blob: 49be34e1f0b85b78070c85e754759f994a2bc038 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070055#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Eric Dumazet5517d862007-05-08 00:32:57 -070057#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070058#include <asm/unistd.h>
59
60/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080061 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65unsigned long long __attribute__((weak)) sched_clock(void)
66{
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68}
69
70/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070071 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79/*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88/*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94/*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102#define DEF_TIMESLICE (100 * HZ / 1000)
103#define ON_RUNQUEUE_WEIGHT 30
104#define CHILD_PENALTY 95
105#define PARENT_PENALTY 100
106#define EXIT_WEIGHT 3
107#define PRIO_BONUS_RATIO 25
108#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109#define INTERACTIVE_DELTA 2
110#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111#define STARVATION_LIMIT (MAX_SLEEP_AVG)
112#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114/*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142#define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146#define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148#ifdef CONFIG_SMP
149#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152#else
153#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155#endif
156
157#define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163
164#define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167#define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171#define TASK_PREEMPTS_CURR(p, rq) \
Andrew Mortond5f9f942007-05-08 20:27:06 -0700172 ((p)->prio < (rq)->curr->prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176
Peter Williams2dd73a42006-06-27 02:54:34 -0700177static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178{
Peter Williams2dd73a42006-06-27 02:54:34 -0700179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183}
Peter Williams2dd73a42006-06-27 02:54:34 -0700184
Eric Dumazet5517d862007-05-08 00:32:57 -0700185#ifdef CONFIG_SMP
186/*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191{
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193}
194
195/*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200{
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203}
204#endif
205
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700206/*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
Ingo Molnar36c8b582006-07-03 00:25:41 -0700215static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700216{
217 return static_prio_timeslice(p->static_prio);
218}
219
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220/*
221 * These are the runqueue data structures:
222 */
223
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224struct prio_array {
225 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227 struct list_head queue[MAX_PRIO];
228};
229
230/*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700237struct rq {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700245 unsigned long raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700247 unsigned long cpu_load[3];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700248 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700249#ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252#endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
Mike Galbraithb18ec802006-12-10 02:20:31 -0800264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
Ingo Molnar36c8b582006-07-03 00:25:41 -0700266 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800267 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268 struct mm_struct *prev_mm;
Ingo Molnar70b97a72006-07-03 00:25:42 -0700269 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273#ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700279 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280
Ingo Molnar36c8b582006-07-03 00:25:41 -0700281 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 struct list_head migration_queue;
283#endif
284
285#ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700304 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305};
306
Siddha, Suresh Bc3396622007-05-08 00:33:09 -0700307static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700308static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700310static inline int cpu_of(struct rq *rq)
311{
312#ifdef CONFIG_SMP
313 return rq->cpu;
314#else
315 return 0;
316#endif
317}
318
Nick Piggin674311d2005-06-25 14:57:27 -0700319/*
320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700321 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700322 *
323 * The domain tree of any CPU may only be accessed from within
324 * preempt-disabled sections.
325 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700326#define for_each_domain(cpu, __sd) \
327 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328
329#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
330#define this_rq() (&__get_cpu_var(runqueues))
331#define task_rq(p) cpu_rq(task_cpu(p))
332#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
333
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700335# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700336#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700337#ifndef finish_arch_switch
338# define finish_arch_switch(prev) do { } while (0)
339#endif
340
341#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700342static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700343{
344 return rq->curr == p;
345}
346
Ingo Molnar70b97a72006-07-03 00:25:42 -0700347static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700348{
349}
350
Ingo Molnar70b97a72006-07-03 00:25:42 -0700351static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700352{
Ingo Molnarda04c032005-09-13 11:17:59 +0200353#ifdef CONFIG_DEBUG_SPINLOCK
354 /* this is a valid case when another task releases the spinlock */
355 rq->lock.owner = current;
356#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700357 /*
358 * If we are tracking spinlock dependencies then we have to
359 * fix up the runqueue lock - which gets 'carried over' from
360 * prev into current:
361 */
362 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
363
Nick Piggin4866cde2005-06-25 14:57:23 -0700364 spin_unlock_irq(&rq->lock);
365}
366
367#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700368static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700369{
370#ifdef CONFIG_SMP
371 return p->oncpu;
372#else
373 return rq->curr == p;
374#endif
375}
376
Ingo Molnar70b97a72006-07-03 00:25:42 -0700377static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700378{
379#ifdef CONFIG_SMP
380 /*
381 * We can optimise this out completely for !SMP, because the
382 * SMP rebalancing from interrupt is the only thing that cares
383 * here.
384 */
385 next->oncpu = 1;
386#endif
387#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
388 spin_unlock_irq(&rq->lock);
389#else
390 spin_unlock(&rq->lock);
391#endif
392}
393
Ingo Molnar70b97a72006-07-03 00:25:42 -0700394static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700395{
396#ifdef CONFIG_SMP
397 /*
398 * After ->oncpu is cleared, the task can be moved to a different CPU.
399 * We must ensure this doesn't happen until the switch is completely
400 * finished.
401 */
402 smp_wmb();
403 prev->oncpu = 0;
404#endif
405#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
406 local_irq_enable();
407#endif
408}
409#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700412 * __task_rq_lock - lock the runqueue a given task resides on.
413 * Must be called interrupts disabled.
414 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700415static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700416 __acquires(rq->lock)
417{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700418 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700419
420repeat_lock_task:
421 rq = task_rq(p);
422 spin_lock(&rq->lock);
423 if (unlikely(rq != task_rq(p))) {
424 spin_unlock(&rq->lock);
425 goto repeat_lock_task;
426 }
427 return rq;
428}
429
430/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431 * task_rq_lock - lock the runqueue a given task resides on and disable
432 * interrupts. Note the ordering: we can safely lookup the task_rq without
433 * explicitly disabling preemption.
434 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700435static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 __acquires(rq->lock)
437{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700438 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439
440repeat_lock_task:
441 local_irq_save(*flags);
442 rq = task_rq(p);
443 spin_lock(&rq->lock);
444 if (unlikely(rq != task_rq(p))) {
445 spin_unlock_irqrestore(&rq->lock, *flags);
446 goto repeat_lock_task;
447 }
448 return rq;
449}
450
Ingo Molnar70b97a72006-07-03 00:25:42 -0700451static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700452 __releases(rq->lock)
453{
454 spin_unlock(&rq->lock);
455}
456
Ingo Molnar70b97a72006-07-03 00:25:42 -0700457static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 __releases(rq->lock)
459{
460 spin_unlock_irqrestore(&rq->lock, *flags);
461}
462
463#ifdef CONFIG_SCHEDSTATS
464/*
465 * bump this up when changing the output format or the meaning of an existing
466 * format, so that tools can adapt (or abort)
467 */
Chen, Kenneth W06066712006-12-10 02:20:35 -0800468#define SCHEDSTAT_VERSION 14
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469
470static int show_schedstat(struct seq_file *seq, void *v)
471{
472 int cpu;
473
474 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
475 seq_printf(seq, "timestamp %lu\n", jiffies);
476 for_each_online_cpu(cpu) {
Ingo Molnar70b97a72006-07-03 00:25:42 -0700477 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478#ifdef CONFIG_SMP
479 struct sched_domain *sd;
480 int dcnt = 0;
481#endif
482
483 /* runqueue-specific stats */
484 seq_printf(seq,
485 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
486 cpu, rq->yld_both_empty,
487 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
488 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
489 rq->ttwu_cnt, rq->ttwu_local,
490 rq->rq_sched_info.cpu_time,
491 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
492
493 seq_printf(seq, "\n");
494
495#ifdef CONFIG_SMP
496 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700497 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498 for_each_domain(cpu, sd) {
499 enum idle_type itype;
500 char mask_str[NR_CPUS];
501
502 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
503 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
504 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
505 itype++) {
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800506 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
507 "%lu",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 sd->lb_cnt[itype],
509 sd->lb_balanced[itype],
510 sd->lb_failed[itype],
511 sd->lb_imbalance[itype],
512 sd->lb_gained[itype],
513 sd->lb_hot_gained[itype],
514 sd->lb_nobusyq[itype],
Chen, Kenneth W06066712006-12-10 02:20:35 -0800515 sd->lb_nobusyg[itype]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 }
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800517 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
518 " %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700520 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
521 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -0800522 sd->ttwu_wake_remote, sd->ttwu_move_affine,
523 sd->ttwu_move_balance);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 }
Nick Piggin674311d2005-06-25 14:57:27 -0700525 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526#endif
527 }
528 return 0;
529}
530
531static int schedstat_open(struct inode *inode, struct file *file)
532{
533 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
534 char *buf = kmalloc(size, GFP_KERNEL);
535 struct seq_file *m;
536 int res;
537
538 if (!buf)
539 return -ENOMEM;
540 res = single_open(file, show_schedstat, NULL);
541 if (!res) {
542 m = file->private_data;
543 m->buf = buf;
544 m->size = size;
545 } else
546 kfree(buf);
547 return res;
548}
549
Helge Deller15ad7cd2006-12-06 20:40:36 -0800550const struct file_operations proc_schedstat_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551 .open = schedstat_open,
552 .read = seq_read,
553 .llseek = seq_lseek,
554 .release = single_release,
555};
556
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700557/*
558 * Expects runqueue lock to be held for atomicity of update
559 */
560static inline void
561rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
562{
563 if (rq) {
564 rq->rq_sched_info.run_delay += delta_jiffies;
565 rq->rq_sched_info.pcnt++;
566 }
567}
568
569/*
570 * Expects runqueue lock to be held for atomicity of update
571 */
572static inline void
573rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
574{
575 if (rq)
576 rq->rq_sched_info.cpu_time += delta_jiffies;
577}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700578# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
579# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
580#else /* !CONFIG_SCHEDSTATS */
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700581static inline void
582rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
583{}
584static inline void
585rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
586{}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587# define schedstat_inc(rq, field) do { } while (0)
588# define schedstat_add(rq, field, amt) do { } while (0)
589#endif
590
591/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800592 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700594static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595 __acquires(rq->lock)
596{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700597 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700598
599 local_irq_disable();
600 rq = this_rq();
601 spin_lock(&rq->lock);
602
603 return rq;
604}
605
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700606#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607/*
608 * Called when a process is dequeued from the active array and given
609 * the cpu. We should note that with the exception of interactive
610 * tasks, the expired queue will become the active queue after the active
611 * queue is empty, without explicitly dequeuing and requeuing tasks in the
612 * expired queue. (Interactive tasks may be requeued directly to the
613 * active queue, thus delaying tasks in the expired queue from running;
614 * see scheduler_tick()).
615 *
616 * This function is only called from sched_info_arrive(), rather than
617 * dequeue_task(). Even though a task may be queued and dequeued multiple
618 * times as it is shuffled about, we're really interested in knowing how
619 * long it was from the *first* time it was queued to the time that it
620 * finally hit a cpu.
621 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700622static inline void sched_info_dequeued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623{
624 t->sched_info.last_queued = 0;
625}
626
627/*
628 * Called when a task finally hits the cpu. We can now calculate how
629 * long it was waiting to run. We also note when it began so that we
630 * can keep stats on how long its timeslice is.
631 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700632static void sched_info_arrive(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700634 unsigned long now = jiffies, delta_jiffies = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700635
636 if (t->sched_info.last_queued)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700637 delta_jiffies = now - t->sched_info.last_queued;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 sched_info_dequeued(t);
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700639 t->sched_info.run_delay += delta_jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 t->sched_info.last_arrival = now;
641 t->sched_info.pcnt++;
642
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700643 rq_sched_info_arrive(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644}
645
646/*
647 * Called when a process is queued into either the active or expired
648 * array. The time is noted and later used to determine how long we
649 * had to wait for us to reach the cpu. Since the expired queue will
650 * become the active queue after active queue is empty, without dequeuing
651 * and requeuing any tasks, we are interested in queuing to either. It
652 * is unusual but not impossible for tasks to be dequeued and immediately
653 * requeued in the same or another array: this can happen in sched_yield(),
654 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
655 * to runqueue.
656 *
657 * This function is only called from enqueue_task(), but also only updates
658 * the timestamp if it is already not set. It's assumed that
659 * sched_info_dequeued() will clear that stamp when appropriate.
660 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700661static inline void sched_info_queued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700663 if (unlikely(sched_info_on()))
664 if (!t->sched_info.last_queued)
665 t->sched_info.last_queued = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666}
667
668/*
669 * Called when a process ceases being the active-running process, either
670 * voluntarily or involuntarily. Now we can calculate how long we ran.
671 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700672static inline void sched_info_depart(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700674 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700676 t->sched_info.cpu_time += delta_jiffies;
677 rq_sched_info_depart(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678}
679
680/*
681 * Called when tasks are switched involuntarily due, typically, to expiring
682 * their time slice. (This may also be called when switching to or from
683 * the idle task.) We are only called when prev != next.
684 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700685static inline void
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700686__sched_info_switch(struct task_struct *prev, struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700687{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700688 struct rq *rq = task_rq(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689
690 /*
691 * prev now departs the cpu. It's not interesting to record
692 * stats about how efficient we were at scheduling the idle
693 * process, however.
694 */
695 if (prev != rq->idle)
696 sched_info_depart(prev);
697
698 if (next != rq->idle)
699 sched_info_arrive(next);
700}
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700701static inline void
702sched_info_switch(struct task_struct *prev, struct task_struct *next)
703{
704 if (unlikely(sched_info_on()))
705 __sched_info_switch(prev, next);
706}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707#else
708#define sched_info_queued(t) do { } while (0)
709#define sched_info_switch(t, next) do { } while (0)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700710#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711
712/*
713 * Adding/removing a task to/from a priority array:
714 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700715static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716{
717 array->nr_active--;
718 list_del(&p->run_list);
719 if (list_empty(array->queue + p->prio))
720 __clear_bit(p->prio, array->bitmap);
721}
722
Ingo Molnar70b97a72006-07-03 00:25:42 -0700723static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724{
725 sched_info_queued(p);
726 list_add_tail(&p->run_list, array->queue + p->prio);
727 __set_bit(p->prio, array->bitmap);
728 array->nr_active++;
729 p->array = array;
730}
731
732/*
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
735 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700736static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700737{
738 list_move_tail(&p->run_list, array->queue + p->prio);
739}
740
Ingo Molnar70b97a72006-07-03 00:25:42 -0700741static inline void
742enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743{
744 list_add(&p->run_list, array->queue + p->prio);
745 __set_bit(p->prio, array->bitmap);
746 array->nr_active++;
747 p->array = array;
748}
749
750/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700751 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752 * priority but is modified by bonuses/penalties.
753 *
754 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
755 * into the -5 ... 0 ... +5 bonus/penalty range.
756 *
757 * We use 25% of the full 0...39 priority range so that:
758 *
759 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
760 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
761 *
762 * Both properties are important to certain workloads.
763 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700764
Ingo Molnar36c8b582006-07-03 00:25:41 -0700765static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700766{
767 int bonus, prio;
768
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
770
771 prio = p->static_prio - bonus;
772 if (prio < MAX_RT_PRIO)
773 prio = MAX_RT_PRIO;
774 if (prio > MAX_PRIO-1)
775 prio = MAX_PRIO-1;
776 return prio;
777}
778
779/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788/*
789 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
790 * If static_prio_timeslice() is ever changed to break this assumption then
791 * this code will need modification
792 */
793#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
794#define LOAD_WEIGHT(lp) \
795 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
796#define PRIO_TO_LOAD_WEIGHT(prio) \
797 LOAD_WEIGHT(static_prio_timeslice(prio))
798#define RTPRIO_TO_LOAD_WEIGHT(rp) \
799 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
800
Ingo Molnar36c8b582006-07-03 00:25:41 -0700801static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700802{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700803 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700804#ifdef CONFIG_SMP
805 if (p == task_rq(p)->migration_thread)
806 /*
807 * The migration thread does the actual balancing.
808 * Giving its load any weight will skew balancing
809 * adversely.
810 */
811 p->load_weight = 0;
812 else
813#endif
814 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
815 } else
816 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
817}
818
Ingo Molnar36c8b582006-07-03 00:25:41 -0700819static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700820inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700821{
822 rq->raw_weighted_load += p->load_weight;
823}
824
Ingo Molnar36c8b582006-07-03 00:25:41 -0700825static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700826dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700827{
828 rq->raw_weighted_load -= p->load_weight;
829}
830
Ingo Molnar70b97a72006-07-03 00:25:42 -0700831static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700832{
833 rq->nr_running++;
834 inc_raw_weighted_load(rq, p);
835}
836
Ingo Molnar70b97a72006-07-03 00:25:42 -0700837static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700838{
839 rq->nr_running--;
840 dec_raw_weighted_load(rq, p);
841}
842
843/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700844 * Calculate the expected normal priority: i.e. priority
845 * without taking RT-inheritance into account. Might be
846 * boosted by interactivity modifiers. Changes upon fork,
847 * setprio syscalls, and whenever the interactivity
848 * estimator recalculates.
849 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700850static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700851{
852 int prio;
853
854 if (has_rt_policy(p))
855 prio = MAX_RT_PRIO-1 - p->rt_priority;
856 else
857 prio = __normal_prio(p);
858 return prio;
859}
860
861/*
862 * Calculate the current priority, i.e. the priority
863 * taken into account by the scheduler. This value might
864 * be boosted by RT tasks, or might be boosted by
865 * interactivity modifiers. Will be RT if the task got
866 * RT-boosted. If not then it returns p->normal_prio.
867 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700868static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700869{
870 p->normal_prio = normal_prio(p);
871 /*
872 * If we are RT tasks or we were boosted to RT priority,
873 * keep the priority unchanged. Otherwise, update priority
874 * to the normal priority:
875 */
876 if (!rt_prio(p->prio))
877 return p->normal_prio;
878 return p->prio;
879}
880
881/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 * __activate_task - move a task to the runqueue.
883 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700884static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700886 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800887
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700888 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800889 target = rq->expired;
890 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700891 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892}
893
894/*
895 * __activate_idle_task - move idle task to the _front_ of runqueue.
896 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700897static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898{
899 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700900 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901}
902
Ingo Molnarb29739f2006-06-27 02:54:51 -0700903/*
904 * Recalculate p->normal_prio and p->prio after having slept,
905 * updating the sleep-average too:
906 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700907static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908{
909 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700910 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911
Con Kolivasd425b272006-03-31 02:31:29 -0800912 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800913 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914
915 if (likely(sleep_time > 0)) {
916 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700917 * This ceiling is set to the lowest priority that would allow
918 * a task to be reinserted into the active array on timeslice
919 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 */
Con Kolivas72d28542006-06-27 02:54:30 -0700921 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800922
Con Kolivas72d28542006-06-27 02:54:30 -0700923 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
924 /*
925 * Prevents user tasks from achieving best priority
926 * with one single large enough sleep.
927 */
928 p->sleep_avg = ceiling;
929 /*
930 * Using INTERACTIVE_SLEEP() as a ceiling places a
931 * nice(0) task 1ms sleep away from promotion, and
932 * gives it 700ms to round-robin with no chance of
933 * being demoted. This is more than generous, so
934 * mark this sleep as non-interactive to prevent the
935 * on-runqueue bonus logic from intervening should
936 * this task not receive cpu immediately.
937 */
938 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 } else {
940 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 * Tasks waking from uninterruptible sleep are
942 * limited in their sleep_avg rise as they
943 * are likely to be waiting on I/O
944 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800945 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700946 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700947 sleep_time = 0;
948 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700949 ceiling) {
950 p->sleep_avg = ceiling;
951 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700952 }
953 }
954
955 /*
956 * This code gives a bonus to interactive tasks.
957 *
958 * The boost works by updating the 'average sleep time'
959 * value here, based on ->timestamp. The more time a
960 * task spends sleeping, the higher the average gets -
961 * and the higher the priority boost gets as well.
962 */
963 p->sleep_avg += sleep_time;
964
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965 }
Con Kolivas72d28542006-06-27 02:54:30 -0700966 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
967 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 }
969
Chen Shanga3464a12005-06-25 14:57:31 -0700970 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971}
972
973/*
974 * activate_task - move a task to the runqueue and do priority recalculation
975 *
976 * Update all the scheduling statistics stuff. (sleep average
977 * calculation, priority modifiers, etc.)
978 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700979static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980{
981 unsigned long long now;
982
Chen, Kenneth W62ab6162006-12-10 02:20:36 -0800983 if (rt_task(p))
984 goto out;
985
Linus Torvalds1da177e2005-04-16 15:20:36 -0700986 now = sched_clock();
987#ifdef CONFIG_SMP
988 if (!local) {
989 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700990 struct rq *this_rq = this_rq();
Mike Galbraithb18ec802006-12-10 02:20:31 -0800991 now = (now - this_rq->most_recent_timestamp)
992 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 }
994#endif
995
Ingo Molnarece8a682006-12-06 20:37:24 -0800996 /*
997 * Sleep time is in units of nanosecs, so shift by 20 to get a
998 * milliseconds-range estimation of the amount of time that the task
999 * spent sleeping:
1000 */
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1004 (now - p->timestamp) >> 20);
1005 }
1006
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001007 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008
1009 /*
1010 * This checks to make sure it's not an uninterruptible task
1011 * that is now waking up.
1012 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001013 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014 /*
1015 * Tasks which were woken up by interrupts (ie. hw events)
1016 * are most likely of interactive nature. So we give them
1017 * the credit of extending their sleep time to the period
1018 * of time they spend on the runqueue, waiting for execution
1019 * on a CPU, first time around:
1020 */
1021 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -08001022 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 else {
1024 /*
1025 * Normal first-time wakeups get a credit too for
1026 * on-runqueue time, but it will be weighted down:
1027 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001028 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 }
1030 }
1031 p->timestamp = now;
Chen, Kenneth W62ab6162006-12-10 02:20:36 -08001032out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 __activate_task(p, rq);
1034}
1035
1036/*
1037 * deactivate_task - remove a task from the runqueue.
1038 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001039static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040{
Peter Williams2dd73a42006-06-27 02:54:34 -07001041 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042 dequeue_task(p, p->array);
1043 p->array = NULL;
1044}
1045
1046/*
1047 * resched_task - mark a task 'to be rescheduled now'.
1048 *
1049 * On UP this means the setting of the need_resched flag, on SMP it
1050 * might also involve a cross-CPU call to trigger the scheduler on
1051 * the target CPU.
1052 */
1053#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +02001054
1055#ifndef tsk_is_polling
1056#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1057#endif
1058
Ingo Molnar36c8b582006-07-03 00:25:41 -07001059static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001061 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001062
1063 assert_spin_locked(&task_rq(p)->lock);
1064
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001065 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1066 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001068 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1069
1070 cpu = task_cpu(p);
1071 if (cpu == smp_processor_id())
1072 return;
1073
Andi Kleen495ab9c2006-06-26 13:59:11 +02001074 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001075 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +02001076 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001077 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078}
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07001079
1080static void resched_cpu(int cpu)
1081{
1082 struct rq *rq = cpu_rq(cpu);
1083 unsigned long flags;
1084
1085 if (!spin_trylock_irqsave(&rq->lock, flags))
1086 return;
1087 resched_task(cpu_curr(cpu));
1088 spin_unlock_irqrestore(&rq->lock, flags);
1089}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001090#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001091static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001093 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094 set_tsk_need_resched(p);
1095}
1096#endif
1097
1098/**
1099 * task_curr - is this task currently executing on a CPU?
1100 * @p: the task in question.
1101 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001102inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001103{
1104 return cpu_curr(task_cpu(p)) == p;
1105}
1106
Peter Williams2dd73a42006-06-27 02:54:34 -07001107/* Used instead of source_load when we know the type == 0 */
1108unsigned long weighted_cpuload(const int cpu)
1109{
1110 return cpu_rq(cpu)->raw_weighted_load;
1111}
1112
Linus Torvalds1da177e2005-04-16 15:20:36 -07001113#ifdef CONFIG_SMP
Ingo Molnar70b97a72006-07-03 00:25:42 -07001114struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116
Ingo Molnar36c8b582006-07-03 00:25:41 -07001117 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118 int dest_cpu;
1119
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001121};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122
1123/*
1124 * The task's runqueue lock must be held.
1125 * Returns true if you have to wait for migration thread.
1126 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001127static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001128migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001130 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131
1132 /*
1133 * If the task is not on a runqueue (and not running), then
1134 * it is sufficient to simply update the task's cpu field.
1135 */
1136 if (!p->array && !task_running(rq, p)) {
1137 set_task_cpu(p, dest_cpu);
1138 return 0;
1139 }
1140
1141 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142 req->task = p;
1143 req->dest_cpu = dest_cpu;
1144 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001145
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146 return 1;
1147}
1148
1149/*
1150 * wait_task_inactive - wait for a thread to unschedule.
1151 *
1152 * The caller must ensure that the task *will* unschedule sometime soon,
1153 * else this function might spin for a *long* time. This function can't
1154 * be called with interrupts off, or it may introduce deadlock with
1155 * smp_call_function() if an IPI is sent by the same process we are
1156 * waiting to become inactive.
1157 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001158void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159{
1160 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001161 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 int preempted;
1163
1164repeat:
1165 rq = task_rq_lock(p, &flags);
1166 /* Must be off runqueue entirely, not preempted. */
1167 if (unlikely(p->array || task_running(rq, p))) {
1168 /* If it's preempted, we yield. It could be a while. */
1169 preempted = !task_running(rq, p);
1170 task_rq_unlock(rq, &flags);
1171 cpu_relax();
1172 if (preempted)
1173 yield();
1174 goto repeat;
1175 }
1176 task_rq_unlock(rq, &flags);
1177}
1178
1179/***
1180 * kick_process - kick a running thread to enter/exit the kernel
1181 * @p: the to-be-kicked thread
1182 *
1183 * Cause a process which is running on another CPU to enter
1184 * kernel-mode, without any delay. (to get signals handled.)
1185 *
1186 * NOTE: this function doesnt have to take the runqueue lock,
1187 * because all it wants to ensure is that the remote task enters
1188 * the kernel. If the IPI races and the task has been migrated
1189 * to another CPU then no harm is done and the purpose has been
1190 * achieved as well.
1191 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001192void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193{
1194 int cpu;
1195
1196 preempt_disable();
1197 cpu = task_cpu(p);
1198 if ((cpu != smp_processor_id()) && task_curr(p))
1199 smp_send_reschedule(cpu);
1200 preempt_enable();
1201}
1202
1203/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001204 * Return a low guess at the load of a migration-source cpu weighted
1205 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206 *
1207 * We want to under-estimate the load of migration sources, to
1208 * balance conservatively.
1209 */
Con Kolivasb9104722005-11-08 21:38:55 -08001210static inline unsigned long source_load(int cpu, int type)
1211{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001212 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001213
Peter Williams2dd73a42006-06-27 02:54:34 -07001214 if (type == 0)
1215 return rq->raw_weighted_load;
1216
1217 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001218}
1219
1220/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001221 * Return a high guess at the load of a migration-target cpu weighted
1222 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001223 */
Con Kolivasb9104722005-11-08 21:38:55 -08001224static inline unsigned long target_load(int cpu, int type)
1225{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001226 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001227
Peter Williams2dd73a42006-06-27 02:54:34 -07001228 if (type == 0)
1229 return rq->raw_weighted_load;
1230
1231 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1232}
1233
1234/*
1235 * Return the average load per task on the cpu's run queue
1236 */
1237static inline unsigned long cpu_avg_load_per_task(int cpu)
1238{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001239 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001240 unsigned long n = rq->nr_running;
1241
Ingo Molnar48f24c42006-07-03 00:25:40 -07001242 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001243}
1244
Nick Piggin147cbb42005-06-25 14:57:19 -07001245/*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249static struct sched_group *
1250find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251{
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1261
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264 goto nextgroup;
1265
Nick Piggin147cbb42005-06-25 14:57:19 -07001266 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001284
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1291 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001292nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001293 group = group->next;
1294 } while (group != sd->groups);
1295
1296 if (!idlest || 100*this_load < imbalance*min_load)
1297 return NULL;
1298 return idlest;
1299}
1300
1301/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001302 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001303 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001304static int
1305find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001306{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001307 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001308 unsigned long load, min_load = ULONG_MAX;
1309 int idlest = -1;
1310 int i;
1311
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001312 /* Traverse only the allowed CPUs */
1313 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1314
1315 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001316 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001317
1318 if (load < min_load || (load == min_load && i == this_cpu)) {
1319 min_load = load;
1320 idlest = i;
1321 }
1322 }
1323
1324 return idlest;
1325}
1326
Nick Piggin476d1392005-06-25 14:57:29 -07001327/*
1328 * sched_balance_self: balance the current task (running on cpu) in domains
1329 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1330 * SD_BALANCE_EXEC.
1331 *
1332 * Balance, ie. select the least loaded group.
1333 *
1334 * Returns the target CPU number, or the same CPU if no balancing is needed.
1335 *
1336 * preempt must be disabled.
1337 */
1338static int sched_balance_self(int cpu, int flag)
1339{
1340 struct task_struct *t = current;
1341 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001342
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001343 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001344 /*
1345 * If power savings logic is enabled for a domain, stop there.
1346 */
1347 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1348 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001349 if (tmp->flags & flag)
1350 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001351 }
Nick Piggin476d1392005-06-25 14:57:29 -07001352
1353 while (sd) {
1354 cpumask_t span;
1355 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001356 int new_cpu, weight;
1357
1358 if (!(sd->flags & flag)) {
1359 sd = sd->child;
1360 continue;
1361 }
Nick Piggin476d1392005-06-25 14:57:29 -07001362
1363 span = sd->span;
1364 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001365 if (!group) {
1366 sd = sd->child;
1367 continue;
1368 }
Nick Piggin476d1392005-06-25 14:57:29 -07001369
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001370 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001371 if (new_cpu == -1 || new_cpu == cpu) {
1372 /* Now try balancing at a lower domain level of cpu */
1373 sd = sd->child;
1374 continue;
1375 }
Nick Piggin476d1392005-06-25 14:57:29 -07001376
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001377 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001378 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001379 sd = NULL;
1380 weight = cpus_weight(span);
1381 for_each_domain(cpu, tmp) {
1382 if (weight <= cpus_weight(tmp->span))
1383 break;
1384 if (tmp->flags & flag)
1385 sd = tmp;
1386 }
1387 /* while loop will break here if sd == NULL */
1388 }
1389
1390 return cpu;
1391}
1392
1393#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001394
1395/*
1396 * wake_idle() will wake a task on an idle cpu if task->cpu is
1397 * not idle and an idle cpu is available. The span of cpus to
1398 * search starts with cpus closest then further out as needed,
1399 * so we always favor a closer, idle cpu.
1400 *
1401 * Returns the CPU we should wake onto.
1402 */
1403#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001404static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405{
1406 cpumask_t tmp;
1407 struct sched_domain *sd;
1408 int i;
1409
Siddha, Suresh B49531982007-05-08 00:33:01 -07001410 /*
1411 * If it is idle, then it is the best cpu to run this task.
1412 *
1413 * This cpu is also the best, if it has more than one task already.
1414 * Siblings must be also busy(in most cases) as they didn't already
1415 * pickup the extra load from this cpu and hence we need not check
1416 * sibling runqueue info. This will avoid the checks and cache miss
1417 * penalities associated with that.
1418 */
1419 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 return cpu;
1421
1422 for_each_domain(cpu, sd) {
1423 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001424 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425 for_each_cpu_mask(i, tmp) {
1426 if (idle_cpu(i))
1427 return i;
1428 }
1429 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001430 else
1431 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 }
1433 return cpu;
1434}
1435#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001436static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437{
1438 return cpu;
1439}
1440#endif
1441
1442/***
1443 * try_to_wake_up - wake up a thread
1444 * @p: the to-be-woken-up thread
1445 * @state: the mask of task states that can be woken
1446 * @sync: do a synchronous wakeup?
1447 *
1448 * Put it on the run-queue if it's not already there. The "current"
1449 * thread is always on the run-queue (except when the actual
1450 * re-schedule is in progress), and as such you're allowed to do
1451 * the simpler "current->state = TASK_RUNNING" to mark yourself
1452 * runnable without the overhead of this.
1453 *
1454 * returns failure only if the task is already active.
1455 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001456static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457{
1458 int cpu, this_cpu, success = 0;
1459 unsigned long flags;
1460 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001461 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001463 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001464 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465 int new_cpu;
1466#endif
1467
1468 rq = task_rq_lock(p, &flags);
1469 old_state = p->state;
1470 if (!(old_state & state))
1471 goto out;
1472
1473 if (p->array)
1474 goto out_running;
1475
1476 cpu = task_cpu(p);
1477 this_cpu = smp_processor_id();
1478
1479#ifdef CONFIG_SMP
1480 if (unlikely(task_running(rq, p)))
1481 goto out_activate;
1482
Nick Piggin78979862005-06-25 14:57:13 -07001483 new_cpu = cpu;
1484
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485 schedstat_inc(rq, ttwu_cnt);
1486 if (cpu == this_cpu) {
1487 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001488 goto out_set_cpu;
1489 }
1490
1491 for_each_domain(this_cpu, sd) {
1492 if (cpu_isset(cpu, sd->span)) {
1493 schedstat_inc(sd, ttwu_wake_remote);
1494 this_sd = sd;
1495 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001496 }
1497 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001498
Nick Piggin78979862005-06-25 14:57:13 -07001499 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500 goto out_set_cpu;
1501
Linus Torvalds1da177e2005-04-16 15:20:36 -07001502 /*
Nick Piggin78979862005-06-25 14:57:13 -07001503 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504 */
Nick Piggin78979862005-06-25 14:57:13 -07001505 if (this_sd) {
1506 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508
Nick Piggina3f21bc2005-06-25 14:57:15 -07001509 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1510
Nick Piggin78979862005-06-25 14:57:13 -07001511 load = source_load(cpu, idx);
1512 this_load = target_load(this_cpu, idx);
1513
Nick Piggin78979862005-06-25 14:57:13 -07001514 new_cpu = this_cpu; /* Wake to this CPU if we can */
1515
Nick Piggina3f21bc2005-06-25 14:57:15 -07001516 if (this_sd->flags & SD_WAKE_AFFINE) {
1517 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001518 unsigned long tl_per_task;
1519
1520 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001521
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001523 * If sync wakeup then subtract the (maximum possible)
1524 * effect of the currently running task from the load
1525 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001526 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001527 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001528 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001529
1530 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001531 tl + target_load(cpu, idx) <= tl_per_task) ||
1532 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001533 /*
1534 * This domain has SD_WAKE_AFFINE and
1535 * p is cache cold in this domain, and
1536 * there is no bad imbalance.
1537 */
1538 schedstat_inc(this_sd, ttwu_move_affine);
1539 goto out_set_cpu;
1540 }
1541 }
1542
1543 /*
1544 * Start passive balancing when half the imbalance_pct
1545 * limit is reached.
1546 */
1547 if (this_sd->flags & SD_WAKE_BALANCE) {
1548 if (imbalance*this_load <= 100*load) {
1549 schedstat_inc(this_sd, ttwu_move_balance);
1550 goto out_set_cpu;
1551 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552 }
1553 }
1554
1555 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1556out_set_cpu:
1557 new_cpu = wake_idle(new_cpu, p);
1558 if (new_cpu != cpu) {
1559 set_task_cpu(p, new_cpu);
1560 task_rq_unlock(rq, &flags);
1561 /* might preempt at this point */
1562 rq = task_rq_lock(p, &flags);
1563 old_state = p->state;
1564 if (!(old_state & state))
1565 goto out;
1566 if (p->array)
1567 goto out_running;
1568
1569 this_cpu = smp_processor_id();
1570 cpu = task_cpu(p);
1571 }
1572
1573out_activate:
1574#endif /* CONFIG_SMP */
1575 if (old_state == TASK_UNINTERRUPTIBLE) {
1576 rq->nr_uninterruptible--;
1577 /*
1578 * Tasks on involuntary sleep don't earn
1579 * sleep_avg beyond just interactive state.
1580 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001581 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001582 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583
1584 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001585 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001586 * woken up with their sleep average not weighted in an
1587 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001588 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001589 if (old_state & TASK_NONINTERACTIVE)
1590 p->sleep_type = SLEEP_NONINTERACTIVE;
1591
1592
1593 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001594 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 * Sync wakeups (i.e. those types of wakeups where the waker
1596 * has indicated that it will leave the CPU in short order)
1597 * don't trigger a preemption, if the woken up task will run on
1598 * this cpu. (in this case the 'I will reschedule' promise of
1599 * the waker guarantees that the freshly woken up task is going
1600 * to be considered on this CPU.)
1601 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602 if (!sync || cpu != this_cpu) {
1603 if (TASK_PREEMPTS_CURR(p, rq))
1604 resched_task(rq->curr);
1605 }
1606 success = 1;
1607
1608out_running:
1609 p->state = TASK_RUNNING;
1610out:
1611 task_rq_unlock(rq, &flags);
1612
1613 return success;
1614}
1615
Ingo Molnar36c8b582006-07-03 00:25:41 -07001616int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001617{
1618 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1619 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1620}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621EXPORT_SYMBOL(wake_up_process);
1622
Ingo Molnar36c8b582006-07-03 00:25:41 -07001623int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001624{
1625 return try_to_wake_up(p, state, 0);
1626}
1627
Peter Williamsbc947632006-12-19 12:48:50 +10001628static void task_running_tick(struct rq *rq, struct task_struct *p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629/*
1630 * Perform scheduler related setup for a newly forked process p.
1631 * p is forked by current.
1632 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001633void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634{
Nick Piggin476d1392005-06-25 14:57:29 -07001635 int cpu = get_cpu();
1636
1637#ifdef CONFIG_SMP
1638 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1639#endif
1640 set_task_cpu(p, cpu);
1641
Linus Torvalds1da177e2005-04-16 15:20:36 -07001642 /*
1643 * We mark the process as running here, but have not actually
1644 * inserted it onto the runqueue yet. This guarantees that
1645 * nobody will actually run it, and a signal or other external
1646 * event cannot wake it up and insert it on the runqueue either.
1647 */
1648 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001649
1650 /*
1651 * Make sure we do not leak PI boosting priority to the child:
1652 */
1653 p->prio = current->normal_prio;
1654
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655 INIT_LIST_HEAD(&p->run_list);
1656 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001657#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1658 if (unlikely(sched_info_on()))
1659 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001660#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001661#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001662 p->oncpu = 0;
1663#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001665 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001666 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667#endif
1668 /*
1669 * Share the timeslice between parent and child, thus the
1670 * total amount of pending timeslices in the system doesn't change,
1671 * resulting in more scheduling fairness.
1672 */
1673 local_irq_disable();
1674 p->time_slice = (current->time_slice + 1) >> 1;
1675 /*
1676 * The remainder of the first timeslice might be recovered by
1677 * the parent if the child exits early enough.
1678 */
1679 p->first_time_slice = 1;
1680 current->time_slice >>= 1;
1681 p->timestamp = sched_clock();
1682 if (unlikely(!current->time_slice)) {
1683 /*
1684 * This case is rare, it happens when the parent has only
1685 * a single jiffy left from its timeslice. Taking the
1686 * runqueue lock is not a problem.
1687 */
1688 current->time_slice = 1;
Peter Williamsbc947632006-12-19 12:48:50 +10001689 task_running_tick(cpu_rq(cpu), current);
Nick Piggin476d1392005-06-25 14:57:29 -07001690 }
1691 local_irq_enable();
1692 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693}
1694
1695/*
1696 * wake_up_new_task - wake up a newly created task for the first time.
1697 *
1698 * This function will do some initial scheduler statistics housekeeping
1699 * that must be done for every newly created context, then puts the task
1700 * on the runqueue and wakes it.
1701 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001702void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001704 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705 unsigned long flags;
1706 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707
1708 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001710 this_cpu = smp_processor_id();
1711 cpu = task_cpu(p);
1712
Linus Torvalds1da177e2005-04-16 15:20:36 -07001713 /*
1714 * We decrease the sleep average of forking parents
1715 * and children as well, to keep max-interactive tasks
1716 * from forking tasks that are max-interactive. The parent
1717 * (current) is done further down, under its lock.
1718 */
1719 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1720 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1721
1722 p->prio = effective_prio(p);
1723
1724 if (likely(cpu == this_cpu)) {
1725 if (!(clone_flags & CLONE_VM)) {
1726 /*
1727 * The VM isn't cloned, so we're in a good position to
1728 * do child-runs-first in anticipation of an exec. This
1729 * usually avoids a lot of COW overhead.
1730 */
1731 if (unlikely(!current->array))
1732 __activate_task(p, rq);
1733 else {
1734 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001735 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736 list_add_tail(&p->run_list, &current->run_list);
1737 p->array = current->array;
1738 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001739 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740 }
1741 set_need_resched();
1742 } else
1743 /* Run child last */
1744 __activate_task(p, rq);
1745 /*
1746 * We skip the following code due to cpu == this_cpu
1747 *
1748 * task_rq_unlock(rq, &flags);
1749 * this_rq = task_rq_lock(current, &flags);
1750 */
1751 this_rq = rq;
1752 } else {
1753 this_rq = cpu_rq(this_cpu);
1754
1755 /*
1756 * Not the local CPU - must adjust timestamp. This should
1757 * get optimised away in the !CONFIG_SMP case.
1758 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08001759 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1760 + rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761 __activate_task(p, rq);
1762 if (TASK_PREEMPTS_CURR(p, rq))
1763 resched_task(rq->curr);
1764
1765 /*
1766 * Parent and child are on different CPUs, now get the
1767 * parent runqueue to update the parent's ->sleep_avg:
1768 */
1769 task_rq_unlock(rq, &flags);
1770 this_rq = task_rq_lock(current, &flags);
1771 }
1772 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1773 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1774 task_rq_unlock(this_rq, &flags);
1775}
1776
1777/*
1778 * Potentially available exiting-child timeslices are
1779 * retrieved here - this way the parent does not get
1780 * penalized for creating too many threads.
1781 *
1782 * (this cannot be used to 'generate' timeslices
1783 * artificially, because any timeslice recovered here
1784 * was given away by the parent in the first place.)
1785 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001786void fastcall sched_exit(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787{
1788 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001789 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790
1791 /*
1792 * If the child was a (relative-) CPU hog then decrease
1793 * the sleep_avg of the parent as well.
1794 */
1795 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001796 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 p->parent->time_slice += p->time_slice;
1798 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1799 p->parent->time_slice = task_timeslice(p);
1800 }
1801 if (p->sleep_avg < p->parent->sleep_avg)
1802 p->parent->sleep_avg = p->parent->sleep_avg /
1803 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1804 (EXIT_WEIGHT + 1);
1805 task_rq_unlock(rq, &flags);
1806}
1807
1808/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001809 * prepare_task_switch - prepare to switch tasks
1810 * @rq: the runqueue preparing to switch
1811 * @next: the task we are going to switch to.
1812 *
1813 * This is called with the rq lock held and interrupts off. It must
1814 * be paired with a subsequent finish_task_switch after the context
1815 * switch.
1816 *
1817 * prepare_task_switch sets up locking and calls architecture specific
1818 * hooks.
1819 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001820static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001821{
1822 prepare_lock_switch(rq, next);
1823 prepare_arch_switch(next);
1824}
1825
1826/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001828 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829 * @prev: the thread we just switched away from.
1830 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001831 * finish_task_switch must be called after the context switch, paired
1832 * with a prepare_task_switch call before the context switch.
1833 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1834 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835 *
1836 * Note that we may have delayed dropping an mm in context_switch(). If
1837 * so, we finish that here outside of the runqueue lock. (Doing it
1838 * with the lock held can cause deadlocks; see schedule() for
1839 * details.)
1840 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001841static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 __releases(rq->lock)
1843{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001845 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846
1847 rq->prev_mm = NULL;
1848
1849 /*
1850 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001851 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001852 * schedule one last time. The schedule call will never return, and
1853 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001854 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 * still held, otherwise prev could be scheduled on another cpu, die
1856 * there before we look at prev->state, and then the reference would
1857 * be dropped twice.
1858 * Manfred Spraul <manfred@colorfullife.com>
1859 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001860 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001861 finish_arch_switch(prev);
1862 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 if (mm)
1864 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001865 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001866 /*
1867 * Remove function-return probe instances associated with this
1868 * task and put them back on the free list.
1869 */
1870 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001872 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873}
1874
1875/**
1876 * schedule_tail - first thing a freshly forked thread must call.
1877 * @prev: the thread we just switched away from.
1878 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001879asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001880 __releases(rq->lock)
1881{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001882 struct rq *rq = this_rq();
1883
Nick Piggin4866cde2005-06-25 14:57:23 -07001884 finish_task_switch(rq, prev);
1885#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1886 /* In this case, finish_task_switch does not reenable preemption */
1887 preempt_enable();
1888#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889 if (current->set_child_tid)
1890 put_user(current->pid, current->set_child_tid);
1891}
1892
1893/*
1894 * context_switch - switch to the new MM and the new
1895 * thread's register state.
1896 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001897static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001898context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001899 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900{
1901 struct mm_struct *mm = next->mm;
1902 struct mm_struct *oldmm = prev->active_mm;
1903
Zachary Amsden9226d122007-02-13 13:26:21 +01001904 /*
1905 * For paravirt, this is coupled with an exit in switch_to to
1906 * combine the page table reload and the switch backend into
1907 * one hypercall.
1908 */
1909 arch_enter_lazy_cpu_mode();
1910
Nick Pigginbeed33a2006-10-11 01:21:52 -07001911 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 next->active_mm = oldmm;
1913 atomic_inc(&oldmm->mm_count);
1914 enter_lazy_tlb(oldmm, next);
1915 } else
1916 switch_mm(oldmm, mm, next);
1917
Nick Pigginbeed33a2006-10-11 01:21:52 -07001918 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 prev->active_mm = NULL;
1920 WARN_ON(rq->prev_mm);
1921 rq->prev_mm = oldmm;
1922 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001923 /*
1924 * Since the runqueue lock will be released by the next
1925 * task (which is an invalid locking op but in the case
1926 * of the scheduler it's an obvious special-case), so we
1927 * do an early lockdep release here:
1928 */
1929#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001930 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001931#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932
1933 /* Here we just switch the register state and the stack. */
1934 switch_to(prev, next, prev);
1935
1936 return prev;
1937}
1938
1939/*
1940 * nr_running, nr_uninterruptible and nr_context_switches:
1941 *
1942 * externally visible scheduler statistics: current number of runnable
1943 * threads, current number of uninterruptible-sleeping threads, total
1944 * number of context switches performed since bootup.
1945 */
1946unsigned long nr_running(void)
1947{
1948 unsigned long i, sum = 0;
1949
1950 for_each_online_cpu(i)
1951 sum += cpu_rq(i)->nr_running;
1952
1953 return sum;
1954}
1955
1956unsigned long nr_uninterruptible(void)
1957{
1958 unsigned long i, sum = 0;
1959
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001960 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961 sum += cpu_rq(i)->nr_uninterruptible;
1962
1963 /*
1964 * Since we read the counters lockless, it might be slightly
1965 * inaccurate. Do not allow it to go below zero though:
1966 */
1967 if (unlikely((long)sum < 0))
1968 sum = 0;
1969
1970 return sum;
1971}
1972
1973unsigned long long nr_context_switches(void)
1974{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001975 int i;
1976 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001978 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001979 sum += cpu_rq(i)->nr_switches;
1980
1981 return sum;
1982}
1983
1984unsigned long nr_iowait(void)
1985{
1986 unsigned long i, sum = 0;
1987
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001988 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1990
1991 return sum;
1992}
1993
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001994unsigned long nr_active(void)
1995{
1996 unsigned long i, running = 0, uninterruptible = 0;
1997
1998 for_each_online_cpu(i) {
1999 running += cpu_rq(i)->nr_running;
2000 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2001 }
2002
2003 if (unlikely((long)uninterruptible < 0))
2004 uninterruptible = 0;
2005
2006 return running + uninterruptible;
2007}
2008
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009#ifdef CONFIG_SMP
2010
2011/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07002012 * Is this task likely cache-hot:
2013 */
2014static inline int
2015task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2016{
2017 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2018}
2019
2020/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002021 * double_rq_lock - safely lock two runqueues
2022 *
2023 * Note this does not disable interrupts like task_rq_lock,
2024 * you need to do so manually before calling.
2025 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002026static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 __acquires(rq1->lock)
2028 __acquires(rq2->lock)
2029{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002030 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002031 if (rq1 == rq2) {
2032 spin_lock(&rq1->lock);
2033 __acquire(rq2->lock); /* Fake it out ;) */
2034 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002035 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 spin_lock(&rq1->lock);
2037 spin_lock(&rq2->lock);
2038 } else {
2039 spin_lock(&rq2->lock);
2040 spin_lock(&rq1->lock);
2041 }
2042 }
2043}
2044
2045/*
2046 * double_rq_unlock - safely unlock two runqueues
2047 *
2048 * Note this does not restore interrupts like task_rq_unlock,
2049 * you need to do so manually after calling.
2050 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002051static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052 __releases(rq1->lock)
2053 __releases(rq2->lock)
2054{
2055 spin_unlock(&rq1->lock);
2056 if (rq1 != rq2)
2057 spin_unlock(&rq2->lock);
2058 else
2059 __release(rq2->lock);
2060}
2061
2062/*
2063 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2064 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002065static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066 __releases(this_rq->lock)
2067 __acquires(busiest->lock)
2068 __acquires(this_rq->lock)
2069{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002070 if (unlikely(!irqs_disabled())) {
2071 /* printk() doesn't work good under rq->lock */
2072 spin_unlock(&this_rq->lock);
2073 BUG_ON(1);
2074 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002076 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077 spin_unlock(&this_rq->lock);
2078 spin_lock(&busiest->lock);
2079 spin_lock(&this_rq->lock);
2080 } else
2081 spin_lock(&busiest->lock);
2082 }
2083}
2084
2085/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 * If dest_cpu is allowed for this process, migrate the task to it.
2087 * This is accomplished by forcing the cpu_allowed mask to only
2088 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2089 * the cpu_allowed mask is restored.
2090 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002091static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002093 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002094 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002095 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096
2097 rq = task_rq_lock(p, &flags);
2098 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2099 || unlikely(cpu_is_offline(dest_cpu)))
2100 goto out;
2101
2102 /* force the process onto the specified CPU */
2103 if (migrate_task(p, dest_cpu, &req)) {
2104 /* Need to wait for migration thread (might exit: take ref). */
2105 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002106
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 get_task_struct(mt);
2108 task_rq_unlock(rq, &flags);
2109 wake_up_process(mt);
2110 put_task_struct(mt);
2111 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002112
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113 return;
2114 }
2115out:
2116 task_rq_unlock(rq, &flags);
2117}
2118
2119/*
Nick Piggin476d1392005-06-25 14:57:29 -07002120 * sched_exec - execve() is a valuable balancing opportunity, because at
2121 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 */
2123void sched_exec(void)
2124{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002125 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002126 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002128 if (new_cpu != this_cpu)
2129 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130}
2131
2132/*
2133 * pull_task - move a task from a remote runqueue to the local runqueue.
2134 * Both runqueues must be locked.
2135 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002136static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2137 struct task_struct *p, struct rq *this_rq,
2138 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139{
2140 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002141 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002143 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144 enqueue_task(p, this_array);
Mike Galbraithb18ec802006-12-10 02:20:31 -08002145 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2146 + this_rq->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147 /*
2148 * Note that idle threads have a prio of MAX_PRIO, for this test
2149 * to be always true for them.
2150 */
2151 if (TASK_PREEMPTS_CURR(p, this_rq))
2152 resched_task(this_rq->curr);
2153}
2154
2155/*
2156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2157 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002158static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002159int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002160 struct sched_domain *sd, enum idle_type idle,
2161 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162{
2163 /*
2164 * We do not migrate tasks that are:
2165 * 1) running (obviously), or
2166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2167 * 3) are cache-hot on their current CPU.
2168 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169 if (!cpu_isset(this_cpu, p->cpus_allowed))
2170 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002171 *all_pinned = 0;
2172
2173 if (task_running(rq, p))
2174 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175
2176 /*
2177 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002178 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 * 2) too many balance attempts have failed.
2180 */
2181
Mike Galbraithb18ec802006-12-10 02:20:31 -08002182 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2183#ifdef CONFIG_SCHEDSTATS
2184 if (task_hot(p, rq->most_recent_timestamp, sd))
2185 schedstat_inc(sd, lb_hot_gained[idle]);
2186#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187 return 1;
Mike Galbraithb18ec802006-12-10 02:20:31 -08002188 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002189
Mike Galbraithb18ec802006-12-10 02:20:31 -08002190 if (task_hot(p, rq->most_recent_timestamp, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002191 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192 return 1;
2193}
2194
Peter Williams615052d2006-06-27 02:54:37 -07002195#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002196
Linus Torvalds1da177e2005-04-16 15:20:36 -07002197/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002198 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2199 * load from busiest to this_rq, as part of a balancing operation within
2200 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201 *
2202 * Called with both runqueues locked.
2203 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002204static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002205 unsigned long max_nr_move, unsigned long max_load_move,
2206 struct sched_domain *sd, enum idle_type idle,
2207 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002209 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2210 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002211 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002213 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002214 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215
Peter Williams2dd73a42006-06-27 02:54:34 -07002216 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 goto out;
2218
Peter Williams2dd73a42006-06-27 02:54:34 -07002219 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002220 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002221 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002222 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002223 /*
2224 * Enable handling of the case where there is more than one task
2225 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002226 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002227 * and therefore it's safe to override the skip (based on load) of
2228 * any task we find with that prio.
2229 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002230 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002231
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232 /*
2233 * We first consider expired tasks. Those will likely not be
2234 * executed in the near future, and they are most likely to
2235 * be cache-cold, thus switching CPUs has the least effect
2236 * on them.
2237 */
2238 if (busiest->expired->nr_active) {
2239 array = busiest->expired;
2240 dst_array = this_rq->expired;
2241 } else {
2242 array = busiest->active;
2243 dst_array = this_rq->active;
2244 }
2245
2246new_array:
2247 /* Start searching at priority 0: */
2248 idx = 0;
2249skip_bitmap:
2250 if (!idx)
2251 idx = sched_find_first_bit(array->bitmap);
2252 else
2253 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2254 if (idx >= MAX_PRIO) {
2255 if (array == busiest->expired && busiest->active->nr_active) {
2256 array = busiest->active;
2257 dst_array = this_rq->active;
2258 goto new_array;
2259 }
2260 goto out;
2261 }
2262
2263 head = array->queue + idx;
2264 curr = head->prev;
2265skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002266 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002267
2268 curr = curr->prev;
2269
Peter Williams50ddd962006-06-27 02:54:36 -07002270 /*
2271 * To help distribute high priority tasks accross CPUs we don't
2272 * skip a task if it will be the highest priority task (i.e. smallest
2273 * prio value) on its new queue regardless of its load weight
2274 */
Peter Williams615052d2006-06-27 02:54:37 -07002275 skip_for_load = tmp->load_weight > rem_load_move;
2276 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002277 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002278 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002279 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002280
2281 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 if (curr != head)
2283 goto skip_queue;
2284 idx++;
2285 goto skip_bitmap;
2286 }
2287
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2289 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002290 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291
Peter Williams2dd73a42006-06-27 02:54:34 -07002292 /*
2293 * We only want to steal up to the prescribed number of tasks
2294 * and the prescribed amount of weighted load.
2295 */
2296 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002297 if (idx < this_best_prio)
2298 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299 if (curr != head)
2300 goto skip_queue;
2301 idx++;
2302 goto skip_bitmap;
2303 }
2304out:
2305 /*
2306 * Right now, this is the only place pull_task() is called,
2307 * so we can safely collect pull_task() stats here rather than
2308 * inside pull_task().
2309 */
2310 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002311
2312 if (all_pinned)
2313 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002314 return pulled;
2315}
2316
2317/*
2318 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002319 * domain. It calculates and returns the amount of weighted load which
2320 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321 */
2322static struct sched_group *
2323find_busiest_group(struct sched_domain *sd, int this_cpu,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002324 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002325 cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326{
2327 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2328 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002329 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002330 unsigned long busiest_load_per_task, busiest_nr_running;
2331 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002332 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002333#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2334 int power_savings_balance = 1;
2335 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2336 unsigned long min_nr_running = ULONG_MAX;
2337 struct sched_group *group_min = NULL, *group_leader = NULL;
2338#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002339
2340 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002341 busiest_load_per_task = busiest_nr_running = 0;
2342 this_load_per_task = this_nr_running = 0;
Nick Piggin78979862005-06-25 14:57:13 -07002343 if (idle == NOT_IDLE)
2344 load_idx = sd->busy_idx;
2345 else if (idle == NEWLY_IDLE)
2346 load_idx = sd->newidle_idx;
2347 else
2348 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002349
2350 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002351 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002352 int local_group;
2353 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002354 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002355 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356
2357 local_group = cpu_isset(this_cpu, group->cpumask);
2358
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002359 if (local_group)
2360 balance_cpu = first_cpu(group->cpumask);
2361
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002363 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364
2365 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002366 struct rq *rq;
2367
2368 if (!cpu_isset(i, *cpus))
2369 continue;
2370
2371 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002372
Nick Piggin5969fe02005-09-10 00:26:19 -07002373 if (*sd_idle && !idle_cpu(i))
2374 *sd_idle = 0;
2375
Linus Torvalds1da177e2005-04-16 15:20:36 -07002376 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002377 if (local_group) {
2378 if (idle_cpu(i) && !first_idle_cpu) {
2379 first_idle_cpu = 1;
2380 balance_cpu = i;
2381 }
2382
Nick Piggina2000572006-02-10 01:51:02 -08002383 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002384 } else
Nick Piggina2000572006-02-10 01:51:02 -08002385 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386
2387 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002388 sum_nr_running += rq->nr_running;
2389 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 }
2391
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002392 /*
2393 * First idle cpu or the first cpu(busiest) in this sched group
2394 * is eligible for doing load balancing at this and above
2395 * domains.
2396 */
2397 if (local_group && balance_cpu != this_cpu && balance) {
2398 *balance = 0;
2399 goto ret;
2400 }
2401
Linus Torvalds1da177e2005-04-16 15:20:36 -07002402 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002403 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002404
2405 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002406 avg_load = sg_div_cpu_power(group,
2407 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408
Eric Dumazet5517d862007-05-08 00:32:57 -07002409 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002410
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411 if (local_group) {
2412 this_load = avg_load;
2413 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002414 this_nr_running = sum_nr_running;
2415 this_load_per_task = sum_weighted_load;
2416 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002417 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 max_load = avg_load;
2419 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002420 busiest_nr_running = sum_nr_running;
2421 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002423
2424#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2425 /*
2426 * Busy processors will not participate in power savings
2427 * balance.
2428 */
2429 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2430 goto group_next;
2431
2432 /*
2433 * If the local group is idle or completely loaded
2434 * no need to do power savings balance at this domain
2435 */
2436 if (local_group && (this_nr_running >= group_capacity ||
2437 !this_nr_running))
2438 power_savings_balance = 0;
2439
2440 /*
2441 * If a group is already running at full capacity or idle,
2442 * don't include that group in power savings calculations
2443 */
2444 if (!power_savings_balance || sum_nr_running >= group_capacity
2445 || !sum_nr_running)
2446 goto group_next;
2447
2448 /*
2449 * Calculate the group which has the least non-idle load.
2450 * This is the group from where we need to pick up the load
2451 * for saving power
2452 */
2453 if ((sum_nr_running < min_nr_running) ||
2454 (sum_nr_running == min_nr_running &&
2455 first_cpu(group->cpumask) <
2456 first_cpu(group_min->cpumask))) {
2457 group_min = group;
2458 min_nr_running = sum_nr_running;
2459 min_load_per_task = sum_weighted_load /
2460 sum_nr_running;
2461 }
2462
2463 /*
2464 * Calculate the group which is almost near its
2465 * capacity but still has some space to pick up some load
2466 * from other group and save more power
2467 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002468 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002469 if (sum_nr_running > leader_nr_running ||
2470 (sum_nr_running == leader_nr_running &&
2471 first_cpu(group->cpumask) >
2472 first_cpu(group_leader->cpumask))) {
2473 group_leader = group;
2474 leader_nr_running = sum_nr_running;
2475 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002476 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002477group_next:
2478#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479 group = group->next;
2480 } while (group != sd->groups);
2481
Peter Williams2dd73a42006-06-27 02:54:34 -07002482 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483 goto out_balanced;
2484
2485 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2486
2487 if (this_load >= avg_load ||
2488 100*max_load <= sd->imbalance_pct*this_load)
2489 goto out_balanced;
2490
Peter Williams2dd73a42006-06-27 02:54:34 -07002491 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002492 /*
2493 * We're trying to get all the cpus to the average_load, so we don't
2494 * want to push ourselves above the average load, nor do we wish to
2495 * reduce the max loaded cpu below the average load, as either of these
2496 * actions would just result in more rebalancing later, and ping-pong
2497 * tasks around. Thus we look for the minimum possible imbalance.
2498 * Negative imbalances (*we* are more loaded than anyone else) will
2499 * be counted as no imbalance for these purposes -- we can't fix that
2500 * by pulling tasks to us. Be careful of negative numbers as they'll
2501 * appear as very large values with unsigned longs.
2502 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002503 if (max_load <= busiest_load_per_task)
2504 goto out_balanced;
2505
2506 /*
2507 * In the presence of smp nice balancing, certain scenarios can have
2508 * max load less than avg load(as we skip the groups at or below
2509 * its cpu_power, while calculating max_load..)
2510 */
2511 if (max_load < avg_load) {
2512 *imbalance = 0;
2513 goto small_imbalance;
2514 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002515
2516 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002517 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002518
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002520 *imbalance = min(max_pull * busiest->__cpu_power,
2521 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002522 / SCHED_LOAD_SCALE;
2523
Peter Williams2dd73a42006-06-27 02:54:34 -07002524 /*
2525 * if *imbalance is less than the average load per runnable task
2526 * there is no gaurantee that any tasks will be moved so we'll have
2527 * a think about bumping its value to force at least one task to be
2528 * moved
2529 */
2530 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002531 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002532 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533
Peter Williams2dd73a42006-06-27 02:54:34 -07002534small_imbalance:
2535 pwr_move = pwr_now = 0;
2536 imbn = 2;
2537 if (this_nr_running) {
2538 this_load_per_task /= this_nr_running;
2539 if (busiest_load_per_task > this_load_per_task)
2540 imbn = 1;
2541 } else
2542 this_load_per_task = SCHED_LOAD_SCALE;
2543
2544 if (max_load - this_load >= busiest_load_per_task * imbn) {
2545 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546 return busiest;
2547 }
2548
2549 /*
2550 * OK, we don't have enough imbalance to justify moving tasks,
2551 * however we may be able to increase total CPU power used by
2552 * moving them.
2553 */
2554
Eric Dumazet5517d862007-05-08 00:32:57 -07002555 pwr_now += busiest->__cpu_power *
2556 min(busiest_load_per_task, max_load);
2557 pwr_now += this->__cpu_power *
2558 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 pwr_now /= SCHED_LOAD_SCALE;
2560
2561 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002562 tmp = sg_div_cpu_power(busiest,
2563 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002565 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002566 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002567
2568 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002569 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002570 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002571 tmp = sg_div_cpu_power(this,
2572 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002574 tmp = sg_div_cpu_power(this,
2575 busiest_load_per_task * SCHED_LOAD_SCALE);
2576 pwr_move += this->__cpu_power *
2577 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578 pwr_move /= SCHED_LOAD_SCALE;
2579
2580 /* Move if we gain throughput */
2581 if (pwr_move <= pwr_now)
2582 goto out_balanced;
2583
Peter Williams2dd73a42006-06-27 02:54:34 -07002584 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585 }
2586
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587 return busiest;
2588
2589out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002590#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2591 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2592 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002594 if (this == group_leader && group_leader != group_min) {
2595 *imbalance = min_load_per_task;
2596 return group_min;
2597 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002598#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002599ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600 *imbalance = 0;
2601 return NULL;
2602}
2603
2604/*
2605 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2606 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002607static struct rq *
Ingo Molnar48f24c42006-07-03 00:25:40 -07002608find_busiest_queue(struct sched_group *group, enum idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002609 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002610{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002611 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002612 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 int i;
2614
2615 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002616
2617 if (!cpu_isset(i, *cpus))
2618 continue;
2619
Ingo Molnar48f24c42006-07-03 00:25:40 -07002620 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621
Ingo Molnar48f24c42006-07-03 00:25:40 -07002622 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002623 continue;
2624
Ingo Molnar48f24c42006-07-03 00:25:40 -07002625 if (rq->raw_weighted_load > max_load) {
2626 max_load = rq->raw_weighted_load;
2627 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628 }
2629 }
2630
2631 return busiest;
2632}
2633
2634/*
Nick Piggin77391d72005-06-25 14:57:30 -07002635 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2636 * so long as it is large enough.
2637 */
2638#define MAX_PINNED_INTERVAL 512
2639
Ingo Molnar48f24c42006-07-03 00:25:40 -07002640static inline unsigned long minus_1_or_zero(unsigned long n)
2641{
2642 return n > 0 ? n - 1 : 0;
2643}
2644
Nick Piggin77391d72005-06-25 14:57:30 -07002645/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002646 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2647 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002649static int load_balance(int this_cpu, struct rq *this_rq,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002650 struct sched_domain *sd, enum idle_type idle,
2651 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002653 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002656 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002657 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002658 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002659
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002660 /*
2661 * When power savings policy is enabled for the parent domain, idle
2662 * sibling can pick up load irrespective of busy siblings. In this case,
2663 * let the state of idle sibling percolate up as IDLE, instead of
2664 * portraying it as NOT_IDLE.
2665 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002666 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002667 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002668 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670 schedstat_inc(sd, lb_cnt[idle]);
2671
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002672redo:
2673 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002674 &cpus, balance);
2675
Chen, Kenneth W06066712006-12-10 02:20:35 -08002676 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002677 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002678
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 if (!group) {
2680 schedstat_inc(sd, lb_nobusyg[idle]);
2681 goto out_balanced;
2682 }
2683
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002684 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685 if (!busiest) {
2686 schedstat_inc(sd, lb_nobusyq[idle]);
2687 goto out_balanced;
2688 }
2689
Nick Piggindb935db2005-06-25 14:57:11 -07002690 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002691
2692 schedstat_add(sd, lb_imbalance[idle], imbalance);
2693
2694 nr_moved = 0;
2695 if (busiest->nr_running > 1) {
2696 /*
2697 * Attempt to move tasks. If find_busiest_group has found
2698 * an imbalance but busiest->nr_running <= 1, the group is
2699 * still unbalanced. nr_moved simply stays zero, so it is
2700 * correctly treated as an imbalance.
2701 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002702 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002703 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002704 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002705 minus_1_or_zero(busiest->nr_running),
2706 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002707 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002708 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002709
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002710 /*
2711 * some other cpu did the load balance for us.
2712 */
2713 if (nr_moved && this_cpu != smp_processor_id())
2714 resched_cpu(this_cpu);
2715
Nick Piggin81026792005-06-25 14:57:07 -07002716 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002717 if (unlikely(all_pinned)) {
2718 cpu_clear(cpu_of(busiest), cpus);
2719 if (!cpus_empty(cpus))
2720 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002721 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002722 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 }
Nick Piggin81026792005-06-25 14:57:07 -07002724
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 if (!nr_moved) {
2726 schedstat_inc(sd, lb_failed[idle]);
2727 sd->nr_balance_failed++;
2728
2729 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002731 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002732
2733 /* don't kick the migration_thread, if the curr
2734 * task on busiest cpu can't be moved to this_cpu
2735 */
2736 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002737 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002738 all_pinned = 1;
2739 goto out_one_pinned;
2740 }
2741
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 if (!busiest->active_balance) {
2743 busiest->active_balance = 1;
2744 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002745 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002747 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002748 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749 wake_up_process(busiest->migration_thread);
2750
2751 /*
2752 * We've kicked active balancing, reset the failure
2753 * counter.
2754 */
Nick Piggin39507452005-06-25 14:57:09 -07002755 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756 }
Nick Piggin81026792005-06-25 14:57:07 -07002757 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758 sd->nr_balance_failed = 0;
2759
Nick Piggin81026792005-06-25 14:57:07 -07002760 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 /* We were unbalanced, so reset the balancing interval */
2762 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002763 } else {
2764 /*
2765 * If we've begun active balancing, start to back off. This
2766 * case may not be covered by the all_pinned logic if there
2767 * is only 1 task on the busy runqueue (because we don't call
2768 * move_tasks).
2769 */
2770 if (sd->balance_interval < sd->max_interval)
2771 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002772 }
2773
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002774 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002775 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002776 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002777 return nr_moved;
2778
2779out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 schedstat_inc(sd, lb_balanced[idle]);
2781
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002782 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002783
2784out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002786 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2787 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788 sd->balance_interval *= 2;
2789
Ingo Molnar48f24c42006-07-03 00:25:40 -07002790 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002791 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002792 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 return 0;
2794}
2795
2796/*
2797 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2798 * tasks if there is an imbalance.
2799 *
2800 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2801 * this_rq is locked.
2802 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002803static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002804load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805{
2806 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002807 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808 unsigned long imbalance;
2809 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002810 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002811 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002812
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002813 /*
2814 * When power savings policy is enabled for the parent domain, idle
2815 * sibling can pick up load irrespective of busy siblings. In this case,
2816 * let the state of idle sibling percolate up as IDLE, instead of
2817 * portraying it as NOT_IDLE.
2818 */
2819 if (sd->flags & SD_SHARE_CPUPOWER &&
2820 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002821 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822
2823 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002824redo:
2825 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002826 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002828 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002829 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830 }
2831
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002832 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2833 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002834 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002836 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002837 }
2838
Nick Piggindb935db2005-06-25 14:57:11 -07002839 BUG_ON(busiest == this_rq);
2840
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002842
2843 nr_moved = 0;
2844 if (busiest->nr_running > 1) {
2845 /* Attempt to move tasks */
2846 double_lock_balance(this_rq, busiest);
2847 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002848 minus_1_or_zero(busiest->nr_running),
Nick Piggin81026792005-06-25 14:57:07 -07002849 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002850 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002851
2852 if (!nr_moved) {
2853 cpu_clear(cpu_of(busiest), cpus);
2854 if (!cpus_empty(cpus))
2855 goto redo;
2856 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002857 }
2858
Nick Piggin5969fe02005-09-10 00:26:19 -07002859 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002861 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2862 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002863 return -1;
2864 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002865 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002868
2869out_balanced:
2870 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002871 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002872 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002873 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002874 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002875
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002876 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877}
2878
2879/*
2880 * idle_balance is called by schedule() if this_cpu is about to become
2881 * idle. Attempts to pull tasks from other CPUs.
2882 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002883static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002884{
2885 struct sched_domain *sd;
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002886 int pulled_task = 0;
2887 unsigned long next_balance = jiffies + 60 * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888
2889 for_each_domain(this_cpu, sd) {
2890 if (sd->flags & SD_BALANCE_NEWIDLE) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002891 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002892 pulled_task = load_balance_newidle(this_cpu,
2893 this_rq, sd);
2894 if (time_after(next_balance,
2895 sd->last_balance + sd->balance_interval))
2896 next_balance = sd->last_balance
2897 + sd->balance_interval;
2898 if (pulled_task)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900 }
2901 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002902 if (!pulled_task)
2903 /*
2904 * We are going idle. next_balance may be set based on
2905 * a busy processor. So reset next_balance.
2906 */
2907 this_rq->next_balance = next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908}
2909
2910/*
2911 * active_load_balance is run by migration threads. It pushes running tasks
2912 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2913 * running on each physical CPU where possible, and avoids physical /
2914 * logical imbalances.
2915 *
2916 * Called with busiest_rq locked.
2917 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002918static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002919{
Nick Piggin39507452005-06-25 14:57:09 -07002920 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002921 struct sched_domain *sd;
2922 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002923
Ingo Molnar48f24c42006-07-03 00:25:40 -07002924 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002925 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002926 return;
2927
2928 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929
2930 /*
Nick Piggin39507452005-06-25 14:57:09 -07002931 * This condition is "impossible", if it occurs
2932 * we need to fix it. Originally reported by
2933 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934 */
Nick Piggin39507452005-06-25 14:57:09 -07002935 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936
Nick Piggin39507452005-06-25 14:57:09 -07002937 /* move a task from busiest_rq to target_rq */
2938 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002939
Nick Piggin39507452005-06-25 14:57:09 -07002940 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002941 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002942 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002943 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002944 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002945 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002946
Ingo Molnar48f24c42006-07-03 00:25:40 -07002947 if (likely(sd)) {
2948 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949
Ingo Molnar48f24c42006-07-03 00:25:40 -07002950 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2951 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2952 NULL))
2953 schedstat_inc(sd, alb_pushed);
2954 else
2955 schedstat_inc(sd, alb_failed);
2956 }
Nick Piggin39507452005-06-25 14:57:09 -07002957 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002958}
2959
Christoph Lameter7835b982006-12-10 02:20:22 -08002960static void update_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002961{
Christoph Lameter7835b982006-12-10 02:20:22 -08002962 unsigned long this_load;
Nick Pigginff916912007-02-12 00:53:51 -08002963 unsigned int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964
Peter Williams2dd73a42006-06-27 02:54:34 -07002965 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002966
2967 /* Update our load: */
Nick Pigginff916912007-02-12 00:53:51 -08002968 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002969 unsigned long old_load, new_load;
2970
Nick Pigginff916912007-02-12 00:53:51 -08002971 /* scale is effectively 1 << i now, and >> i divides by scale */
2972
Nick Piggin78979862005-06-25 14:57:13 -07002973 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002974 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002975 /*
2976 * Round up the averaging division if load is increasing. This
2977 * prevents us from getting stuck on 9 if the load is 10, for
2978 * example.
2979 */
2980 if (new_load > old_load)
2981 new_load += scale-1;
Nick Pigginff916912007-02-12 00:53:51 -08002982 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
Nick Piggin78979862005-06-25 14:57:13 -07002983 }
Christoph Lameter7835b982006-12-10 02:20:22 -08002984}
2985
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002986#ifdef CONFIG_NO_HZ
2987static struct {
2988 atomic_t load_balancer;
2989 cpumask_t cpu_mask;
2990} nohz ____cacheline_aligned = {
2991 .load_balancer = ATOMIC_INIT(-1),
2992 .cpu_mask = CPU_MASK_NONE,
2993};
2994
Christoph Lameter7835b982006-12-10 02:20:22 -08002995/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002996 * This routine will try to nominate the ilb (idle load balancing)
2997 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2998 * load balancing on behalf of all those cpus. If all the cpus in the system
2999 * go into this tickless mode, then there will be no ilb owner (as there is
3000 * no need for one) and all the cpus will sleep till the next wakeup event
3001 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08003002 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003003 * For the ilb owner, tick is not stopped. And this tick will be used
3004 * for idle load balancing. ilb owner will still be part of
3005 * nohz.cpu_mask..
3006 *
3007 * While stopping the tick, this cpu will become the ilb owner if there
3008 * is no other owner. And will be the owner till that cpu becomes busy
3009 * or if all cpus in the system stop their ticks at which point
3010 * there is no need for ilb owner.
3011 *
3012 * When the ilb owner becomes busy, it nominates another owner, during the
3013 * next busy scheduler_tick()
3014 */
3015int select_nohz_load_balancer(int stop_tick)
3016{
3017 int cpu = smp_processor_id();
3018
3019 if (stop_tick) {
3020 cpu_set(cpu, nohz.cpu_mask);
3021 cpu_rq(cpu)->in_nohz_recently = 1;
3022
3023 /*
3024 * If we are going offline and still the leader, give up!
3025 */
3026 if (cpu_is_offline(cpu) &&
3027 atomic_read(&nohz.load_balancer) == cpu) {
3028 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3029 BUG();
3030 return 0;
3031 }
3032
3033 /* time for ilb owner also to sleep */
3034 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3035 if (atomic_read(&nohz.load_balancer) == cpu)
3036 atomic_set(&nohz.load_balancer, -1);
3037 return 0;
3038 }
3039
3040 if (atomic_read(&nohz.load_balancer) == -1) {
3041 /* make me the ilb owner */
3042 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3043 return 1;
3044 } else if (atomic_read(&nohz.load_balancer) == cpu)
3045 return 1;
3046 } else {
3047 if (!cpu_isset(cpu, nohz.cpu_mask))
3048 return 0;
3049
3050 cpu_clear(cpu, nohz.cpu_mask);
3051
3052 if (atomic_read(&nohz.load_balancer) == cpu)
3053 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3054 BUG();
3055 }
3056 return 0;
3057}
3058#endif
3059
3060static DEFINE_SPINLOCK(balancing);
3061
3062/*
Christoph Lameter7835b982006-12-10 02:20:22 -08003063 * It checks each scheduling domain to see if it is due to be balanced,
3064 * and initiates a balancing operation if so.
3065 *
3066 * Balancing parameters are set up in arch_init_sched_domains.
3067 */
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003068static inline void rebalance_domains(int cpu, enum idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003069{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003070 int balance = 1;
3071 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003072 unsigned long interval;
3073 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003074 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003075 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003077 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078 if (!(sd->flags & SD_LOAD_BALANCE))
3079 continue;
3080
3081 interval = sd->balance_interval;
3082 if (idle != SCHED_IDLE)
3083 interval *= sd->busy_factor;
3084
3085 /* scale ms to jiffies */
3086 interval = msecs_to_jiffies(interval);
3087 if (unlikely(!interval))
3088 interval = 1;
3089
Christoph Lameter08c183f2006-12-10 02:20:29 -08003090 if (sd->flags & SD_SERIALIZE) {
3091 if (!spin_trylock(&balancing))
3092 goto out;
3093 }
3094
Christoph Lameterc9819f42006-12-10 02:20:25 -08003095 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003096 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003097 /*
3098 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003099 * longer idle, or one of our SMT siblings is
3100 * not idle.
3101 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003102 idle = NOT_IDLE;
3103 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003104 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003105 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003106 if (sd->flags & SD_SERIALIZE)
3107 spin_unlock(&balancing);
3108out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003109 if (time_after(next_balance, sd->last_balance + interval))
3110 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003111
3112 /*
3113 * Stop the load balance at this level. There is another
3114 * CPU in our sched group which is doing load balancing more
3115 * actively.
3116 */
3117 if (!balance)
3118 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003119 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003120 rq->next_balance = next_balance;
3121}
3122
3123/*
3124 * run_rebalance_domains is triggered when needed from the scheduler tick.
3125 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3126 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3127 */
3128static void run_rebalance_domains(struct softirq_action *h)
3129{
3130 int local_cpu = smp_processor_id();
3131 struct rq *local_rq = cpu_rq(local_cpu);
3132 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3133
3134 rebalance_domains(local_cpu, idle);
3135
3136#ifdef CONFIG_NO_HZ
3137 /*
3138 * If this cpu is the owner for idle load balancing, then do the
3139 * balancing on behalf of the other idle cpus whose ticks are
3140 * stopped.
3141 */
3142 if (local_rq->idle_at_tick &&
3143 atomic_read(&nohz.load_balancer) == local_cpu) {
3144 cpumask_t cpus = nohz.cpu_mask;
3145 struct rq *rq;
3146 int balance_cpu;
3147
3148 cpu_clear(local_cpu, cpus);
3149 for_each_cpu_mask(balance_cpu, cpus) {
3150 /*
3151 * If this cpu gets work to do, stop the load balancing
3152 * work being done for other cpus. Next load
3153 * balancing owner will pick it up.
3154 */
3155 if (need_resched())
3156 break;
3157
3158 rebalance_domains(balance_cpu, SCHED_IDLE);
3159
3160 rq = cpu_rq(balance_cpu);
3161 if (time_after(local_rq->next_balance, rq->next_balance))
3162 local_rq->next_balance = rq->next_balance;
3163 }
3164 }
3165#endif
3166}
3167
3168/*
3169 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3170 *
3171 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3172 * idle load balancing owner or decide to stop the periodic load balancing,
3173 * if the whole system is idle.
3174 */
3175static inline void trigger_load_balance(int cpu)
3176{
3177 struct rq *rq = cpu_rq(cpu);
3178#ifdef CONFIG_NO_HZ
3179 /*
3180 * If we were in the nohz mode recently and busy at the current
3181 * scheduler tick, then check if we need to nominate new idle
3182 * load balancer.
3183 */
3184 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3185 rq->in_nohz_recently = 0;
3186
3187 if (atomic_read(&nohz.load_balancer) == cpu) {
3188 cpu_clear(cpu, nohz.cpu_mask);
3189 atomic_set(&nohz.load_balancer, -1);
3190 }
3191
3192 if (atomic_read(&nohz.load_balancer) == -1) {
3193 /*
3194 * simple selection for now: Nominate the
3195 * first cpu in the nohz list to be the next
3196 * ilb owner.
3197 *
3198 * TBD: Traverse the sched domains and nominate
3199 * the nearest cpu in the nohz.cpu_mask.
3200 */
3201 int ilb = first_cpu(nohz.cpu_mask);
3202
3203 if (ilb != NR_CPUS)
3204 resched_cpu(ilb);
3205 }
3206 }
3207
3208 /*
3209 * If this cpu is idle and doing idle load balancing for all the
3210 * cpus with ticks stopped, is it time for that to stop?
3211 */
3212 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3213 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3214 resched_cpu(cpu);
3215 return;
3216 }
3217
3218 /*
3219 * If this cpu is idle and the idle load balancing is done by
3220 * someone else, then no need raise the SCHED_SOFTIRQ
3221 */
3222 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3223 cpu_isset(cpu, nohz.cpu_mask))
3224 return;
3225#endif
3226 if (time_after_eq(jiffies, rq->next_balance))
3227 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003228}
3229#else
3230/*
3231 * on UP we do not need to balance between CPUs:
3232 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003233static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003234{
3235}
3236#endif
3237
Linus Torvalds1da177e2005-04-16 15:20:36 -07003238DEFINE_PER_CPU(struct kernel_stat, kstat);
3239
3240EXPORT_PER_CPU_SYMBOL(kstat);
3241
3242/*
3243 * This is called on clock ticks and on context switches.
3244 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3245 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07003246static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07003247update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003248{
Mike Galbraithb18ec802006-12-10 02:20:31 -08003249 p->sched_time += now - p->last_ran;
3250 p->last_ran = rq->most_recent_timestamp = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003251}
3252
3253/*
3254 * Return current->sched_time plus any more ns on the sched_clock
3255 * that have not yet been banked.
3256 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003257unsigned long long current_sched_time(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003258{
3259 unsigned long long ns;
3260 unsigned long flags;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003261
Linus Torvalds1da177e2005-04-16 15:20:36 -07003262 local_irq_save(flags);
Mike Galbraithb18ec802006-12-10 02:20:31 -08003263 ns = p->sched_time + sched_clock() - p->last_ran;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264 local_irq_restore(flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003265
Linus Torvalds1da177e2005-04-16 15:20:36 -07003266 return ns;
3267}
3268
3269/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003270 * We place interactive tasks back into the active array, if possible.
3271 *
3272 * To guarantee that this does not starve expired tasks we ignore the
3273 * interactivity of a task if the first expired task had to wait more
3274 * than a 'reasonable' amount of time. This deadline timeout is
3275 * load-dependent, as the frequency of array switched decreases with
3276 * increasing number of running tasks. We also ignore the interactivity
3277 * if a better static_prio task has expired:
3278 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003279static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07003280{
3281 if (rq->curr->static_prio > rq->best_expired_prio)
3282 return 1;
3283 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3284 return 0;
3285 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3286 return 1;
3287 return 0;
3288}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07003289
3290/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003291 * Account user cpu time to a process.
3292 * @p: the process that the cpu time gets accounted to
3293 * @hardirq_offset: the offset to subtract from hardirq_count()
3294 * @cputime: the cpu time spent in user space since the last update
3295 */
3296void account_user_time(struct task_struct *p, cputime_t cputime)
3297{
3298 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3299 cputime64_t tmp;
3300
3301 p->utime = cputime_add(p->utime, cputime);
3302
3303 /* Add user time to cpustat. */
3304 tmp = cputime_to_cputime64(cputime);
3305 if (TASK_NICE(p) > 0)
3306 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3307 else
3308 cpustat->user = cputime64_add(cpustat->user, tmp);
3309}
3310
3311/*
3312 * Account system cpu time to a process.
3313 * @p: the process that the cpu time gets accounted to
3314 * @hardirq_offset: the offset to subtract from hardirq_count()
3315 * @cputime: the cpu time spent in kernel space since the last update
3316 */
3317void account_system_time(struct task_struct *p, int hardirq_offset,
3318 cputime_t cputime)
3319{
3320 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003321 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322 cputime64_t tmp;
3323
3324 p->stime = cputime_add(p->stime, cputime);
3325
3326 /* Add system time to cpustat. */
3327 tmp = cputime_to_cputime64(cputime);
3328 if (hardirq_count() - hardirq_offset)
3329 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3330 else if (softirq_count())
3331 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3332 else if (p != rq->idle)
3333 cpustat->system = cputime64_add(cpustat->system, tmp);
3334 else if (atomic_read(&rq->nr_iowait) > 0)
3335 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3336 else
3337 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3338 /* Account for system time used */
3339 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340}
3341
3342/*
3343 * Account for involuntary wait time.
3344 * @p: the process from which the cpu time has been stolen
3345 * @steal: the cpu time spent in involuntary wait
3346 */
3347void account_steal_time(struct task_struct *p, cputime_t steal)
3348{
3349 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003351 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003352
3353 if (p == rq->idle) {
3354 p->stime = cputime_add(p->stime, steal);
3355 if (atomic_read(&rq->nr_iowait) > 0)
3356 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3357 else
3358 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3359 } else
3360 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3361}
3362
Christoph Lameter7835b982006-12-10 02:20:22 -08003363static void task_running_tick(struct rq *rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003364{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365 if (p->array != rq->active) {
Christoph Lameter7835b982006-12-10 02:20:22 -08003366 /* Task has expired but was not scheduled yet */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367 set_tsk_need_resched(p);
Christoph Lameter7835b982006-12-10 02:20:22 -08003368 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003369 }
3370 spin_lock(&rq->lock);
3371 /*
3372 * The task was running during this tick - update the
3373 * time slice counter. Note: we do not update a thread's
3374 * priority until it either goes to sleep or uses up its
3375 * timeslice. This makes it possible for interactive tasks
3376 * to use up their timeslices at their highest priority levels.
3377 */
3378 if (rt_task(p)) {
3379 /*
3380 * RR tasks need a special form of timeslice management.
3381 * FIFO tasks have no timeslices.
3382 */
3383 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3384 p->time_slice = task_timeslice(p);
3385 p->first_time_slice = 0;
3386 set_tsk_need_resched(p);
3387
3388 /* put it at the end of the queue: */
3389 requeue_task(p, rq->active);
3390 }
3391 goto out_unlock;
3392 }
3393 if (!--p->time_slice) {
3394 dequeue_task(p, rq->active);
3395 set_tsk_need_resched(p);
3396 p->prio = effective_prio(p);
3397 p->time_slice = task_timeslice(p);
3398 p->first_time_slice = 0;
3399
3400 if (!rq->expired_timestamp)
3401 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003402 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403 enqueue_task(p, rq->expired);
3404 if (p->static_prio < rq->best_expired_prio)
3405 rq->best_expired_prio = p->static_prio;
3406 } else
3407 enqueue_task(p, rq->active);
3408 } else {
3409 /*
3410 * Prevent a too long timeslice allowing a task to monopolize
3411 * the CPU. We do this by splitting up the timeslice into
3412 * smaller pieces.
3413 *
3414 * Note: this does not mean the task's timeslices expire or
3415 * get lost in any way, they just might be preempted by
3416 * another task of equal priority. (one with higher
3417 * priority would have preempted this task already.) We
3418 * requeue this task to the end of the list on this priority
3419 * level, which is in essence a round-robin of tasks with
3420 * equal priority.
3421 *
3422 * This only applies to tasks in the interactive
3423 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3424 */
3425 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3426 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3427 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3428 (p->array == rq->active)) {
3429
3430 requeue_task(p, rq->active);
3431 set_tsk_need_resched(p);
3432 }
3433 }
3434out_unlock:
3435 spin_unlock(&rq->lock);
Christoph Lameter7835b982006-12-10 02:20:22 -08003436}
3437
3438/*
3439 * This function gets called by the timer code, with HZ frequency.
3440 * We call it with interrupts disabled.
3441 *
3442 * It also gets called by the fork code, when changing the parent's
3443 * timeslices.
3444 */
3445void scheduler_tick(void)
3446{
3447 unsigned long long now = sched_clock();
3448 struct task_struct *p = current;
3449 int cpu = smp_processor_id();
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003450 int idle_at_tick = idle_cpu(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003451 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003452
3453 update_cpu_clock(p, rq, now);
3454
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003455 if (!idle_at_tick)
Christoph Lameter7835b982006-12-10 02:20:22 -08003456 task_running_tick(rq, p);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003457#ifdef CONFIG_SMP
Christoph Lameter7835b982006-12-10 02:20:22 -08003458 update_load(rq);
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -07003459 rq->idle_at_tick = idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003460 trigger_load_balance(cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003461#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003462}
3463
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3465
3466void fastcall add_preempt_count(int val)
3467{
3468 /*
3469 * Underflow?
3470 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003471 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3472 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473 preempt_count() += val;
3474 /*
3475 * Spinlock count overflowing soon?
3476 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003477 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3478 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479}
3480EXPORT_SYMBOL(add_preempt_count);
3481
3482void fastcall sub_preempt_count(int val)
3483{
3484 /*
3485 * Underflow?
3486 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003487 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3488 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489 /*
3490 * Is the spinlock portion underflowing?
3491 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003492 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3493 !(preempt_count() & PREEMPT_MASK)))
3494 return;
3495
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496 preempt_count() -= val;
3497}
3498EXPORT_SYMBOL(sub_preempt_count);
3499
3500#endif
3501
Con Kolivas3dee3862006-03-31 02:31:23 -08003502static inline int interactive_sleep(enum sleep_type sleep_type)
3503{
3504 return (sleep_type == SLEEP_INTERACTIVE ||
3505 sleep_type == SLEEP_INTERRUPTED);
3506}
3507
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508/*
3509 * schedule() is the main scheduler function.
3510 */
3511asmlinkage void __sched schedule(void)
3512{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003513 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003514 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515 struct list_head *queue;
3516 unsigned long long now;
3517 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003518 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003519 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003520 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521
3522 /*
3523 * Test if we are atomic. Since do_exit() needs to call into
3524 * schedule() atomically, we ignore that path for now.
3525 * Otherwise, whine if we are scheduling when we should not be.
3526 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003527 if (unlikely(in_atomic() && !current->exit_state)) {
3528 printk(KERN_ERR "BUG: scheduling while atomic: "
3529 "%s/0x%08x/%d\n",
3530 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003531 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08003532 if (irqs_disabled())
3533 print_irqtrace_events(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003534 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 }
3536 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3537
3538need_resched:
3539 preempt_disable();
3540 prev = current;
3541 release_kernel_lock(prev);
3542need_resched_nonpreemptible:
3543 rq = this_rq();
3544
3545 /*
3546 * The idle thread is not allowed to schedule!
3547 * Remove this check after it has been exercised a bit.
3548 */
3549 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3550 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3551 dump_stack();
3552 }
3553
3554 schedstat_inc(rq, sched_cnt);
3555 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003556 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003558 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003559 run_time = 0;
3560 } else
3561 run_time = NS_MAX_SLEEP_AVG;
3562
3563 /*
3564 * Tasks charged proportionately less run_time at high sleep_avg to
3565 * delay them losing their interactive status
3566 */
3567 run_time /= (CURRENT_BONUS(prev) ? : 1);
3568
3569 spin_lock_irq(&rq->lock);
3570
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571 switch_count = &prev->nivcsw;
3572 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3573 switch_count = &prev->nvcsw;
3574 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3575 unlikely(signal_pending(prev))))
3576 prev->state = TASK_RUNNING;
3577 else {
3578 if (prev->state == TASK_UNINTERRUPTIBLE)
3579 rq->nr_uninterruptible++;
3580 deactivate_task(prev, rq);
3581 }
3582 }
3583
3584 cpu = smp_processor_id();
3585 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 idle_balance(cpu, rq);
3587 if (!rq->nr_running) {
3588 next = rq->idle;
3589 rq->expired_timestamp = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003590 goto switch_tasks;
3591 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592 }
3593
3594 array = rq->active;
3595 if (unlikely(!array->nr_active)) {
3596 /*
3597 * Switch the active and expired arrays.
3598 */
3599 schedstat_inc(rq, sched_switch);
3600 rq->active = rq->expired;
3601 rq->expired = array;
3602 array = rq->active;
3603 rq->expired_timestamp = 0;
3604 rq->best_expired_prio = MAX_PRIO;
3605 }
3606
3607 idx = sched_find_first_bit(array->bitmap);
3608 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003609 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003610
Con Kolivas3dee3862006-03-31 02:31:23 -08003611 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003612 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003613 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003614 delta = 0;
3615
Con Kolivas3dee3862006-03-31 02:31:23 -08003616 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3618
3619 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003620 new_prio = recalc_task_prio(next, next->timestamp + delta);
3621
3622 if (unlikely(next->prio != new_prio)) {
3623 dequeue_task(next, array);
3624 next->prio = new_prio;
3625 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003626 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003628 next->sleep_type = SLEEP_NORMAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003629switch_tasks:
3630 if (next == rq->idle)
3631 schedstat_inc(rq, sched_goidle);
3632 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003633 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634 clear_tsk_need_resched(prev);
3635 rcu_qsctr_inc(task_cpu(prev));
3636
3637 update_cpu_clock(prev, rq, now);
3638
3639 prev->sleep_avg -= run_time;
3640 if ((long)prev->sleep_avg <= 0)
3641 prev->sleep_avg = 0;
3642 prev->timestamp = prev->last_ran = now;
3643
3644 sched_info_switch(prev, next);
3645 if (likely(prev != next)) {
Thomas Gleixnerc1e16aa2007-02-28 20:12:19 -08003646 next->timestamp = next->last_ran = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647 rq->nr_switches++;
3648 rq->curr = next;
3649 ++*switch_count;
3650
Nick Piggin4866cde2005-06-25 14:57:23 -07003651 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652 prev = context_switch(rq, prev, next);
3653 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003654 /*
3655 * this_rq must be evaluated again because prev may have moved
3656 * CPUs since it called schedule(), thus the 'rq' on its stack
3657 * frame will be invalid.
3658 */
3659 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660 } else
3661 spin_unlock_irq(&rq->lock);
3662
3663 prev = current;
3664 if (unlikely(reacquire_kernel_lock(prev) < 0))
3665 goto need_resched_nonpreemptible;
3666 preempt_enable_no_resched();
3667 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3668 goto need_resched;
3669}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670EXPORT_SYMBOL(schedule);
3671
3672#ifdef CONFIG_PREEMPT
3673/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003674 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675 * off of preempt_enable. Kernel preemptions off return from interrupt
3676 * occur there and call schedule directly.
3677 */
3678asmlinkage void __sched preempt_schedule(void)
3679{
3680 struct thread_info *ti = current_thread_info();
3681#ifdef CONFIG_PREEMPT_BKL
3682 struct task_struct *task = current;
3683 int saved_lock_depth;
3684#endif
3685 /*
3686 * If there is a non-zero preempt_count or interrupts are disabled,
3687 * we do not want to preempt the current task. Just return..
3688 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003689 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003690 return;
3691
3692need_resched:
3693 add_preempt_count(PREEMPT_ACTIVE);
3694 /*
3695 * We keep the big kernel semaphore locked, but we
3696 * clear ->lock_depth so that schedule() doesnt
3697 * auto-release the semaphore:
3698 */
3699#ifdef CONFIG_PREEMPT_BKL
3700 saved_lock_depth = task->lock_depth;
3701 task->lock_depth = -1;
3702#endif
3703 schedule();
3704#ifdef CONFIG_PREEMPT_BKL
3705 task->lock_depth = saved_lock_depth;
3706#endif
3707 sub_preempt_count(PREEMPT_ACTIVE);
3708
3709 /* we could miss a preemption opportunity between schedule and now */
3710 barrier();
3711 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3712 goto need_resched;
3713}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714EXPORT_SYMBOL(preempt_schedule);
3715
3716/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003717 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003718 * off of irq context.
3719 * Note, that this is called and return with irqs disabled. This will
3720 * protect us against recursive calling from irq.
3721 */
3722asmlinkage void __sched preempt_schedule_irq(void)
3723{
3724 struct thread_info *ti = current_thread_info();
3725#ifdef CONFIG_PREEMPT_BKL
3726 struct task_struct *task = current;
3727 int saved_lock_depth;
3728#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003729 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730 BUG_ON(ti->preempt_count || !irqs_disabled());
3731
3732need_resched:
3733 add_preempt_count(PREEMPT_ACTIVE);
3734 /*
3735 * We keep the big kernel semaphore locked, but we
3736 * clear ->lock_depth so that schedule() doesnt
3737 * auto-release the semaphore:
3738 */
3739#ifdef CONFIG_PREEMPT_BKL
3740 saved_lock_depth = task->lock_depth;
3741 task->lock_depth = -1;
3742#endif
3743 local_irq_enable();
3744 schedule();
3745 local_irq_disable();
3746#ifdef CONFIG_PREEMPT_BKL
3747 task->lock_depth = saved_lock_depth;
3748#endif
3749 sub_preempt_count(PREEMPT_ACTIVE);
3750
3751 /* we could miss a preemption opportunity between schedule and now */
3752 barrier();
3753 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3754 goto need_resched;
3755}
3756
3757#endif /* CONFIG_PREEMPT */
3758
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003759int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3760 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003761{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003762 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003763}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003764EXPORT_SYMBOL(default_wake_function);
3765
3766/*
3767 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3768 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3769 * number) then we wake all the non-exclusive tasks and one exclusive task.
3770 *
3771 * There are circumstances in which we can try to wake a task which has already
3772 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3773 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3774 */
3775static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3776 int nr_exclusive, int sync, void *key)
3777{
3778 struct list_head *tmp, *next;
3779
3780 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003781 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3782 unsigned flags = curr->flags;
3783
Linus Torvalds1da177e2005-04-16 15:20:36 -07003784 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003785 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003786 break;
3787 }
3788}
3789
3790/**
3791 * __wake_up - wake up threads blocked on a waitqueue.
3792 * @q: the waitqueue
3793 * @mode: which threads
3794 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003795 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003796 */
3797void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003798 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003799{
3800 unsigned long flags;
3801
3802 spin_lock_irqsave(&q->lock, flags);
3803 __wake_up_common(q, mode, nr_exclusive, 0, key);
3804 spin_unlock_irqrestore(&q->lock, flags);
3805}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003806EXPORT_SYMBOL(__wake_up);
3807
3808/*
3809 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3810 */
3811void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3812{
3813 __wake_up_common(q, mode, 1, 0, NULL);
3814}
3815
3816/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003817 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003818 * @q: the waitqueue
3819 * @mode: which threads
3820 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3821 *
3822 * The sync wakeup differs that the waker knows that it will schedule
3823 * away soon, so while the target thread will be woken up, it will not
3824 * be migrated to another CPU - ie. the two threads are 'synchronized'
3825 * with each other. This can prevent needless bouncing between CPUs.
3826 *
3827 * On UP it can prevent extra preemption.
3828 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003829void fastcall
3830__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831{
3832 unsigned long flags;
3833 int sync = 1;
3834
3835 if (unlikely(!q))
3836 return;
3837
3838 if (unlikely(!nr_exclusive))
3839 sync = 0;
3840
3841 spin_lock_irqsave(&q->lock, flags);
3842 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3843 spin_unlock_irqrestore(&q->lock, flags);
3844}
3845EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3846
3847void fastcall complete(struct completion *x)
3848{
3849 unsigned long flags;
3850
3851 spin_lock_irqsave(&x->wait.lock, flags);
3852 x->done++;
3853 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3854 1, 0, NULL);
3855 spin_unlock_irqrestore(&x->wait.lock, flags);
3856}
3857EXPORT_SYMBOL(complete);
3858
3859void fastcall complete_all(struct completion *x)
3860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&x->wait.lock, flags);
3864 x->done += UINT_MAX/2;
3865 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3866 0, 0, NULL);
3867 spin_unlock_irqrestore(&x->wait.lock, flags);
3868}
3869EXPORT_SYMBOL(complete_all);
3870
3871void fastcall __sched wait_for_completion(struct completion *x)
3872{
3873 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003874
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875 spin_lock_irq(&x->wait.lock);
3876 if (!x->done) {
3877 DECLARE_WAITQUEUE(wait, current);
3878
3879 wait.flags |= WQ_FLAG_EXCLUSIVE;
3880 __add_wait_queue_tail(&x->wait, &wait);
3881 do {
3882 __set_current_state(TASK_UNINTERRUPTIBLE);
3883 spin_unlock_irq(&x->wait.lock);
3884 schedule();
3885 spin_lock_irq(&x->wait.lock);
3886 } while (!x->done);
3887 __remove_wait_queue(&x->wait, &wait);
3888 }
3889 x->done--;
3890 spin_unlock_irq(&x->wait.lock);
3891}
3892EXPORT_SYMBOL(wait_for_completion);
3893
3894unsigned long fastcall __sched
3895wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3896{
3897 might_sleep();
3898
3899 spin_lock_irq(&x->wait.lock);
3900 if (!x->done) {
3901 DECLARE_WAITQUEUE(wait, current);
3902
3903 wait.flags |= WQ_FLAG_EXCLUSIVE;
3904 __add_wait_queue_tail(&x->wait, &wait);
3905 do {
3906 __set_current_state(TASK_UNINTERRUPTIBLE);
3907 spin_unlock_irq(&x->wait.lock);
3908 timeout = schedule_timeout(timeout);
3909 spin_lock_irq(&x->wait.lock);
3910 if (!timeout) {
3911 __remove_wait_queue(&x->wait, &wait);
3912 goto out;
3913 }
3914 } while (!x->done);
3915 __remove_wait_queue(&x->wait, &wait);
3916 }
3917 x->done--;
3918out:
3919 spin_unlock_irq(&x->wait.lock);
3920 return timeout;
3921}
3922EXPORT_SYMBOL(wait_for_completion_timeout);
3923
3924int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3925{
3926 int ret = 0;
3927
3928 might_sleep();
3929
3930 spin_lock_irq(&x->wait.lock);
3931 if (!x->done) {
3932 DECLARE_WAITQUEUE(wait, current);
3933
3934 wait.flags |= WQ_FLAG_EXCLUSIVE;
3935 __add_wait_queue_tail(&x->wait, &wait);
3936 do {
3937 if (signal_pending(current)) {
3938 ret = -ERESTARTSYS;
3939 __remove_wait_queue(&x->wait, &wait);
3940 goto out;
3941 }
3942 __set_current_state(TASK_INTERRUPTIBLE);
3943 spin_unlock_irq(&x->wait.lock);
3944 schedule();
3945 spin_lock_irq(&x->wait.lock);
3946 } while (!x->done);
3947 __remove_wait_queue(&x->wait, &wait);
3948 }
3949 x->done--;
3950out:
3951 spin_unlock_irq(&x->wait.lock);
3952
3953 return ret;
3954}
3955EXPORT_SYMBOL(wait_for_completion_interruptible);
3956
3957unsigned long fastcall __sched
3958wait_for_completion_interruptible_timeout(struct completion *x,
3959 unsigned long timeout)
3960{
3961 might_sleep();
3962
3963 spin_lock_irq(&x->wait.lock);
3964 if (!x->done) {
3965 DECLARE_WAITQUEUE(wait, current);
3966
3967 wait.flags |= WQ_FLAG_EXCLUSIVE;
3968 __add_wait_queue_tail(&x->wait, &wait);
3969 do {
3970 if (signal_pending(current)) {
3971 timeout = -ERESTARTSYS;
3972 __remove_wait_queue(&x->wait, &wait);
3973 goto out;
3974 }
3975 __set_current_state(TASK_INTERRUPTIBLE);
3976 spin_unlock_irq(&x->wait.lock);
3977 timeout = schedule_timeout(timeout);
3978 spin_lock_irq(&x->wait.lock);
3979 if (!timeout) {
3980 __remove_wait_queue(&x->wait, &wait);
3981 goto out;
3982 }
3983 } while (!x->done);
3984 __remove_wait_queue(&x->wait, &wait);
3985 }
3986 x->done--;
3987out:
3988 spin_unlock_irq(&x->wait.lock);
3989 return timeout;
3990}
3991EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3992
3993
3994#define SLEEP_ON_VAR \
3995 unsigned long flags; \
3996 wait_queue_t wait; \
3997 init_waitqueue_entry(&wait, current);
3998
3999#define SLEEP_ON_HEAD \
4000 spin_lock_irqsave(&q->lock,flags); \
4001 __add_wait_queue(q, &wait); \
4002 spin_unlock(&q->lock);
4003
4004#define SLEEP_ON_TAIL \
4005 spin_lock_irq(&q->lock); \
4006 __remove_wait_queue(q, &wait); \
4007 spin_unlock_irqrestore(&q->lock, flags);
4008
4009void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4010{
4011 SLEEP_ON_VAR
4012
4013 current->state = TASK_INTERRUPTIBLE;
4014
4015 SLEEP_ON_HEAD
4016 schedule();
4017 SLEEP_ON_TAIL
4018}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004019EXPORT_SYMBOL(interruptible_sleep_on);
4020
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004021long fastcall __sched
4022interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023{
4024 SLEEP_ON_VAR
4025
4026 current->state = TASK_INTERRUPTIBLE;
4027
4028 SLEEP_ON_HEAD
4029 timeout = schedule_timeout(timeout);
4030 SLEEP_ON_TAIL
4031
4032 return timeout;
4033}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4035
4036void fastcall __sched sleep_on(wait_queue_head_t *q)
4037{
4038 SLEEP_ON_VAR
4039
4040 current->state = TASK_UNINTERRUPTIBLE;
4041
4042 SLEEP_ON_HEAD
4043 schedule();
4044 SLEEP_ON_TAIL
4045}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004046EXPORT_SYMBOL(sleep_on);
4047
4048long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4049{
4050 SLEEP_ON_VAR
4051
4052 current->state = TASK_UNINTERRUPTIBLE;
4053
4054 SLEEP_ON_HEAD
4055 timeout = schedule_timeout(timeout);
4056 SLEEP_ON_TAIL
4057
4058 return timeout;
4059}
4060
4061EXPORT_SYMBOL(sleep_on_timeout);
4062
Ingo Molnarb29739f2006-06-27 02:54:51 -07004063#ifdef CONFIG_RT_MUTEXES
4064
4065/*
4066 * rt_mutex_setprio - set the current priority of a task
4067 * @p: task
4068 * @prio: prio value (kernel-internal form)
4069 *
4070 * This function changes the 'effective' priority of a task. It does
4071 * not touch ->normal_prio like __setscheduler().
4072 *
4073 * Used by the rt_mutex code to implement priority inheritance logic.
4074 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004075void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07004076{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004077 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004078 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004079 struct rq *rq;
Andrew Mortond5f9f942007-05-08 20:27:06 -07004080 int oldprio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004081
4082 BUG_ON(prio < 0 || prio > MAX_PRIO);
4083
4084 rq = task_rq_lock(p, &flags);
4085
Andrew Mortond5f9f942007-05-08 20:27:06 -07004086 oldprio = p->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004087 array = p->array;
4088 if (array)
4089 dequeue_task(p, array);
4090 p->prio = prio;
4091
4092 if (array) {
4093 /*
4094 * If changing to an RT priority then queue it
4095 * in the active array!
4096 */
4097 if (rt_task(p))
4098 array = rq->active;
4099 enqueue_task(p, array);
4100 /*
4101 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004102 * our priority decreased, or if we are not currently running on
4103 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07004104 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004105 if (task_running(rq, p)) {
4106 if (p->prio > oldprio)
4107 resched_task(rq->curr);
4108 } else if (TASK_PREEMPTS_CURR(p, rq))
Ingo Molnarb29739f2006-06-27 02:54:51 -07004109 resched_task(rq->curr);
4110 }
4111 task_rq_unlock(rq, &flags);
4112}
4113
4114#endif
4115
Ingo Molnar36c8b582006-07-03 00:25:41 -07004116void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004117{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004118 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004119 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004121 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122
4123 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4124 return;
4125 /*
4126 * We have to be careful, if called from sys_setpriority(),
4127 * the task might be in the middle of scheduling on another CPU.
4128 */
4129 rq = task_rq_lock(p, &flags);
4130 /*
4131 * The RT priorities are set via sched_setscheduler(), but we still
4132 * allow the 'normal' nice value to be set - but as expected
4133 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08004134 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004136 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004137 p->static_prio = NICE_TO_PRIO(nice);
4138 goto out_unlock;
4139 }
4140 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07004141 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004142 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004143 dec_raw_weighted_load(rq, p);
4144 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004145
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07004147 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07004148 old_prio = p->prio;
4149 p->prio = effective_prio(p);
4150 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151
4152 if (array) {
4153 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07004154 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004155 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07004156 * If the task increased its priority or is running and
4157 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004159 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004160 resched_task(rq->curr);
4161 }
4162out_unlock:
4163 task_rq_unlock(rq, &flags);
4164}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004165EXPORT_SYMBOL(set_user_nice);
4166
Matt Mackalle43379f2005-05-01 08:59:00 -07004167/*
4168 * can_nice - check if a task can reduce its nice value
4169 * @p: task
4170 * @nice: nice value
4171 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004172int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07004173{
Matt Mackall024f4742005-08-18 11:24:19 -07004174 /* convert nice value [19,-20] to rlimit style value [1,40] */
4175 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004176
Matt Mackalle43379f2005-05-01 08:59:00 -07004177 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4178 capable(CAP_SYS_NICE));
4179}
4180
Linus Torvalds1da177e2005-04-16 15:20:36 -07004181#ifdef __ARCH_WANT_SYS_NICE
4182
4183/*
4184 * sys_nice - change the priority of the current process.
4185 * @increment: priority increment
4186 *
4187 * sys_setpriority is a more generic, but much slower function that
4188 * does similar things.
4189 */
4190asmlinkage long sys_nice(int increment)
4191{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004192 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193
4194 /*
4195 * Setpriority might change our priority at the same moment.
4196 * We don't have to worry. Conceptually one call occurs first
4197 * and we have a single winner.
4198 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004199 if (increment < -40)
4200 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004201 if (increment > 40)
4202 increment = 40;
4203
4204 nice = PRIO_TO_NICE(current->static_prio) + increment;
4205 if (nice < -20)
4206 nice = -20;
4207 if (nice > 19)
4208 nice = 19;
4209
Matt Mackalle43379f2005-05-01 08:59:00 -07004210 if (increment < 0 && !can_nice(current, nice))
4211 return -EPERM;
4212
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213 retval = security_task_setnice(current, nice);
4214 if (retval)
4215 return retval;
4216
4217 set_user_nice(current, nice);
4218 return 0;
4219}
4220
4221#endif
4222
4223/**
4224 * task_prio - return the priority value of a given task.
4225 * @p: the task in question.
4226 *
4227 * This is the priority value as seen by users in /proc.
4228 * RT tasks are offset by -200. Normal tasks are centered
4229 * around 0, value goes from -16 to +15.
4230 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004231int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232{
4233 return p->prio - MAX_RT_PRIO;
4234}
4235
4236/**
4237 * task_nice - return the nice value of a given task.
4238 * @p: the task in question.
4239 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004240int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241{
4242 return TASK_NICE(p);
4243}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004244EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245
4246/**
4247 * idle_cpu - is a given cpu idle currently?
4248 * @cpu: the processor in question.
4249 */
4250int idle_cpu(int cpu)
4251{
4252 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4253}
4254
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255/**
4256 * idle_task - return the idle task for a given cpu.
4257 * @cpu: the processor in question.
4258 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004259struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004260{
4261 return cpu_rq(cpu)->idle;
4262}
4263
4264/**
4265 * find_process_by_pid - find a process with a matching PID value.
4266 * @pid: the pid in question.
4267 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004268static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269{
4270 return pid ? find_task_by_pid(pid) : current;
4271}
4272
4273/* Actually do priority change: must hold rq lock. */
4274static void __setscheduler(struct task_struct *p, int policy, int prio)
4275{
4276 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004277
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278 p->policy = policy;
4279 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004280 p->normal_prio = normal_prio(p);
4281 /* we are holding p->pi_lock already */
4282 p->prio = rt_mutex_getprio(p);
4283 /*
4284 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4285 */
4286 if (policy == SCHED_BATCH)
4287 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004288 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004289}
4290
4291/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004292 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004293 * @p: the task in question.
4294 * @policy: new policy.
4295 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004296 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004297 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004299int sched_setscheduler(struct task_struct *p, int policy,
4300 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004302 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004303 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004304 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004305 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306
Steven Rostedt66e53932006-06-27 02:54:44 -07004307 /* may grab non-irq protected spin_locks */
4308 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004309recheck:
4310 /* double check policy once rq lock held */
4311 if (policy < 0)
4312 policy = oldpolicy = p->policy;
4313 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004314 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4315 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316 /*
4317 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004318 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4319 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004320 */
4321 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004322 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004323 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004324 return -EINVAL;
Oleg Nesterov57a6f512006-09-29 02:00:49 -07004325 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326 return -EINVAL;
4327
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004328 /*
4329 * Allow unprivileged RT tasks to decrease priority:
4330 */
4331 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004332 if (is_rt_policy(policy)) {
4333 unsigned long rlim_rtprio;
4334 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004335
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004336 if (!lock_task_sighand(p, &flags))
4337 return -ESRCH;
4338 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4339 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004340
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004341 /* can't set/change the rt policy */
4342 if (policy != p->policy && !rlim_rtprio)
4343 return -EPERM;
4344
4345 /* can't increase priority */
4346 if (param->sched_priority > p->rt_priority &&
4347 param->sched_priority > rlim_rtprio)
4348 return -EPERM;
4349 }
4350
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004351 /* can't change other user's priorities */
4352 if ((current->euid != p->euid) &&
4353 (current->euid != p->uid))
4354 return -EPERM;
4355 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004356
4357 retval = security_task_setscheduler(p, policy, param);
4358 if (retval)
4359 return retval;
4360 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004361 * make sure no PI-waiters arrive (or leave) while we are
4362 * changing the priority of the task:
4363 */
4364 spin_lock_irqsave(&p->pi_lock, flags);
4365 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004366 * To be able to change p->policy safely, the apropriate
4367 * runqueue lock must be held.
4368 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004369 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370 /* recheck policy now with rq lock held */
4371 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4372 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004373 __task_rq_unlock(rq);
4374 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004375 goto recheck;
4376 }
4377 array = p->array;
4378 if (array)
4379 deactivate_task(p, rq);
4380 oldprio = p->prio;
4381 __setscheduler(p, policy, param->sched_priority);
4382 if (array) {
4383 __activate_task(p, rq);
4384 /*
4385 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004386 * our priority decreased, or if we are not currently running on
4387 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004388 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004389 if (task_running(rq, p)) {
4390 if (p->prio > oldprio)
4391 resched_task(rq->curr);
4392 } else if (TASK_PREEMPTS_CURR(p, rq))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004393 resched_task(rq->curr);
4394 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004395 __task_rq_unlock(rq);
4396 spin_unlock_irqrestore(&p->pi_lock, flags);
4397
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004398 rt_mutex_adjust_pi(p);
4399
Linus Torvalds1da177e2005-04-16 15:20:36 -07004400 return 0;
4401}
4402EXPORT_SYMBOL_GPL(sched_setscheduler);
4403
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004404static int
4405do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004406{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004407 struct sched_param lparam;
4408 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004409 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004410
4411 if (!param || pid < 0)
4412 return -EINVAL;
4413 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4414 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004415
4416 rcu_read_lock();
4417 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004418 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004419 if (p != NULL)
4420 retval = sched_setscheduler(p, policy, &lparam);
4421 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004422
Linus Torvalds1da177e2005-04-16 15:20:36 -07004423 return retval;
4424}
4425
4426/**
4427 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4428 * @pid: the pid in question.
4429 * @policy: new policy.
4430 * @param: structure containing the new RT priority.
4431 */
4432asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4433 struct sched_param __user *param)
4434{
Jason Baronc21761f2006-01-18 17:43:03 -08004435 /* negative values for policy are not valid */
4436 if (policy < 0)
4437 return -EINVAL;
4438
Linus Torvalds1da177e2005-04-16 15:20:36 -07004439 return do_sched_setscheduler(pid, policy, param);
4440}
4441
4442/**
4443 * sys_sched_setparam - set/change the RT priority of a thread
4444 * @pid: the pid in question.
4445 * @param: structure containing the new RT priority.
4446 */
4447asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4448{
4449 return do_sched_setscheduler(pid, -1, param);
4450}
4451
4452/**
4453 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4454 * @pid: the pid in question.
4455 */
4456asmlinkage long sys_sched_getscheduler(pid_t pid)
4457{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004458 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004459 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004460
4461 if (pid < 0)
4462 goto out_nounlock;
4463
4464 retval = -ESRCH;
4465 read_lock(&tasklist_lock);
4466 p = find_process_by_pid(pid);
4467 if (p) {
4468 retval = security_task_getscheduler(p);
4469 if (!retval)
4470 retval = p->policy;
4471 }
4472 read_unlock(&tasklist_lock);
4473
4474out_nounlock:
4475 return retval;
4476}
4477
4478/**
4479 * sys_sched_getscheduler - get the RT priority of a thread
4480 * @pid: the pid in question.
4481 * @param: structure containing the RT priority.
4482 */
4483asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4484{
4485 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004486 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004487 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004488
4489 if (!param || pid < 0)
4490 goto out_nounlock;
4491
4492 read_lock(&tasklist_lock);
4493 p = find_process_by_pid(pid);
4494 retval = -ESRCH;
4495 if (!p)
4496 goto out_unlock;
4497
4498 retval = security_task_getscheduler(p);
4499 if (retval)
4500 goto out_unlock;
4501
4502 lp.sched_priority = p->rt_priority;
4503 read_unlock(&tasklist_lock);
4504
4505 /*
4506 * This one might sleep, we cannot do it with a spinlock held ...
4507 */
4508 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4509
4510out_nounlock:
4511 return retval;
4512
4513out_unlock:
4514 read_unlock(&tasklist_lock);
4515 return retval;
4516}
4517
4518long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4519{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004520 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004521 struct task_struct *p;
4522 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004523
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004524 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004525 read_lock(&tasklist_lock);
4526
4527 p = find_process_by_pid(pid);
4528 if (!p) {
4529 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004530 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004531 return -ESRCH;
4532 }
4533
4534 /*
4535 * It is not safe to call set_cpus_allowed with the
4536 * tasklist_lock held. We will bump the task_struct's
4537 * usage count and then drop tasklist_lock.
4538 */
4539 get_task_struct(p);
4540 read_unlock(&tasklist_lock);
4541
4542 retval = -EPERM;
4543 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4544 !capable(CAP_SYS_NICE))
4545 goto out_unlock;
4546
David Quigleye7834f82006-06-23 02:03:59 -07004547 retval = security_task_setscheduler(p, 0, NULL);
4548 if (retval)
4549 goto out_unlock;
4550
Linus Torvalds1da177e2005-04-16 15:20:36 -07004551 cpus_allowed = cpuset_cpus_allowed(p);
4552 cpus_and(new_mask, new_mask, cpus_allowed);
4553 retval = set_cpus_allowed(p, new_mask);
4554
4555out_unlock:
4556 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004557 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004558 return retval;
4559}
4560
4561static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4562 cpumask_t *new_mask)
4563{
4564 if (len < sizeof(cpumask_t)) {
4565 memset(new_mask, 0, sizeof(cpumask_t));
4566 } else if (len > sizeof(cpumask_t)) {
4567 len = sizeof(cpumask_t);
4568 }
4569 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4570}
4571
4572/**
4573 * sys_sched_setaffinity - set the cpu affinity of a process
4574 * @pid: pid of the process
4575 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4576 * @user_mask_ptr: user-space pointer to the new cpu mask
4577 */
4578asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4579 unsigned long __user *user_mask_ptr)
4580{
4581 cpumask_t new_mask;
4582 int retval;
4583
4584 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4585 if (retval)
4586 return retval;
4587
4588 return sched_setaffinity(pid, new_mask);
4589}
4590
4591/*
4592 * Represents all cpu's present in the system
4593 * In systems capable of hotplug, this map could dynamically grow
4594 * as new cpu's are detected in the system via any platform specific
4595 * method, such as ACPI for e.g.
4596 */
4597
Andi Kleen4cef0c62006-01-11 22:44:57 +01004598cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004599EXPORT_SYMBOL(cpu_present_map);
4600
4601#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004602cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004603EXPORT_SYMBOL(cpu_online_map);
4604
Andi Kleen4cef0c62006-01-11 22:44:57 +01004605cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004606EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004607#endif
4608
4609long sched_getaffinity(pid_t pid, cpumask_t *mask)
4610{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004611 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004612 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004614 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004615 read_lock(&tasklist_lock);
4616
4617 retval = -ESRCH;
4618 p = find_process_by_pid(pid);
4619 if (!p)
4620 goto out_unlock;
4621
David Quigleye7834f82006-06-23 02:03:59 -07004622 retval = security_task_getscheduler(p);
4623 if (retval)
4624 goto out_unlock;
4625
Jack Steiner2f7016d2006-02-01 03:05:18 -08004626 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004627
4628out_unlock:
4629 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004630 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631 if (retval)
4632 return retval;
4633
4634 return 0;
4635}
4636
4637/**
4638 * sys_sched_getaffinity - get the cpu affinity of a process
4639 * @pid: pid of the process
4640 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4641 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4642 */
4643asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4644 unsigned long __user *user_mask_ptr)
4645{
4646 int ret;
4647 cpumask_t mask;
4648
4649 if (len < sizeof(cpumask_t))
4650 return -EINVAL;
4651
4652 ret = sched_getaffinity(pid, &mask);
4653 if (ret < 0)
4654 return ret;
4655
4656 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4657 return -EFAULT;
4658
4659 return sizeof(cpumask_t);
4660}
4661
4662/**
4663 * sys_sched_yield - yield the current processor to other threads.
4664 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004665 * This function yields the current CPU by moving the calling thread
Linus Torvalds1da177e2005-04-16 15:20:36 -07004666 * to the expired array. If there are no other threads running on this
4667 * CPU then this function will return.
4668 */
4669asmlinkage long sys_sched_yield(void)
4670{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004671 struct rq *rq = this_rq_lock();
4672 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004673
4674 schedstat_inc(rq, yld_cnt);
4675 /*
4676 * We implement yielding by moving the task into the expired
4677 * queue.
4678 *
4679 * (special rule: RT tasks will just roundrobin in the active
4680 * array.)
4681 */
4682 if (rt_task(current))
4683 target = rq->active;
4684
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004685 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004686 schedstat_inc(rq, yld_act_empty);
4687 if (!rq->expired->nr_active)
4688 schedstat_inc(rq, yld_both_empty);
4689 } else if (!rq->expired->nr_active)
4690 schedstat_inc(rq, yld_exp_empty);
4691
4692 if (array != target) {
4693 dequeue_task(current, array);
4694 enqueue_task(current, target);
4695 } else
4696 /*
4697 * requeue_task is cheaper so perform that if possible.
4698 */
4699 requeue_task(current, array);
4700
4701 /*
4702 * Since we are going to call schedule() anyway, there's
4703 * no need to preempt or enable interrupts:
4704 */
4705 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004706 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004707 _raw_spin_unlock(&rq->lock);
4708 preempt_enable_no_resched();
4709
4710 schedule();
4711
4712 return 0;
4713}
4714
Andrew Mortone7b38402006-06-30 01:56:00 -07004715static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004716{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004717#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4718 __might_sleep(__FILE__, __LINE__);
4719#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004720 /*
4721 * The BKS might be reacquired before we have dropped
4722 * PREEMPT_ACTIVE, which could trigger a second
4723 * cond_resched() call.
4724 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004725 do {
4726 add_preempt_count(PREEMPT_ACTIVE);
4727 schedule();
4728 sub_preempt_count(PREEMPT_ACTIVE);
4729 } while (need_resched());
4730}
4731
4732int __sched cond_resched(void)
4733{
Ingo Molnar94142322006-12-29 16:48:13 -08004734 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4735 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736 __cond_resched();
4737 return 1;
4738 }
4739 return 0;
4740}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004741EXPORT_SYMBOL(cond_resched);
4742
4743/*
4744 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4745 * call schedule, and on return reacquire the lock.
4746 *
4747 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4748 * operations here to prevent schedule() from being called twice (once via
4749 * spin_unlock(), once by hand).
4750 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004751int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004752{
Jan Kara6df3cec2005-06-13 15:52:32 -07004753 int ret = 0;
4754
Linus Torvalds1da177e2005-04-16 15:20:36 -07004755 if (need_lockbreak(lock)) {
4756 spin_unlock(lock);
4757 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004758 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004759 spin_lock(lock);
4760 }
Ingo Molnar94142322006-12-29 16:48:13 -08004761 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004762 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004763 _raw_spin_unlock(lock);
4764 preempt_enable_no_resched();
4765 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004766 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004767 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004769 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004770}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004771EXPORT_SYMBOL(cond_resched_lock);
4772
4773int __sched cond_resched_softirq(void)
4774{
4775 BUG_ON(!in_softirq());
4776
Ingo Molnar94142322006-12-29 16:48:13 -08004777 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004778 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004779 __cond_resched();
4780 local_bh_disable();
4781 return 1;
4782 }
4783 return 0;
4784}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004785EXPORT_SYMBOL(cond_resched_softirq);
4786
Linus Torvalds1da177e2005-04-16 15:20:36 -07004787/**
4788 * yield - yield the current processor to other threads.
4789 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004790 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004791 * thread runnable and calls sys_sched_yield().
4792 */
4793void __sched yield(void)
4794{
4795 set_current_state(TASK_RUNNING);
4796 sys_sched_yield();
4797}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004798EXPORT_SYMBOL(yield);
4799
4800/*
4801 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4802 * that process accounting knows that this is a task in IO wait state.
4803 *
4804 * But don't do that if it is a deliberate, throttling IO wait (this task
4805 * has set its backing_dev_info: the queue against which it should throttle)
4806 */
4807void __sched io_schedule(void)
4808{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004809 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004810
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004811 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004812 atomic_inc(&rq->nr_iowait);
4813 schedule();
4814 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004815 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004816}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004817EXPORT_SYMBOL(io_schedule);
4818
4819long __sched io_schedule_timeout(long timeout)
4820{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004821 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004822 long ret;
4823
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004824 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004825 atomic_inc(&rq->nr_iowait);
4826 ret = schedule_timeout(timeout);
4827 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004828 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004829 return ret;
4830}
4831
4832/**
4833 * sys_sched_get_priority_max - return maximum RT priority.
4834 * @policy: scheduling class.
4835 *
4836 * this syscall returns the maximum rt_priority that can be used
4837 * by a given scheduling class.
4838 */
4839asmlinkage long sys_sched_get_priority_max(int policy)
4840{
4841 int ret = -EINVAL;
4842
4843 switch (policy) {
4844 case SCHED_FIFO:
4845 case SCHED_RR:
4846 ret = MAX_USER_RT_PRIO-1;
4847 break;
4848 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004849 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004850 ret = 0;
4851 break;
4852 }
4853 return ret;
4854}
4855
4856/**
4857 * sys_sched_get_priority_min - return minimum RT priority.
4858 * @policy: scheduling class.
4859 *
4860 * this syscall returns the minimum rt_priority that can be used
4861 * by a given scheduling class.
4862 */
4863asmlinkage long sys_sched_get_priority_min(int policy)
4864{
4865 int ret = -EINVAL;
4866
4867 switch (policy) {
4868 case SCHED_FIFO:
4869 case SCHED_RR:
4870 ret = 1;
4871 break;
4872 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004873 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004874 ret = 0;
4875 }
4876 return ret;
4877}
4878
4879/**
4880 * sys_sched_rr_get_interval - return the default timeslice of a process.
4881 * @pid: pid of the process.
4882 * @interval: userspace pointer to the timeslice value.
4883 *
4884 * this syscall writes the default timeslice value of a given process
4885 * into the user-space timespec buffer. A value of '0' means infinity.
4886 */
4887asmlinkage
4888long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4889{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004890 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004891 int retval = -EINVAL;
4892 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004893
4894 if (pid < 0)
4895 goto out_nounlock;
4896
4897 retval = -ESRCH;
4898 read_lock(&tasklist_lock);
4899 p = find_process_by_pid(pid);
4900 if (!p)
4901 goto out_unlock;
4902
4903 retval = security_task_getscheduler(p);
4904 if (retval)
4905 goto out_unlock;
4906
Peter Williamsb78709c2006-06-26 16:58:00 +10004907 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004908 0 : task_timeslice(p), &t);
4909 read_unlock(&tasklist_lock);
4910 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4911out_nounlock:
4912 return retval;
4913out_unlock:
4914 read_unlock(&tasklist_lock);
4915 return retval;
4916}
4917
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004918static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004919
4920static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004921{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004922 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004923 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004924
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004926 printk("%-13.13s %c", p->comm,
4927 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928#if (BITS_PER_LONG == 32)
4929 if (state == TASK_RUNNING)
4930 printk(" running ");
4931 else
4932 printk(" %08lX ", thread_saved_pc(p));
4933#else
4934 if (state == TASK_RUNNING)
4935 printk(" running task ");
4936 else
4937 printk(" %016lx ", thread_saved_pc(p));
4938#endif
4939#ifdef CONFIG_DEBUG_STACK_USAGE
4940 {
Al Viro10ebffd2005-11-13 16:06:56 -08004941 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004942 while (!*n)
4943 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004944 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004945 }
4946#endif
Ingo Molnar35f6f752007-04-06 21:18:06 +02004947 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004948 if (!p->mm)
4949 printk(" (L-TLB)\n");
4950 else
4951 printk(" (NOTLB)\n");
4952
4953 if (state != TASK_RUNNING)
4954 show_stack(p, NULL);
4955}
4956
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004957void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004958{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004959 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004960
4961#if (BITS_PER_LONG == 32)
4962 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004963 " free sibling\n");
4964 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004965#else
4966 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004967 " free sibling\n");
4968 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004969#endif
4970 read_lock(&tasklist_lock);
4971 do_each_thread(g, p) {
4972 /*
4973 * reset the NMI-timeout, listing all files on a slow
4974 * console might take alot of time:
4975 */
4976 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004977 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004978 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004979 } while_each_thread(g, p);
4980
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004981 touch_all_softlockup_watchdogs();
4982
Linus Torvalds1da177e2005-04-16 15:20:36 -07004983 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004984 /*
4985 * Only show locks if all tasks are dumped:
4986 */
4987 if (state_filter == -1)
4988 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989}
4990
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004991/**
4992 * init_idle - set up an idle thread for a given CPU
4993 * @idle: task in question
4994 * @cpu: cpu the idle task belongs to
4995 *
4996 * NOTE: this function does not set the idle thread's NEED_RESCHED
4997 * flag, to make booting more robust.
4998 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004999void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005000{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005001 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005002 unsigned long flags;
5003
Ingo Molnar81c29a82006-03-07 21:55:27 -08005004 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005005 idle->sleep_avg = 0;
5006 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07005007 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005008 idle->state = TASK_RUNNING;
5009 idle->cpus_allowed = cpumask_of_cpu(cpu);
5010 set_task_cpu(idle, cpu);
5011
5012 spin_lock_irqsave(&rq->lock, flags);
5013 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07005014#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5015 idle->oncpu = 1;
5016#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07005017 spin_unlock_irqrestore(&rq->lock, flags);
5018
5019 /* Set the preempt count _outside_ the spinlocks! */
5020#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08005021 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005022#else
Al Viroa1261f52005-11-13 16:06:55 -08005023 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005024#endif
5025}
5026
5027/*
5028 * In a system that switches off the HZ timer nohz_cpu_mask
5029 * indicates which cpus entered this state. This is used
5030 * in the rcu update to wait only for active cpus. For system
5031 * which do not switch off the HZ timer nohz_cpu_mask should
5032 * always be CPU_MASK_NONE.
5033 */
5034cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5035
5036#ifdef CONFIG_SMP
5037/*
5038 * This is how migration works:
5039 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07005040 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07005041 * runqueue and wake up that CPU's migration thread.
5042 * 2) we down() the locked semaphore => thread blocks.
5043 * 3) migration thread wakes up (implicitly it forces the migrated
5044 * thread off the CPU)
5045 * 4) it gets the migration request and checks whether the migrated
5046 * task is still in the wrong runqueue.
5047 * 5) if it's in the wrong runqueue then the migration thread removes
5048 * it and puts it into the right queue.
5049 * 6) migration thread up()s the semaphore.
5050 * 7) we wake up and the migration is done.
5051 */
5052
5053/*
5054 * Change a given task's CPU affinity. Migrate the thread to a
5055 * proper CPU and schedule it away if the CPU it's executing on
5056 * is removed from the allowed bitmask.
5057 *
5058 * NOTE: the caller must have a valid reference to the task, the
5059 * task must not exit() & deallocate itself prematurely. The
5060 * call is not atomic; no spinlocks may be held.
5061 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005062int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005063{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005064 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005065 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005066 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005067 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005068
5069 rq = task_rq_lock(p, &flags);
5070 if (!cpus_intersects(new_mask, cpu_online_map)) {
5071 ret = -EINVAL;
5072 goto out;
5073 }
5074
5075 p->cpus_allowed = new_mask;
5076 /* Can the task run on the task's current CPU? If so, we're done */
5077 if (cpu_isset(task_cpu(p), new_mask))
5078 goto out;
5079
5080 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5081 /* Need help from migration thread: drop lock and wait. */
5082 task_rq_unlock(rq, &flags);
5083 wake_up_process(rq->migration_thread);
5084 wait_for_completion(&req.done);
5085 tlb_migrate_finish(p->mm);
5086 return 0;
5087 }
5088out:
5089 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005090
Linus Torvalds1da177e2005-04-16 15:20:36 -07005091 return ret;
5092}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005093EXPORT_SYMBOL_GPL(set_cpus_allowed);
5094
5095/*
5096 * Move (not current) task off this cpu, onto dest cpu. We're doing
5097 * this because either it can't run here any more (set_cpus_allowed()
5098 * away from this CPU, or CPU going down), or because we're
5099 * attempting to rebalance this task on exec (sched_exec).
5100 *
5101 * So we race with normal scheduler movements, but that's OK, as long
5102 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07005103 *
5104 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005105 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07005106static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005107{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005108 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07005109 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005110
5111 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005112 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005113
5114 rq_src = cpu_rq(src_cpu);
5115 rq_dest = cpu_rq(dest_cpu);
5116
5117 double_rq_lock(rq_src, rq_dest);
5118 /* Already moved. */
5119 if (task_cpu(p) != src_cpu)
5120 goto out;
5121 /* Affinity changed (again). */
5122 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5123 goto out;
5124
5125 set_task_cpu(p, dest_cpu);
5126 if (p->array) {
5127 /*
5128 * Sync timestamp with rq_dest's before activating.
5129 * The same thing could be achieved by doing this step
5130 * afterwards, and pretending it was a local activate.
5131 * This way is cleaner and logically correct.
5132 */
Mike Galbraithb18ec802006-12-10 02:20:31 -08005133 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5134 + rq_dest->most_recent_timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005135 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07005136 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005137 if (TASK_PREEMPTS_CURR(p, rq_dest))
5138 resched_task(rq_dest->curr);
5139 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005140 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005141out:
5142 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005143 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005144}
5145
5146/*
5147 * migration_thread - this is a highprio system thread that performs
5148 * thread migration by bumping thread off CPU then 'pushing' onto
5149 * another runqueue.
5150 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005151static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005152{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005153 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005154 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005155
5156 rq = cpu_rq(cpu);
5157 BUG_ON(rq->migration_thread != current);
5158
5159 set_current_state(TASK_INTERRUPTIBLE);
5160 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005161 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005162 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005163
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005164 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005165
5166 spin_lock_irq(&rq->lock);
5167
5168 if (cpu_is_offline(cpu)) {
5169 spin_unlock_irq(&rq->lock);
5170 goto wait_to_die;
5171 }
5172
5173 if (rq->active_balance) {
5174 active_load_balance(rq, cpu);
5175 rq->active_balance = 0;
5176 }
5177
5178 head = &rq->migration_queue;
5179
5180 if (list_empty(head)) {
5181 spin_unlock_irq(&rq->lock);
5182 schedule();
5183 set_current_state(TASK_INTERRUPTIBLE);
5184 continue;
5185 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005186 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187 list_del_init(head->next);
5188
Nick Piggin674311d2005-06-25 14:57:27 -07005189 spin_unlock(&rq->lock);
5190 __migrate_task(req->task, cpu, req->dest_cpu);
5191 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005192
5193 complete(&req->done);
5194 }
5195 __set_current_state(TASK_RUNNING);
5196 return 0;
5197
5198wait_to_die:
5199 /* Wait for kthread_stop */
5200 set_current_state(TASK_INTERRUPTIBLE);
5201 while (!kthread_should_stop()) {
5202 schedule();
5203 set_current_state(TASK_INTERRUPTIBLE);
5204 }
5205 __set_current_state(TASK_RUNNING);
5206 return 0;
5207}
5208
5209#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005210/*
5211 * Figure out where task on dead CPU should go, use force if neccessary.
5212 * NOTE: interrupts should be disabled by the caller
5213 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005214static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005215{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005216 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005217 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005218 struct rq *rq;
5219 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005220
Kirill Korotaevefc30812006-06-27 02:54:32 -07005221restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005222 /* On same node? */
5223 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005224 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005225 dest_cpu = any_online_cpu(mask);
5226
5227 /* On any allowed CPU? */
5228 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005229 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005230
5231 /* No more Mr. Nice Guy. */
5232 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005233 rq = task_rq_lock(p, &flags);
5234 cpus_setall(p->cpus_allowed);
5235 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005236 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005237
5238 /*
5239 * Don't tell them about moving exiting tasks or
5240 * kernel threads (both mm NULL), since they never
5241 * leave kernel.
5242 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005243 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005244 printk(KERN_INFO "process %d (%s) no "
5245 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005246 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005247 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005248 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005249 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005250}
5251
5252/*
5253 * While a dead CPU has no uninterruptible tasks queued at this point,
5254 * it might still have a nonzero ->nr_uninterruptible counter, because
5255 * for performance reasons the counter is not stricly tracking tasks to
5256 * their home CPUs. So we just add the counter to another CPU's counter,
5257 * to keep the global sum constant after CPU-down:
5258 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005259static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005260{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005261 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005262 unsigned long flags;
5263
5264 local_irq_save(flags);
5265 double_rq_lock(rq_src, rq_dest);
5266 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5267 rq_src->nr_uninterruptible = 0;
5268 double_rq_unlock(rq_src, rq_dest);
5269 local_irq_restore(flags);
5270}
5271
5272/* Run through task list and migrate tasks from the dead cpu. */
5273static void migrate_live_tasks(int src_cpu)
5274{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005275 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005276
5277 write_lock_irq(&tasklist_lock);
5278
Ingo Molnar48f24c42006-07-03 00:25:40 -07005279 do_each_thread(t, p) {
5280 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005281 continue;
5282
Ingo Molnar48f24c42006-07-03 00:25:40 -07005283 if (task_cpu(p) == src_cpu)
5284 move_task_off_dead_cpu(src_cpu, p);
5285 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005286
5287 write_unlock_irq(&tasklist_lock);
5288}
5289
5290/* Schedules idle task to be the next runnable task on current CPU.
5291 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005292 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005293 */
5294void sched_idle_next(void)
5295{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005296 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005297 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005298 struct task_struct *p = rq->idle;
5299 unsigned long flags;
5300
5301 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005302 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005303
Ingo Molnar48f24c42006-07-03 00:25:40 -07005304 /*
5305 * Strictly not necessary since rest of the CPUs are stopped by now
5306 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307 */
5308 spin_lock_irqsave(&rq->lock, flags);
5309
5310 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005311
5312 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005313 __activate_idle_task(p, rq);
5314
5315 spin_unlock_irqrestore(&rq->lock, flags);
5316}
5317
Ingo Molnar48f24c42006-07-03 00:25:40 -07005318/*
5319 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005320 * offline.
5321 */
5322void idle_task_exit(void)
5323{
5324 struct mm_struct *mm = current->active_mm;
5325
5326 BUG_ON(cpu_online(smp_processor_id()));
5327
5328 if (mm != &init_mm)
5329 switch_mm(mm, &init_mm, current);
5330 mmdrop(mm);
5331}
5332
Kirill Korotaev054b9102006-12-10 02:20:11 -08005333/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005334static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005335{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005336 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337
5338 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005339 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005340
5341 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005342 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005343
Ingo Molnar48f24c42006-07-03 00:25:40 -07005344 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345
5346 /*
5347 * Drop lock around migration; if someone else moves it,
5348 * that's OK. No task can be added to this CPU, so iteration is
5349 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005350 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005352 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005353 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005354 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005355
Ingo Molnar48f24c42006-07-03 00:25:40 -07005356 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005357}
5358
5359/* release_task() removes task from tasklist, so we won't find dead tasks. */
5360static void migrate_dead_tasks(unsigned int dead_cpu)
5361{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005362 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005363 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364
5365 for (arr = 0; arr < 2; arr++) {
5366 for (i = 0; i < MAX_PRIO; i++) {
5367 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005368
Linus Torvalds1da177e2005-04-16 15:20:36 -07005369 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005370 migrate_dead(dead_cpu, list_entry(list->next,
5371 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372 }
5373 }
5374}
5375#endif /* CONFIG_HOTPLUG_CPU */
5376
5377/*
5378 * migration_call - callback that gets triggered when a CPU is added.
5379 * Here we can start up the necessary migration thread for the new CPU.
5380 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005381static int __cpuinit
5382migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005384 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005385 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005386 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005387 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005388
5389 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005390 case CPU_LOCK_ACQUIRE:
5391 mutex_lock(&sched_hotcpu_mutex);
5392 break;
5393
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005395 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005396 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5397 if (IS_ERR(p))
5398 return NOTIFY_BAD;
5399 p->flags |= PF_NOFREEZE;
5400 kthread_bind(p, cpu);
5401 /* Must be high prio: stop_machine expects to yield to it. */
5402 rq = task_rq_lock(p, &flags);
5403 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5404 task_rq_unlock(rq, &flags);
5405 cpu_rq(cpu)->migration_thread = p;
5406 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005407
Linus Torvalds1da177e2005-04-16 15:20:36 -07005408 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005409 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005410 /* Strictly unneccessary, as first user will wake it. */
5411 wake_up_process(cpu_rq(cpu)->migration_thread);
5412 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005413
Linus Torvalds1da177e2005-04-16 15:20:36 -07005414#ifdef CONFIG_HOTPLUG_CPU
5415 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005416 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005417 if (!cpu_rq(cpu)->migration_thread)
5418 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005419 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005420 kthread_bind(cpu_rq(cpu)->migration_thread,
5421 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005422 kthread_stop(cpu_rq(cpu)->migration_thread);
5423 cpu_rq(cpu)->migration_thread = NULL;
5424 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005425
Linus Torvalds1da177e2005-04-16 15:20:36 -07005426 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005427 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005428 migrate_live_tasks(cpu);
5429 rq = cpu_rq(cpu);
5430 kthread_stop(rq->migration_thread);
5431 rq->migration_thread = NULL;
5432 /* Idle task back to normal (off runqueue, low prio) */
5433 rq = task_rq_lock(rq->idle, &flags);
5434 deactivate_task(rq->idle, rq);
5435 rq->idle->static_prio = MAX_PRIO;
5436 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5437 migrate_dead_tasks(cpu);
5438 task_rq_unlock(rq, &flags);
5439 migrate_nr_uninterruptible(rq);
5440 BUG_ON(rq->nr_running != 0);
5441
5442 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005443 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005444 * the requestors. */
5445 spin_lock_irq(&rq->lock);
5446 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005447 struct migration_req *req;
5448
Linus Torvalds1da177e2005-04-16 15:20:36 -07005449 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005450 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005451 list_del_init(&req->list);
5452 complete(&req->done);
5453 }
5454 spin_unlock_irq(&rq->lock);
5455 break;
5456#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005457 case CPU_LOCK_RELEASE:
5458 mutex_unlock(&sched_hotcpu_mutex);
5459 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005460 }
5461 return NOTIFY_OK;
5462}
5463
5464/* Register at highest priority so that task migration (migrate_all_tasks)
5465 * happens before everything else.
5466 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005467static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005468 .notifier_call = migration_call,
5469 .priority = 10
5470};
5471
5472int __init migration_init(void)
5473{
5474 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005475 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005476
5477 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005478 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5479 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005480 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5481 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005482
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483 return 0;
5484}
5485#endif
5486
5487#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005488
5489/* Number of possible processor ids */
5490int nr_cpu_ids __read_mostly = NR_CPUS;
5491EXPORT_SYMBOL(nr_cpu_ids);
5492
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005493#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005494#ifdef SCHED_DOMAIN_DEBUG
5495static void sched_domain_debug(struct sched_domain *sd, int cpu)
5496{
5497 int level = 0;
5498
Nick Piggin41c7ce92005-06-25 14:57:24 -07005499 if (!sd) {
5500 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5501 return;
5502 }
5503
Linus Torvalds1da177e2005-04-16 15:20:36 -07005504 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5505
5506 do {
5507 int i;
5508 char str[NR_CPUS];
5509 struct sched_group *group = sd->groups;
5510 cpumask_t groupmask;
5511
5512 cpumask_scnprintf(str, NR_CPUS, sd->span);
5513 cpus_clear(groupmask);
5514
5515 printk(KERN_DEBUG);
5516 for (i = 0; i < level + 1; i++)
5517 printk(" ");
5518 printk("domain %d: ", level);
5519
5520 if (!(sd->flags & SD_LOAD_BALANCE)) {
5521 printk("does not load-balance\n");
5522 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005523 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5524 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005525 break;
5526 }
5527
5528 printk("span %s\n", str);
5529
5530 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005531 printk(KERN_ERR "ERROR: domain->span does not contain "
5532 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005533 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005534 printk(KERN_ERR "ERROR: domain->groups does not contain"
5535 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005536
5537 printk(KERN_DEBUG);
5538 for (i = 0; i < level + 2; i++)
5539 printk(" ");
5540 printk("groups:");
5541 do {
5542 if (!group) {
5543 printk("\n");
5544 printk(KERN_ERR "ERROR: group is NULL\n");
5545 break;
5546 }
5547
Eric Dumazet5517d862007-05-08 00:32:57 -07005548 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005549 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005550 printk(KERN_ERR "ERROR: domain->cpu_power not "
5551 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005552 }
5553
5554 if (!cpus_weight(group->cpumask)) {
5555 printk("\n");
5556 printk(KERN_ERR "ERROR: empty group\n");
5557 }
5558
5559 if (cpus_intersects(groupmask, group->cpumask)) {
5560 printk("\n");
5561 printk(KERN_ERR "ERROR: repeated CPUs\n");
5562 }
5563
5564 cpus_or(groupmask, groupmask, group->cpumask);
5565
5566 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5567 printk(" %s", str);
5568
5569 group = group->next;
5570 } while (group != sd->groups);
5571 printk("\n");
5572
5573 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005574 printk(KERN_ERR "ERROR: groups don't span "
5575 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005576
5577 level++;
5578 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005579 if (!sd)
5580 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005581
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005582 if (!cpus_subset(groupmask, sd->span))
5583 printk(KERN_ERR "ERROR: parent span is not a superset "
5584 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005585
5586 } while (sd);
5587}
5588#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005589# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005590#endif
5591
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005592static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005593{
5594 if (cpus_weight(sd->span) == 1)
5595 return 1;
5596
5597 /* Following flags need at least 2 groups */
5598 if (sd->flags & (SD_LOAD_BALANCE |
5599 SD_BALANCE_NEWIDLE |
5600 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005601 SD_BALANCE_EXEC |
5602 SD_SHARE_CPUPOWER |
5603 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005604 if (sd->groups != sd->groups->next)
5605 return 0;
5606 }
5607
5608 /* Following flags don't use groups */
5609 if (sd->flags & (SD_WAKE_IDLE |
5610 SD_WAKE_AFFINE |
5611 SD_WAKE_BALANCE))
5612 return 0;
5613
5614 return 1;
5615}
5616
Ingo Molnar48f24c42006-07-03 00:25:40 -07005617static int
5618sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005619{
5620 unsigned long cflags = sd->flags, pflags = parent->flags;
5621
5622 if (sd_degenerate(parent))
5623 return 1;
5624
5625 if (!cpus_equal(sd->span, parent->span))
5626 return 0;
5627
5628 /* Does parent contain flags not in child? */
5629 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5630 if (cflags & SD_WAKE_AFFINE)
5631 pflags &= ~SD_WAKE_BALANCE;
5632 /* Flags needing groups don't count if only 1 group in parent */
5633 if (parent->groups == parent->groups->next) {
5634 pflags &= ~(SD_LOAD_BALANCE |
5635 SD_BALANCE_NEWIDLE |
5636 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005637 SD_BALANCE_EXEC |
5638 SD_SHARE_CPUPOWER |
5639 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005640 }
5641 if (~cflags & pflags)
5642 return 0;
5643
5644 return 1;
5645}
5646
Linus Torvalds1da177e2005-04-16 15:20:36 -07005647/*
5648 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5649 * hold the hotplug lock.
5650 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005651static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005652{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005653 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005654 struct sched_domain *tmp;
5655
5656 /* Remove the sched domains which do not contribute to scheduling. */
5657 for (tmp = sd; tmp; tmp = tmp->parent) {
5658 struct sched_domain *parent = tmp->parent;
5659 if (!parent)
5660 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005661 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005662 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005663 if (parent->parent)
5664 parent->parent->child = tmp;
5665 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005666 }
5667
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005668 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005669 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005670 if (sd)
5671 sd->child = NULL;
5672 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005673
5674 sched_domain_debug(sd, cpu);
5675
Nick Piggin674311d2005-06-25 14:57:27 -07005676 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005677}
5678
5679/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005680static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005681
5682/* Setup the mask of cpus configured for isolated domains */
5683static int __init isolated_cpu_setup(char *str)
5684{
5685 int ints[NR_CPUS], i;
5686
5687 str = get_options(str, ARRAY_SIZE(ints), ints);
5688 cpus_clear(cpu_isolated_map);
5689 for (i = 1; i <= ints[0]; i++)
5690 if (ints[i] < NR_CPUS)
5691 cpu_set(ints[i], cpu_isolated_map);
5692 return 1;
5693}
5694
5695__setup ("isolcpus=", isolated_cpu_setup);
5696
5697/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005698 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5699 * to a function which identifies what group(along with sched group) a CPU
5700 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5701 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005702 *
5703 * init_sched_build_groups will build a circular linked list of the groups
5704 * covered by the given span, and will set each group's ->cpumask correctly,
5705 * and ->cpu_power to 0.
5706 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005707static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005708init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5709 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5710 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005711{
5712 struct sched_group *first = NULL, *last = NULL;
5713 cpumask_t covered = CPU_MASK_NONE;
5714 int i;
5715
5716 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005717 struct sched_group *sg;
5718 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005719 int j;
5720
5721 if (cpu_isset(i, covered))
5722 continue;
5723
5724 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005725 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005726
5727 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005728 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005729 continue;
5730
5731 cpu_set(j, covered);
5732 cpu_set(j, sg->cpumask);
5733 }
5734 if (!first)
5735 first = sg;
5736 if (last)
5737 last->next = sg;
5738 last = sg;
5739 }
5740 last->next = first;
5741}
5742
John Hawkes9c1cfda2005-09-06 15:18:14 -07005743#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005744
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005745/*
5746 * Self-tuning task migration cost measurement between source and target CPUs.
5747 *
5748 * This is done by measuring the cost of manipulating buffers of varying
5749 * sizes. For a given buffer-size here are the steps that are taken:
5750 *
5751 * 1) the source CPU reads+dirties a shared buffer
5752 * 2) the target CPU reads+dirties the same shared buffer
5753 *
5754 * We measure how long they take, in the following 4 scenarios:
5755 *
5756 * - source: CPU1, target: CPU2 | cost1
5757 * - source: CPU2, target: CPU1 | cost2
5758 * - source: CPU1, target: CPU1 | cost3
5759 * - source: CPU2, target: CPU2 | cost4
5760 *
5761 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5762 * the cost of migration.
5763 *
5764 * We then start off from a small buffer-size and iterate up to larger
5765 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5766 * doing a maximum search for the cost. (The maximum cost for a migration
5767 * normally occurs when the working set size is around the effective cache
5768 * size.)
5769 */
5770#define SEARCH_SCOPE 2
5771#define MIN_CACHE_SIZE (64*1024U)
5772#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005773#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005774#define SIZE_THRESH 130
5775#define COST_THRESH 130
5776
5777/*
5778 * The migration cost is a function of 'domain distance'. Domain
5779 * distance is the number of steps a CPU has to iterate down its
5780 * domain tree to share a domain with the other CPU. The farther
5781 * two CPUs are from each other, the larger the distance gets.
5782 *
5783 * Note that we use the distance only to cache measurement results,
5784 * the distance value is not used numerically otherwise. When two
5785 * CPUs have the same distance it is assumed that the migration
5786 * cost is the same. (this is a simplification but quite practical)
5787 */
5788#define MAX_DOMAIN_DISTANCE 32
5789
5790static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005791 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5792/*
5793 * Architectures may override the migration cost and thus avoid
5794 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5795 * virtualized hardware:
5796 */
5797#ifdef CONFIG_DEFAULT_MIGRATION_COST
5798 CONFIG_DEFAULT_MIGRATION_COST
5799#else
5800 -1LL
5801#endif
5802};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005803
5804/*
5805 * Allow override of migration cost - in units of microseconds.
5806 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5807 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5808 */
5809static int __init migration_cost_setup(char *str)
5810{
5811 int ints[MAX_DOMAIN_DISTANCE+1], i;
5812
5813 str = get_options(str, ARRAY_SIZE(ints), ints);
5814
5815 printk("#ints: %d\n", ints[0]);
5816 for (i = 1; i <= ints[0]; i++) {
5817 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5818 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5819 }
5820 return 1;
5821}
5822
5823__setup ("migration_cost=", migration_cost_setup);
5824
5825/*
5826 * Global multiplier (divisor) for migration-cutoff values,
5827 * in percentiles. E.g. use a value of 150 to get 1.5 times
5828 * longer cache-hot cutoff times.
5829 *
5830 * (We scale it from 100 to 128 to long long handling easier.)
5831 */
5832
5833#define MIGRATION_FACTOR_SCALE 128
5834
5835static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5836
5837static int __init setup_migration_factor(char *str)
5838{
5839 get_option(&str, &migration_factor);
5840 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5841 return 1;
5842}
5843
5844__setup("migration_factor=", setup_migration_factor);
5845
5846/*
5847 * Estimated distance of two CPUs, measured via the number of domains
5848 * we have to pass for the two CPUs to be in the same span:
5849 */
5850static unsigned long domain_distance(int cpu1, int cpu2)
5851{
5852 unsigned long distance = 0;
5853 struct sched_domain *sd;
5854
5855 for_each_domain(cpu1, sd) {
5856 WARN_ON(!cpu_isset(cpu1, sd->span));
5857 if (cpu_isset(cpu2, sd->span))
5858 return distance;
5859 distance++;
5860 }
5861 if (distance >= MAX_DOMAIN_DISTANCE) {
5862 WARN_ON(1);
5863 distance = MAX_DOMAIN_DISTANCE-1;
5864 }
5865
5866 return distance;
5867}
5868
5869static unsigned int migration_debug;
5870
5871static int __init setup_migration_debug(char *str)
5872{
5873 get_option(&str, &migration_debug);
5874 return 1;
5875}
5876
5877__setup("migration_debug=", setup_migration_debug);
5878
5879/*
5880 * Maximum cache-size that the scheduler should try to measure.
5881 * Architectures with larger caches should tune this up during
5882 * bootup. Gets used in the domain-setup code (i.e. during SMP
5883 * bootup).
5884 */
5885unsigned int max_cache_size;
5886
5887static int __init setup_max_cache_size(char *str)
5888{
5889 get_option(&str, &max_cache_size);
5890 return 1;
5891}
5892
5893__setup("max_cache_size=", setup_max_cache_size);
5894
5895/*
5896 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5897 * is the operation that is timed, so we try to generate unpredictable
5898 * cachemisses that still end up filling the L2 cache:
5899 */
5900static void touch_cache(void *__cache, unsigned long __size)
5901{
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005902 unsigned long size = __size / sizeof(long);
5903 unsigned long chunk1 = size / 3;
5904 unsigned long chunk2 = 2 * size / 3;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005905 unsigned long *cache = __cache;
5906 int i;
5907
5908 for (i = 0; i < size/6; i += 8) {
5909 switch (i % 6) {
5910 case 0: cache[i]++;
5911 case 1: cache[size-1-i]++;
5912 case 2: cache[chunk1-i]++;
5913 case 3: cache[chunk1+i]++;
5914 case 4: cache[chunk2-i]++;
5915 case 5: cache[chunk2+i]++;
5916 }
5917 }
5918}
5919
5920/*
5921 * Measure the cache-cost of one task migration. Returns in units of nsec.
5922 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005923static unsigned long long
5924measure_one(void *cache, unsigned long size, int source, int target)
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005925{
5926 cpumask_t mask, saved_mask;
5927 unsigned long long t0, t1, t2, t3, cost;
5928
5929 saved_mask = current->cpus_allowed;
5930
5931 /*
5932 * Flush source caches to RAM and invalidate them:
5933 */
5934 sched_cacheflush();
5935
5936 /*
5937 * Migrate to the source CPU:
5938 */
5939 mask = cpumask_of_cpu(source);
5940 set_cpus_allowed(current, mask);
5941 WARN_ON(smp_processor_id() != source);
5942
5943 /*
5944 * Dirty the working set:
5945 */
5946 t0 = sched_clock();
5947 touch_cache(cache, size);
5948 t1 = sched_clock();
5949
5950 /*
5951 * Migrate to the target CPU, dirty the L2 cache and access
5952 * the shared buffer. (which represents the working set
5953 * of a migrated task.)
5954 */
5955 mask = cpumask_of_cpu(target);
5956 set_cpus_allowed(current, mask);
5957 WARN_ON(smp_processor_id() != target);
5958
5959 t2 = sched_clock();
5960 touch_cache(cache, size);
5961 t3 = sched_clock();
5962
5963 cost = t1-t0 + t3-t2;
5964
5965 if (migration_debug >= 2)
5966 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5967 source, target, t1-t0, t1-t0, t3-t2, cost);
5968 /*
5969 * Flush target caches to RAM and invalidate them:
5970 */
5971 sched_cacheflush();
5972
5973 set_cpus_allowed(current, saved_mask);
5974
5975 return cost;
5976}
5977
5978/*
5979 * Measure a series of task migrations and return the average
5980 * result. Since this code runs early during bootup the system
5981 * is 'undisturbed' and the average latency makes sense.
5982 *
5983 * The algorithm in essence auto-detects the relevant cache-size,
5984 * so it will properly detect different cachesizes for different
5985 * cache-hierarchies, depending on how the CPUs are connected.
5986 *
5987 * Architectures can prime the upper limit of the search range via
5988 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5989 */
5990static unsigned long long
5991measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5992{
5993 unsigned long long cost1, cost2;
5994 int i;
5995
5996 /*
5997 * Measure the migration cost of 'size' bytes, over an
5998 * average of 10 runs:
5999 *
6000 * (We perturb the cache size by a small (0..4k)
6001 * value to compensate size/alignment related artifacts.
6002 * We also subtract the cost of the operation done on
6003 * the same CPU.)
6004 */
6005 cost1 = 0;
6006
6007 /*
6008 * dry run, to make sure we start off cache-cold on cpu1,
6009 * and to get any vmalloc pagefaults in advance:
6010 */
6011 measure_one(cache, size, cpu1, cpu2);
6012 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006013 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006014
6015 measure_one(cache, size, cpu2, cpu1);
6016 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006017 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006018
6019 /*
6020 * (We measure the non-migrating [cached] cost on both
6021 * cpu1 and cpu2, to handle CPUs with different speeds)
6022 */
6023 cost2 = 0;
6024
6025 measure_one(cache, size, cpu1, cpu1);
6026 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006027 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006028
6029 measure_one(cache, size, cpu2, cpu2);
6030 for (i = 0; i < ITERATIONS; i++)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006031 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006032
6033 /*
6034 * Get the per-iteration migration cost:
6035 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006036 do_div(cost1, 2 * ITERATIONS);
6037 do_div(cost2, 2 * ITERATIONS);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006038
6039 return cost1 - cost2;
6040}
6041
6042static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6043{
6044 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6045 unsigned int max_size, size, size_found = 0;
6046 long long cost = 0, prev_cost;
6047 void *cache;
6048
6049 /*
6050 * Search from max_cache_size*5 down to 64K - the real relevant
6051 * cachesize has to lie somewhere inbetween.
6052 */
6053 if (max_cache_size) {
6054 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6055 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6056 } else {
6057 /*
6058 * Since we have no estimation about the relevant
6059 * search range
6060 */
6061 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6062 size = MIN_CACHE_SIZE;
6063 }
6064
6065 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6066 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6067 return 0;
6068 }
6069
6070 /*
6071 * Allocate the working set:
6072 */
6073 cache = vmalloc(max_size);
6074 if (!cache) {
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006075 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
Andreas Mohr2ed6e342006-07-10 04:43:52 -07006076 return 1000000; /* return 1 msec on very small boxen */
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006077 }
6078
6079 while (size <= max_size) {
6080 prev_cost = cost;
6081 cost = measure_cost(cpu1, cpu2, cache, size);
6082
6083 /*
6084 * Update the max:
6085 */
6086 if (cost > 0) {
6087 if (max_cost < cost) {
6088 max_cost = cost;
6089 size_found = size;
6090 }
6091 }
6092 /*
6093 * Calculate average fluctuation, we use this to prevent
6094 * noise from triggering an early break out of the loop:
6095 */
6096 fluct = abs(cost - prev_cost);
6097 avg_fluct = (avg_fluct + fluct)/2;
6098
6099 if (migration_debug)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006100 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6101 "(%8Ld %8Ld)\n",
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006102 cpu1, cpu2, size,
6103 (long)cost / 1000000,
6104 ((long)cost / 100000) % 10,
6105 (long)max_cost / 1000000,
6106 ((long)max_cost / 100000) % 10,
6107 domain_distance(cpu1, cpu2),
6108 cost, avg_fluct);
6109
6110 /*
6111 * If we iterated at least 20% past the previous maximum,
6112 * and the cost has dropped by more than 20% already,
6113 * (taking fluctuations into account) then we assume to
6114 * have found the maximum and break out of the loop early:
6115 */
6116 if (size_found && (size*100 > size_found*SIZE_THRESH))
6117 if (cost+avg_fluct <= 0 ||
6118 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6119
6120 if (migration_debug)
6121 printk("-> found max.\n");
6122 break;
6123 }
6124 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01006125 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006126 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01006127 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006128 }
6129
6130 if (migration_debug)
6131 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6132 cpu1, cpu2, size_found, max_cost);
6133
6134 vfree(cache);
6135
6136 /*
6137 * A task is considered 'cache cold' if at least 2 times
6138 * the worst-case cost of migration has passed.
6139 *
6140 * (this limit is only listened to if the load-balancing
6141 * situation is 'nice' - if there is a large imbalance we
6142 * ignore it for the sake of CPU utilization and
6143 * processing fairness.)
6144 */
6145 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6146}
6147
6148static void calibrate_migration_costs(const cpumask_t *cpu_map)
6149{
6150 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6151 unsigned long j0, j1, distance, max_distance = 0;
6152 struct sched_domain *sd;
6153
6154 j0 = jiffies;
6155
6156 /*
6157 * First pass - calculate the cacheflush times:
6158 */
6159 for_each_cpu_mask(cpu1, *cpu_map) {
6160 for_each_cpu_mask(cpu2, *cpu_map) {
6161 if (cpu1 == cpu2)
6162 continue;
6163 distance = domain_distance(cpu1, cpu2);
6164 max_distance = max(max_distance, distance);
6165 /*
6166 * No result cached yet?
6167 */
6168 if (migration_cost[distance] == -1LL)
6169 migration_cost[distance] =
6170 measure_migration_cost(cpu1, cpu2);
6171 }
6172 }
6173 /*
6174 * Second pass - update the sched domain hierarchy with
6175 * the new cache-hot-time estimations:
6176 */
6177 for_each_cpu_mask(cpu, *cpu_map) {
6178 distance = 0;
6179 for_each_domain(cpu, sd) {
6180 sd->cache_hot_time = migration_cost[distance];
6181 distance++;
6182 }
6183 }
6184 /*
6185 * Print the matrix:
6186 */
6187 if (migration_debug)
6188 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6189 max_cache_size,
6190#ifdef CONFIG_X86
6191 cpu_khz/1000
6192#else
6193 -1
6194#endif
6195 );
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006196 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6197 printk("migration_cost=");
6198 for (distance = 0; distance <= max_distance; distance++) {
6199 if (distance)
6200 printk(",");
6201 printk("%ld", (long)migration_cost[distance] / 1000);
Chuck Ebbertbd576c92006-02-04 23:27:42 -08006202 }
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006203 printk("\n");
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006204 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006205 j1 = jiffies;
6206 if (migration_debug)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08006207 printk("migration: %ld seconds\n", (j1-j0) / HZ);
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006208
6209 /*
6210 * Move back to the original CPU. NUMA-Q gets confused
6211 * if we migrate to another quad during bootup.
6212 */
6213 if (raw_smp_processor_id() != orig_cpu) {
6214 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6215 saved_mask = current->cpus_allowed;
6216
6217 set_cpus_allowed(current, mask);
6218 set_cpus_allowed(current, saved_mask);
6219 }
6220}
6221
John Hawkes9c1cfda2005-09-06 15:18:14 -07006222#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006223
John Hawkes9c1cfda2005-09-06 15:18:14 -07006224/**
6225 * find_next_best_node - find the next node to include in a sched_domain
6226 * @node: node whose sched_domain we're building
6227 * @used_nodes: nodes already in the sched_domain
6228 *
6229 * Find the next node to include in a given scheduling domain. Simply
6230 * finds the closest node not already in the @used_nodes map.
6231 *
6232 * Should use nodemask_t.
6233 */
6234static int find_next_best_node(int node, unsigned long *used_nodes)
6235{
6236 int i, n, val, min_val, best_node = 0;
6237
6238 min_val = INT_MAX;
6239
6240 for (i = 0; i < MAX_NUMNODES; i++) {
6241 /* Start at @node */
6242 n = (node + i) % MAX_NUMNODES;
6243
6244 if (!nr_cpus_node(n))
6245 continue;
6246
6247 /* Skip already used nodes */
6248 if (test_bit(n, used_nodes))
6249 continue;
6250
6251 /* Simple min distance search */
6252 val = node_distance(node, n);
6253
6254 if (val < min_val) {
6255 min_val = val;
6256 best_node = n;
6257 }
6258 }
6259
6260 set_bit(best_node, used_nodes);
6261 return best_node;
6262}
6263
6264/**
6265 * sched_domain_node_span - get a cpumask for a node's sched_domain
6266 * @node: node whose cpumask we're constructing
6267 * @size: number of nodes to include in this span
6268 *
6269 * Given a node, construct a good cpumask for its sched_domain to span. It
6270 * should be one that prevents unnecessary balancing, but also spreads tasks
6271 * out optimally.
6272 */
6273static cpumask_t sched_domain_node_span(int node)
6274{
John Hawkes9c1cfda2005-09-06 15:18:14 -07006275 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006276 cpumask_t span, nodemask;
6277 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006278
6279 cpus_clear(span);
6280 bitmap_zero(used_nodes, MAX_NUMNODES);
6281
6282 nodemask = node_to_cpumask(node);
6283 cpus_or(span, span, nodemask);
6284 set_bit(node, used_nodes);
6285
6286 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6287 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006288
John Hawkes9c1cfda2005-09-06 15:18:14 -07006289 nodemask = node_to_cpumask(next_node);
6290 cpus_or(span, span, nodemask);
6291 }
6292
6293 return span;
6294}
6295#endif
6296
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006297int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006298
John Hawkes9c1cfda2005-09-06 15:18:14 -07006299/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07006300 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07006301 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006302#ifdef CONFIG_SCHED_SMT
6303static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006304static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006305
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006306static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6307 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006308{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006309 if (sg)
6310 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006311 return cpu;
6312}
6313#endif
6314
Ingo Molnar48f24c42006-07-03 00:25:40 -07006315/*
6316 * multi-core sched-domains:
6317 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006318#ifdef CONFIG_SCHED_MC
6319static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006320static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006321#endif
6322
6323#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006324static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6325 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006326{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006327 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006328 cpumask_t mask = cpu_sibling_map[cpu];
6329 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006330 group = first_cpu(mask);
6331 if (sg)
6332 *sg = &per_cpu(sched_group_core, group);
6333 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006334}
6335#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006336static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6337 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006338{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006339 if (sg)
6340 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006341 return cpu;
6342}
6343#endif
6344
Linus Torvalds1da177e2005-04-16 15:20:36 -07006345static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006346static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006347
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006348static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6349 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006350{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006351 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006352#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006353 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006354 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006355 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006356#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006357 cpumask_t mask = cpu_sibling_map[cpu];
6358 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006359 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006360#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006361 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006362#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006363 if (sg)
6364 *sg = &per_cpu(sched_group_phys, group);
6365 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006366}
6367
6368#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07006369/*
6370 * The init_sched_build_groups can't handle what we want to do with node
6371 * groups, so roll our own. Now each node has its own list of groups which
6372 * gets dynamically allocated.
6373 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006374static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07006375static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07006376
6377static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006378static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006379
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006380static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6381 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006382{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006383 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6384 int group;
6385
6386 cpus_and(nodemask, nodemask, *cpu_map);
6387 group = first_cpu(nodemask);
6388
6389 if (sg)
6390 *sg = &per_cpu(sched_group_allnodes, group);
6391 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006392}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006393
Siddha, Suresh B08069032006-03-27 01:15:23 -08006394static void init_numa_sched_groups_power(struct sched_group *group_head)
6395{
6396 struct sched_group *sg = group_head;
6397 int j;
6398
6399 if (!sg)
6400 return;
6401next_sg:
6402 for_each_cpu_mask(j, sg->cpumask) {
6403 struct sched_domain *sd;
6404
6405 sd = &per_cpu(phys_domains, j);
6406 if (j != first_cpu(sd->groups->cpumask)) {
6407 /*
6408 * Only add "power" once for each
6409 * physical package.
6410 */
6411 continue;
6412 }
6413
Eric Dumazet5517d862007-05-08 00:32:57 -07006414 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08006415 }
6416 sg = sg->next;
6417 if (sg != group_head)
6418 goto next_sg;
6419}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006420#endif
6421
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006422#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006423/* Free memory allocated for various sched_group structures */
6424static void free_sched_groups(const cpumask_t *cpu_map)
6425{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006426 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006427
6428 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006429 struct sched_group **sched_group_nodes
6430 = sched_group_nodes_bycpu[cpu];
6431
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006432 if (!sched_group_nodes)
6433 continue;
6434
6435 for (i = 0; i < MAX_NUMNODES; i++) {
6436 cpumask_t nodemask = node_to_cpumask(i);
6437 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6438
6439 cpus_and(nodemask, nodemask, *cpu_map);
6440 if (cpus_empty(nodemask))
6441 continue;
6442
6443 if (sg == NULL)
6444 continue;
6445 sg = sg->next;
6446next_sg:
6447 oldsg = sg;
6448 sg = sg->next;
6449 kfree(oldsg);
6450 if (oldsg != sched_group_nodes[i])
6451 goto next_sg;
6452 }
6453 kfree(sched_group_nodes);
6454 sched_group_nodes_bycpu[cpu] = NULL;
6455 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006456}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006457#else
6458static void free_sched_groups(const cpumask_t *cpu_map)
6459{
6460}
6461#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006462
Linus Torvalds1da177e2005-04-16 15:20:36 -07006463/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006464 * Initialize sched groups cpu_power.
6465 *
6466 * cpu_power indicates the capacity of sched group, which is used while
6467 * distributing the load between different sched groups in a sched domain.
6468 * Typically cpu_power for all the groups in a sched domain will be same unless
6469 * there are asymmetries in the topology. If there are asymmetries, group
6470 * having more cpu_power will pickup more load compared to the group having
6471 * less cpu_power.
6472 *
6473 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6474 * the maximum number of tasks a group can handle in the presence of other idle
6475 * or lightly loaded groups in the same sched domain.
6476 */
6477static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6478{
6479 struct sched_domain *child;
6480 struct sched_group *group;
6481
6482 WARN_ON(!sd || !sd->groups);
6483
6484 if (cpu != first_cpu(sd->groups->cpumask))
6485 return;
6486
6487 child = sd->child;
6488
Eric Dumazet5517d862007-05-08 00:32:57 -07006489 sd->groups->__cpu_power = 0;
6490
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006491 /*
6492 * For perf policy, if the groups in child domain share resources
6493 * (for example cores sharing some portions of the cache hierarchy
6494 * or SMT), then set this domain groups cpu_power such that each group
6495 * can handle only one task, when there are other idle groups in the
6496 * same sched domain.
6497 */
6498 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6499 (child->flags &
6500 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07006501 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006502 return;
6503 }
6504
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006505 /*
6506 * add cpu_power of each child group to this groups cpu_power
6507 */
6508 group = child->groups;
6509 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07006510 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006511 group = group->next;
6512 } while (group != child->groups);
6513}
6514
6515/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006516 * Build sched domains for a given set of cpus and attach the sched domains
6517 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006518 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006519static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006520{
6521 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006522 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07006523#ifdef CONFIG_NUMA
6524 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006525 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006526
6527 /*
6528 * Allocate the per-node list of sched groups
6529 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006530 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006531 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006532 if (!sched_group_nodes) {
6533 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006534 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006535 }
6536 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6537#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006538
6539 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006540 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006541 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006542 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006543 struct sched_domain *sd = NULL, *p;
6544 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6545
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006546 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006547
6548#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006549 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006550 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6551 sd = &per_cpu(allnodes_domains, i);
6552 *sd = SD_ALLNODES_INIT;
6553 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006554 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006555 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006556 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006557 } else
6558 p = NULL;
6559
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006561 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006562 sd->span = sched_domain_node_span(cpu_to_node(i));
6563 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006564 if (p)
6565 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006566 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006567#endif
6568
6569 p = sd;
6570 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006571 *sd = SD_CPU_INIT;
6572 sd->span = nodemask;
6573 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006574 if (p)
6575 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006576 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006577
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006578#ifdef CONFIG_SCHED_MC
6579 p = sd;
6580 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006581 *sd = SD_MC_INIT;
6582 sd->span = cpu_coregroup_map(i);
6583 cpus_and(sd->span, sd->span, *cpu_map);
6584 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006585 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006586 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006587#endif
6588
Linus Torvalds1da177e2005-04-16 15:20:36 -07006589#ifdef CONFIG_SCHED_SMT
6590 p = sd;
6591 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006592 *sd = SD_SIBLING_INIT;
6593 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006594 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006595 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006596 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006597 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006598#endif
6599 }
6600
6601#ifdef CONFIG_SCHED_SMT
6602 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006603 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006604 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006605 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006606 if (i != first_cpu(this_sibling_map))
6607 continue;
6608
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006609 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006610 }
6611#endif
6612
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006613#ifdef CONFIG_SCHED_MC
6614 /* Set up multi-core groups */
6615 for_each_cpu_mask(i, *cpu_map) {
6616 cpumask_t this_core_map = cpu_coregroup_map(i);
6617 cpus_and(this_core_map, this_core_map, *cpu_map);
6618 if (i != first_cpu(this_core_map))
6619 continue;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006620 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006621 }
6622#endif
6623
6624
Linus Torvalds1da177e2005-04-16 15:20:36 -07006625 /* Set up physical groups */
6626 for (i = 0; i < MAX_NUMNODES; i++) {
6627 cpumask_t nodemask = node_to_cpumask(i);
6628
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006629 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006630 if (cpus_empty(nodemask))
6631 continue;
6632
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006633 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006634 }
6635
6636#ifdef CONFIG_NUMA
6637 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006638 if (sd_allnodes)
6639 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006640
6641 for (i = 0; i < MAX_NUMNODES; i++) {
6642 /* Set up node groups */
6643 struct sched_group *sg, *prev;
6644 cpumask_t nodemask = node_to_cpumask(i);
6645 cpumask_t domainspan;
6646 cpumask_t covered = CPU_MASK_NONE;
6647 int j;
6648
6649 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006650 if (cpus_empty(nodemask)) {
6651 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006652 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006653 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006654
6655 domainspan = sched_domain_node_span(i);
6656 cpus_and(domainspan, domainspan, *cpu_map);
6657
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006658 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006659 if (!sg) {
6660 printk(KERN_WARNING "Can not alloc domain group for "
6661 "node %d\n", i);
6662 goto error;
6663 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006664 sched_group_nodes[i] = sg;
6665 for_each_cpu_mask(j, nodemask) {
6666 struct sched_domain *sd;
6667 sd = &per_cpu(node_domains, j);
6668 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006669 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006670 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006671 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006672 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006673 cpus_or(covered, covered, nodemask);
6674 prev = sg;
6675
6676 for (j = 0; j < MAX_NUMNODES; j++) {
6677 cpumask_t tmp, notcovered;
6678 int n = (i + j) % MAX_NUMNODES;
6679
6680 cpus_complement(notcovered, covered);
6681 cpus_and(tmp, notcovered, *cpu_map);
6682 cpus_and(tmp, tmp, domainspan);
6683 if (cpus_empty(tmp))
6684 break;
6685
6686 nodemask = node_to_cpumask(n);
6687 cpus_and(tmp, tmp, nodemask);
6688 if (cpus_empty(tmp))
6689 continue;
6690
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006691 sg = kmalloc_node(sizeof(struct sched_group),
6692 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006693 if (!sg) {
6694 printk(KERN_WARNING
6695 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006696 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006697 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006698 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006699 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006700 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006701 cpus_or(covered, covered, tmp);
6702 prev->next = sg;
6703 prev = sg;
6704 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006705 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006706#endif
6707
6708 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006709#ifdef CONFIG_SCHED_SMT
6710 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006711 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006712 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006713 }
6714#endif
6715#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006716 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006717 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006718 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006719 }
6720#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006721
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006722 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006723 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006724 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006725 }
6726
John Hawkes9c1cfda2005-09-06 15:18:14 -07006727#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006728 for (i = 0; i < MAX_NUMNODES; i++)
6729 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006730
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006731 if (sd_allnodes) {
6732 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006733
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006734 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006735 init_numa_sched_groups_power(sg);
6736 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006737#endif
6738
Linus Torvalds1da177e2005-04-16 15:20:36 -07006739 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006740 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006741 struct sched_domain *sd;
6742#ifdef CONFIG_SCHED_SMT
6743 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006744#elif defined(CONFIG_SCHED_MC)
6745 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006746#else
6747 sd = &per_cpu(phys_domains, i);
6748#endif
6749 cpu_attach_domain(sd, i);
6750 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006751 /*
6752 * Tune cache-hot values:
6753 */
6754 calibrate_migration_costs(cpu_map);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006755
6756 return 0;
6757
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006758#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006759error:
6760 free_sched_groups(cpu_map);
6761 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006762#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006763}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006764/*
6765 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6766 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006767static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006768{
6769 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006770 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006771
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006772 /*
6773 * Setup mask for cpus without special case scheduling requirements.
6774 * For now this just excludes isolated cpus, but could be used to
6775 * exclude other special cases in the future.
6776 */
6777 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6778
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006779 err = build_sched_domains(&cpu_default_map);
6780
6781 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006782}
6783
6784static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006785{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006786 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006787}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006788
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006789/*
6790 * Detach sched domains from a group of cpus specified in cpu_map
6791 * These cpus will now be attached to the NULL domain
6792 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006793static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006794{
6795 int i;
6796
6797 for_each_cpu_mask(i, *cpu_map)
6798 cpu_attach_domain(NULL, i);
6799 synchronize_sched();
6800 arch_destroy_sched_domains(cpu_map);
6801}
6802
6803/*
6804 * Partition sched domains as specified by the cpumasks below.
6805 * This attaches all cpus from the cpumasks to the NULL domain,
6806 * waits for a RCU quiescent period, recalculates sched
6807 * domain information and then attaches them back to the
6808 * correct sched domains
6809 * Call with hotplug lock held
6810 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006811int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006812{
6813 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006814 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006815
6816 cpus_and(*partition1, *partition1, cpu_online_map);
6817 cpus_and(*partition2, *partition2, cpu_online_map);
6818 cpus_or(change_map, *partition1, *partition2);
6819
6820 /* Detach sched domains from all of the affected cpus */
6821 detach_destroy_domains(&change_map);
6822 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006823 err = build_sched_domains(partition1);
6824 if (!err && !cpus_empty(*partition2))
6825 err = build_sched_domains(partition2);
6826
6827 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006828}
6829
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006830#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6831int arch_reinit_sched_domains(void)
6832{
6833 int err;
6834
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006835 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006836 detach_destroy_domains(&cpu_online_map);
6837 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006838 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006839
6840 return err;
6841}
6842
6843static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6844{
6845 int ret;
6846
6847 if (buf[0] != '0' && buf[0] != '1')
6848 return -EINVAL;
6849
6850 if (smt)
6851 sched_smt_power_savings = (buf[0] == '1');
6852 else
6853 sched_mc_power_savings = (buf[0] == '1');
6854
6855 ret = arch_reinit_sched_domains();
6856
6857 return ret ? ret : count;
6858}
6859
6860int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6861{
6862 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006863
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006864#ifdef CONFIG_SCHED_SMT
6865 if (smt_capable())
6866 err = sysfs_create_file(&cls->kset.kobj,
6867 &attr_sched_smt_power_savings.attr);
6868#endif
6869#ifdef CONFIG_SCHED_MC
6870 if (!err && mc_capable())
6871 err = sysfs_create_file(&cls->kset.kobj,
6872 &attr_sched_mc_power_savings.attr);
6873#endif
6874 return err;
6875}
6876#endif
6877
6878#ifdef CONFIG_SCHED_MC
6879static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6880{
6881 return sprintf(page, "%u\n", sched_mc_power_savings);
6882}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006883static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6884 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006885{
6886 return sched_power_savings_store(buf, count, 0);
6887}
6888SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6889 sched_mc_power_savings_store);
6890#endif
6891
6892#ifdef CONFIG_SCHED_SMT
6893static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6894{
6895 return sprintf(page, "%u\n", sched_smt_power_savings);
6896}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006897static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6898 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006899{
6900 return sched_power_savings_store(buf, count, 1);
6901}
6902SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6903 sched_smt_power_savings_store);
6904#endif
6905
Linus Torvalds1da177e2005-04-16 15:20:36 -07006906/*
6907 * Force a reinitialization of the sched domains hierarchy. The domains
6908 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006909 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006910 * which will prevent rebalancing while the sched domains are recalculated.
6911 */
6912static int update_sched_domains(struct notifier_block *nfb,
6913 unsigned long action, void *hcpu)
6914{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006915 switch (action) {
6916 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006917 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006918 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006919 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006920 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006921 return NOTIFY_OK;
6922
6923 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006924 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006925 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006926 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006927 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006928 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006929 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006930 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006931 /*
6932 * Fall through and re-initialise the domains.
6933 */
6934 break;
6935 default:
6936 return NOTIFY_DONE;
6937 }
6938
6939 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006940 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006941
6942 return NOTIFY_OK;
6943}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006944
6945void __init sched_init_smp(void)
6946{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006947 cpumask_t non_isolated_cpus;
6948
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006949 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006950 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006951 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006952 if (cpus_empty(non_isolated_cpus))
6953 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006954 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006955 /* XXX: Theoretical race here - CPU may be hotplugged now */
6956 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006957
6958 /* Move init over to a non-isolated CPU */
6959 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6960 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006961}
6962#else
6963void __init sched_init_smp(void)
6964{
6965}
6966#endif /* CONFIG_SMP */
6967
6968int in_sched_functions(unsigned long addr)
6969{
6970 /* Linker adds these: start and end of __sched functions */
6971 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006972
Linus Torvalds1da177e2005-04-16 15:20:36 -07006973 return in_lock_functions(addr) ||
6974 (addr >= (unsigned long)__sched_text_start
6975 && addr < (unsigned long)__sched_text_end);
6976}
6977
6978void __init sched_init(void)
6979{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006980 int i, j, k;
Christoph Lameter476f3532007-05-06 14:48:58 -07006981 int highest_cpu = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006982
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006983 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006984 struct prio_array *array;
6985 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006986
6987 rq = cpu_rq(i);
6988 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006989 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006990 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006991 rq->active = rq->arrays;
6992 rq->expired = rq->arrays + 1;
6993 rq->best_expired_prio = MAX_PRIO;
6994
6995#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006996 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006997 for (j = 1; j < 3; j++)
6998 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006999 rq->active_balance = 0;
7000 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07007001 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007002 rq->migration_thread = NULL;
7003 INIT_LIST_HEAD(&rq->migration_queue);
7004#endif
7005 atomic_set(&rq->nr_iowait, 0);
7006
7007 for (j = 0; j < 2; j++) {
7008 array = rq->arrays + j;
7009 for (k = 0; k < MAX_PRIO; k++) {
7010 INIT_LIST_HEAD(array->queue + k);
7011 __clear_bit(k, array->bitmap);
7012 }
7013 // delimiter for bitsearch
7014 __set_bit(MAX_PRIO, array->bitmap);
7015 }
Christoph Lameter476f3532007-05-06 14:48:58 -07007016 highest_cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007017 }
7018
Peter Williams2dd73a42006-06-27 02:54:34 -07007019 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07007020
Christoph Lameterc9819f42006-12-10 02:20:25 -08007021#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07007022 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08007023 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7024#endif
7025
Heiko Carstensb50f60c2006-07-30 03:03:52 -07007026#ifdef CONFIG_RT_MUTEXES
7027 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7028#endif
7029
Linus Torvalds1da177e2005-04-16 15:20:36 -07007030 /*
7031 * The boot idle thread does lazy MMU switching as well:
7032 */
7033 atomic_inc(&init_mm.mm_count);
7034 enter_lazy_tlb(&init_mm, current);
7035
7036 /*
7037 * Make us the idle thread. Technically, schedule() should not be
7038 * called from this thread, however somewhere below it might be,
7039 * but because we are the idle thread, we just pick up running again
7040 * when this runqueue becomes "idle".
7041 */
7042 init_idle(current, smp_processor_id());
7043}
7044
7045#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7046void __might_sleep(char *file, int line)
7047{
Ingo Molnar48f24c42006-07-03 00:25:40 -07007048#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07007049 static unsigned long prev_jiffy; /* ratelimiting */
7050
7051 if ((in_atomic() || irqs_disabled()) &&
7052 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7053 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7054 return;
7055 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08007056 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07007057 " context at %s:%d\n", file, line);
7058 printk("in_atomic():%d, irqs_disabled():%d\n",
7059 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08007060 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08007061 if (irqs_disabled())
7062 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007063 dump_stack();
7064 }
7065#endif
7066}
7067EXPORT_SYMBOL(__might_sleep);
7068#endif
7069
7070#ifdef CONFIG_MAGIC_SYSRQ
7071void normalize_rt_tasks(void)
7072{
Ingo Molnar70b97a72006-07-03 00:25:42 -07007073 struct prio_array *array;
Ingo Molnara0f98a12007-06-17 18:37:45 +02007074 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007075 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07007076 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007077
7078 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02007079
7080 do_each_thread(g, p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007081 if (!rt_task(p))
7082 continue;
7083
Ingo Molnarb29739f2006-06-27 02:54:51 -07007084 spin_lock_irqsave(&p->pi_lock, flags);
7085 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007086
7087 array = p->array;
7088 if (array)
7089 deactivate_task(p, task_rq(p));
7090 __setscheduler(p, SCHED_NORMAL, 0);
7091 if (array) {
7092 __activate_task(p, task_rq(p));
7093 resched_task(rq->curr);
7094 }
7095
Ingo Molnarb29739f2006-06-27 02:54:51 -07007096 __task_rq_unlock(rq);
7097 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02007098 } while_each_thread(g, p);
7099
Linus Torvalds1da177e2005-04-16 15:20:36 -07007100 read_unlock_irq(&tasklist_lock);
7101}
7102
7103#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07007104
7105#ifdef CONFIG_IA64
7106/*
7107 * These functions are only useful for the IA64 MCA handling.
7108 *
7109 * They can only be called when the whole system has been
7110 * stopped - every CPU needs to be quiescent, and no scheduling
7111 * activity can take place. Using them for anything else would
7112 * be a serious bug, and as a result, they aren't even visible
7113 * under any other configuration.
7114 */
7115
7116/**
7117 * curr_task - return the current task for a given cpu.
7118 * @cpu: the processor in question.
7119 *
7120 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7121 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07007122struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07007123{
7124 return cpu_curr(cpu);
7125}
7126
7127/**
7128 * set_curr_task - set the current task for a given cpu.
7129 * @cpu: the processor in question.
7130 * @p: the task pointer to set.
7131 *
7132 * Description: This function must only be used when non-maskable interrupts
7133 * are serviced on a separate stack. It allows the architecture to switch the
7134 * notion of the current task on a cpu in a non-blocking manner. This function
7135 * must be called with all CPU's synchronized, and interrupts disabled, the
7136 * and caller must save the original value of the current task (see
7137 * curr_task() above) and restore that value before reenabling interrupts and
7138 * re-starting the system.
7139 *
7140 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7141 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07007142void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07007143{
7144 cpu_curr(cpu) = p;
7145}
7146
7147#endif