
1134 spin_unlock_irqrestore(&ac->lock, flags);
1135 }
1136 }
1137}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001138
Ingo Molnar873623d2006-07-13 14:44:38 +02001139static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001140{
1141 struct slab *slabp = virt_to_slab(objp);
1142 int nodeid = slabp->nodeid;
1143 struct kmem_list3 *l3;
1144 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001145 int node;
1146
1147 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001148
1149 /*
1150 * Make sure we are not freeing a object from another node to the array
1151 * cache on this cpu.
1152 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001153 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001154 return 0;
1155
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001156 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001157 STATS_INC_NODEFREES(cachep);
1158 if (l3->alien && l3->alien[nodeid]) {
1159 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001160 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001161 if (unlikely(alien->avail == alien->limit)) {
1162 STATS_INC_ACOVERFLOW(cachep);
1163 __drain_alien_cache(cachep, alien, nodeid);
1164 }
1165 alien->entry[alien->avail++] = objp;
1166 spin_unlock(&alien->lock);
1167 } else {
1168 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1169 free_block(cachep, &objp, 1, nodeid);
1170 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1171 }
1172 return 1;
1173}
Christoph Lametere498be72005-09-09 13:03:32 -07001174#endif
1175
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001176static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001177 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178{
1179 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001180 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001181 struct kmem_list3 *l3 = NULL;
1182 int node = cpu_to_node(cpu);
1183 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184
1185 switch (action) {
1186 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001187 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001188 /*
1189 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001190 * alloc_arraycache's are going to use this list.
1191 * kmalloc_node allows us to add the slab to the right
1192 * kmem_list3 and not this cpu's kmem_list3
1193 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194
Christoph Lametere498be72005-09-09 13:03:32 -07001195 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001196 /*
1197 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001198 * begin anything. Make sure some other cpu on this
1199 * node has not already allocated this
1200 */
1201 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001202 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1203 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001204 goto bad;
1205 kmem_list3_init(l3);
1206 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001207 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001208
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001209 /*
1210 * The l3s don't come and go as CPUs come and
1211 * go. cache_chain_mutex is sufficient
1212 * protection here.
1213 */
Christoph Lametere498be72005-09-09 13:03:32 -07001214 cachep->nodelists[node] = l3;
1215 }
1216
1217 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1218 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001219 (1 + nr_cpus_node(node)) *
1220 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001221 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1222 }
1223
Andrew Mortona737b3e2006-03-22 00:08:11 -08001224 /*
1225 * Now we can go ahead with allocating the shared arrays and
1226 * array caches
1227 */
Christoph Lametere498be72005-09-09 13:03:32 -07001228 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001229 struct array_cache *nc;
Eric Dumazet63109842007-05-06 14:49:28 -07001230 struct array_cache *shared = NULL;
Paul Menage3395ee02006-12-06 20:32:16 -08001231 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001232
Christoph Lametere498be72005-09-09 13:03:32 -07001233 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001234 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235 if (!nc)
1236 goto bad;
Eric Dumazet63109842007-05-06 14:49:28 -07001237 if (cachep->shared) {
1238 shared = alloc_arraycache(node,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001239 cachep->shared * cachep->batchcount,
1240 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07001241 if (!shared)
1242 goto bad;
1243 }
Paul Menage3395ee02006-12-06 20:32:16 -08001244 if (use_alien_caches) {
1245 alien = alloc_alien_cache(node, cachep->limit);
1246 if (!alien)
1247 goto bad;
1248 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001250 l3 = cachep->nodelists[node];
1251 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001252
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001253 spin_lock_irq(&l3->list_lock);
1254 if (!l3->shared) {
1255 /*
1256 * We are serialised from CPU_DEAD or
1257 * CPU_UP_CANCELLED by the cpucontrol lock
1258 */
1259 l3->shared = shared;
1260 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001261 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001262#ifdef CONFIG_NUMA
1263 if (!l3->alien) {
1264 l3->alien = alien;
1265 alien = NULL;
1266 }
1267#endif
1268 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001269 kfree(shared);
1270 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001271 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 break;
1273 case CPU_ONLINE:
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001274 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 start_cpu_timer(cpu);
1276 break;
1277#ifdef CONFIG_HOTPLUG_CPU
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001278 case CPU_DOWN_PREPARE:
1279 mutex_lock(&cache_chain_mutex);
1280 break;
1281 case CPU_DOWN_FAILED:
1282 mutex_unlock(&cache_chain_mutex);
1283 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001285 /*
1286 * Even if all the cpus of a node are down, we don't free the
1287 * kmem_list3 of any cache. This to avoid a race between
1288 * cpu_down, and a kmalloc allocation from another cpu for
1289 * memory from the node of the cpu going down. The list3
1290 * structure is usually allocated from kmem_cache_create() and
1291 * gets destroyed at kmem_cache_destroy().
1292 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001294#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 case CPU_UP_CANCELED:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 list_for_each_entry(cachep, &cache_chain, next) {
1297 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001298 struct array_cache *shared;
1299 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001300 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301
Christoph Lametere498be72005-09-09 13:03:32 -07001302 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303 /* cpu is dead; no one can alloc from it. */
1304 nc = cachep->array[cpu];
1305 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001306 l3 = cachep->nodelists[node];
1307
1308 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001309 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001310
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001311 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001312
1313 /* Free limit for this kmem_list3 */
1314 l3->free_limit -= cachep->batchcount;
1315 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001316 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001317
1318 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001319 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001320 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001321 }
Christoph Lametere498be72005-09-09 13:03:32 -07001322
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001323 shared = l3->shared;
1324 if (shared) {
Eric Dumazet63109842007-05-06 14:49:28 -07001325 free_block(cachep, shared->entry,
1326 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001327 l3->shared = NULL;
1328 }
Christoph Lametere498be72005-09-09 13:03:32 -07001329
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001330 alien = l3->alien;
1331 l3->alien = NULL;
1332
1333 spin_unlock_irq(&l3->list_lock);
1334
1335 kfree(shared);
1336 if (alien) {
1337 drain_alien_cache(cachep, alien);
1338 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001339 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001340free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341 kfree(nc);
1342 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001343 /*
1344 * In the previous loop, all the objects were freed to
1345 * the respective cache's slabs, now we can go ahead and
1346 * shrink each nodelist to its limit.
1347 */
1348 list_for_each_entry(cachep, &cache_chain, next) {
1349 l3 = cachep->nodelists[node];
1350 if (!l3)
1351 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001352 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001353 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001354 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001355 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 }
1357 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001358bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001359 return NOTIFY_BAD;
1360}
1361
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001362static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1364};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365
Christoph Lametere498be72005-09-09 13:03:32 -07001366/*
1367 * swap the static kmem_list3 with kmalloced memory
1368 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001369static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1370 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001371{
1372 struct kmem_list3 *ptr;
1373
Christoph Lametere498be72005-09-09 13:03:32 -07001374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1375 BUG_ON(!ptr);
1376
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001379 /*
1380 * Do not assume that spinlocks can be initialized via memcpy:
1381 */
1382 spin_lock_init(&ptr->list_lock);
1383
Christoph Lametere498be72005-09-09 13:03:32 -07001384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1386 local_irq_enable();
1387}
1388
Andrew Mortona737b3e2006-03-22 00:08:11 -08001389/*
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392 */
1393void __init kmem_cache_init(void)
1394{
1395 size_t left_over;
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001398 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001399 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001400 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001401
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1404
Christoph Lametere498be72005-09-09 13:03:32 -07001405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1409 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1414 */
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417
Linus Torvalds1da177e2005-04-16 15:20:36 -07001418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001427 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 */
1437
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001438 node = numa_node_id();
1439
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446
Eric Dumazet8da34302007-05-06 14:49:29 -07001447 /*
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1450 */
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1453#if DEBUG
1454 cache_cache.obj_size = cache_cache.buffer_size;
1455#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08001456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460
Jack Steiner07ed76b2006-03-07 21:55:46 -08001461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1465 break;
1466 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001467 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001468 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001469 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1476
Andrew Mortona737b3e2006-03-22 00:08:11 -08001477 /*
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1480 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001481 */
1482
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1487 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001488
Andrew Mortona737b3e2006-03-22 00:08:11 -08001489 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001490 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1495 NULL, NULL);
1496 }
Christoph Lametere498be72005-09-09 13:03:32 -07001497
Ingo Molnare0a42722006-06-23 02:03:46 -07001498 slab_early_init = 0;
1499
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001501 /*
1502 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001506 * allow tighter packing of the smaller caches.
1507 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001508 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001509 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001510 sizes->cs_size,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1513 NULL, NULL);
1514 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001515#ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1517 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001518 sizes->cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1521 SLAB_PANIC,
1522 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001523#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524 sizes++;
1525 names++;
1526 }
1527 /* 4) Replace the bootstrap head arrays */
1528 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001529 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001530
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001532
Linus Torvalds1da177e2005-04-16 15:20:36 -07001533 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001536 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
Linus Torvalds1da177e2005-04-16 15:20:36 -07001542 cache_cache.array[smp_processor_id()] = ptr;
1543 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001544
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001546
Linus Torvalds1da177e2005-04-16 15:20:36 -07001547 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001549 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001551 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->lock);
1556
Christoph Lametere498be72005-09-09 13:03:32 -07001557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001558 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559 local_irq_enable();
1560 }
Christoph Lametere498be72005-09-09 13:03:32 -07001561 /* 5) Replace the bootstrap kmem_list3's */
1562 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001563 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001565 /* Replace the static kmem_list3 structures for the boot cpu */
1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1567
1568 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001570 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001571
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001574 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001575 }
1576 }
1577 }
1578
1579 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001581 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001582 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001584 if (enable_cpucache(cachep))
1585 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001586 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587 }
1588
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001589 /* Annotate slab for lockdep -- annotate the malloc caches */
1590 init_lock_keys();
1591
1592
Linus Torvalds1da177e2005-04-16 15:20:36 -07001593 /* Done! */
1594 g_cpucache_up = FULL;
1595
Andrew Mortona737b3e2006-03-22 00:08:11 -08001596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599 */
1600 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601
Andrew Mortona737b3e2006-03-22 00:08:11 -08001602 /*
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605 */
1606}
1607
1608static int __init cpucache_init(void)
1609{
1610 int cpu;
1611
Andrew Mortona737b3e2006-03-22 00:08:11 -08001612 /*
1613 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614 */
Christoph Lametere498be72005-09-09 13:03:32 -07001615 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001616 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001617 return 0;
1618}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619__initcall(cpucache_init);
1620
1621/*
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1623 *
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1627 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001628static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629{
1630 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001631 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632 int i;
1633
Luke Yangd6fef9d2006-04-10 22:52:56 -07001634#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001635 /*
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001638 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001639 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001640#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001641
Christoph Lameter3c517a62006-12-06 20:33:29 -08001642 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001643
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 if (!page)
1646 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001648 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1652 else
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658}
1659
1660/*
1661 * Interface to system's page release.
1662 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001663static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001665 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1668
Christoph Lameter972d1a72006-09-25 23:31:51 -07001669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1672 else
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678 page++;
1679 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683}
1684
1685static void kmem_rcu_free(struct rcu_head *head)
1686{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001688 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1693}
1694
1695#if DEBUG
1696
1697#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001698static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001699 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001701 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001702
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001705 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001706 return;
1707
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001708 *addr++ = 0x12345678;
1709 *addr++ = caller;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712 {
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1715
1716 while (!kstack_end(sptr)) {
1717 svalue = *sptr++;
1718 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001719 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1722 break;
1723 }
1724 }
1725
1726 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001727 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728}
1729#endif
1730
Pekka Enberg343e0d72006-02-01 03:05:50 -08001731static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735
1736 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001737 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001738}
1739
1740static void dump_line(char *data, int offset, int limit)
1741{
1742 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001743 unsigned char error = 0;
1744 int bad_count = 0;
1745
Linus Torvalds1da177e2005-04-16 15:20:36 -07001746 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1750 bad_count++;
1751 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001752 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001753 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001755
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1760 "bad RAM.\n");
1761#ifdef CONFIG_X86
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1763 "test tool.\n");
1764#else
1765 printk(KERN_ERR "Run a memory test tool.\n");
1766#endif
1767 }
1768 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001769}
1770#endif
1771
1772#if DEBUG
1773
Pekka Enberg343e0d72006-02-01 03:05:50 -08001774static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775{
1776 int i, size;
1777 char *realobj;
1778
1779 if (cachep->flags & SLAB_RED_ZONE) {
1780 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 }
1784
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001787 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001789 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 printk("\n");
1791 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001794 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 int limit;
1796 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001797 if (i + limit > size)
1798 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799 dump_line(realobj, i, limit);
1800 }
1801}
1802
Pekka Enberg343e0d72006-02-01 03:05:50 -08001803static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804{
1805 char *realobj;
1806 int size, i;
1807 int lines = 0;
1808
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001812 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001814 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 exp = POISON_END;
1816 if (realobj[i] != exp) {
1817 int limit;
1818 /* Mismatch ! */
1819 /* Print header */
1820 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001821 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824 print_objinfo(cachep, objp, 0);
1825 }
1826 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001827 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001829 if (i + limit > size)
1830 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831 dump_line(realobj, i, limit);
1832 i += 16;
1833 lines++;
1834 /* Limit to 5 lines */
1835 if (lines > 5)
1836 break;
1837 }
1838 }
1839 if (lines != 0) {
1840 /* Print some data about the neighboring objects, if they
1841 * exist:
1842 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001843 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001844 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001846 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001848 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001849 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001851 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852 print_objinfo(cachep, objp, 2);
1853 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001854 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001855 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001856 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001858 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859 print_objinfo(cachep, objp, 2);
1860 }
1861 }
1862}
1863#endif
1864
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001866/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1870 *
1871 * Call the registered destructor for each object in a slab that is being
1872 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001873 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001874static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001875{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001876 int i;
1877 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001878 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879
1880 if (cachep->flags & SLAB_POISON) {
1881#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001884 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001885 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 else
1887 check_poison_obj(cachep, objp);
1888#else
1889 check_poison_obj(cachep, objp);
1890#endif
1891 }
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001895 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001898 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899 }
1900 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001901 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001903}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001904#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001905static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001906{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 if (cachep->dtor) {
1908 int i;
1909 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001910 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001911 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 }
1913 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001914}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915#endif
1916
Randy Dunlap911851e2006-03-22 00:08:14 -08001917/**
1918 * slab_destroy - destroy and release all objects in a slab
1919 * @cachep: cache pointer being destroyed
1920 * @slabp: slab pointer being destroyed
1921 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001922 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001923 * Before calling the slab must have been unlinked from the cache. The
1924 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001925 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001926static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001927{
1928 void *addr = slabp->s_mem - slabp->colouroff;
1929
1930 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1932 struct slab_rcu *slab_rcu;
1933
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001934 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001935 slab_rcu->cachep = cachep;
1936 slab_rcu->addr = addr;
1937 call_rcu(&slab_rcu->head, kmem_rcu_free);
1938 } else {
1939 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001940 if (OFF_SLAB(cachep))
1941 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 }
1943}
1944
Andrew Mortona737b3e2006-03-22 00:08:11 -08001945/*
1946 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1947 * size of kmem_list3.
1948 */
Andrew Mortona3a02be2007-05-06 14:49:31 -07001949static void __init set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001950{
1951 int node;
1952
1953 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001954 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001955 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001956 REAPTIMEOUT_LIST3 +
1957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001958 }
1959}
1960
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001961static void __kmem_cache_destroy(struct kmem_cache *cachep)
1962{
1963 int i;
1964 struct kmem_list3 *l3;
1965
1966 for_each_online_cpu(i)
1967 kfree(cachep->array[i]);
1968
1969 /* NUMA: free the list3 structures */
1970 for_each_online_node(i) {
1971 l3 = cachep->nodelists[i];
1972 if (l3) {
1973 kfree(l3->shared);
1974 free_alien_cache(l3->alien);
1975 kfree(l3);
1976 }
1977 }
1978 kmem_cache_free(&cache_cache, cachep);
1979}
1980
1981
Linus Torvalds1da177e2005-04-16 15:20:36 -07001982/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001983 * calculate_slab_order - calculate size (page order) of slabs
1984 * @cachep: pointer to the cache that is being created
1985 * @size: size of objects to be created in this cache.
1986 * @align: required alignment for the objects.
1987 * @flags: slab allocation flags
1988 *
1989 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001990 *
1991 * This could be made much more intelligent. For now, try to avoid using
1992 * high order pages for slabs. When the gfp() functions are more friendly
1993 * towards high-order requests, this should be changed.
1994 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001995static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001996 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001997{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001998 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001999 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002000 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002001
Andrew Mortona737b3e2006-03-22 00:08:11 -08002002 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002003 unsigned int num;
2004 size_t remainder;
2005
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002006 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002007 if (!num)
2008 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002009
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002010 if (flags & CFLGS_OFF_SLAB) {
2011 /*
2012 * Max number of objs-per-slab for caches which
2013 * use off-slab slabs. Needed to avoid a possible
2014 * looping condition in cache_grow().
2015 */
2016 offslab_limit = size - sizeof(struct slab);
2017 offslab_limit /= sizeof(kmem_bufctl_t);
2018
2019 if (num > offslab_limit)
2020 break;
2021 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002022
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002023 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002024 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002025 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002026 left_over = remainder;
2027
2028 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002029 * A VFS-reclaimable slab tends to have most allocations
2030 * as GFP_NOFS and we really don't want to have to be allocating
2031 * higher-order pages when we are unable to shrink dcache.
2032 */
2033 if (flags & SLAB_RECLAIM_ACCOUNT)
2034 break;
2035
2036 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002037 * Large number of objects is good, but very large slabs are
2038 * currently bad for the gfp()s.
2039 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002040 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002041 break;
2042
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002043 /*
2044 * Acceptable internal fragmentation?
2045 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002046 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002047 break;
2048 }
2049 return left_over;
2050}
2051
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002052static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002053{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002054 if (g_cpucache_up == FULL)
2055 return enable_cpucache(cachep);
2056
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002057 if (g_cpucache_up == NONE) {
2058 /*
2059 * Note: the first kmem_cache_create must create the cache
2060 * that's used by kmalloc(24), otherwise the creation of
2061 * further caches will BUG().
2062 */
2063 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2064
2065 /*
2066 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2067 * the first cache, then we need to set up all its list3s,
2068 * otherwise the creation of further caches will BUG().
2069 */
2070 set_up_list3s(cachep, SIZE_AC);
2071 if (INDEX_AC == INDEX_L3)
2072 g_cpucache_up = PARTIAL_L3;
2073 else
2074 g_cpucache_up = PARTIAL_AC;
2075 } else {
2076 cachep->array[smp_processor_id()] =
2077 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2078
2079 if (g_cpucache_up == PARTIAL_AC) {
2080 set_up_list3s(cachep, SIZE_L3);
2081 g_cpucache_up = PARTIAL_L3;
2082 } else {
2083 int node;
2084 for_each_online_node(node) {
2085 cachep->nodelists[node] =
2086 kmalloc_node(sizeof(struct kmem_list3),
2087 GFP_KERNEL, node);
2088 BUG_ON(!cachep->nodelists[node]);
2089 kmem_list3_init(cachep->nodelists[node]);
2090 }
2091 }
2092 }
2093 cachep->nodelists[numa_node_id()]->next_reap =
2094 jiffies + REAPTIMEOUT_LIST3 +
2095 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2096
2097 cpu_cache_get(cachep)->avail = 0;
2098 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2099 cpu_cache_get(cachep)->batchcount = 1;
2100 cpu_cache_get(cachep)->touched = 0;
2101 cachep->batchcount = 1;
2102 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002103 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002104}
2105
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002106/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 * kmem_cache_create - Create a cache.
2108 * @name: A string which is used in /proc/slabinfo to identify this cache.
2109 * @size: The size of objects to be created in this cache.
2110 * @align: The required alignment for the objects.
2111 * @flags: SLAB flags
2112 * @ctor: A constructor for the objects.
2113 * @dtor: A destructor for the objects.
2114 *
2115 * Returns a ptr to the cache on success, NULL on failure.
2116 * Cannot be called within a int, but can be interrupted.
2117 * The @ctor is run when new pages are allocated by the cache
2118 * and the @dtor is run before the pages are handed back.
2119 *
2120 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002121 * the module calling this has to destroy the cache before getting unloaded.
2122 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123 * The flags are
2124 *
2125 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2126 * to catch references to uninitialised memory.
2127 *
2128 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2129 * for buffer overruns.
2130 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2132 * cacheline. This can be beneficial if you're counting cycles as closely
2133 * as davem.
2134 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002135struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002137 unsigned long flags,
2138 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002139 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140{
2141 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002142 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143
2144 /*
2145 * Sanity checks... these are all serious usage bugs.
2146 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002147 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002148 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002149 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2150 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002151 BUG();
2152 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002153
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002154 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002155 * We use cache_chain_mutex to ensure a consistent view of
2156 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002157 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002158 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002159
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002160 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002161 char tmp;
2162 int res;
2163
2164 /*
2165 * This happens when the module gets unloaded and doesn't
2166 * destroy its slab cache and no-one else reuses the vmalloc
2167 * area of the module. Print a warning.
2168 */
Andrew Morton138ae662006-12-06 20:36:41 -08002169 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002170 if (res) {
2171 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002172 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002173 continue;
2174 }
2175
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002176 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002177 printk("kmem_cache_create: duplicate cache %s\n", name);
2178 dump_stack();
2179 goto oops;
2180 }
2181 }
2182
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183#if DEBUG
2184 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2185 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2186 /* No constructor, but inital state check requested */
2187 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002188 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002189 flags &= ~SLAB_DEBUG_INITIAL;
2190 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002191#if FORCED_DEBUG
2192 /*
2193 * Enable redzoning and last user accounting, except for caches with
2194 * large objects, if the increased size would increase the object size
2195 * above the next power of two: caches with object sizes just above a
2196 * power of two have a significant amount of internal fragmentation.
2197 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002198 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002199 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 if (!(flags & SLAB_DESTROY_BY_RCU))
2201 flags |= SLAB_POISON;
2202#endif
2203 if (flags & SLAB_DESTROY_BY_RCU)
2204 BUG_ON(flags & SLAB_POISON);
2205#endif
2206 if (flags & SLAB_DESTROY_BY_RCU)
2207 BUG_ON(dtor);
2208
2209 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002210 * Always checks flags, a caller might be expecting debug support which
2211 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002213 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214
Andrew Mortona737b3e2006-03-22 00:08:11 -08002215 /*
2216 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 * unaligned accesses for some archs when redzoning is used, and makes
2218 * sure any on-slab bufctl's are also correctly aligned.
2219 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002220 if (size & (BYTES_PER_WORD - 1)) {
2221 size += (BYTES_PER_WORD - 1);
2222 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 }
2224
Andrew Mortona737b3e2006-03-22 00:08:11 -08002225 /* calculate the final buffer alignment: */
2226
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227 /* 1) arch recommendation: can be overridden for debug */
2228 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002229 /*
2230 * Default alignment: as specified by the arch code. Except if
2231 * an object is really small, then squeeze multiple objects into
2232 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 */
2234 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002235 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236 ralign /= 2;
2237 } else {
2238 ralign = BYTES_PER_WORD;
2239 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002240
2241 /*
2242 * Redzoning and user store require word alignment. Note this will be
2243 * overridden by architecture or caller mandated alignment if either
2244 * is greater than BYTES_PER_WORD.
2245 */
2246 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2247 ralign = BYTES_PER_WORD;
2248
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002249 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250 if (ralign < ARCH_SLAB_MINALIGN) {
2251 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002253 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254 if (ralign < align) {
2255 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002256 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002257 /* disable debug if necessary */
2258 if (ralign > BYTES_PER_WORD)
2259 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002260 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002261 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262 */
2263 align = ralign;
2264
2265 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002266 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002267 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002268 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269
2270#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002271 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272
Pekka Enbergca5f9702006-09-25 23:31:25 -07002273 /*
2274 * Both debugging options require word-alignment which is calculated
2275 * into align above.
2276 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002279 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002280 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 }
2282 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002283 /* user store requires one word storage behind the end of
2284 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002285 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286 size += BYTES_PER_WORD;
2287 }
2288#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002289 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002290 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2291 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002292 size = PAGE_SIZE;
2293 }
2294#endif
2295#endif
2296
Ingo Molnare0a42722006-06-23 02:03:46 -07002297 /*
2298 * Determine if the slab management is 'on' or 'off' slab.
2299 * (bootstrapping cannot cope with offslab caches so don't do
2300 * it too early on.)
2301 */
2302 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303 /*
2304 * Size is large, assume best to place the slab management obj
2305 * off-slab (should allow better packing of objs).
2306 */
2307 flags |= CFLGS_OFF_SLAB;
2308
2309 size = ALIGN(size, align);
2310
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002311 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312
2313 if (!cachep->num) {
2314 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2315 kmem_cache_free(&cache_cache, cachep);
2316 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002317 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002319 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2320 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321
2322 /*
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2325 */
2326 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2327 flags &= ~CFLGS_OFF_SLAB;
2328 left_over -= slab_size;
2329 }
2330
2331 if (flags & CFLGS_OFF_SLAB) {
2332 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002333 slab_size =
2334 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 }
2336
2337 cachep->colour_off = cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep->colour_off < align)
2340 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002341 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342 cachep->slab_size = slab_size;
2343 cachep->flags = flags;
2344 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002345 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002347 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002348 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002349
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002350 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002351 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002352 /*
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2358 */
2359 BUG_ON(!cachep->slabp_cache);
2360 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361 cachep->ctor = ctor;
2362 cachep->dtor = dtor;
2363 cachep->name = name;
2364
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002365 if (setup_cpu_cache(cachep)) {
2366 __kmem_cache_destroy(cachep);
2367 cachep = NULL;
2368 goto oops;
2369 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002370
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371 /* cache setup completed, link it into the list */
2372 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002373oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374 if (!cachep && (flags & SLAB_PANIC))
2375 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002376 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002377 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 return cachep;
2379}
2380EXPORT_SYMBOL(kmem_cache_create);
2381
2382#if DEBUG
2383static void check_irq_off(void)
2384{
2385 BUG_ON(!irqs_disabled());
2386}
2387
2388static void check_irq_on(void)
2389{
2390 BUG_ON(irqs_disabled());
2391}
2392
Pekka Enberg343e0d72006-02-01 03:05:50 -08002393static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394{
2395#ifdef CONFIG_SMP
2396 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002397 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398#endif
2399}
Christoph Lametere498be72005-09-09 13:03:32 -07002400
Pekka Enberg343e0d72006-02-01 03:05:50 -08002401static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002402{
2403#ifdef CONFIG_SMP
2404 check_irq_off();
2405 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2406#endif
2407}
2408
Linus Torvalds1da177e2005-04-16 15:20:36 -07002409#else
2410#define check_irq_off() do { } while(0)
2411#define check_irq_on() do { } while(0)
2412#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002413#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414#endif
2415
Christoph Lameteraab22072006-03-22 00:09:06 -08002416static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2417 struct array_cache *ac,
2418 int force, int node);
2419
Linus Torvalds1da177e2005-04-16 15:20:36 -07002420static void do_drain(void *arg)
2421{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002422 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002423 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002424 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425
2426 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002427 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002428 spin_lock(&cachep->nodelists[node]->list_lock);
2429 free_block(cachep, ac->entry, ac->avail, node);
2430 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431 ac->avail = 0;
2432}
2433
Pekka Enberg343e0d72006-02-01 03:05:50 -08002434static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435{
Christoph Lametere498be72005-09-09 13:03:32 -07002436 struct kmem_list3 *l3;
2437 int node;
2438
Andrew Mortona07fa392006-03-22 00:08:17 -08002439 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002441 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002442 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002443 if (l3 && l3->alien)
2444 drain_alien_cache(cachep, l3->alien);
2445 }
2446
2447 for_each_online_node(node) {
2448 l3 = cachep->nodelists[node];
2449 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002450 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002451 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452}
2453
Christoph Lametered11d9e2006-06-30 01:55:45 -07002454/*
2455 * Remove slabs from the list of free slabs.
2456 * Specify the number of slabs to drain in tofree.
2457 *
2458 * Returns the actual number of slabs released.
2459 */
2460static int drain_freelist(struct kmem_cache *cache,
2461 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002463 struct list_head *p;
2464 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466
Christoph Lametered11d9e2006-06-30 01:55:45 -07002467 nr_freed = 0;
2468 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469
Christoph Lametered11d9e2006-06-30 01:55:45 -07002470 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002471 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002472 if (p == &l3->slabs_free) {
2473 spin_unlock_irq(&l3->list_lock);
2474 goto out;
2475 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476
Christoph Lametered11d9e2006-06-30 01:55:45 -07002477 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002479 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480#endif
2481 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002482 /*
2483 * Safe to drop the lock. The slab is no longer linked
2484 * to the cache.
2485 */
2486 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002487 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002488 slab_destroy(cache, slabp);
2489 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002490 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002491out:
2492 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002493}
2494
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002495/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002496static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002497{
2498 int ret = 0, i = 0;
2499 struct kmem_list3 *l3;
2500
2501 drain_cpu_caches(cachep);
2502
2503 check_irq_on();
2504 for_each_online_node(i) {
2505 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002506 if (!l3)
2507 continue;
2508
2509 drain_freelist(cachep, l3, l3->free_objects);
2510
2511 ret += !list_empty(&l3->slabs_full) ||
2512 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002513 }
2514 return (ret ? 1 : 0);
2515}
2516
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517/**
2518 * kmem_cache_shrink - Shrink a cache.
2519 * @cachep: The cache to shrink.
2520 *
2521 * Releases as many slabs as possible for a cache.
2522 * To help debugging, a zero exit status indicates all slabs were released.
2523 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002524int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002525{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002526 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002527 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002529 mutex_lock(&cache_chain_mutex);
2530 ret = __cache_shrink(cachep);
2531 mutex_unlock(&cache_chain_mutex);
2532 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533}
2534EXPORT_SYMBOL(kmem_cache_shrink);
2535
2536/**
2537 * kmem_cache_destroy - delete a cache
2538 * @cachep: the cache to destroy
2539 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002540 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541 *
2542 * It is expected this function will be called by a module when it is
2543 * unloaded. This will remove the cache completely, and avoid a duplicate
2544 * cache being allocated each time a module is loaded and unloaded, if the
2545 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 *
2547 * The cache must be empty before calling this function.
2548 *
2549 * The caller must guarantee that noone will allocate memory from the cache
2550 * during the kmem_cache_destroy().
2551 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002552void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002554 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002555
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002557 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 /*
2559 * the chain is never empty, cache_cache is never destroyed
2560 */
2561 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562 if (__cache_shrink(cachep)) {
2563 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002564 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002565 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002566 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567 }
2568
2569 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002570 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002572 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002573 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574}
2575EXPORT_SYMBOL(kmem_cache_destroy);
2576
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002577/*
2578 * Get the memory for a slab management obj.
2579 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2580 * always come from malloc_sizes caches. The slab descriptor cannot
2581 * come from the same cache which is getting created because,
2582 * when we are searching for an appropriate cache for these
2583 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2584 * If we are creating a malloc_sizes cache here it would not be visible to
2585 * kmem_find_general_cachep till the initialization is complete.
2586 * Hence we cannot have slabp_cache same as the original cache.
2587 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002588static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002589 int colour_off, gfp_t local_flags,
2590 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002591{
2592 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002593
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 if (OFF_SLAB(cachep)) {
2595 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002596 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002597 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002598 if (!slabp)
2599 return NULL;
2600 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002601 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602 colour_off += cachep->slab_size;
2603 }
2604 slabp->inuse = 0;
2605 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002606 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002607 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608 return slabp;
2609}
2610
2611static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2612{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002613 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614}
2615
Pekka Enberg343e0d72006-02-01 03:05:50 -08002616static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002617 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618{
2619 int i;
2620
2621 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002622 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623#if DEBUG
2624 /* need to poison the objs? */
2625 if (cachep->flags & SLAB_POISON)
2626 poison_obj(cachep, objp, POISON_FREE);
2627 if (cachep->flags & SLAB_STORE_USER)
2628 *dbg_userword(cachep, objp) = NULL;
2629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2632 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2633 }
2634 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002635 * Constructors are not allowed to allocate memory from the same
2636 * cache which they are a constructor for. Otherwise, deadlock.
2637 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 */
2639 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002640 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002641 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642
2643 if (cachep->flags & SLAB_RED_ZONE) {
2644 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002646 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002649 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002651 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2652 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002653 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002654 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655#else
2656 if (cachep->ctor)
2657 cachep->ctor(objp, cachep, ctor_flags);
2658#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002659 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002661 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 slabp->free = 0;
2663}
2664
Pekka Enberg343e0d72006-02-01 03:05:50 -08002665static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002666{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002667 if (CONFIG_ZONE_DMA_FLAG) {
2668 if (flags & GFP_DMA)
2669 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2670 else
2671 BUG_ON(cachep->gfpflags & GFP_DMA);
2672 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673}
2674
Andrew Mortona737b3e2006-03-22 00:08:11 -08002675static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2676 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002677{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002678 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002679 kmem_bufctl_t next;
2680
2681 slabp->inuse++;
2682 next = slab_bufctl(slabp)[slabp->free];
2683#if DEBUG
2684 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2685 WARN_ON(slabp->nodeid != nodeid);
2686#endif
2687 slabp->free = next;
2688
2689 return objp;
2690}
2691
Andrew Mortona737b3e2006-03-22 00:08:11 -08002692static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2693 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002694{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002695 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002696
2697#if DEBUG
2698 /* Verify that the slab belongs to the intended node */
2699 WARN_ON(slabp->nodeid != nodeid);
2700
Al Viro871751e2006-03-25 03:06:39 -08002701 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002702 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002703 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002704 BUG();
2705 }
2706#endif
2707 slab_bufctl(slabp)[objnr] = slabp->free;
2708 slabp->free = objnr;
2709 slabp->inuse--;
2710}
2711
Pekka Enberg47768742006-06-23 02:03:07 -07002712/*
2713 * Map pages beginning at addr to the given cache and slab. This is required
2714 * for the slab allocator to be able to lookup the cache and slab of a
2715 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2716 */
2717static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2718 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719{
Pekka Enberg47768742006-06-23 02:03:07 -07002720 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 struct page *page;
2722
Pekka Enberg47768742006-06-23 02:03:07 -07002723 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002724
Pekka Enberg47768742006-06-23 02:03:07 -07002725 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002726 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002727 nr_pages <<= cache->gfporder;
2728
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002730 page_set_cache(page, cache);
2731 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002733 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734}
2735
2736/*
2737 * Grow (by 1) the number of slabs within a cache. This is called by
2738 * kmem_cache_alloc() when there are no active objs left in a cache.
2739 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002740static int cache_grow(struct kmem_cache *cachep,
2741 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002743 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002744 size_t offset;
2745 gfp_t local_flags;
2746 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002747 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002748
Andrew Mortona737b3e2006-03-22 00:08:11 -08002749 /*
2750 * Be lazy and only check for valid flags here, keeping it out of the
2751 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 */
Christoph Lameter441e1432006-12-06 20:33:19 -08002753 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
Christoph Lameter6e0eaa42006-12-06 20:33:10 -08002754 if (flags & __GFP_NO_GROW)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755 return 0;
2756
2757 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002758 local_flags = (flags & GFP_LEVEL_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759 if (!(local_flags & __GFP_WAIT))
2760 /*
2761 * Not allowed to sleep. Need to tell a constructor about
2762 * this - it might need to know...
2763 */
2764 ctor_flags |= SLAB_CTOR_ATOMIC;
2765
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002766 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002768 l3 = cachep->nodelists[nodeid];
2769 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770
2771 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002772 offset = l3->colour_next;
2773 l3->colour_next++;
2774 if (l3->colour_next >= cachep->colour)
2775 l3->colour_next = 0;
2776 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002778 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779
2780 if (local_flags & __GFP_WAIT)
2781 local_irq_enable();
2782
2783 /*
2784 * The test for missing atomic flag is performed here, rather than
2785 * the more obvious place, simply to reduce the critical path length
2786 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2787 * will eventually be caught here (where it matters).
2788 */
2789 kmem_flagcheck(cachep, flags);
2790
Andrew Mortona737b3e2006-03-22 00:08:11 -08002791 /*
2792 * Get mem for the objs. Attempt to allocate a physical page from
2793 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002794 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002795 if (!objp)
2796 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002797 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002798 goto failed;
2799
2800 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002801 slabp = alloc_slabmgmt(cachep, objp, offset,
2802 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002803 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804 goto opps1;
2805
Christoph Lametere498be72005-09-09 13:03:32 -07002806 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002807 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808
2809 cache_init_objs(cachep, slabp, ctor_flags);
2810
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002814 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815
2816 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002817 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002819 l3->free_objects += cachep->num;
2820 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002822opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002823 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002824failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002825 if (local_flags & __GFP_WAIT)
2826 local_irq_disable();
2827 return 0;
2828}
2829
2830#if DEBUG
2831
2832/*
2833 * Perform extra freeing checks:
2834 * - detect bad pointers.
2835 * - POISON/RED_ZONE checking
2836 * - destructor calls, for caches with POISON+dtor
2837 */
2838static void kfree_debugcheck(const void *objp)
2839{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002840 if (!virt_addr_valid(objp)) {
2841 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002842 (unsigned long)objp);
2843 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845}
2846
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002847static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2848{
2849 unsigned long redzone1, redzone2;
2850
2851 redzone1 = *dbg_redzone1(cache, obj);
2852 redzone2 = *dbg_redzone2(cache, obj);
2853
2854 /*
2855 * Redzone is ok.
2856 */
2857 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2858 return;
2859
2860 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2861 slab_error(cache, "double free detected");
2862 else
2863 slab_error(cache, "memory outside object was overwritten");
2864
2865 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2866 obj, redzone1, redzone2);
2867}
2868
Pekka Enberg343e0d72006-02-01 03:05:50 -08002869static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002870 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871{
2872 struct page *page;
2873 unsigned int objnr;
2874 struct slab *slabp;
2875
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002876 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877 kfree_debugcheck(objp);
Christoph Lameterb49af682007-05-06 14:49:41 -07002878 page = virt_to_head_page(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879
Pekka Enberg065d41c2005-11-13 16:06:46 -08002880 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002881
2882 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002883 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002884 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2885 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2886 }
2887 if (cachep->flags & SLAB_STORE_USER)
2888 *dbg_userword(cachep, objp) = caller;
2889
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002890 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002891
2892 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002893 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002894
2895 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002896 /*
2897 * Need to call the slab's constructor so the caller can
2898 * perform a verify of its state (debugging). Called without
2899 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002901 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002902 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903 }
2904 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2905 /* we want to cache poison the object,
2906 * call the destruction callback
2907 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002908 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002909 }
Al Viro871751e2006-03-25 03:06:39 -08002910#ifdef CONFIG_DEBUG_SLAB_LEAK
2911 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2912#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 if (cachep->flags & SLAB_POISON) {
2914#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002915 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002917 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002918 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002919 } else {
2920 poison_obj(cachep, objp, POISON_FREE);
2921 }
2922#else
2923 poison_obj(cachep, objp, POISON_FREE);
2924#endif
2925 }
2926 return objp;
2927}
2928
Pekka Enberg343e0d72006-02-01 03:05:50 -08002929static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002930{
2931 kmem_bufctl_t i;
2932 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002933
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934 /* Check slab's freelist to see if this obj is there. */
2935 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2936 entries++;
2937 if (entries > cachep->num || i >= cachep->num)
2938 goto bad;
2939 }
2940 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002941bad:
2942 printk(KERN_ERR "slab: Internal list corruption detected in "
2943 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2944 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002945 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002946 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002947 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002948 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002950 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002951 }
2952 printk("\n");
2953 BUG();
2954 }
2955}
2956#else
2957#define kfree_debugcheck(x) do { } while(0)
2958#define cache_free_debugcheck(x,objp,z) (objp)
2959#define check_slabp(x,y) do { } while(0)
2960#endif
2961
Pekka Enberg343e0d72006-02-01 03:05:50 -08002962static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002963{
2964 int batchcount;
2965 struct kmem_list3 *l3;
2966 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002967 int node;
2968
2969 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002970
2971 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002972 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002973retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974 batchcount = ac->batchcount;
2975 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002976 /*
2977 * If there was little recent activity on this cache, then
2978 * perform only a partial refill. Otherwise we could generate
2979 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002980 */
2981 batchcount = BATCHREFILL_LIMIT;
2982 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002983 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002984
Christoph Lametere498be72005-09-09 13:03:32 -07002985 BUG_ON(ac->avail > 0 || !l3);
2986 spin_lock(&l3->list_lock);
2987
Christoph Lameter3ded1752006-03-25 03:06:44 -08002988 /* See if we can refill from the shared array */
2989 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2990 goto alloc_done;
2991
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992 while (batchcount > 0) {
2993 struct list_head *entry;
2994 struct slab *slabp;
2995 /* Get slab alloc is to come from. */
2996 entry = l3->slabs_partial.next;
2997 if (entry == &l3->slabs_partial) {
2998 l3->free_touched = 1;
2999 entry = l3->slabs_free.next;
3000 if (entry == &l3->slabs_free)
3001 goto must_grow;
3002 }
3003
3004 slabp = list_entry(entry, struct slab, list);
3005 check_slabp(cachep, slabp);
3006 check_spinlock_acquired(cachep);
Pekka Enberg714b81712007-05-06 14:49:03 -07003007
3008 /*
3009 * The slab was either on partial or free list so
3010 * there must be at least one object available for
3011 * allocation.
3012 */
3013 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3014
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016 STATS_INC_ALLOCED(cachep);
3017 STATS_INC_ACTIVE(cachep);
3018 STATS_SET_HIGH(cachep);
3019
Matthew Dobson78d382d2006-02-01 03:05:47 -08003020 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07003021 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022 }
3023 check_slabp(cachep, slabp);
3024
3025 /* move slabp to correct slabp list: */
3026 list_del(&slabp->list);
3027 if (slabp->free == BUFCTL_END)
3028 list_add(&slabp->list, &l3->slabs_full);
3029 else
3030 list_add(&slabp->list, &l3->slabs_partial);
3031 }
3032
Andrew Mortona737b3e2006-03-22 00:08:11 -08003033must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003035alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003036 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037
3038 if (unlikely(!ac->avail)) {
3039 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003040 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003041
Andrew Mortona737b3e2006-03-22 00:08:11 -08003042 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003043 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003044 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 return NULL;
3046
Andrew Mortona737b3e2006-03-22 00:08:11 -08003047 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003048 goto retry;
3049 }
3050 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003051 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003052}
3053
Andrew Mortona737b3e2006-03-22 00:08:11 -08003054static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3055 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056{
3057 might_sleep_if(flags & __GFP_WAIT);
3058#if DEBUG
3059 kmem_flagcheck(cachep, flags);
3060#endif
3061}
3062
3063#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003064static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3065 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003066{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003067 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003069 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003071 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003072 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003073 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074 else
3075 check_poison_obj(cachep, objp);
3076#else
3077 check_poison_obj(cachep, objp);
3078#endif
3079 poison_obj(cachep, objp, POISON_INUSE);
3080 }
3081 if (cachep->flags & SLAB_STORE_USER)
3082 *dbg_userword(cachep, objp) = caller;
3083
3084 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087 slab_error(cachep, "double free, or memory outside"
3088 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003089 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003090 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3091 objp, *dbg_redzone1(cachep, objp),
3092 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003093 }
3094 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3095 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3096 }
Al Viro871751e2006-03-25 03:06:39 -08003097#ifdef CONFIG_DEBUG_SLAB_LEAK
3098 {
3099 struct slab *slabp;
3100 unsigned objnr;
3101
Christoph Lameterb49af682007-05-06 14:49:41 -07003102 slabp = page_get_slab(virt_to_head_page(objp));
Al Viro871751e2006-03-25 03:06:39 -08003103 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3104 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3105 }
3106#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003107 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003108 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003109 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003110
3111 if (!(flags & __GFP_WAIT))
3112 ctor_flags |= SLAB_CTOR_ATOMIC;
3113
3114 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003115 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003116#if ARCH_SLAB_MINALIGN
3117 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3118 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3119 objp, ARCH_SLAB_MINALIGN);
3120 }
3121#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003122 return objp;
3123}
3124#else
3125#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3126#endif
3127
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003128#ifdef CONFIG_FAILSLAB
3129
3130static struct failslab_attr {
3131
3132 struct fault_attr attr;
3133
3134 u32 ignore_gfp_wait;
3135#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3136 struct dentry *ignore_gfp_wait_file;
3137#endif
3138
3139} failslab = {
3140 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003141 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003142};
3143
3144static int __init setup_failslab(char *str)
3145{
3146 return setup_fault_attr(&failslab.attr, str);
3147}
3148__setup("failslab=", setup_failslab);
3149
3150static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3151{
3152 if (cachep == &cache_cache)
3153 return 0;
3154 if (flags & __GFP_NOFAIL)
3155 return 0;
3156 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3157 return 0;
3158
3159 return should_fail(&failslab.attr, obj_size(cachep));
3160}
3161
3162#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3163
3164static int __init failslab_debugfs(void)
3165{
3166 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3167 struct dentry *dir;
3168 int err;
3169
3170 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3171 if (err)
3172 return err;
3173 dir = failslab.attr.dentries.dir;
3174
3175 failslab.ignore_gfp_wait_file =
3176 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3177 &failslab.ignore_gfp_wait);
3178
3179 if (!failslab.ignore_gfp_wait_file) {
3180 err = -ENOMEM;
3181 debugfs_remove(failslab.ignore_gfp_wait_file);
3182 cleanup_fault_attr_dentries(&failslab.attr);
3183 }
3184
3185 return err;
3186}
3187
3188late_initcall(failslab_debugfs);
3189
3190#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3191
3192#else /* CONFIG_FAILSLAB */
3193
3194static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3195{
3196 return 0;
3197}
3198
3199#endif /* CONFIG_FAILSLAB */
3200
Pekka Enberg343e0d72006-02-01 03:05:50 -08003201static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003203 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003204 struct array_cache *ac;
3205
Alok N Kataria5c382302005-09-27 21:45:46 -07003206 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003207
3208 if (should_failslab(cachep, flags))
3209 return NULL;
3210
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003211 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212 if (likely(ac->avail)) {
3213 STATS_INC_ALLOCHIT(cachep);
3214 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003215 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003216 } else {
3217 STATS_INC_ALLOCMISS(cachep);
3218 objp = cache_alloc_refill(cachep, flags);
3219 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003220 return objp;
3221}
3222
Christoph Lametere498be72005-09-09 13:03:32 -07003223#ifdef CONFIG_NUMA
3224/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003225 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003226 *
3227 * If we are in_interrupt, then process context, including cpusets and
3228 * mempolicy, may not apply and should not be used for allocation policy.
3229 */
3230static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3231{
3232 int nid_alloc, nid_here;
3233
Christoph Lameter765c4502006-09-27 01:50:08 -07003234 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003235 return NULL;
3236 nid_alloc = nid_here = numa_node_id();
3237 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3238 nid_alloc = cpuset_mem_spread_node();
3239 else if (current->mempolicy)
3240 nid_alloc = slab_node(current->mempolicy);
3241 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003242 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003243 return NULL;
3244}
3245
3246/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003247 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003248 * certain node and fall back is permitted. First we scan all the
3249 * available nodelists for available objects. If that fails then we
3250 * perform an allocation without specifying a node. This allows the page
3251 * allocator to do its reclaim / fallback magic. We then insert the
3252 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003253 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003254static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003255{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003256 struct zonelist *zonelist;
3257 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003258 struct zone **z;
3259 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003260 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003261
3262 if (flags & __GFP_THISNODE)
3263 return NULL;
3264
3265 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3266 ->node_zonelists[gfp_zone(flags)];
3267 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003268
Christoph Lameter3c517a62006-12-06 20:33:29 -08003269retry:
3270 /*
3271 * Look through allowed nodes for objects available
3272 * from existing per node queues.
3273 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003274 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003275 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003276
Paul Jackson02a0e532006-12-13 00:34:25 -08003277 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003278 cache->nodelists[nid] &&
3279 cache->nodelists[nid]->free_objects)
3280 obj = ____cache_alloc_node(cache,
3281 flags | GFP_THISNODE, nid);
3282 }
3283
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003284 if (!obj && !(flags & __GFP_NO_GROW)) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003285 /*
3286 * This allocation will be performed within the constraints
3287 * of the current cpuset / memory policy requirements.
3288 * We may trigger various forms of reclaim on the allowed
3289 * set and go into memory reserves if necessary.
3290 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003291 if (local_flags & __GFP_WAIT)
3292 local_irq_enable();
3293 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003294 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003295 if (local_flags & __GFP_WAIT)
3296 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003297 if (obj) {
3298 /*
3299 * Insert into the appropriate per node queues
3300 */
3301 nid = page_to_nid(virt_to_page(obj));
3302 if (cache_grow(cache, flags, nid, obj)) {
3303 obj = ____cache_alloc_node(cache,
3304 flags | GFP_THISNODE, nid);
3305 if (!obj)
3306 /*
3307 * Another processor may allocate the
3308 * objects in the slab since we are
3309 * not holding any locks.
3310 */
3311 goto retry;
3312 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003313 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003314 obj = NULL;
3315 }
3316 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003317 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003318 return obj;
3319}
3320
3321/*
Christoph Lametere498be72005-09-09 13:03:32 -07003322 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003324static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003325 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003326{
3327 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003328 struct slab *slabp;
3329 struct kmem_list3 *l3;
3330 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003331 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003332
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003333 l3 = cachep->nodelists[nodeid];
3334 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003335
Andrew Mortona737b3e2006-03-22 00:08:11 -08003336retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003337 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003338 spin_lock(&l3->list_lock);
3339 entry = l3->slabs_partial.next;
3340 if (entry == &l3->slabs_partial) {
3341 l3->free_touched = 1;
3342 entry = l3->slabs_free.next;
3343 if (entry == &l3->slabs_free)
3344 goto must_grow;
3345 }
Christoph Lametere498be72005-09-09 13:03:32 -07003346
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003347 slabp = list_entry(entry, struct slab, list);
3348 check_spinlock_acquired_node(cachep, nodeid);
3349 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003350
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003351 STATS_INC_NODEALLOCS(cachep);
3352 STATS_INC_ACTIVE(cachep);
3353 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003354
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003355 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003356
Matthew Dobson78d382d2006-02-01 03:05:47 -08003357 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003358 check_slabp(cachep, slabp);
3359 l3->free_objects--;
3360 /* move slabp to correct slabp list: */
3361 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003362
Andrew Mortona737b3e2006-03-22 00:08:11 -08003363 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003364 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003365 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003366 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003367
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003368 spin_unlock(&l3->list_lock);
3369 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003370
Andrew Mortona737b3e2006-03-22 00:08:11 -08003371must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003372 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003373 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003374 if (x)
3375 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003376
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003377 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003378
Andrew Mortona737b3e2006-03-22 00:08:11 -08003379done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003380 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003381}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003382
3383/**
3384 * kmem_cache_alloc_node - Allocate an object on the specified node
3385 * @cachep: The cache to allocate from.
3386 * @flags: See kmalloc().
3387 * @nodeid: node number of the target node.
3388 * @caller: return address of caller, used for debug information
3389 *
3390 * Identical to kmem_cache_alloc but it will allocate memory on the given
3391 * node, which can improve the performance for cpu bound structures.
3392 *
3393 * Fallback to other node is possible if __GFP_THISNODE is not set.
3394 */
3395static __always_inline void *
3396__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3397 void *caller)
3398{
3399 unsigned long save_flags;
3400 void *ptr;
3401
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404
3405 if (unlikely(nodeid == -1))
3406 nodeid = numa_node_id();
3407
3408 if (unlikely(!cachep->nodelists[nodeid])) {
3409 /* Node not bootstrapped yet */
3410 ptr = fallback_alloc(cachep, flags);
3411 goto out;
3412 }
3413
3414 if (nodeid == numa_node_id()) {
3415 /*
3416 * Use the locally cached objects if possible.
3417 * However ____cache_alloc does not allow fallback
3418 * to other nodes. It may fail while we still have
3419 * objects on other nodes available.
3420 */
3421 ptr = ____cache_alloc(cachep, flags);
3422 if (ptr)
3423 goto out;
3424 }
3425 /* ___cache_alloc_node can fall back to other nodes */
3426 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3427 out:
3428 local_irq_restore(save_flags);
3429 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3430
3431 return ptr;
3432}
3433
3434static __always_inline void *
3435__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3436{
3437 void *objp;
3438
3439 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3440 objp = alternate_node_alloc(cache, flags);
3441 if (objp)
3442 goto out;
3443 }
3444 objp = ____cache_alloc(cache, flags);
3445
3446 /*
3447 * We may just have run out of memory on the local node.
3448 * ____cache_alloc_node() knows how to locate memory on other nodes
3449 */
3450 if (!objp)
3451 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3452
3453 out:
3454 return objp;
3455}
3456#else
3457
3458static __always_inline void *
3459__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3460{
3461 return ____cache_alloc(cachep, flags);
3462}
3463
3464#endif /* CONFIG_NUMA */
3465
3466static __always_inline void *
3467__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3468{
3469 unsigned long save_flags;
3470 void *objp;
3471
3472 cache_alloc_debugcheck_before(cachep, flags);
3473 local_irq_save(save_flags);
3474 objp = __do_cache_alloc(cachep, flags);
3475 local_irq_restore(save_flags);
3476 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3477 prefetchw(objp);
3478
3479 return objp;
3480}
Christoph Lametere498be72005-09-09 13:03:32 -07003481
3482/*
3483 * Caller needs to acquire correct kmem_list's list_lock
3484 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003485static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003486 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487{
3488 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003489 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003490
3491 for (i = 0; i < nr_objects; i++) {
3492 void *objp = objpp[i];
3493 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003495 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003496 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003497 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003498 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003500 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003502 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003503 check_slabp(cachep, slabp);
3504
3505 /* fixup slab chains */
3506 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003507 if (l3->free_objects > l3->free_limit) {
3508 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003509 /* No need to drop any previously held
3510 * lock here, even if we have a off-slab slab
3511 * descriptor it is guaranteed to come from
3512 * a different cache, refer to comments before
3513 * alloc_slabmgmt.
3514 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515 slab_destroy(cachep, slabp);
3516 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003517 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 }
3519 } else {
3520 /* Unconditionally move a slab to the end of the
3521 * partial list on free - maximum time for the
3522 * other objects to be freed, too.
3523 */
Christoph Lametere498be72005-09-09 13:03:32 -07003524 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525 }
3526 }
3527}
3528
Pekka Enberg343e0d72006-02-01 03:05:50 -08003529static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530{
3531 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003532 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003533 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534
3535 batchcount = ac->batchcount;
3536#if DEBUG
3537 BUG_ON(!batchcount || batchcount > ac->avail);
3538#endif
3539 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003540 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003541 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003542 if (l3->shared) {
3543 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003544 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545 if (max) {
3546 if (batchcount > max)
3547 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003548 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003549 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 shared_array->avail += batchcount;
3551 goto free_done;
3552 }
3553 }
3554
Christoph Lameterff694162005-09-22 21:44:02 -07003555 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003556free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557#if STATS
3558 {
3559 int i = 0;
3560 struct list_head *p;
3561
Christoph Lametere498be72005-09-09 13:03:32 -07003562 p = l3->slabs_free.next;
3563 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003564 struct slab *slabp;
3565
3566 slabp = list_entry(p, struct slab, list);
3567 BUG_ON(slabp->inuse);
3568
3569 i++;
3570 p = p->next;
3571 }
3572 STATS_SET_FREEABLE(cachep, i);
3573 }
3574#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003575 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003577 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578}
3579
3580/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003581 * Release an obj back to its cache. If the obj has a constructed state, it must
3582 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003584static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003585{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003586 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587
3588 check_irq_off();
3589 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3590
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003591 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003592 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003593
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 if (likely(ac->avail < ac->limit)) {
3595 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003596 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003597 return;
3598 } else {
3599 STATS_INC_FREEMISS(cachep);
3600 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003601 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602 }
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003614{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003615 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616}
3617EXPORT_SYMBOL(kmem_cache_alloc);
3618
3619/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003620 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003621 * @cache: The cache to allocate from.
3622 * @flags: See kmalloc().
3623 *
3624 * Allocate an object from this cache and set the allocated memory to zero.
3625 * The flags are only relevant if the cache has no available objects.
3626 */
3627void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3628{
3629 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3630 if (ret)
3631 memset(ret, 0, obj_size(cache));
3632 return ret;
3633}
3634EXPORT_SYMBOL(kmem_cache_zalloc);
3635
3636/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003637 * kmem_ptr_validate - check if an untrusted pointer might
3638 * be a slab entry.
3639 * @cachep: the cache we're checking against
3640 * @ptr: pointer to validate
3641 *
3642 * This verifies that the untrusted pointer looks sane:
3643 * it is _not_ a guarantee that the pointer is actually
3644 * part of the slab cache in question, but it at least
3645 * validates that the pointer can be dereferenced and
3646 * looks half-way sane.
3647 *
3648 * Currently only used for dentry validation.
3649 */
Christoph Lameterb7f869a22006-12-22 01:06:44 -08003650int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003651{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003652 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003653 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003654 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003655 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003656 struct page *page;
3657
3658 if (unlikely(addr < min_addr))
3659 goto out;
3660 if (unlikely(addr > (unsigned long)high_memory - size))
3661 goto out;
3662 if (unlikely(addr & align_mask))
3663 goto out;
3664 if (unlikely(!kern_addr_valid(addr)))
3665 goto out;
3666 if (unlikely(!kern_addr_valid(addr + size - 1)))
3667 goto out;
3668 page = virt_to_page(ptr);
3669 if (unlikely(!PageSlab(page)))
3670 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003671 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003672 goto out;
3673 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003674out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675 return 0;
3676}
3677
3678#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003679void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3680{
3681 return __cache_alloc_node(cachep, flags, nodeid,
3682 __builtin_return_address(0));
3683}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003684EXPORT_SYMBOL(kmem_cache_alloc_node);
3685
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003686static __always_inline void *
3687__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003688{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003689 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003690
3691 cachep = kmem_find_general_cachep(size, flags);
3692 if (unlikely(cachep == NULL))
3693 return NULL;
3694 return kmem_cache_alloc_node(cachep, flags, node);
3695}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003696
3697#ifdef CONFIG_DEBUG_SLAB
3698void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699{
3700 return __do_kmalloc_node(size, flags, node,
3701 __builtin_return_address(0));
3702}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003703EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003704
3705void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3706 int node, void *caller)
3707{
3708 return __do_kmalloc_node(size, flags, node, caller);
3709}
3710EXPORT_SYMBOL(__kmalloc_node_track_caller);
3711#else
3712void *__kmalloc_node(size_t size, gfp_t flags, int node)
3713{
3714 return __do_kmalloc_node(size, flags, node, NULL);
3715}
3716EXPORT_SYMBOL(__kmalloc_node);
3717#endif /* CONFIG_DEBUG_SLAB */
3718#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003719
3720/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003721 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003722 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003723 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003724 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003725 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003726static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003729 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003731 /* If you want to save a few bytes .text space: replace
3732 * __ with kmem_.
3733 * Then kmalloc uses the uninlined functions instead of the inline
3734 * functions.
3735 */
3736 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003737 if (unlikely(cachep == NULL))
3738 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003739 return __cache_alloc(cachep, flags, caller);
3740}
3741
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003742
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003743#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003744void *__kmalloc(size_t size, gfp_t flags)
3745{
Al Viro871751e2006-03-25 03:06:39 -08003746 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003747}
3748EXPORT_SYMBOL(__kmalloc);
3749
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003750void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3751{
3752 return __do_kmalloc(size, flags, caller);
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003755
3756#else
3757void *__kmalloc(size_t size, gfp_t flags)
3758{
3759 return __do_kmalloc(size, flags, NULL);
3760}
3761EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003762#endif
3763
Linus Torvalds1da177e2005-04-16 15:20:36 -07003764/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003765 * krealloc - reallocate memory. The contents will remain unchanged.
3766 *
3767 * @p: object to reallocate memory for.
3768 * @new_size: how many bytes of memory are required.
3769 * @flags: the type of memory to allocate.
3770 *
3771 * The contents of the object pointed to are preserved up to the
3772 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3773 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3774 * %NULL pointer, the object pointed to is freed.
3775 */
3776void *krealloc(const void *p, size_t new_size, gfp_t flags)
3777{
3778 struct kmem_cache *cache, *new_cache;
3779 void *ret;
3780
3781 if (unlikely(!p))
3782 return kmalloc_track_caller(new_size, flags);
3783
3784 if (unlikely(!new_size)) {
3785 kfree(p);
3786 return NULL;
3787 }
3788
3789 cache = virt_to_cache(p);
3790 new_cache = __find_general_cachep(new_size, flags);
3791
3792 /*
3793 * If new size fits in the current cache, bail out.
3794 */
3795 if (likely(cache == new_cache))
3796 return (void *)p;
3797
3798 /*
3799 * We are on the slow-path here so do not use __cache_alloc
3800 * because it bloats kernel text.
3801 */
3802 ret = kmalloc_track_caller(new_size, flags);
3803 if (ret) {
3804 memcpy(ret, p, min(new_size, ksize(p)));
3805 kfree(p);
3806 }
3807 return ret;
3808}
3809EXPORT_SYMBOL(krealloc);
3810
3811/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812 * kmem_cache_free - Deallocate an object
3813 * @cachep: The cache the allocation was from.
3814 * @objp: The previously allocated object.
3815 *
3816 * Free an object which was previously allocated from this
3817 * cache.
3818 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003819void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820{
3821 unsigned long flags;
3822
Pekka Enbergddc2e812006-06-23 02:03:40 -07003823 BUG_ON(virt_to_cache(objp) != cachep);
3824
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003826 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003827 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828 local_irq_restore(flags);
3829}
3830EXPORT_SYMBOL(kmem_cache_free);
3831
3832/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833 * kfree - free previously allocated memory
3834 * @objp: pointer returned by kmalloc.
3835 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003836 * If @objp is NULL, no operation is performed.
3837 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838 * Don't free memory not originally allocated by kmalloc()
3839 * or you will run into trouble.
3840 */
3841void kfree(const void *objp)
3842{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003843 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003844 unsigned long flags;
3845
3846 if (unlikely(!objp))
3847 return;
3848 local_irq_save(flags);
3849 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003850 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003851 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003852 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003853 local_irq_restore(flags);
3854}
3855EXPORT_SYMBOL(kfree);
3856
Pekka Enberg343e0d72006-02-01 03:05:50 -08003857unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003859 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003860}
3861EXPORT_SYMBOL(kmem_cache_size);
3862
Pekka Enberg343e0d72006-02-01 03:05:50 -08003863const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003864{
3865 return cachep->name;
3866}
3867EXPORT_SYMBOL_GPL(kmem_cache_name);
3868
Christoph Lametere498be72005-09-09 13:03:32 -07003869/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003870 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003871 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003872static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003873{
3874 int node;
3875 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003876 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003877 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003878
3879 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003880
Paul Menage3395ee02006-12-06 20:32:16 -08003881 if (use_alien_caches) {
3882 new_alien = alloc_alien_cache(node, cachep->limit);
3883 if (!new_alien)
3884 goto fail;
3885 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003886
Eric Dumazet63109842007-05-06 14:49:28 -07003887 new_shared = NULL;
3888 if (cachep->shared) {
3889 new_shared = alloc_arraycache(node,
Christoph Lameter0718dc22006-03-25 03:06:47 -08003890 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003891 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07003892 if (!new_shared) {
3893 free_alien_cache(new_alien);
3894 goto fail;
3895 }
Christoph Lameter0718dc22006-03-25 03:06:47 -08003896 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003897
Andrew Mortona737b3e2006-03-22 00:08:11 -08003898 l3 = cachep->nodelists[node];
3899 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003900 struct array_cache *shared = l3->shared;
3901
Christoph Lametere498be72005-09-09 13:03:32 -07003902 spin_lock_irq(&l3->list_lock);
3903
Christoph Lametercafeb022006-03-25 03:06:46 -08003904 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003905 free_block(cachep, shared->entry,
3906 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003907
Christoph Lametercafeb022006-03-25 03:06:46 -08003908 l3->shared = new_shared;
3909 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003910 l3->alien = new_alien;
3911 new_alien = NULL;
3912 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003913 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003914 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003915 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003916 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003917 free_alien_cache(new_alien);
3918 continue;
3919 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003920 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003921 if (!l3) {
3922 free_alien_cache(new_alien);
3923 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003924 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003925 }
Christoph Lametere498be72005-09-09 13:03:32 -07003926
3927 kmem_list3_init(l3);
3928 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003929 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003930 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003931 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003932 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003933 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003934 cachep->nodelists[node] = l3;
3935 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003936 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003937
Andrew Mortona737b3e2006-03-22 00:08:11 -08003938fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003939 if (!cachep->next.next) {
3940 /* Cache is not active yet. Roll back what we did */
3941 node--;
3942 while (node >= 0) {
3943 if (cachep->nodelists[node]) {
3944 l3 = cachep->nodelists[node];
3945
3946 kfree(l3->shared);
3947 free_alien_cache(l3->alien);
3948 kfree(l3);
3949 cachep->nodelists[node] = NULL;
3950 }
3951 node--;
3952 }
3953 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003954 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003955}
3956
Linus Torvalds1da177e2005-04-16 15:20:36 -07003957struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003958 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003959 struct array_cache *new[NR_CPUS];
3960};
3961
3962static void do_ccupdate_local(void *info)
3963{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003964 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003965 struct array_cache *old;
3966
3967 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003968 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003969
Linus Torvalds1da177e2005-04-16 15:20:36 -07003970 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3971 new->new[smp_processor_id()] = old;
3972}
3973
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003974/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003975static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3976 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003977{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003978 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003979 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003980
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003981 new = kzalloc(sizeof(*new), GFP_KERNEL);
3982 if (!new)
3983 return -ENOMEM;
3984
Christoph Lametere498be72005-09-09 13:03:32 -07003985 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003986 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003987 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003988 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003989 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003990 kfree(new->new[i]);
3991 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003992 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993 }
3994 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003995 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003996
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003997 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003998
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004000 cachep->batchcount = batchcount;
4001 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07004002 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004003
Christoph Lametere498be72005-09-09 13:03:32 -07004004 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004005 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 if (!ccold)
4007 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07004008 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07004009 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07004010 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004011 kfree(ccold);
4012 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004013 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004014 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015}
4016
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08004017/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004018static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004019{
4020 int err;
4021 int limit, shared;
4022
Andrew Mortona737b3e2006-03-22 00:08:11 -08004023 /*
4024 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025 * - create a LIFO ordering, i.e. return objects that are cache-warm
4026 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08004027 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028 * bufctl chains: array operations are cheaper.
4029 * The numbers are guessed, we should auto-tune as described by
4030 * Bonwick.
4031 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004032 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004033 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004034 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004035 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004036 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004038 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004039 limit = 54;
4040 else
4041 limit = 120;
4042
Andrew Mortona737b3e2006-03-22 00:08:11 -08004043 /*
4044 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045 * allocation behaviour: Most allocs on one cpu, most free operations
4046 * on another cpu. For these cases, an efficient object passing between
4047 * cpus is necessary. This is provided by a shared array. The array
4048 * replaces Bonwick's magazine layer.
4049 * On uniprocessor, it's functionally equivalent (but less efficient)
4050 * to a larger limit. Thus disabled by default.
4051 */
4052 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004053 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004054 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055
4056#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004057 /*
4058 * With debugging enabled, large batchcount lead to excessively long
4059 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004060 */
4061 if (limit > 32)
4062 limit = 32;
4063#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004064 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004065 if (err)
4066 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004067 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004068 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004069}
4070
Christoph Lameter1b552532006-03-22 00:09:07 -08004071/*
4072 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004073 * necessary. Note that the l3 listlock also protects the array_cache
4074 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004075 */
4076void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4077 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078{
4079 int tofree;
4080
Christoph Lameter1b552532006-03-22 00:09:07 -08004081 if (!ac || !ac->avail)
4082 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004083 if (ac->touched && !force) {
4084 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004085 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004086 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004087 if (ac->avail) {
4088 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4089 if (tofree > ac->avail)
4090 tofree = (ac->avail + 1) / 2;
4091 free_block(cachep, ac->entry, tofree, node);
4092 ac->avail -= tofree;
4093 memmove(ac->entry, &(ac->entry[tofree]),
4094 sizeof(void *) * ac->avail);
4095 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004096 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004097 }
4098}
4099
4100/**
4101 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004102 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103 *
4104 * Called from workqueue/eventd every few seconds.
4105 * Purpose:
4106 * - clear the per-cpu caches for this CPU.
4107 * - return freeable pages to the main free memory pool.
4108 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004109 * If we cannot acquire the cache chain mutex then just give up - we'll try
4110 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004112static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004113{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004114 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004115 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004116 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004117 struct delayed_work *work =
4118 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004119
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004120 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004121 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004122 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004123
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004124 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125 check_irq_on();
4126
Christoph Lameter35386e32006-03-22 00:09:05 -08004127 /*
4128 * We only take the l3 lock if absolutely necessary and we
4129 * have established with reasonable certainty that
4130 * we can do some work if the lock was obtained.
4131 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004132 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004133
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004134 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135
Christoph Lameteraab22072006-03-22 00:09:06 -08004136 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004137
Christoph Lameter35386e32006-03-22 00:09:05 -08004138 /*
4139 * These are racy checks but it does not matter
4140 * if we skip one check or scan twice.
4141 */
Christoph Lametere498be72005-09-09 13:03:32 -07004142 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004143 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004144
Christoph Lametere498be72005-09-09 13:03:32 -07004145 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146
Christoph Lameteraab22072006-03-22 00:09:06 -08004147 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004148
Christoph Lametered11d9e2006-06-30 01:55:45 -07004149 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004150 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004151 else {
4152 int freed;
4153
4154 freed = drain_freelist(searchp, l3, (l3->free_limit +
4155 5 * searchp->num - 1) / (5 * searchp->num));
4156 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004157 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004158next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004159 cond_resched();
4160 }
4161 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004162 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004163 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004164 refresh_cpu_vm_stats(smp_processor_id());
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004165out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004166 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004167 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004168}
4169
4170#ifdef CONFIG_PROC_FS
4171
Pekka Enberg85289f92006-01-08 01:00:36 -08004172static void print_slabinfo_header(struct seq_file *m)
4173{
4174 /*
4175 * Output format version, so at least we can change it
4176 * without _too_ many complaints.
4177 */
4178#if STATS
4179 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4180#else
4181 seq_puts(m, "slabinfo - version: 2.1\n");
4182#endif
4183 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4184 "<objperslab> <pagesperslab>");
4185 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4186 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4187#if STATS
4188 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004189 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004190 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4191#endif
4192 seq_putc(m, '\n');
4193}
4194
Linus Torvalds1da177e2005-04-16 15:20:36 -07004195static void *s_start(struct seq_file *m, loff_t *pos)
4196{
4197 loff_t n = *pos;
4198 struct list_head *p;
4199
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004200 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004201 if (!n)
4202 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 p = cache_chain.next;
4204 while (n--) {
4205 p = p->next;
4206 if (p == &cache_chain)
4207 return NULL;
4208 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004209 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210}
4211
4212static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4213{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004214 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004215 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004216 return cachep->next.next == &cache_chain ?
4217 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218}
4219
4220static void s_stop(struct seq_file *m, void *p)
4221{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004222 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004223}
4224
4225static int s_show(struct seq_file *m, void *p)
4226{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004227 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004228 struct slab *slabp;
4229 unsigned long active_objs;
4230 unsigned long num_objs;
4231 unsigned long active_slabs = 0;
4232 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004233 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004235 int node;
4236 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004237
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238 active_objs = 0;
4239 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004240 for_each_online_node(node) {
4241 l3 = cachep->nodelists[node];
4242 if (!l3)
4243 continue;
4244
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004245 check_irq_on();
4246 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004247
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004248 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004249 if (slabp->inuse != cachep->num && !error)
4250 error = "slabs_full accounting error";
4251 active_objs += cachep->num;
4252 active_slabs++;
4253 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004254 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004255 if (slabp->inuse == cachep->num && !error)
4256 error = "slabs_partial inuse accounting error";
4257 if (!slabp->inuse && !error)
4258 error = "slabs_partial/inuse accounting error";
4259 active_objs += slabp->inuse;
4260 active_slabs++;
4261 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004262 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004263 if (slabp->inuse && !error)
4264 error = "slabs_free/inuse accounting error";
4265 num_slabs++;
4266 }
4267 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004268 if (l3->shared)
4269 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004270
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004271 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004272 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004273 num_slabs += active_slabs;
4274 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004275 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004276 error = "free_objects accounting error";
4277
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004278 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004279 if (error)
4280 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4281
4282 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004283 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004284 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004285 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004286 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004287 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004288 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004289#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004290 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004291 unsigned long high = cachep->high_mark;
4292 unsigned long allocs = cachep->num_allocations;
4293 unsigned long grown = cachep->grown;
4294 unsigned long reaped = cachep->reaped;
4295 unsigned long errors = cachep->errors;
4296 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004297 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004298 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004299 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004300
Christoph Lametere498be72005-09-09 13:03:32 -07004301 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004302 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004303 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004304 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305 }
4306 /* cpu stats */
4307 {
4308 unsigned long allochit = atomic_read(&cachep->allochit);
4309 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4310 unsigned long freehit = atomic_read(&cachep->freehit);
4311 unsigned long freemiss = atomic_read(&cachep->freemiss);
4312
4313 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004314 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004315 }
4316#endif
4317 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 return 0;
4319}
4320
4321/*
4322 * slabinfo_op - iterator that generates /proc/slabinfo
4323 *
4324 * Output layout:
4325 * cache-name
4326 * num-active-objs
4327 * total-objs
4328 * object size
4329 * num-active-slabs
4330 * total-slabs
4331 * num-pages-per-slab
4332 * + further values on SMP and with statistics enabled
4333 */
4334
Helge Deller15ad7cd2006-12-06 20:40:36 -08004335const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004336 .start = s_start,
4337 .next = s_next,
4338 .stop = s_stop,
4339 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004340};
4341
4342#define MAX_SLABINFO_WRITE 128
4343/**
4344 * slabinfo_write - Tuning for the slab allocator
4345 * @file: unused
4346 * @buffer: user buffer
4347 * @count: data length
4348 * @ppos: unused
4349 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004350ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4351 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004352{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004353 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004354 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004355 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004356
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357 if (count > MAX_SLABINFO_WRITE)
4358 return -EINVAL;
4359 if (copy_from_user(&kbuf, buffer, count))
4360 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004361 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362
4363 tmp = strchr(kbuf, ' ');
4364 if (!tmp)
4365 return -EINVAL;
4366 *tmp = '\0';
4367 tmp++;
4368 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4369 return -EINVAL;
4370
4371 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004372 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004373 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004374 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004375 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004376 if (limit < 1 || batchcount < 1 ||
4377 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004378 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004379 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004380 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004381 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004382 }
4383 break;
4384 }
4385 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004386 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004387 if (res >= 0)
4388 res = count;
4389 return res;
4390}
Al Viro871751e2006-03-25 03:06:39 -08004391
4392#ifdef CONFIG_DEBUG_SLAB_LEAK
4393
4394static void *leaks_start(struct seq_file *m, loff_t *pos)
4395{
4396 loff_t n = *pos;
4397 struct list_head *p;
4398
4399 mutex_lock(&cache_chain_mutex);
4400 p = cache_chain.next;
4401 while (n--) {
4402 p = p->next;
4403 if (p == &cache_chain)
4404 return NULL;
4405 }
4406 return list_entry(p, struct kmem_cache, next);
4407}
4408
4409static inline int add_caller(unsigned long *n, unsigned long v)
4410{
4411 unsigned long *p;
4412 int l;
4413 if (!v)
4414 return 1;
4415 l = n[1];
4416 p = n + 2;
4417 while (l) {
4418 int i = l/2;
4419 unsigned long *q = p + 2 * i;
4420 if (*q == v) {
4421 q[1]++;
4422 return 1;
4423 }
4424 if (*q > v) {
4425 l = i;
4426 } else {
4427 p = q + 2;
4428 l -= i + 1;
4429 }
4430 }
4431 if (++n[1] == n[0])
4432 return 0;
4433 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4434 p[0] = v;
4435 p[1] = 1;
4436 return 1;
4437}
4438
4439static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4440{
4441 void *p;
4442 int i;
4443 if (n[0] == n[1])
4444 return;
4445 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4446 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4447 continue;
4448 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4449 return;
4450 }
4451}
4452
4453static void show_symbol(struct seq_file *m, unsigned long address)
4454{
4455#ifdef CONFIG_KALLSYMS
4456 char *modname;
4457 const char *name;
4458 unsigned long offset, size;
4459 char namebuf[KSYM_NAME_LEN+1];
4460
4461 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4462
4463 if (name) {
4464 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4465 if (modname)
4466 seq_printf(m, " [%s]", modname);
4467 return;
4468 }
4469#endif
4470 seq_printf(m, "%p", (void *)address);
4471}
4472
4473static int leaks_show(struct seq_file *m, void *p)
4474{
4475 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004476 struct slab *slabp;
4477 struct kmem_list3 *l3;
4478 const char *name;
4479 unsigned long *n = m->private;
4480 int node;
4481 int i;
4482
4483 if (!(cachep->flags & SLAB_STORE_USER))
4484 return 0;
4485 if (!(cachep->flags & SLAB_RED_ZONE))
4486 return 0;
4487
4488 /* OK, we can do it */
4489
4490 n[1] = 0;
4491
4492 for_each_online_node(node) {
4493 l3 = cachep->nodelists[node];
4494 if (!l3)
4495 continue;
4496
4497 check_irq_on();
4498 spin_lock_irq(&l3->list_lock);
4499
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004500 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004501 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004502 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004503 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004504 spin_unlock_irq(&l3->list_lock);
4505 }
4506 name = cachep->name;
4507 if (n[0] == n[1]) {
4508 /* Increase the buffer size */
4509 mutex_unlock(&cache_chain_mutex);
4510 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4511 if (!m->private) {
4512 /* Too bad, we are really out */
4513 m->private = n;
4514 mutex_lock(&cache_chain_mutex);
4515 return -ENOMEM;
4516 }
4517 *(unsigned long *)m->private = n[0] * 2;
4518 kfree(n);
4519 mutex_lock(&cache_chain_mutex);
4520 /* Now make sure this entry will be retried */
4521 m->count = m->size;
4522 return 0;
4523 }
4524 for (i = 0; i < n[1]; i++) {
4525 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4526 show_symbol(m, n[2*i+2]);
4527 seq_putc(m, '\n');
4528 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004529
Al Viro871751e2006-03-25 03:06:39 -08004530 return 0;
4531}
4532
Helge Deller15ad7cd2006-12-06 20:40:36 -08004533const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004534 .start = leaks_start,
4535 .next = s_next,
4536 .stop = s_stop,
4537 .show = leaks_show,
4538};
4539#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004540#endif
4541
Manfred Spraul00e145b2005-09-03 15:55:07 -07004542/**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004554size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004555{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004556 if (unlikely(objp == NULL))
4557 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004558
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004559 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004560}