blob: 5c2574989834a3580b981800bb7b3a2c428d67cc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800106#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800107#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700203typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned long next_reap;
296 int free_touched;
297 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800298 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametere498be72005-09-09 13:03:32 -0700313/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700316 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700317static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700318{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800319 extern void __bad_size(void);
320
Christoph Lametere498be72005-09-09 13:03:32 -0700321 if (__builtin_constant_p(size)) {
322 int i = 0;
323
324#define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800331 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700332 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800333 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
Pekka Enberg5295a742006-02-01 03:05:48 -0800340static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800347 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
Andrew Mortona737b3e2006-03-22 00:08:11 -0800353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700357 } while (0)
358
Andrew Mortona737b3e2006-03-22 00:08:11 -0800359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365
366/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800367 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700368 *
369 * manages a cache.
370 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800371
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800372struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800374 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800375/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800379
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800380 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800381/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383
Andrew Mortona737b3e2006-03-22 00:08:11 -0800384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800389 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Andrew Mortona737b3e2006-03-22 00:08:11 -0800394 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800395 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800396 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800398 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
403 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800406/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800407 const char *name;
408 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800410/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425#endif
426#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800427 /*
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
432 */
433 int obj_offset;
434 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#endif
436};
437
438#define CFLGS_OFF_SLAB (0x80000000UL)
439#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440
441#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800442/*
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100446 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 * which could lock up otherwise freeable slabs.
448 */
449#define REAPTIMEOUT_CPUC (2*HZ)
450#define REAPTIMEOUT_LIST3 (4*HZ)
451
452#if STATS
453#define STATS_INC_ACTIVE(x) ((x)->num_active++)
454#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456#define STATS_INC_GROWN(x) ((x)->grown++)
457#define STATS_INC_REAPED(x) ((x)->reaped++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800458#define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463#define STATS_INC_ERR(x) ((x)->errors++)
464#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700465#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800466#define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475#else
476#define STATS_INC_ACTIVE(x) do { } while (0)
477#define STATS_DEC_ACTIVE(x) do { } while (0)
478#define STATS_INC_ALLOCED(x) do { } while (0)
479#define STATS_INC_GROWN(x) do { } while (0)
480#define STATS_INC_REAPED(x) do { } while (0)
481#define STATS_SET_HIGH(x) do { } while (0)
482#define STATS_INC_ERR(x) do { } while (0)
483#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700484#define STATS_INC_NODEFREES(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800485#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486#define STATS_INC_ALLOCHIT(x) do { } while (0)
487#define STATS_INC_ALLOCMISS(x) do { } while (0)
488#define STATS_INC_FREEHIT(x) do { } while (0)
489#define STATS_INC_FREEMISS(x) do { } while (0)
490#endif
491
492#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -0800493/*
494 * Magic nums for obj red zoning.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495 * Placed in the first word before and the first word after an obj.
496 */
497#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
499
500/* ...and for poisoning */
501#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502#define POISON_FREE 0x6b /* for use-after-free poisoning */
503#define POISON_END 0xa5 /* end-byte of poisoning */
504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
593 return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598 page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
603 return (struct slab *)page->lru.prev;
604}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
608 struct page *page = virt_to_page(obj);
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_slab(page);
616}
617
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
624static inline unsigned int obj_to_index(struct kmem_cache *cache,
625 struct slab *slab, void *obj)
626{
627 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
628}
629
Andrew Mortona737b3e2006-03-22 00:08:11 -0800630/*
631 * These are the default caches for kmalloc. Custom caches can have other sizes.
632 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633struct cache_sizes malloc_sizes[] = {
634#define CACHE(x) { .cs_size = (x) },
635#include <linux/kmalloc_sizes.h>
636 CACHE(ULONG_MAX)
637#undef CACHE
638};
639EXPORT_SYMBOL(malloc_sizes);
640
641/* Must match cache_sizes above. Out of line to keep cache footprint low. */
642struct cache_names {
643 char *name;
644 char *name_dma;
645};
646
647static struct cache_names __initdata cache_names[] = {
648#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
649#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800650 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700651#undef CACHE
652};
653
654static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800657 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658
659/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800660static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 .batchcount = 1,
662 .limit = BOOT_CPUCACHE_ENTRIES,
663 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800664 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800665 .flags = SLAB_NO_REAP,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800666 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700667#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800668 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669#endif
670};
671
672/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800673static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674static struct list_head cache_chain;
675
676/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800677 * vm_enough_memory() looks at this to determine how many slab-allocated pages
678 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700679 *
680 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
681 */
682atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683
684/*
685 * chicken and egg problem: delay the per-cpu array allocation
686 * until the general caches are up.
687 */
688static enum {
689 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700690 PARTIAL_AC,
691 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 FULL
693} g_cpucache_up;
694
695static DEFINE_PER_CPU(struct work_struct, reap_work);
696
Andrew Mortona737b3e2006-03-22 00:08:11 -0800697static void free_block(struct kmem_cache *cachep, void **objpp, int len,
698 int node);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800699static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800700static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800701static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702
Pekka Enberg343e0d72006-02-01 03:05:50 -0800703static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700704{
705 return cachep->array[smp_processor_id()];
706}
707
Andrew Mortona737b3e2006-03-22 00:08:11 -0800708static inline struct kmem_cache *__find_general_cachep(size_t size,
709 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710{
711 struct cache_sizes *csizep = malloc_sizes;
712
713#if DEBUG
714 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800715 * kmem_cache_create(), or __kmalloc(), before
716 * the generic caches are initialized.
717 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700718 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719#endif
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
728 if (unlikely(gfpflags & GFP_DMA))
729 return csizep->cs_dmacachep;
730 return csizep->cs_cachep;
731}
732
Pekka Enberg343e0d72006-02-01 03:05:50 -0800733struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700734{
735 return __find_general_cachep(size, gfpflags);
736}
737EXPORT_SYMBOL(kmem_find_general_cachep);
738
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800739static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700740{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800741 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
742}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743
Andrew Mortona737b3e2006-03-22 00:08:11 -0800744/*
745 * Calculate the number of objects and left-over bytes for a given buffer size.
746 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800747static void cache_estimate(unsigned long gfporder, size_t buffer_size,
748 size_t align, int flags, size_t *left_over,
749 unsigned int *num)
750{
751 int nr_objs;
752 size_t mgmt_size;
753 size_t slab_size = PAGE_SIZE << gfporder;
754
755 /*
756 * The slab management structure can be either off the slab or
757 * on it. For the latter case, the memory allocated for a
758 * slab is used for:
759 *
760 * - The struct slab
761 * - One kmem_bufctl_t for each object
762 * - Padding to respect alignment of @align
763 * - @buffer_size bytes for each object
764 *
765 * If the slab management structure is off the slab, then the
766 * alignment will already be calculated into the size. Because
767 * the slabs are all pages aligned, the objects will be at the
768 * correct alignment when allocated.
769 */
770 if (flags & CFLGS_OFF_SLAB) {
771 mgmt_size = 0;
772 nr_objs = slab_size / buffer_size;
773
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776 } else {
777 /*
778 * Ignore padding for the initial guess. The padding
779 * is at most @align-1 bytes, and @buffer_size is at
780 * least @align. In the worst case, this result will
781 * be one greater than the number of objects that fit
782 * into the memory allocation when taking the padding
783 * into account.
784 */
785 nr_objs = (slab_size - sizeof(struct slab)) /
786 (buffer_size + sizeof(kmem_bufctl_t));
787
788 /*
789 * This calculated number will be either the right
790 * amount, or one greater than what we want.
791 */
792 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
793 > slab_size)
794 nr_objs--;
795
796 if (nr_objs > SLAB_LIMIT)
797 nr_objs = SLAB_LIMIT;
798
799 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800801 *num = nr_objs;
802 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803}
804
805#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
806
Andrew Mortona737b3e2006-03-22 00:08:11 -0800807static void __slab_error(const char *function, struct kmem_cache *cachep,
808 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809{
810 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800811 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812 dump_stack();
813}
814
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800815#ifdef CONFIG_NUMA
816/*
817 * Special reaping functions for NUMA systems called from cache_reap().
818 * These take care of doing round robin flushing of alien caches (containing
819 * objects freed on different nodes from which they were allocated) and the
820 * flushing of remote pcps by calling drain_node_pages.
821 */
822static DEFINE_PER_CPU(unsigned long, reap_node);
823
824static void init_reap_node(int cpu)
825{
826 int node;
827
828 node = next_node(cpu_to_node(cpu), node_online_map);
829 if (node == MAX_NUMNODES)
830 node = 0;
831
832 __get_cpu_var(reap_node) = node;
833}
834
835static void next_reap_node(void)
836{
837 int node = __get_cpu_var(reap_node);
838
839 /*
840 * Also drain per cpu pages on remote zones
841 */
842 if (node != numa_node_id())
843 drain_node_pages(node);
844
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
848 __get_cpu_var(reap_node) = node;
849}
850
851#else
852#define init_reap_node(cpu) do { } while (0)
853#define next_reap_node(void) do { } while (0)
854#endif
855
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856/*
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
862 */
863static void __devinit start_cpu_timer(int cpu)
864{
865 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
866
867 /*
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
871 */
872 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800873 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 INIT_WORK(reap_work, cache_reap, NULL);
875 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
876 }
877}
878
Christoph Lametere498be72005-09-09 13:03:32 -0700879static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800880 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800882 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883 struct array_cache *nc = NULL;
884
Christoph Lametere498be72005-09-09 13:03:32 -0700885 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886 if (nc) {
887 nc->avail = 0;
888 nc->limit = entries;
889 nc->batchcount = batchcount;
890 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700891 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892 }
893 return nc;
894}
895
Christoph Lametere498be72005-09-09 13:03:32 -0700896#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800897static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800898
Pekka Enberg5295a742006-02-01 03:05:48 -0800899static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700900{
901 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800902 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700903 int i;
904
905 if (limit > 1)
906 limit = 12;
907 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
908 if (ac_ptr) {
909 for_each_node(i) {
910 if (i == node || !node_online(i)) {
911 ac_ptr[i] = NULL;
912 continue;
913 }
914 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
915 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800916 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700917 kfree(ac_ptr[i]);
918 kfree(ac_ptr);
919 return NULL;
920 }
921 }
922 }
923 return ac_ptr;
924}
925
Pekka Enberg5295a742006-02-01 03:05:48 -0800926static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700927{
928 int i;
929
930 if (!ac_ptr)
931 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700932 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800933 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700934 kfree(ac_ptr);
935}
936
Pekka Enberg343e0d72006-02-01 03:05:50 -0800937static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800938 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700939{
940 struct kmem_list3 *rl3 = cachep->nodelists[node];
941
942 if (ac->avail) {
943 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700944 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700945 ac->avail = 0;
946 spin_unlock(&rl3->list_lock);
947 }
948}
949
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800950/*
951 * Called from cache_reap() to regularly drain alien caches round robin.
952 */
953static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
954{
955 int node = __get_cpu_var(reap_node);
956
957 if (l3->alien) {
958 struct array_cache *ac = l3->alien[node];
959 if (ac && ac->avail) {
960 spin_lock_irq(&ac->lock);
961 __drain_alien_cache(cachep, ac, node);
962 spin_unlock_irq(&ac->lock);
963 }
964 }
965}
966
Andrew Mortona737b3e2006-03-22 00:08:11 -0800967static void drain_alien_cache(struct kmem_cache *cachep,
968 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -0700969{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800970 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700971 struct array_cache *ac;
972 unsigned long flags;
973
974 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800975 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -0700976 if (ac) {
977 spin_lock_irqsave(&ac->lock, flags);
978 __drain_alien_cache(cachep, ac, i);
979 spin_unlock_irqrestore(&ac->lock, flags);
980 }
981 }
982}
983#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800984
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800985#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800986#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800987
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800988static inline struct array_cache **alloc_alien_cache(int node, int limit)
989{
990 return (struct array_cache **) 0x01020304ul;
991}
992
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800993static inline void free_alien_cache(struct array_cache **ac_ptr)
994{
995}
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800996
Christoph Lametere498be72005-09-09 13:03:32 -0700997#endif
998
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001000 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001001{
1002 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001003 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001004 struct kmem_list3 *l3 = NULL;
1005 int node = cpu_to_node(cpu);
1006 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007
1008 switch (action) {
1009 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001010 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001011 /*
1012 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001013 * alloc_arraycache's are going to use this list.
1014 * kmalloc_node allows us to add the slab to the right
1015 * kmem_list3 and not this cpu's kmem_list3
1016 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017
Christoph Lametere498be72005-09-09 13:03:32 -07001018 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001019 /*
1020 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001021 * begin anything. Make sure some other cpu on this
1022 * node has not already allocated this
1023 */
1024 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001025 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1026 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001027 goto bad;
1028 kmem_list3_init(l3);
1029 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001030 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001031
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001032 /*
1033 * The l3s don't come and go as CPUs come and
1034 * go. cache_chain_mutex is sufficient
1035 * protection here.
1036 */
Christoph Lametere498be72005-09-09 13:03:32 -07001037 cachep->nodelists[node] = l3;
1038 }
1039
1040 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1041 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001042 (1 + nr_cpus_node(node)) *
1043 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001044 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1045 }
1046
Andrew Mortona737b3e2006-03-22 00:08:11 -08001047 /*
1048 * Now we can go ahead with allocating the shared arrays and
1049 * array caches
1050 */
Christoph Lametere498be72005-09-09 13:03:32 -07001051 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001052 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001053 struct array_cache *shared;
1054 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001055
Christoph Lametere498be72005-09-09 13:03:32 -07001056 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001057 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058 if (!nc)
1059 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001060 shared = alloc_arraycache(node,
1061 cachep->shared * cachep->batchcount,
1062 0xbaadf00d);
1063 if (!shared)
1064 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001065
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001066 alien = alloc_alien_cache(node, cachep->limit);
1067 if (!alien)
1068 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001070 l3 = cachep->nodelists[node];
1071 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001072
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001073 spin_lock_irq(&l3->list_lock);
1074 if (!l3->shared) {
1075 /*
1076 * We are serialised from CPU_DEAD or
1077 * CPU_UP_CANCELLED by the cpucontrol lock
1078 */
1079 l3->shared = shared;
1080 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001081 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001082#ifdef CONFIG_NUMA
1083 if (!l3->alien) {
1084 l3->alien = alien;
1085 alien = NULL;
1086 }
1087#endif
1088 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001089 kfree(shared);
1090 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001092 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093 break;
1094 case CPU_ONLINE:
1095 start_cpu_timer(cpu);
1096 break;
1097#ifdef CONFIG_HOTPLUG_CPU
1098 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001099 /*
1100 * Even if all the cpus of a node are down, we don't free the
1101 * kmem_list3 of any cache. This to avoid a race between
1102 * cpu_down, and a kmalloc allocation from another cpu for
1103 * memory from the node of the cpu going down. The list3
1104 * structure is usually allocated from kmem_cache_create() and
1105 * gets destroyed at kmem_cache_destroy().
1106 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107 /* fall thru */
1108 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001109 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110 list_for_each_entry(cachep, &cache_chain, next) {
1111 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001112 struct array_cache *shared;
1113 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001114 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115
Christoph Lametere498be72005-09-09 13:03:32 -07001116 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001120 l3 = cachep->nodelists[node];
1121
1122 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001123 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001124
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001125 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001126
1127 /* Free limit for this kmem_list3 */
1128 l3->free_limit -= cachep->batchcount;
1129 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001130 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001131
1132 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001133 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001134 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001135 }
Christoph Lametere498be72005-09-09 13:03:32 -07001136
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001137 shared = l3->shared;
1138 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001139 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001140 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001141 l3->shared = NULL;
1142 }
Christoph Lametere498be72005-09-09 13:03:32 -07001143
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001144 alien = l3->alien;
1145 l3->alien = NULL;
1146
1147 spin_unlock_irq(&l3->list_lock);
1148
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001153 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001154free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155 kfree(nc);
1156 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001157 /*
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1161 */
1162 list_for_each_entry(cachep, &cache_chain, next) {
1163 l3 = cachep->nodelists[node];
1164 if (!l3)
1165 continue;
1166 spin_lock_irq(&l3->list_lock);
1167 /* free slabs belonging to this node */
1168 __node_shrink(cachep, node);
1169 spin_unlock_irq(&l3->list_lock);
1170 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001171 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 break;
1173#endif
1174 }
1175 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001176bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001177 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 return NOTIFY_BAD;
1179}
1180
1181static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1182
Christoph Lametere498be72005-09-09 13:03:32 -07001183/*
1184 * swap the static kmem_list3 with kmalloced memory
1185 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001186static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1187 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001188{
1189 struct kmem_list3 *ptr;
1190
1191 BUG_ON(cachep->nodelists[nodeid] != list);
1192 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1193 BUG_ON(!ptr);
1194
1195 local_irq_disable();
1196 memcpy(ptr, list, sizeof(struct kmem_list3));
1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 cachep->nodelists[nodeid] = ptr;
1199 local_irq_enable();
1200}
1201
Andrew Mortona737b3e2006-03-22 00:08:11 -08001202/*
1203 * Initialisation. Called after the page allocator have been initialised and
1204 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 */
1206void __init kmem_cache_init(void)
1207{
1208 size_t left_over;
1209 struct cache_sizes *sizes;
1210 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001211 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001212 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001213
1214 for (i = 0; i < NUM_INIT_LISTS; i++) {
1215 kmem_list3_init(&initkmem_list3[i]);
1216 if (i < MAX_NUMNODES)
1217 cache_cache.nodelists[i] = NULL;
1218 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219
1220 /*
1221 * Fragmentation resistance on low memory - only use bigger
1222 * page orders on machines with more than 32MB of memory.
1223 */
1224 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1225 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1226
Linus Torvalds1da177e2005-04-16 15:20:36 -07001227 /* Bootstrap is tricky, because several objects are allocated
1228 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001229 * 1) initialize the cache_cache cache: it contains the struct
1230 * kmem_cache structures of all caches, except cache_cache itself:
1231 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001232 * Initially an __init data area is used for the head array and the
1233 * kmem_list3 structures, it's replaced with a kmalloc allocated
1234 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001236 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001237 * An __init data area is used for the head array.
1238 * 3) Create the remaining kmalloc caches, with minimally sized
1239 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001240 * 4) Replace the __init data head arrays for cache_cache and the first
1241 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001242 * 5) Replace the __init data for kmem_list3 for cache_cache and
1243 * the other cache's with kmalloc allocated memory.
1244 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 */
1246
1247 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 INIT_LIST_HEAD(&cache_chain);
1249 list_add(&cache_cache.next, &cache_chain);
1250 cache_cache.colour_off = cache_line_size();
1251 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001252 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001253
Andrew Mortona737b3e2006-03-22 00:08:11 -08001254 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1255 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256
Jack Steiner07ed76b2006-03-07 21:55:46 -08001257 for (order = 0; order < MAX_ORDER; order++) {
1258 cache_estimate(order, cache_cache.buffer_size,
1259 cache_line_size(), 0, &left_over, &cache_cache.num);
1260 if (cache_cache.num)
1261 break;
1262 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263 if (!cache_cache.num)
1264 BUG();
Jack Steiner07ed76b2006-03-07 21:55:46 -08001265 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001266 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001267 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1268 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001269
1270 /* 2+3) create the kmalloc caches */
1271 sizes = malloc_sizes;
1272 names = cache_names;
1273
Andrew Mortona737b3e2006-03-22 00:08:11 -08001274 /*
1275 * Initialize the caches that provide memory for the array cache and the
1276 * kmem_list3 structures first. Without this, further allocations will
1277 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001278 */
1279
1280 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001281 sizes[INDEX_AC].cs_size,
1282 ARCH_KMALLOC_MINALIGN,
1283 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1284 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001285
Andrew Mortona737b3e2006-03-22 00:08:11 -08001286 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001287 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001288 kmem_cache_create(names[INDEX_L3].name,
1289 sizes[INDEX_L3].cs_size,
1290 ARCH_KMALLOC_MINALIGN,
1291 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1292 NULL, NULL);
1293 }
Christoph Lametere498be72005-09-09 13:03:32 -07001294
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001296 /*
1297 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 * This should be particularly beneficial on SMP boxes, as it
1299 * eliminates "false sharing".
1300 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001301 * allow tighter packing of the smaller caches.
1302 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001303 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001304 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001305 sizes->cs_size,
1306 ARCH_KMALLOC_MINALIGN,
1307 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1308 NULL, NULL);
1309 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310
1311 /* Inc off-slab bufctl limit until the ceiling is hit. */
1312 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001313 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314 offslab_limit /= sizeof(kmem_bufctl_t);
1315 }
1316
1317 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001318 sizes->cs_size,
1319 ARCH_KMALLOC_MINALIGN,
1320 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1321 SLAB_PANIC,
1322 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323 sizes++;
1324 names++;
1325 }
1326 /* 4) Replace the bootstrap head arrays */
1327 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001328 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001329
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001331
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001333 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1334 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001335 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336 cache_cache.array[smp_processor_id()] = ptr;
1337 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001338
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001340
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001342 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001343 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001344 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001345 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001346 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001347 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348 local_irq_enable();
1349 }
Christoph Lametere498be72005-09-09 13:03:32 -07001350 /* 5) Replace the bootstrap kmem_list3's */
1351 {
1352 int node;
1353 /* Replace the static kmem_list3 structures for the boot cpu */
1354 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001355 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356
Christoph Lametere498be72005-09-09 13:03:32 -07001357 for_each_online_node(node) {
1358 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001359 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001360
1361 if (INDEX_AC != INDEX_L3) {
1362 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001363 &initkmem_list3[SIZE_L3 + node],
1364 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001365 }
1366 }
1367 }
1368
1369 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001371 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001372 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001373 list_for_each_entry(cachep, &cache_chain, next)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001374 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001375 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376 }
1377
1378 /* Done! */
1379 g_cpucache_up = FULL;
1380
Andrew Mortona737b3e2006-03-22 00:08:11 -08001381 /*
1382 * Register a cpu startup notifier callback that initializes
1383 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384 */
1385 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386
Andrew Mortona737b3e2006-03-22 00:08:11 -08001387 /*
1388 * The reap timers are started later, with a module init call: That part
1389 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 */
1391}
1392
1393static int __init cpucache_init(void)
1394{
1395 int cpu;
1396
Andrew Mortona737b3e2006-03-22 00:08:11 -08001397 /*
1398 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399 */
Christoph Lametere498be72005-09-09 13:03:32 -07001400 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001401 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402 return 0;
1403}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001404__initcall(cpucache_init);
1405
1406/*
1407 * Interface to system's page allocator. No need to hold the cache-lock.
1408 *
1409 * If we requested dmaable memory, we will get it. Even if we
1410 * did not request dmaable memory, we might get it, but that
1411 * would be relatively rare and ignorable.
1412 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001413static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414{
1415 struct page *page;
1416 void *addr;
1417 int i;
1418
1419 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001420 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 if (!page)
1422 return NULL;
1423 addr = page_address(page);
1424
1425 i = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 atomic_add(i, &slab_reclaim_pages);
1428 add_page_state(nr_slab, i);
1429 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001430 __SetPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 page++;
1432 }
1433 return addr;
1434}
1435
1436/*
1437 * Interface to system's page release.
1438 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001439static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001441 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442 struct page *page = virt_to_page(addr);
1443 const unsigned long nr_freed = i;
1444
1445 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001446 BUG_ON(!PageSlab(page));
1447 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448 page++;
1449 }
1450 sub_page_state(nr_slab, nr_freed);
1451 if (current->reclaim_state)
1452 current->reclaim_state->reclaimed_slab += nr_freed;
1453 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001454 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1455 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001456}
1457
1458static void kmem_rcu_free(struct rcu_head *head)
1459{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001460 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001461 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462
1463 kmem_freepages(cachep, slab_rcu->addr);
1464 if (OFF_SLAB(cachep))
1465 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1466}
1467
1468#if DEBUG
1469
1470#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001471static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001472 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001474 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001476 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001478 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479 return;
1480
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001481 *addr++ = 0x12345678;
1482 *addr++ = caller;
1483 *addr++ = smp_processor_id();
1484 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485 {
1486 unsigned long *sptr = &caller;
1487 unsigned long svalue;
1488
1489 while (!kstack_end(sptr)) {
1490 svalue = *sptr++;
1491 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001492 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 size -= sizeof(unsigned long);
1494 if (size <= sizeof(unsigned long))
1495 break;
1496 }
1497 }
1498
1499 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001500 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501}
1502#endif
1503
Pekka Enberg343e0d72006-02-01 03:05:50 -08001504static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001505{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001506 int size = obj_size(cachep);
1507 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508
1509 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001510 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511}
1512
1513static void dump_line(char *data, int offset, int limit)
1514{
1515 int i;
1516 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001517 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001518 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 printk("\n");
1520}
1521#endif
1522
1523#if DEBUG
1524
Pekka Enberg343e0d72006-02-01 03:05:50 -08001525static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526{
1527 int i, size;
1528 char *realobj;
1529
1530 if (cachep->flags & SLAB_RED_ZONE) {
1531 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001532 *dbg_redzone1(cachep, objp),
1533 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 }
1535
1536 if (cachep->flags & SLAB_STORE_USER) {
1537 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001538 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001540 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001541 printk("\n");
1542 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001543 realobj = (char *)objp + obj_offset(cachep);
1544 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001545 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546 int limit;
1547 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001548 if (i + limit > size)
1549 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550 dump_line(realobj, i, limit);
1551 }
1552}
1553
Pekka Enberg343e0d72006-02-01 03:05:50 -08001554static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555{
1556 char *realobj;
1557 int size, i;
1558 int lines = 0;
1559
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001560 realobj = (char *)objp + obj_offset(cachep);
1561 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001563 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001565 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 exp = POISON_END;
1567 if (realobj[i] != exp) {
1568 int limit;
1569 /* Mismatch ! */
1570 /* Print header */
1571 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001572 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001573 "Slab corruption: start=%p, len=%d\n",
1574 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575 print_objinfo(cachep, objp, 0);
1576 }
1577 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001578 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001580 if (i + limit > size)
1581 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001582 dump_line(realobj, i, limit);
1583 i += 16;
1584 lines++;
1585 /* Limit to 5 lines */
1586 if (lines > 5)
1587 break;
1588 }
1589 }
1590 if (lines != 0) {
1591 /* Print some data about the neighboring objects, if they
1592 * exist:
1593 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001594 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001595 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001597 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001599 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001600 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001602 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603 print_objinfo(cachep, objp, 2);
1604 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001605 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001606 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001607 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001608 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001609 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610 print_objinfo(cachep, objp, 2);
1611 }
1612 }
1613}
1614#endif
1615
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001617/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001618 * slab_destroy_objs - destroy a slab and its objects
1619 * @cachep: cache pointer being destroyed
1620 * @slabp: slab pointer being destroyed
1621 *
1622 * Call the registered destructor for each object in a slab that is being
1623 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001624 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001625static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001626{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627 int i;
1628 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001629 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630
1631 if (cachep->flags & SLAB_POISON) {
1632#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001633 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1634 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001635 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001636 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 else
1638 check_poison_obj(cachep, objp);
1639#else
1640 check_poison_obj(cachep, objp);
1641#endif
1642 }
1643 if (cachep->flags & SLAB_RED_ZONE) {
1644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1645 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001646 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1648 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001649 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650 }
1651 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001652 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001653 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001654}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001656static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001657{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658 if (cachep->dtor) {
1659 int i;
1660 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001661 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001662 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663 }
1664 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001665}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666#endif
1667
Randy Dunlap911851e2006-03-22 00:08:14 -08001668/**
1669 * slab_destroy - destroy and release all objects in a slab
1670 * @cachep: cache pointer being destroyed
1671 * @slabp: slab pointer being destroyed
1672 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001673 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001674 * Before calling the slab must have been unlinked from the cache. The
1675 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001676 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001677static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001678{
1679 void *addr = slabp->s_mem - slabp->colouroff;
1680
1681 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001682 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1683 struct slab_rcu *slab_rcu;
1684
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001685 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 slab_rcu->cachep = cachep;
1687 slab_rcu->addr = addr;
1688 call_rcu(&slab_rcu->head, kmem_rcu_free);
1689 } else {
1690 kmem_freepages(cachep, addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slabp);
1693 }
1694}
1695
Andrew Mortona737b3e2006-03-22 00:08:11 -08001696/*
1697 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1698 * size of kmem_list3.
1699 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001700static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001701{
1702 int node;
1703
1704 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001705 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001706 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001707 REAPTIMEOUT_LIST3 +
1708 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001709 }
1710}
1711
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001713 * calculate_slab_order - calculate size (page order) of slabs
1714 * @cachep: pointer to the cache that is being created
1715 * @size: size of objects to be created in this cache.
1716 * @align: required alignment for the objects.
1717 * @flags: slab allocation flags
1718 *
1719 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001720 *
1721 * This could be made much more intelligent. For now, try to avoid using
1722 * high order pages for slabs. When the gfp() functions are more friendly
1723 * towards high-order requests, this should be changed.
1724 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001725static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001726 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001727{
1728 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001729 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001730
Andrew Mortona737b3e2006-03-22 00:08:11 -08001731 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001732 unsigned int num;
1733 size_t remainder;
1734
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001735 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001736 if (!num)
1737 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001738
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001739 /* More than offslab_limit objects will cause problems */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001740 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001741 break;
1742
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001743 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001744 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001745 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001746 left_over = remainder;
1747
1748 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001749 * A VFS-reclaimable slab tends to have most allocations
1750 * as GFP_NOFS and we really don't want to have to be allocating
1751 * higher-order pages when we are unable to shrink dcache.
1752 */
1753 if (flags & SLAB_RECLAIM_ACCOUNT)
1754 break;
1755
1756 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001757 * Large number of objects is good, but very large slabs are
1758 * currently bad for the gfp()s.
1759 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001760 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001761 break;
1762
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001763 /*
1764 * Acceptable internal fragmentation?
1765 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001766 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001767 break;
1768 }
1769 return left_over;
1770}
1771
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001772static void setup_cpu_cache(struct kmem_cache *cachep)
1773{
1774 if (g_cpucache_up == FULL) {
1775 enable_cpucache(cachep);
1776 return;
1777 }
1778 if (g_cpucache_up == NONE) {
1779 /*
1780 * Note: the first kmem_cache_create must create the cache
1781 * that's used by kmalloc(24), otherwise the creation of
1782 * further caches will BUG().
1783 */
1784 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1785
1786 /*
1787 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1788 * the first cache, then we need to set up all its list3s,
1789 * otherwise the creation of further caches will BUG().
1790 */
1791 set_up_list3s(cachep, SIZE_AC);
1792 if (INDEX_AC == INDEX_L3)
1793 g_cpucache_up = PARTIAL_L3;
1794 else
1795 g_cpucache_up = PARTIAL_AC;
1796 } else {
1797 cachep->array[smp_processor_id()] =
1798 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1799
1800 if (g_cpucache_up == PARTIAL_AC) {
1801 set_up_list3s(cachep, SIZE_L3);
1802 g_cpucache_up = PARTIAL_L3;
1803 } else {
1804 int node;
1805 for_each_online_node(node) {
1806 cachep->nodelists[node] =
1807 kmalloc_node(sizeof(struct kmem_list3),
1808 GFP_KERNEL, node);
1809 BUG_ON(!cachep->nodelists[node]);
1810 kmem_list3_init(cachep->nodelists[node]);
1811 }
1812 }
1813 }
1814 cachep->nodelists[numa_node_id()]->next_reap =
1815 jiffies + REAPTIMEOUT_LIST3 +
1816 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1817
1818 cpu_cache_get(cachep)->avail = 0;
1819 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1820 cpu_cache_get(cachep)->batchcount = 1;
1821 cpu_cache_get(cachep)->touched = 0;
1822 cachep->batchcount = 1;
1823 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1824}
1825
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001826/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 * kmem_cache_create - Create a cache.
1828 * @name: A string which is used in /proc/slabinfo to identify this cache.
1829 * @size: The size of objects to be created in this cache.
1830 * @align: The required alignment for the objects.
1831 * @flags: SLAB flags
1832 * @ctor: A constructor for the objects.
1833 * @dtor: A destructor for the objects.
1834 *
1835 * Returns a ptr to the cache on success, NULL on failure.
1836 * Cannot be called within a int, but can be interrupted.
1837 * The @ctor is run when new pages are allocated by the cache
1838 * and the @dtor is run before the pages are handed back.
1839 *
1840 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001841 * the module calling this has to destroy the cache before getting unloaded.
1842 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843 * The flags are
1844 *
1845 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1846 * to catch references to uninitialised memory.
1847 *
1848 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1849 * for buffer overruns.
1850 *
1851 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1852 * memory pressure.
1853 *
1854 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1855 * cacheline. This can be beneficial if you're counting cycles as closely
1856 * as davem.
1857 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001858struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001859kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001860 unsigned long flags,
1861 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08001862 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863{
1864 size_t left_over, slab_size, ralign;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001865 struct kmem_cache *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001866 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867
1868 /*
1869 * Sanity checks... these are all serious usage bugs.
1870 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001871 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001872 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001873 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1874 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001875 BUG();
1876 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08001878 /*
1879 * Prevent CPUs from coming and going.
1880 * lock_cpu_hotplug() nests outside cache_chain_mutex
1881 */
1882 lock_cpu_hotplug();
1883
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001884 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001885
1886 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001887 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001888 mm_segment_t old_fs = get_fs();
1889 char tmp;
1890 int res;
1891
1892 /*
1893 * This happens when the module gets unloaded and doesn't
1894 * destroy its slab cache and no-one else reuses the vmalloc
1895 * area of the module. Print a warning.
1896 */
1897 set_fs(KERNEL_DS);
1898 res = __get_user(tmp, pc->name);
1899 set_fs(old_fs);
1900 if (res) {
1901 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001902 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001903 continue;
1904 }
1905
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001906 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001907 printk("kmem_cache_create: duplicate cache %s\n", name);
1908 dump_stack();
1909 goto oops;
1910 }
1911 }
1912
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913#if DEBUG
1914 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1915 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1916 /* No constructor, but inital state check requested */
1917 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001918 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 flags &= ~SLAB_DEBUG_INITIAL;
1920 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921#if FORCED_DEBUG
1922 /*
1923 * Enable redzoning and last user accounting, except for caches with
1924 * large objects, if the increased size would increase the object size
1925 * above the next power of two: caches with object sizes just above a
1926 * power of two have a significant amount of internal fragmentation.
1927 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001928 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001929 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001930 if (!(flags & SLAB_DESTROY_BY_RCU))
1931 flags |= SLAB_POISON;
1932#endif
1933 if (flags & SLAB_DESTROY_BY_RCU)
1934 BUG_ON(flags & SLAB_POISON);
1935#endif
1936 if (flags & SLAB_DESTROY_BY_RCU)
1937 BUG_ON(dtor);
1938
1939 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08001940 * Always checks flags, a caller might be expecting debug support which
1941 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 */
1943 if (flags & ~CREATE_MASK)
1944 BUG();
1945
Andrew Mortona737b3e2006-03-22 00:08:11 -08001946 /*
1947 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 * unaligned accesses for some archs when redzoning is used, and makes
1949 * sure any on-slab bufctl's are also correctly aligned.
1950 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001951 if (size & (BYTES_PER_WORD - 1)) {
1952 size += (BYTES_PER_WORD - 1);
1953 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954 }
1955
Andrew Mortona737b3e2006-03-22 00:08:11 -08001956 /* calculate the final buffer alignment: */
1957
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 /* 1) arch recommendation: can be overridden for debug */
1959 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001960 /*
1961 * Default alignment: as specified by the arch code. Except if
1962 * an object is really small, then squeeze multiple objects into
1963 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964 */
1965 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001966 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001967 ralign /= 2;
1968 } else {
1969 ralign = BYTES_PER_WORD;
1970 }
1971 /* 2) arch mandated alignment: disables debug if necessary */
1972 if (ralign < ARCH_SLAB_MINALIGN) {
1973 ralign = ARCH_SLAB_MINALIGN;
1974 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001975 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 }
1977 /* 3) caller mandated alignment: disables debug if necessary */
1978 if (ralign < align) {
1979 ralign = align;
1980 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001981 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001982 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08001983 /*
1984 * 4) Store it. Note that the debug code below can reduce
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 * the alignment to BYTES_PER_WORD.
1986 */
1987 align = ralign;
1988
1989 /* Get cache's description obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001990 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001992 goto oops;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001993 memset(cachep, 0, sizeof(struct kmem_cache));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001994
1995#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001996 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997
1998 if (flags & SLAB_RED_ZONE) {
1999 /* redzoning only works with word aligned caches */
2000 align = BYTES_PER_WORD;
2001
2002 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002003 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002004 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 }
2006 if (flags & SLAB_STORE_USER) {
2007 /* user store requires word alignment and
2008 * one word storage behind the end of the real
2009 * object.
2010 */
2011 align = BYTES_PER_WORD;
2012 size += BYTES_PER_WORD;
2013 }
2014#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002015 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002016 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2017 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018 size = PAGE_SIZE;
2019 }
2020#endif
2021#endif
2022
2023 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002024 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025 /*
2026 * Size is large, assume best to place the slab management obj
2027 * off-slab (should allow better packing of objs).
2028 */
2029 flags |= CFLGS_OFF_SLAB;
2030
2031 size = ALIGN(size, align);
2032
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002033 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002034
2035 if (!cachep->num) {
2036 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2037 kmem_cache_free(&cache_cache, cachep);
2038 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002039 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002041 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2042 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043
2044 /*
2045 * If the slab has been placed off-slab, and we have enough space then
2046 * move it on-slab. This is at the expense of any extra colouring.
2047 */
2048 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2049 flags &= ~CFLGS_OFF_SLAB;
2050 left_over -= slab_size;
2051 }
2052
2053 if (flags & CFLGS_OFF_SLAB) {
2054 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002055 slab_size =
2056 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 }
2058
2059 cachep->colour_off = cache_line_size();
2060 /* Offset must be a multiple of the alignment. */
2061 if (cachep->colour_off < align)
2062 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002063 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064 cachep->slab_size = slab_size;
2065 cachep->flags = flags;
2066 cachep->gfpflags = 0;
2067 if (flags & SLAB_CACHE_DMA)
2068 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002069 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070
2071 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07002072 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073 cachep->ctor = ctor;
2074 cachep->dtor = dtor;
2075 cachep->name = name;
2076
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002078 setup_cpu_cache(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080 /* cache setup completed, link it into the list */
2081 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002082oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083 if (!cachep && (flags & SLAB_PANIC))
2084 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002085 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002086 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002087 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 return cachep;
2089}
2090EXPORT_SYMBOL(kmem_cache_create);
2091
2092#if DEBUG
2093static void check_irq_off(void)
2094{
2095 BUG_ON(!irqs_disabled());
2096}
2097
2098static void check_irq_on(void)
2099{
2100 BUG_ON(irqs_disabled());
2101}
2102
Pekka Enberg343e0d72006-02-01 03:05:50 -08002103static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104{
2105#ifdef CONFIG_SMP
2106 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002107 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108#endif
2109}
Christoph Lametere498be72005-09-09 13:03:32 -07002110
Pekka Enberg343e0d72006-02-01 03:05:50 -08002111static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002112{
2113#ifdef CONFIG_SMP
2114 check_irq_off();
2115 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2116#endif
2117}
2118
Linus Torvalds1da177e2005-04-16 15:20:36 -07002119#else
2120#define check_irq_off() do { } while(0)
2121#define check_irq_on() do { } while(0)
2122#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002123#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124#endif
2125
2126/*
2127 * Waits for all CPUs to execute func().
2128 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002129static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130{
2131 check_irq_on();
2132 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002133 local_irq_disable();
2134 func(arg);
2135 local_irq_enable();
2136
2137 if (smp_call_function(func, arg, 1, 1))
2138 BUG();
2139
2140 preempt_enable();
2141}
2142
Andrew Mortona737b3e2006-03-22 00:08:11 -08002143static void drain_array_locked(struct kmem_cache *cachep,
2144 struct array_cache *ac, int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002145
2146static void do_drain(void *arg)
2147{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002148 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002150 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151
2152 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002153 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002154 spin_lock(&cachep->nodelists[node]->list_lock);
2155 free_block(cachep, ac->entry, ac->avail, node);
2156 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157 ac->avail = 0;
2158}
2159
Pekka Enberg343e0d72006-02-01 03:05:50 -08002160static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161{
Christoph Lametere498be72005-09-09 13:03:32 -07002162 struct kmem_list3 *l3;
2163 int node;
2164
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 smp_call_function_all_cpus(do_drain, cachep);
2166 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002167 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002168 l3 = cachep->nodelists[node];
2169 if (l3) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002170 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002171 drain_array_locked(cachep, l3->shared, 1, node);
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002172 spin_unlock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002173 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08002174 drain_alien_cache(cachep, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07002175 }
2176 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002177}
2178
Pekka Enberg343e0d72006-02-01 03:05:50 -08002179static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180{
2181 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002182 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183 int ret;
2184
Christoph Lametere498be72005-09-09 13:03:32 -07002185 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 struct list_head *p;
2187
Christoph Lametere498be72005-09-09 13:03:32 -07002188 p = l3->slabs_free.prev;
2189 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190 break;
2191
Christoph Lametere498be72005-09-09 13:03:32 -07002192 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193#if DEBUG
2194 if (slabp->inuse)
2195 BUG();
2196#endif
2197 list_del(&slabp->list);
2198
Christoph Lametere498be72005-09-09 13:03:32 -07002199 l3->free_objects -= cachep->num;
2200 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002202 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002204 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002205 return ret;
2206}
2207
Pekka Enberg343e0d72006-02-01 03:05:50 -08002208static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002209{
2210 int ret = 0, i = 0;
2211 struct kmem_list3 *l3;
2212
2213 drain_cpu_caches(cachep);
2214
2215 check_irq_on();
2216 for_each_online_node(i) {
2217 l3 = cachep->nodelists[i];
2218 if (l3) {
2219 spin_lock_irq(&l3->list_lock);
2220 ret += __node_shrink(cachep, i);
2221 spin_unlock_irq(&l3->list_lock);
2222 }
2223 }
2224 return (ret ? 1 : 0);
2225}
2226
Linus Torvalds1da177e2005-04-16 15:20:36 -07002227/**
2228 * kmem_cache_shrink - Shrink a cache.
2229 * @cachep: The cache to shrink.
2230 *
2231 * Releases as many slabs as possible for a cache.
2232 * To help debugging, a zero exit status indicates all slabs were released.
2233 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002234int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235{
2236 if (!cachep || in_interrupt())
2237 BUG();
2238
2239 return __cache_shrink(cachep);
2240}
2241EXPORT_SYMBOL(kmem_cache_shrink);
2242
2243/**
2244 * kmem_cache_destroy - delete a cache
2245 * @cachep: the cache to destroy
2246 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002247 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 * Returns 0 on success.
2249 *
2250 * It is expected this function will be called by a module when it is
2251 * unloaded. This will remove the cache completely, and avoid a duplicate
2252 * cache being allocated each time a module is loaded and unloaded, if the
2253 * module doesn't have persistent in-kernel storage across loads and unloads.
2254 *
2255 * The cache must be empty before calling this function.
2256 *
2257 * The caller must guarantee that noone will allocate memory from the cache
2258 * during the kmem_cache_destroy().
2259 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002260int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261{
2262 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002263 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264
2265 if (!cachep || in_interrupt())
2266 BUG();
2267
2268 /* Don't let CPUs to come and go */
2269 lock_cpu_hotplug();
2270
2271 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002272 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273 /*
2274 * the chain is never empty, cache_cache is never destroyed
2275 */
2276 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002277 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278
2279 if (__cache_shrink(cachep)) {
2280 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002281 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002282 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002283 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 unlock_cpu_hotplug();
2285 return 1;
2286 }
2287
2288 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002289 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290
Christoph Lametere498be72005-09-09 13:03:32 -07002291 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002292 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293
2294 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002295 for_each_online_node(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002296 l3 = cachep->nodelists[i];
2297 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07002298 kfree(l3->shared);
2299 free_alien_cache(l3->alien);
2300 kfree(l3);
2301 }
2302 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303 kmem_cache_free(&cache_cache, cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002304 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305 return 0;
2306}
2307EXPORT_SYMBOL(kmem_cache_destroy);
2308
2309/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002310static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002311 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002312{
2313 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002314
Linus Torvalds1da177e2005-04-16 15:20:36 -07002315 if (OFF_SLAB(cachep)) {
2316 /* Slab management obj is off-slab. */
2317 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2318 if (!slabp)
2319 return NULL;
2320 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002321 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 colour_off += cachep->slab_size;
2323 }
2324 slabp->inuse = 0;
2325 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002326 slabp->s_mem = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002327 return slabp;
2328}
2329
2330static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2331{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002332 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333}
2334
Pekka Enberg343e0d72006-02-01 03:05:50 -08002335static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002336 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337{
2338 int i;
2339
2340 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002341 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342#if DEBUG
2343 /* need to poison the objs? */
2344 if (cachep->flags & SLAB_POISON)
2345 poison_obj(cachep, objp, POISON_FREE);
2346 if (cachep->flags & SLAB_STORE_USER)
2347 *dbg_userword(cachep, objp) = NULL;
2348
2349 if (cachep->flags & SLAB_RED_ZONE) {
2350 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2352 }
2353 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002354 * Constructors are not allowed to allocate memory from the same
2355 * cache which they are a constructor for. Otherwise, deadlock.
2356 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 */
2358 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002359 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002360 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361
2362 if (cachep->flags & SLAB_RED_ZONE) {
2363 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2364 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002365 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2367 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002368 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002370 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2371 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002372 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002373 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374#else
2375 if (cachep->ctor)
2376 cachep->ctor(objp, cachep, ctor_flags);
2377#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002378 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002380 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002381 slabp->free = 0;
2382}
2383
Pekka Enberg343e0d72006-02-01 03:05:50 -08002384static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002385{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002386 if (flags & SLAB_DMA)
2387 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2388 else
2389 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390}
2391
Andrew Mortona737b3e2006-03-22 00:08:11 -08002392static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2393 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002394{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002395 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002396 kmem_bufctl_t next;
2397
2398 slabp->inuse++;
2399 next = slab_bufctl(slabp)[slabp->free];
2400#if DEBUG
2401 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2402 WARN_ON(slabp->nodeid != nodeid);
2403#endif
2404 slabp->free = next;
2405
2406 return objp;
2407}
2408
Andrew Mortona737b3e2006-03-22 00:08:11 -08002409static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2410 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002411{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002412 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002413
2414#if DEBUG
2415 /* Verify that the slab belongs to the intended node */
2416 WARN_ON(slabp->nodeid != nodeid);
2417
2418 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2419 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002420 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002421 BUG();
2422 }
2423#endif
2424 slab_bufctl(slabp)[objnr] = slabp->free;
2425 slabp->free = objnr;
2426 slabp->inuse--;
2427}
2428
Andrew Mortona737b3e2006-03-22 00:08:11 -08002429static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2430 void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431{
2432 int i;
2433 struct page *page;
2434
2435 /* Nasty!!!!!! I hope this is OK. */
2436 i = 1 << cachep->gfporder;
2437 page = virt_to_page(objp);
2438 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002439 page_set_cache(page, cachep);
2440 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441 page++;
2442 } while (--i);
2443}
2444
2445/*
2446 * Grow (by 1) the number of slabs within a cache. This is called by
2447 * kmem_cache_alloc() when there are no active objs left in a cache.
2448 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002449static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002451 struct slab *slabp;
2452 void *objp;
2453 size_t offset;
2454 gfp_t local_flags;
2455 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002456 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457
Andrew Mortona737b3e2006-03-22 00:08:11 -08002458 /*
2459 * Be lazy and only check for valid flags here, keeping it out of the
2460 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002462 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463 BUG();
2464 if (flags & SLAB_NO_GROW)
2465 return 0;
2466
2467 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2468 local_flags = (flags & SLAB_LEVEL_MASK);
2469 if (!(local_flags & __GFP_WAIT))
2470 /*
2471 * Not allowed to sleep. Need to tell a constructor about
2472 * this - it might need to know...
2473 */
2474 ctor_flags |= SLAB_CTOR_ATOMIC;
2475
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002476 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002478 l3 = cachep->nodelists[nodeid];
2479 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480
2481 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002482 offset = l3->colour_next;
2483 l3->colour_next++;
2484 if (l3->colour_next >= cachep->colour)
2485 l3->colour_next = 0;
2486 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002487
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002488 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002489
2490 if (local_flags & __GFP_WAIT)
2491 local_irq_enable();
2492
2493 /*
2494 * The test for missing atomic flag is performed here, rather than
2495 * the more obvious place, simply to reduce the critical path length
2496 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2497 * will eventually be caught here (where it matters).
2498 */
2499 kmem_flagcheck(cachep, flags);
2500
Andrew Mortona737b3e2006-03-22 00:08:11 -08002501 /*
2502 * Get mem for the objs. Attempt to allocate a physical page from
2503 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002504 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002505 objp = kmem_getpages(cachep, flags, nodeid);
2506 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507 goto failed;
2508
2509 /* Get slab management. */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002510 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2511 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 goto opps1;
2513
Christoph Lametere498be72005-09-09 13:03:32 -07002514 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002515 set_slab_attr(cachep, slabp, objp);
2516
2517 cache_init_objs(cachep, slabp, ctor_flags);
2518
2519 if (local_flags & __GFP_WAIT)
2520 local_irq_disable();
2521 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002522 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523
2524 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002525 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002527 l3->free_objects += cachep->num;
2528 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002530opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002531 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002532failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 if (local_flags & __GFP_WAIT)
2534 local_irq_disable();
2535 return 0;
2536}
2537
2538#if DEBUG
2539
2540/*
2541 * Perform extra freeing checks:
2542 * - detect bad pointers.
2543 * - POISON/RED_ZONE checking
2544 * - destructor calls, for caches with POISON+dtor
2545 */
2546static void kfree_debugcheck(const void *objp)
2547{
2548 struct page *page;
2549
2550 if (!virt_addr_valid(objp)) {
2551 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002552 (unsigned long)objp);
2553 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554 }
2555 page = virt_to_page(objp);
2556 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002557 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2558 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 BUG();
2560 }
2561}
2562
Pekka Enberg343e0d72006-02-01 03:05:50 -08002563static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002564 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565{
2566 struct page *page;
2567 unsigned int objnr;
2568 struct slab *slabp;
2569
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002570 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571 kfree_debugcheck(objp);
2572 page = virt_to_page(objp);
2573
Pekka Enberg065d41c2005-11-13 16:06:46 -08002574 if (page_get_cache(page) != cachep) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002575 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2576 "cache %p, got %p\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002577 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002579 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2580 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581 WARN_ON(1);
2582 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002583 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584
2585 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002586 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2587 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2588 slab_error(cachep, "double free, or memory outside"
2589 " object was overwritten");
2590 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2591 "redzone 2:0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002592 objp, *dbg_redzone1(cachep, objp),
2593 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 }
2595 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2596 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2597 }
2598 if (cachep->flags & SLAB_STORE_USER)
2599 *dbg_userword(cachep, objp) = caller;
2600
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002601 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602
2603 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002604 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605
2606 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002607 /*
2608 * Need to call the slab's constructor so the caller can
2609 * perform a verify of its state (debugging). Called without
2610 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002612 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002613 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002614 }
2615 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2616 /* we want to cache poison the object,
2617 * call the destruction callback
2618 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002619 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620 }
2621 if (cachep->flags & SLAB_POISON) {
2622#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002623 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002625 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002626 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 } else {
2628 poison_obj(cachep, objp, POISON_FREE);
2629 }
2630#else
2631 poison_obj(cachep, objp, POISON_FREE);
2632#endif
2633 }
2634 return objp;
2635}
2636
Pekka Enberg343e0d72006-02-01 03:05:50 -08002637static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638{
2639 kmem_bufctl_t i;
2640 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002641
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642 /* Check slab's freelist to see if this obj is there. */
2643 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2644 entries++;
2645 if (entries > cachep->num || i >= cachep->num)
2646 goto bad;
2647 }
2648 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002649bad:
2650 printk(KERN_ERR "slab: Internal list corruption detected in "
2651 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2652 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002653 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002654 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002655 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002656 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002658 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659 }
2660 printk("\n");
2661 BUG();
2662 }
2663}
2664#else
2665#define kfree_debugcheck(x) do { } while(0)
2666#define cache_free_debugcheck(x,objp,z) (objp)
2667#define check_slabp(x,y) do { } while(0)
2668#endif
2669
Pekka Enberg343e0d72006-02-01 03:05:50 -08002670static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671{
2672 int batchcount;
2673 struct kmem_list3 *l3;
2674 struct array_cache *ac;
2675
2676 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002677 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002678retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 batchcount = ac->batchcount;
2680 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002681 /*
2682 * If there was little recent activity on this cache, then
2683 * perform only a partial refill. Otherwise we could generate
2684 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 */
2686 batchcount = BATCHREFILL_LIMIT;
2687 }
Christoph Lametere498be72005-09-09 13:03:32 -07002688 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002689
Christoph Lametere498be72005-09-09 13:03:32 -07002690 BUG_ON(ac->avail > 0 || !l3);
2691 spin_lock(&l3->list_lock);
2692
Linus Torvalds1da177e2005-04-16 15:20:36 -07002693 if (l3->shared) {
2694 struct array_cache *shared_array = l3->shared;
2695 if (shared_array->avail) {
2696 if (batchcount > shared_array->avail)
2697 batchcount = shared_array->avail;
2698 shared_array->avail -= batchcount;
2699 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002700 memcpy(ac->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002701 &(shared_array->entry[shared_array->avail]),
2702 sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 shared_array->touched = 1;
2704 goto alloc_done;
2705 }
2706 }
2707 while (batchcount > 0) {
2708 struct list_head *entry;
2709 struct slab *slabp;
2710 /* Get slab alloc is to come from. */
2711 entry = l3->slabs_partial.next;
2712 if (entry == &l3->slabs_partial) {
2713 l3->free_touched = 1;
2714 entry = l3->slabs_free.next;
2715 if (entry == &l3->slabs_free)
2716 goto must_grow;
2717 }
2718
2719 slabp = list_entry(entry, struct slab, list);
2720 check_slabp(cachep, slabp);
2721 check_spinlock_acquired(cachep);
2722 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 STATS_INC_ALLOCED(cachep);
2724 STATS_INC_ACTIVE(cachep);
2725 STATS_SET_HIGH(cachep);
2726
Matthew Dobson78d382d2006-02-01 03:05:47 -08002727 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2728 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 }
2730 check_slabp(cachep, slabp);
2731
2732 /* move slabp to correct slabp list: */
2733 list_del(&slabp->list);
2734 if (slabp->free == BUFCTL_END)
2735 list_add(&slabp->list, &l3->slabs_full);
2736 else
2737 list_add(&slabp->list, &l3->slabs_partial);
2738 }
2739
Andrew Mortona737b3e2006-03-22 00:08:11 -08002740must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002742alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002743 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002744
2745 if (unlikely(!ac->avail)) {
2746 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002747 x = cache_grow(cachep, flags, numa_node_id());
2748
Andrew Mortona737b3e2006-03-22 00:08:11 -08002749 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002750 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002751 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 return NULL;
2753
Andrew Mortona737b3e2006-03-22 00:08:11 -08002754 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755 goto retry;
2756 }
2757 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002758 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759}
2760
Andrew Mortona737b3e2006-03-22 00:08:11 -08002761static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2762 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763{
2764 might_sleep_if(flags & __GFP_WAIT);
2765#if DEBUG
2766 kmem_flagcheck(cachep, flags);
2767#endif
2768}
2769
2770#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002771static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2772 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002774 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002776 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002778 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002779 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002780 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781 else
2782 check_poison_obj(cachep, objp);
2783#else
2784 check_poison_obj(cachep, objp);
2785#endif
2786 poison_obj(cachep, objp, POISON_INUSE);
2787 }
2788 if (cachep->flags & SLAB_STORE_USER)
2789 *dbg_userword(cachep, objp) = caller;
2790
2791 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002792 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2793 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2794 slab_error(cachep, "double free, or memory outside"
2795 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002796 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002797 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2798 objp, *dbg_redzone1(cachep, objp),
2799 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800 }
2801 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2802 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2803 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002804 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002806 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002807
2808 if (!(flags & __GFP_WAIT))
2809 ctor_flags |= SLAB_CTOR_ATOMIC;
2810
2811 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002812 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813 return objp;
2814}
2815#else
2816#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2817#endif
2818
Pekka Enberg343e0d72006-02-01 03:05:50 -08002819static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002820{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002821 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 struct array_cache *ac;
2823
Christoph Lameterdc85da12006-01-18 17:42:36 -08002824#ifdef CONFIG_NUMA
Christoph Lameter86c562a2006-01-18 17:42:37 -08002825 if (unlikely(current->mempolicy && !in_interrupt())) {
Christoph Lameterdc85da12006-01-18 17:42:36 -08002826 int nid = slab_node(current->mempolicy);
2827
2828 if (nid != numa_node_id())
2829 return __cache_alloc_node(cachep, flags, nid);
2830 }
2831#endif
2832
Alok N Kataria5c382302005-09-27 21:45:46 -07002833 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002834 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 if (likely(ac->avail)) {
2836 STATS_INC_ALLOCHIT(cachep);
2837 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002838 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 } else {
2840 STATS_INC_ALLOCMISS(cachep);
2841 objp = cache_alloc_refill(cachep, flags);
2842 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002843 return objp;
2844}
2845
Andrew Mortona737b3e2006-03-22 00:08:11 -08002846static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2847 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002848{
2849 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002850 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002851
2852 cache_alloc_debugcheck_before(cachep, flags);
2853
2854 local_irq_save(save_flags);
2855 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002857 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002858 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002859 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 return objp;
2861}
2862
Christoph Lametere498be72005-09-09 13:03:32 -07002863#ifdef CONFIG_NUMA
2864/*
2865 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002867static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2868 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002869{
2870 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002871 struct slab *slabp;
2872 struct kmem_list3 *l3;
2873 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002874 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002875
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002876 l3 = cachep->nodelists[nodeid];
2877 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002878
Andrew Mortona737b3e2006-03-22 00:08:11 -08002879retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002880 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002881 spin_lock(&l3->list_lock);
2882 entry = l3->slabs_partial.next;
2883 if (entry == &l3->slabs_partial) {
2884 l3->free_touched = 1;
2885 entry = l3->slabs_free.next;
2886 if (entry == &l3->slabs_free)
2887 goto must_grow;
2888 }
Christoph Lametere498be72005-09-09 13:03:32 -07002889
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002890 slabp = list_entry(entry, struct slab, list);
2891 check_spinlock_acquired_node(cachep, nodeid);
2892 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002893
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002894 STATS_INC_NODEALLOCS(cachep);
2895 STATS_INC_ACTIVE(cachep);
2896 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002897
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002898 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002899
Matthew Dobson78d382d2006-02-01 03:05:47 -08002900 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002901 check_slabp(cachep, slabp);
2902 l3->free_objects--;
2903 /* move slabp to correct slabp list: */
2904 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002905
Andrew Mortona737b3e2006-03-22 00:08:11 -08002906 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002907 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002908 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002909 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002910
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002911 spin_unlock(&l3->list_lock);
2912 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002913
Andrew Mortona737b3e2006-03-22 00:08:11 -08002914must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002915 spin_unlock(&l3->list_lock);
2916 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002917
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002918 if (!x)
2919 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002920
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002921 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002922done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002923 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002924}
2925#endif
2926
2927/*
2928 * Caller needs to acquire correct kmem_list's list_lock
2929 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002930static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002931 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932{
2933 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002934 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935
2936 for (i = 0; i < nr_objects; i++) {
2937 void *objp = objpp[i];
2938 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002939
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08002940 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07002941 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07002943 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002944 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002945 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002946 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002947 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002948 check_slabp(cachep, slabp);
2949
2950 /* fixup slab chains */
2951 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002952 if (l3->free_objects > l3->free_limit) {
2953 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002954 slab_destroy(cachep, slabp);
2955 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002956 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957 }
2958 } else {
2959 /* Unconditionally move a slab to the end of the
2960 * partial list on free - maximum time for the
2961 * other objects to be freed, too.
2962 */
Christoph Lametere498be72005-09-09 13:03:32 -07002963 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964 }
2965 }
2966}
2967
Pekka Enberg343e0d72006-02-01 03:05:50 -08002968static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002969{
2970 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002971 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002972 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002973
2974 batchcount = ac->batchcount;
2975#if DEBUG
2976 BUG_ON(!batchcount || batchcount > ac->avail);
2977#endif
2978 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002979 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002980 spin_lock(&l3->list_lock);
2981 if (l3->shared) {
2982 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002983 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002984 if (max) {
2985 if (batchcount > max)
2986 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002987 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002988 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989 shared_array->avail += batchcount;
2990 goto free_done;
2991 }
2992 }
2993
Christoph Lameterff694162005-09-22 21:44:02 -07002994 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002995free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002996#if STATS
2997 {
2998 int i = 0;
2999 struct list_head *p;
3000
Christoph Lametere498be72005-09-09 13:03:32 -07003001 p = l3->slabs_free.next;
3002 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003 struct slab *slabp;
3004
3005 slabp = list_entry(p, struct slab, list);
3006 BUG_ON(slabp->inuse);
3007
3008 i++;
3009 p = p->next;
3010 }
3011 STATS_SET_FREEABLE(cachep, i);
3012 }
3013#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003014 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003016 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003017}
3018
3019/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003020 * Release an obj back to its cache. If the obj has a constructed state, it must
3021 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003023static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003024{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003025 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026
3027 check_irq_off();
3028 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3029
Christoph Lametere498be72005-09-09 13:03:32 -07003030 /* Make sure we are not freeing a object from another
3031 * node to the array cache on this cpu.
3032 */
3033#ifdef CONFIG_NUMA
3034 {
3035 struct slab *slabp;
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003036 slabp = virt_to_slab(objp);
Christoph Lametere498be72005-09-09 13:03:32 -07003037 if (unlikely(slabp->nodeid != numa_node_id())) {
3038 struct array_cache *alien = NULL;
3039 int nodeid = slabp->nodeid;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003040 struct kmem_list3 *l3;
Christoph Lametere498be72005-09-09 13:03:32 -07003041
Andrew Mortona737b3e2006-03-22 00:08:11 -08003042 l3 = cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07003043 STATS_INC_NODEFREES(cachep);
3044 if (l3->alien && l3->alien[nodeid]) {
3045 alien = l3->alien[nodeid];
3046 spin_lock(&alien->lock);
3047 if (unlikely(alien->avail == alien->limit))
3048 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003049 alien, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003050 alien->entry[alien->avail++] = objp;
3051 spin_unlock(&alien->lock);
3052 } else {
3053 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003054 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003055 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003056 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003057 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003058 }
3059 return;
3060 }
3061 }
3062#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003063 if (likely(ac->avail < ac->limit)) {
3064 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003065 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003066 return;
3067 } else {
3068 STATS_INC_FREEMISS(cachep);
3069 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003070 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003071 }
3072}
3073
3074/**
3075 * kmem_cache_alloc - Allocate an object
3076 * @cachep: The cache to allocate from.
3077 * @flags: See kmalloc().
3078 *
3079 * Allocate an object from this cache. The flags are only relevant
3080 * if the cache has no available objects.
3081 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003082void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003083{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003084 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003085}
3086EXPORT_SYMBOL(kmem_cache_alloc);
3087
3088/**
3089 * kmem_ptr_validate - check if an untrusted pointer might
3090 * be a slab entry.
3091 * @cachep: the cache we're checking against
3092 * @ptr: pointer to validate
3093 *
3094 * This verifies that the untrusted pointer looks sane:
3095 * it is _not_ a guarantee that the pointer is actually
3096 * part of the slab cache in question, but it at least
3097 * validates that the pointer can be dereferenced and
3098 * looks half-way sane.
3099 *
3100 * Currently only used for dentry validation.
3101 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003102int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003104 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003105 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003106 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003107 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003108 struct page *page;
3109
3110 if (unlikely(addr < min_addr))
3111 goto out;
3112 if (unlikely(addr > (unsigned long)high_memory - size))
3113 goto out;
3114 if (unlikely(addr & align_mask))
3115 goto out;
3116 if (unlikely(!kern_addr_valid(addr)))
3117 goto out;
3118 if (unlikely(!kern_addr_valid(addr + size - 1)))
3119 goto out;
3120 page = virt_to_page(ptr);
3121 if (unlikely(!PageSlab(page)))
3122 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003123 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003124 goto out;
3125 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003126out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003127 return 0;
3128}
3129
3130#ifdef CONFIG_NUMA
3131/**
3132 * kmem_cache_alloc_node - Allocate an object on the specified node
3133 * @cachep: The cache to allocate from.
3134 * @flags: See kmalloc().
3135 * @nodeid: node number of the target node.
3136 *
3137 * Identical to kmem_cache_alloc, except that this function is slow
3138 * and can sleep. And it will allocate memory on the given node, which
3139 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003140 * New and improved: it will now make sure that the object gets
3141 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003142 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003143void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144{
Christoph Lametere498be72005-09-09 13:03:32 -07003145 unsigned long save_flags;
3146 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147
Christoph Lametere498be72005-09-09 13:03:32 -07003148 cache_alloc_debugcheck_before(cachep, flags);
3149 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003150
3151 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003152 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003153 ptr = ____cache_alloc(cachep, flags);
3154 else
3155 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003156 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003157
3158 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3159 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003160
Christoph Lametere498be72005-09-09 13:03:32 -07003161 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003162}
3163EXPORT_SYMBOL(kmem_cache_alloc_node);
3164
Al Virodd0fc662005-10-07 07:46:04 +01003165void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003166{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003167 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003168
3169 cachep = kmem_find_general_cachep(size, flags);
3170 if (unlikely(cachep == NULL))
3171 return NULL;
3172 return kmem_cache_alloc_node(cachep, flags, node);
3173}
3174EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003175#endif
3176
3177/**
3178 * kmalloc - allocate memory
3179 * @size: how many bytes of memory are required.
3180 * @flags: the type of memory to allocate.
Randy Dunlap911851e2006-03-22 00:08:14 -08003181 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003182 *
3183 * kmalloc is the normal method of allocating memory
3184 * in the kernel.
3185 *
3186 * The @flags argument may be one of:
3187 *
3188 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3189 *
3190 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3191 *
3192 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3193 *
3194 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3195 * must be suitable for DMA. This can mean different things on different
3196 * platforms. For example, on i386, it means that the memory must come
3197 * from the first 16MB.
3198 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003199static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3200 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003201{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003202 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003204 /* If you want to save a few bytes .text space: replace
3205 * __ with kmem_.
3206 * Then kmalloc uses the uninlined functions instead of the inline
3207 * functions.
3208 */
3209 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003210 if (unlikely(cachep == NULL))
3211 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003212 return __cache_alloc(cachep, flags, caller);
3213}
3214
3215#ifndef CONFIG_DEBUG_SLAB
3216
3217void *__kmalloc(size_t size, gfp_t flags)
3218{
3219 return __do_kmalloc(size, flags, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003220}
3221EXPORT_SYMBOL(__kmalloc);
3222
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003223#else
3224
3225void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3226{
3227 return __do_kmalloc(size, flags, caller);
3228}
3229EXPORT_SYMBOL(__kmalloc_track_caller);
3230
3231#endif
3232
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233#ifdef CONFIG_SMP
3234/**
3235 * __alloc_percpu - allocate one copy of the object for every present
3236 * cpu in the system, zeroing them.
3237 * Objects should be dereferenced using the per_cpu_ptr macro only.
3238 *
3239 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003241void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003242{
3243 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003244 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245
3246 if (!pdata)
3247 return NULL;
3248
Christoph Lametere498be72005-09-09 13:03:32 -07003249 /*
3250 * Cannot use for_each_online_cpu since a cpu may come online
3251 * and we have no way of figuring out how to fix the array
3252 * that we have allocated then....
3253 */
3254 for_each_cpu(i) {
3255 int node = cpu_to_node(i);
3256
3257 if (node_online(node))
3258 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3259 else
3260 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261
3262 if (!pdata->ptrs[i])
3263 goto unwind_oom;
3264 memset(pdata->ptrs[i], 0, size);
3265 }
3266
3267 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003268 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003269
Andrew Mortona737b3e2006-03-22 00:08:11 -08003270unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003271 while (--i >= 0) {
3272 if (!cpu_possible(i))
3273 continue;
3274 kfree(pdata->ptrs[i]);
3275 }
3276 kfree(pdata);
3277 return NULL;
3278}
3279EXPORT_SYMBOL(__alloc_percpu);
3280#endif
3281
3282/**
3283 * kmem_cache_free - Deallocate an object
3284 * @cachep: The cache the allocation was from.
3285 * @objp: The previously allocated object.
3286 *
3287 * Free an object which was previously allocated from this
3288 * cache.
3289 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003290void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003291{
3292 unsigned long flags;
3293
3294 local_irq_save(flags);
3295 __cache_free(cachep, objp);
3296 local_irq_restore(flags);
3297}
3298EXPORT_SYMBOL(kmem_cache_free);
3299
3300/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003301 * kfree - free previously allocated memory
3302 * @objp: pointer returned by kmalloc.
3303 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003304 * If @objp is NULL, no operation is performed.
3305 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003306 * Don't free memory not originally allocated by kmalloc()
3307 * or you will run into trouble.
3308 */
3309void kfree(const void *objp)
3310{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003311 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312 unsigned long flags;
3313
3314 if (unlikely(!objp))
3315 return;
3316 local_irq_save(flags);
3317 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003318 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003319 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003320 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003321 local_irq_restore(flags);
3322}
3323EXPORT_SYMBOL(kfree);
3324
3325#ifdef CONFIG_SMP
3326/**
3327 * free_percpu - free previously allocated percpu memory
3328 * @objp: pointer returned by alloc_percpu.
3329 *
3330 * Don't free memory not originally allocated by alloc_percpu()
3331 * The complemented objp is to check for that.
3332 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003333void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334{
3335 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003336 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003337
Christoph Lametere498be72005-09-09 13:03:32 -07003338 /*
3339 * We allocate for all cpus so we cannot use for online cpu here.
3340 */
3341 for_each_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003342 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003343 kfree(p);
3344}
3345EXPORT_SYMBOL(free_percpu);
3346#endif
3347
Pekka Enberg343e0d72006-02-01 03:05:50 -08003348unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003350 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351}
3352EXPORT_SYMBOL(kmem_cache_size);
3353
Pekka Enberg343e0d72006-02-01 03:05:50 -08003354const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003355{
3356 return cachep->name;
3357}
3358EXPORT_SYMBOL_GPL(kmem_cache_name);
3359
Christoph Lametere498be72005-09-09 13:03:32 -07003360/*
3361 * This initializes kmem_list3 for all nodes.
3362 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003363static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003364{
3365 int node;
3366 struct kmem_list3 *l3;
3367 int err = 0;
3368
3369 for_each_online_node(node) {
3370 struct array_cache *nc = NULL, *new;
3371 struct array_cache **new_alien = NULL;
3372#ifdef CONFIG_NUMA
Andrew Mortona737b3e2006-03-22 00:08:11 -08003373 new_alien = alloc_alien_cache(node, cachep->limit);
3374 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003375 goto fail;
3376#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08003377 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3378 0xbaadf00d);
3379 if (!new)
Christoph Lametere498be72005-09-09 13:03:32 -07003380 goto fail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003381 l3 = cachep->nodelists[node];
3382 if (l3) {
Christoph Lametere498be72005-09-09 13:03:32 -07003383 spin_lock_irq(&l3->list_lock);
3384
Andrew Mortona737b3e2006-03-22 00:08:11 -08003385 nc = cachep->nodelists[node]->shared;
3386 if (nc)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003387 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003388
3389 l3->shared = new;
3390 if (!cachep->nodelists[node]->alien) {
3391 l3->alien = new_alien;
3392 new_alien = NULL;
3393 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003394 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003395 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003396 spin_unlock_irq(&l3->list_lock);
3397 kfree(nc);
3398 free_alien_cache(new_alien);
3399 continue;
3400 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003401 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3402 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07003403 goto fail;
3404
3405 kmem_list3_init(l3);
3406 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003407 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07003408 l3->shared = new;
3409 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003410 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003411 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003412 cachep->nodelists[node] = l3;
3413 }
3414 return err;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003415fail:
Christoph Lametere498be72005-09-09 13:03:32 -07003416 err = -ENOMEM;
3417 return err;
3418}
3419
Linus Torvalds1da177e2005-04-16 15:20:36 -07003420struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003421 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422 struct array_cache *new[NR_CPUS];
3423};
3424
3425static void do_ccupdate_local(void *info)
3426{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003427 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003428 struct array_cache *old;
3429
3430 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003431 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003432
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3434 new->new[smp_processor_id()] = old;
3435}
3436
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003437/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003438static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3439 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003440{
3441 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003442 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003444 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003445 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003446 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3447 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003448 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003449 for (i--; i >= 0; i--)
3450 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003451 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003452 }
3453 }
3454 new.cachep = cachep;
3455
3456 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
Christoph Lametere498be72005-09-09 13:03:32 -07003457
Linus Torvalds1da177e2005-04-16 15:20:36 -07003458 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003459 cachep->batchcount = batchcount;
3460 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003461 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003462
Christoph Lametere498be72005-09-09 13:03:32 -07003463 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464 struct array_cache *ccold = new.new[i];
3465 if (!ccold)
3466 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003467 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003468 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003469 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003470 kfree(ccold);
3471 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003472
Christoph Lametere498be72005-09-09 13:03:32 -07003473 err = alloc_kmemlist(cachep);
3474 if (err) {
3475 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003476 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003477 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003478 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 return 0;
3480}
3481
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003482/* Called with cache_chain_mutex held always */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003483static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484{
3485 int err;
3486 int limit, shared;
3487
Andrew Mortona737b3e2006-03-22 00:08:11 -08003488 /*
3489 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003490 * - create a LIFO ordering, i.e. return objects that are cache-warm
3491 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003492 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493 * bufctl chains: array operations are cheaper.
3494 * The numbers are guessed, we should auto-tune as described by
3495 * Bonwick.
3496 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003497 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003499 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003501 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003503 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504 limit = 54;
3505 else
3506 limit = 120;
3507
Andrew Mortona737b3e2006-03-22 00:08:11 -08003508 /*
3509 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003510 * allocation behaviour: Most allocs on one cpu, most free operations
3511 * on another cpu. For these cases, an efficient object passing between
3512 * cpus is necessary. This is provided by a shared array. The array
3513 * replaces Bonwick's magazine layer.
3514 * On uniprocessor, it's functionally equivalent (but less efficient)
3515 * to a larger limit. Thus disabled by default.
3516 */
3517 shared = 0;
3518#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003519 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 shared = 8;
3521#endif
3522
3523#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003524 /*
3525 * With debugging enabled, large batchcount lead to excessively long
3526 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 */
3528 if (limit > 32)
3529 limit = 32;
3530#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003531 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 if (err)
3533 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003534 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535}
3536
Andrew Mortona737b3e2006-03-22 00:08:11 -08003537static void drain_array_locked(struct kmem_cache *cachep,
3538 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003539{
3540 int tofree;
3541
Christoph Lametere498be72005-09-09 13:03:32 -07003542 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543 if (ac->touched && !force) {
3544 ac->touched = 0;
3545 } else if (ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003546 tofree = force ? ac->avail : (ac->limit + 4) / 5;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003547 if (tofree > ac->avail)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003548 tofree = (ac->avail + 1) / 2;
Christoph Lameterff694162005-09-22 21:44:02 -07003549 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003551 memmove(ac->entry, &(ac->entry[tofree]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003552 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 }
3554}
3555
3556/**
3557 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003558 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003559 *
3560 * Called from workqueue/eventd every few seconds.
3561 * Purpose:
3562 * - clear the per-cpu caches for this CPU.
3563 * - return freeable pages to the main free memory pool.
3564 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003565 * If we cannot acquire the cache chain mutex then just give up - we'll try
3566 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003567 */
3568static void cache_reap(void *unused)
3569{
3570 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003571 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003572
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003573 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003575 schedule_delayed_work(&__get_cpu_var(reap_work),
3576 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003577 return;
3578 }
3579
3580 list_for_each(walk, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003581 struct kmem_cache *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003582 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 int tofree;
3584 struct slab *slabp;
3585
Pekka Enberg343e0d72006-02-01 03:05:50 -08003586 searchp = list_entry(walk, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587
3588 if (searchp->flags & SLAB_NO_REAP)
3589 goto next;
3590
3591 check_irq_on();
3592
Christoph Lametere498be72005-09-09 13:03:32 -07003593 l3 = searchp->nodelists[numa_node_id()];
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003594 reap_alien(searchp, l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003595 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003597 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003598 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599
Christoph Lametere498be72005-09-09 13:03:32 -07003600 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003601 goto next_unlock;
3602
Christoph Lametere498be72005-09-09 13:03:32 -07003603 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604
Christoph Lametere498be72005-09-09 13:03:32 -07003605 if (l3->shared)
3606 drain_array_locked(searchp, l3->shared, 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003607 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608
Christoph Lametere498be72005-09-09 13:03:32 -07003609 if (l3->free_touched) {
3610 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003611 goto next_unlock;
3612 }
3613
Andrew Mortona737b3e2006-03-22 00:08:11 -08003614 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3615 (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003617 p = l3->slabs_free.next;
3618 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003619 break;
3620
3621 slabp = list_entry(p, struct slab, list);
3622 BUG_ON(slabp->inuse);
3623 list_del(&slabp->list);
3624 STATS_INC_REAPED(searchp);
3625
Andrew Mortona737b3e2006-03-22 00:08:11 -08003626 /*
3627 * Safe to drop the lock. The slab is no longer linked
3628 * to the cache. searchp cannot disappear, we hold
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629 * cache_chain_lock
3630 */
Christoph Lametere498be72005-09-09 13:03:32 -07003631 l3->free_objects -= searchp->num;
3632 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003633 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003634 spin_lock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003635 } while (--tofree > 0);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003636next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003637 spin_unlock_irq(&l3->list_lock);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003638next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003639 cond_resched();
3640 }
3641 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003642 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003643 next_reap_node();
Andrew Mortona737b3e2006-03-22 00:08:11 -08003644 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003645 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003646}
3647
3648#ifdef CONFIG_PROC_FS
3649
Pekka Enberg85289f92006-01-08 01:00:36 -08003650static void print_slabinfo_header(struct seq_file *m)
3651{
3652 /*
3653 * Output format version, so at least we can change it
3654 * without _too_ many complaints.
3655 */
3656#if STATS
3657 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3658#else
3659 seq_puts(m, "slabinfo - version: 2.1\n");
3660#endif
3661 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3662 "<objperslab> <pagesperslab>");
3663 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3664 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3665#if STATS
3666 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3667 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3668 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3669#endif
3670 seq_putc(m, '\n');
3671}
3672
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673static void *s_start(struct seq_file *m, loff_t *pos)
3674{
3675 loff_t n = *pos;
3676 struct list_head *p;
3677
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003678 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003679 if (!n)
3680 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681 p = cache_chain.next;
3682 while (n--) {
3683 p = p->next;
3684 if (p == &cache_chain)
3685 return NULL;
3686 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003687 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688}
3689
3690static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3691{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003692 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003693 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003694 return cachep->next.next == &cache_chain ?
3695 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696}
3697
3698static void s_stop(struct seq_file *m, void *p)
3699{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003700 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003701}
3702
3703static int s_show(struct seq_file *m, void *p)
3704{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003705 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003707 struct slab *slabp;
3708 unsigned long active_objs;
3709 unsigned long num_objs;
3710 unsigned long active_slabs = 0;
3711 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003712 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003713 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003714 int node;
3715 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716
Linus Torvalds1da177e2005-04-16 15:20:36 -07003717 active_objs = 0;
3718 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003719 for_each_online_node(node) {
3720 l3 = cachep->nodelists[node];
3721 if (!l3)
3722 continue;
3723
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003724 check_irq_on();
3725 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003726
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003727 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003728 slabp = list_entry(q, struct slab, list);
3729 if (slabp->inuse != cachep->num && !error)
3730 error = "slabs_full accounting error";
3731 active_objs += cachep->num;
3732 active_slabs++;
3733 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003734 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003735 slabp = list_entry(q, struct slab, list);
3736 if (slabp->inuse == cachep->num && !error)
3737 error = "slabs_partial inuse accounting error";
3738 if (!slabp->inuse && !error)
3739 error = "slabs_partial/inuse accounting error";
3740 active_objs += slabp->inuse;
3741 active_slabs++;
3742 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003743 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003744 slabp = list_entry(q, struct slab, list);
3745 if (slabp->inuse && !error)
3746 error = "slabs_free/inuse accounting error";
3747 num_slabs++;
3748 }
3749 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003750 if (l3->shared)
3751 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003752
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003753 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003754 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003755 num_slabs += active_slabs;
3756 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003757 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003758 error = "free_objects accounting error";
3759
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003760 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003761 if (error)
3762 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3763
3764 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003765 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003766 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003767 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003768 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003769 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003770 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003771#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003772 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003773 unsigned long high = cachep->high_mark;
3774 unsigned long allocs = cachep->num_allocations;
3775 unsigned long grown = cachep->grown;
3776 unsigned long reaped = cachep->reaped;
3777 unsigned long errors = cachep->errors;
3778 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003779 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003780 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003781
Christoph Lametere498be72005-09-09 13:03:32 -07003782 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Andrew Mortona737b3e2006-03-22 00:08:11 -08003783 %4lu %4lu %4lu %4lu", allocs, high, grown,
3784 reaped, errors, max_freeable, node_allocs,
3785 node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003786 }
3787 /* cpu stats */
3788 {
3789 unsigned long allochit = atomic_read(&cachep->allochit);
3790 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3791 unsigned long freehit = atomic_read(&cachep->freehit);
3792 unsigned long freemiss = atomic_read(&cachep->freemiss);
3793
3794 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003795 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003796 }
3797#endif
3798 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07003799 return 0;
3800}
3801
3802/*
3803 * slabinfo_op - iterator that generates /proc/slabinfo
3804 *
3805 * Output layout:
3806 * cache-name
3807 * num-active-objs
3808 * total-objs
3809 * object size
3810 * num-active-slabs
3811 * total-slabs
3812 * num-pages-per-slab
3813 * + further values on SMP and with statistics enabled
3814 */
3815
3816struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003817 .start = s_start,
3818 .next = s_next,
3819 .stop = s_stop,
3820 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003821};
3822
3823#define MAX_SLABINFO_WRITE 128
3824/**
3825 * slabinfo_write - Tuning for the slab allocator
3826 * @file: unused
3827 * @buffer: user buffer
3828 * @count: data length
3829 * @ppos: unused
3830 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003831ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3832 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003834 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003835 int limit, batchcount, shared, res;
3836 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003837
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838 if (count > MAX_SLABINFO_WRITE)
3839 return -EINVAL;
3840 if (copy_from_user(&kbuf, buffer, count))
3841 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003842 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003843
3844 tmp = strchr(kbuf, ' ');
3845 if (!tmp)
3846 return -EINVAL;
3847 *tmp = '\0';
3848 tmp++;
3849 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3850 return -EINVAL;
3851
3852 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003853 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003855 list_for_each(p, &cache_chain) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003856 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857
Andrew Mortona737b3e2006-03-22 00:08:11 -08003858 cachep = list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003859 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003860 if (limit < 1 || batchcount < 1 ||
3861 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003862 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003864 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003865 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003866 }
3867 break;
3868 }
3869 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003870 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871 if (res >= 0)
3872 res = count;
3873 return res;
3874}
3875#endif
3876
Manfred Spraul00e145b2005-09-03 15:55:07 -07003877/**
3878 * ksize - get the actual amount of memory allocated for a given object
3879 * @objp: Pointer to the object
3880 *
3881 * kmalloc may internally round up allocations and return more memory
3882 * than requested. ksize() can be used to determine the actual amount of
3883 * memory allocated. The caller may use this additional memory, even though
3884 * a smaller amount of memory was initially specified with the kmalloc call.
3885 * The caller must guarantee that objp points to a valid object previously
3886 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3887 * must not be freed during the duration of the call.
3888 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003889unsigned int ksize(const void *objp)
3890{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003891 if (unlikely(objp == NULL))
3892 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003893
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003894 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003895}