blob: b43cef02ce5b5de5f227b18aa752dbe04f4cdb0e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080030#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <linux/completion.h>
32#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070033#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080037#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080038#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070052#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080053#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070054#include <linux/delayacct.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070055#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
Martin Andersson013d3862006-03-27 01:15:18 -0800150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163#define SCALE_PRIO(x, prio) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165
Peter Williams2dd73a42006-06-27 02:54:34 -0700166static unsigned int static_prio_timeslice(int static_prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167{
Peter Williams2dd73a42006-06-27 02:54:34 -0700168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 else
Peter Williams2dd73a42006-06-27 02:54:34 -0700171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172}
Peter Williams2dd73a42006-06-27 02:54:34 -0700173
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
Ingo Molnar36c8b582006-07-03 00:25:41 -0700183static inline unsigned int task_timeslice(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700184{
185 return static_prio_timeslice(p->static_prio);
186}
187
Linus Torvalds1da177e2005-04-16 15:20:36 -0700188/*
189 * These are the runqueue data structures:
190 */
191
Linus Torvalds1da177e2005-04-16 15:20:36 -0700192struct prio_array {
193 unsigned int nr_active;
Steven Rostedtd4448862006-06-27 02:54:29 -0700194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700205struct rq {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
Peter Williams2dd73a42006-06-27 02:54:34 -0700213 unsigned long raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -0700215 unsigned long cpu_load[3];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
Ingo Molnar36c8b582006-07-03 00:25:41 -0700229 struct task_struct *curr, *idle;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230 struct mm_struct *prev_mm;
Ingo Molnar70b97a72006-07-03 00:25:42 -0700231 struct prio_array *active, *expired, arrays[2];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 int best_expired_prio;
233 atomic_t nr_iowait;
234
235#ifdef CONFIG_SMP
236 struct sched_domain *sd;
237
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700241 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242
Ingo Molnar36c8b582006-07-03 00:25:41 -0700243 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244 struct list_head migration_queue;
245#endif
246
247#ifdef CONFIG_SCHEDSTATS
248 /* latency stats */
249 struct sched_info rq_sched_info;
250
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty;
253 unsigned long yld_act_empty;
254 unsigned long yld_both_empty;
255 unsigned long yld_cnt;
256
257 /* schedule() stats */
258 unsigned long sched_switch;
259 unsigned long sched_cnt;
260 unsigned long sched_goidle;
261
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt;
264 unsigned long ttwu_local;
265#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700266 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267};
268
Ingo Molnar70b97a72006-07-03 00:25:42 -0700269static DEFINE_PER_CPU(struct rq, runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700270
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700271static inline int cpu_of(struct rq *rq)
272{
273#ifdef CONFIG_SMP
274 return rq->cpu;
275#else
276 return 0;
277#endif
278}
279
Nick Piggin674311d2005-06-25 14:57:27 -0700280/*
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700282 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700283 *
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
286 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700287#define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289
290#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291#define this_rq() (&__get_cpu_var(runqueues))
292#define task_rq(p) cpu_rq(task_cpu(p))
293#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
294
Linus Torvalds1da177e2005-04-16 15:20:36 -0700295#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700296# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700298#ifndef finish_arch_switch
299# define finish_arch_switch(prev) do { } while (0)
300#endif
301
302#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700303static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700304{
305 return rq->curr == p;
306}
307
Ingo Molnar70b97a72006-07-03 00:25:42 -0700308static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700309{
310}
311
Ingo Molnar70b97a72006-07-03 00:25:42 -0700312static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700313{
Ingo Molnarda04c032005-09-13 11:17:59 +0200314#ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq->lock.owner = current;
317#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700318 /*
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
321 * prev into current:
322 */
323 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
324
Nick Piggin4866cde2005-06-25 14:57:23 -0700325 spin_unlock_irq(&rq->lock);
326}
327
328#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700329static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700330{
331#ifdef CONFIG_SMP
332 return p->oncpu;
333#else
334 return rq->curr == p;
335#endif
336}
337
Ingo Molnar70b97a72006-07-03 00:25:42 -0700338static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700339{
340#ifdef CONFIG_SMP
341 /*
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
344 * here.
345 */
346 next->oncpu = 1;
347#endif
348#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq->lock);
350#else
351 spin_unlock(&rq->lock);
352#endif
353}
354
Ingo Molnar70b97a72006-07-03 00:25:42 -0700355static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700356{
357#ifdef CONFIG_SMP
358 /*
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
361 * finished.
362 */
363 smp_wmb();
364 prev->oncpu = 0;
365#endif
366#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
367 local_irq_enable();
368#endif
369}
370#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371
372/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
375 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700376static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700377 __acquires(rq->lock)
378{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700379 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700380
381repeat_lock_task:
382 rq = task_rq(p);
383 spin_lock(&rq->lock);
384 if (unlikely(rq != task_rq(p))) {
385 spin_unlock(&rq->lock);
386 goto repeat_lock_task;
387 }
388 return rq;
389}
390
391/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
395 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700396static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 __acquires(rq->lock)
398{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700399 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400
401repeat_lock_task:
402 local_irq_save(*flags);
403 rq = task_rq(p);
404 spin_lock(&rq->lock);
405 if (unlikely(rq != task_rq(p))) {
406 spin_unlock_irqrestore(&rq->lock, *flags);
407 goto repeat_lock_task;
408 }
409 return rq;
410}
411
Ingo Molnar70b97a72006-07-03 00:25:42 -0700412static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700413 __releases(rq->lock)
414{
415 spin_unlock(&rq->lock);
416}
417
Ingo Molnar70b97a72006-07-03 00:25:42 -0700418static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 __releases(rq->lock)
420{
421 spin_unlock_irqrestore(&rq->lock, *flags);
422}
423
424#ifdef CONFIG_SCHEDSTATS
425/*
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
428 */
Nick Piggin68767a02005-06-25 14:57:20 -0700429#define SCHEDSTAT_VERSION 12
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430
431static int show_schedstat(struct seq_file *seq, void *v)
432{
433 int cpu;
434
435 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
436 seq_printf(seq, "timestamp %lu\n", jiffies);
437 for_each_online_cpu(cpu) {
Ingo Molnar70b97a72006-07-03 00:25:42 -0700438 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439#ifdef CONFIG_SMP
440 struct sched_domain *sd;
441 int dcnt = 0;
442#endif
443
444 /* runqueue-specific stats */
445 seq_printf(seq,
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu, rq->yld_both_empty,
448 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
449 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
450 rq->ttwu_cnt, rq->ttwu_local,
451 rq->rq_sched_info.cpu_time,
452 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
453
454 seq_printf(seq, "\n");
455
456#ifdef CONFIG_SMP
457 /* domain-specific stats */
Nick Piggin674311d2005-06-25 14:57:27 -0700458 preempt_disable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 for_each_domain(cpu, sd) {
460 enum idle_type itype;
461 char mask_str[NR_CPUS];
462
463 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
464 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
465 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
466 itype++) {
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
468 sd->lb_cnt[itype],
469 sd->lb_balanced[itype],
470 sd->lb_failed[itype],
471 sd->lb_imbalance[itype],
472 sd->lb_gained[itype],
473 sd->lb_hot_gained[itype],
474 sd->lb_nobusyq[itype],
475 sd->lb_nobusyg[itype]);
476 }
Nick Piggin68767a02005-06-25 14:57:20 -0700477 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
Nick Piggin68767a02005-06-25 14:57:20 -0700479 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
480 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
482 }
Nick Piggin674311d2005-06-25 14:57:27 -0700483 preempt_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484#endif
485 }
486 return 0;
487}
488
489static int schedstat_open(struct inode *inode, struct file *file)
490{
491 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
492 char *buf = kmalloc(size, GFP_KERNEL);
493 struct seq_file *m;
494 int res;
495
496 if (!buf)
497 return -ENOMEM;
498 res = single_open(file, show_schedstat, NULL);
499 if (!res) {
500 m = file->private_data;
501 m->buf = buf;
502 m->size = size;
503 } else
504 kfree(buf);
505 return res;
506}
507
508struct file_operations proc_schedstat_operations = {
509 .open = schedstat_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = single_release,
513};
514
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700515/*
516 * Expects runqueue lock to be held for atomicity of update
517 */
518static inline void
519rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
520{
521 if (rq) {
522 rq->rq_sched_info.run_delay += delta_jiffies;
523 rq->rq_sched_info.pcnt++;
524 }
525}
526
527/*
528 * Expects runqueue lock to be held for atomicity of update
529 */
530static inline void
531rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
532{
533 if (rq)
534 rq->rq_sched_info.cpu_time += delta_jiffies;
535}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538#else /* !CONFIG_SCHEDSTATS */
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700539static inline void
540rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
541{}
542static inline void
543rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
544{}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545# define schedstat_inc(rq, field) do { } while (0)
546# define schedstat_add(rq, field, amt) do { } while (0)
547#endif
548
549/*
550 * rq_lock - lock a given runqueue and disable interrupts.
551 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700552static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 __acquires(rq->lock)
554{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700555 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556
557 local_irq_disable();
558 rq = this_rq();
559 spin_lock(&rq->lock);
560
561 return rq;
562}
563
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700564#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565/*
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
573 *
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
578 * finally hit a cpu.
579 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700580static inline void sched_info_dequeued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581{
582 t->sched_info.last_queued = 0;
583}
584
585/*
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
589 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700590static void sched_info_arrive(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700592 unsigned long now = jiffies, delta_jiffies = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593
594 if (t->sched_info.last_queued)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700595 delta_jiffies = now - t->sched_info.last_queued;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700596 sched_info_dequeued(t);
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700597 t->sched_info.run_delay += delta_jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700598 t->sched_info.last_arrival = now;
599 t->sched_info.pcnt++;
600
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700601 rq_sched_info_arrive(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602}
603
604/*
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
613 * to runqueue.
614 *
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
618 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700619static inline void sched_info_queued(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700620{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700621 if (unlikely(sched_info_on()))
622 if (!t->sched_info.last_queued)
623 t->sched_info.last_queued = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624}
625
626/*
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
629 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700630static inline void sched_info_depart(struct task_struct *t)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631{
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700632 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700633
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700634 t->sched_info.cpu_time += delta_jiffies;
635 rq_sched_info_depart(task_rq(t), delta_jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636}
637
638/*
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
642 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700643static inline void
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700644__sched_info_switch(struct task_struct *prev, struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700646 struct rq *rq = task_rq(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647
648 /*
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
651 * process, however.
652 */
653 if (prev != rq->idle)
654 sched_info_depart(prev);
655
656 if (next != rq->idle)
657 sched_info_arrive(next);
658}
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700659static inline void
660sched_info_switch(struct task_struct *prev, struct task_struct *next)
661{
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev, next);
664}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700665#else
666#define sched_info_queued(t) do { } while (0)
667#define sched_info_switch(t, next) do { } while (0)
Chandra Seetharaman52f17b62006-07-14 00:24:38 -0700668#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669
670/*
671 * Adding/removing a task to/from a priority array:
672 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700673static void dequeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674{
675 array->nr_active--;
676 list_del(&p->run_list);
677 if (list_empty(array->queue + p->prio))
678 __clear_bit(p->prio, array->bitmap);
679}
680
Ingo Molnar70b97a72006-07-03 00:25:42 -0700681static void enqueue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682{
683 sched_info_queued(p);
684 list_add_tail(&p->run_list, array->queue + p->prio);
685 __set_bit(p->prio, array->bitmap);
686 array->nr_active++;
687 p->array = array;
688}
689
690/*
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
693 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700694static void requeue_task(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695{
696 list_move_tail(&p->run_list, array->queue + p->prio);
697}
698
Ingo Molnar70b97a72006-07-03 00:25:42 -0700699static inline void
700enqueue_task_head(struct task_struct *p, struct prio_array *array)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700701{
702 list_add(&p->run_list, array->queue + p->prio);
703 __set_bit(p->prio, array->bitmap);
704 array->nr_active++;
705 p->array = array;
706}
707
708/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700709 * __normal_prio - return the priority that is based on the static
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 * priority but is modified by bonuses/penalties.
711 *
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
714 *
715 * We use 25% of the full 0...39 priority range so that:
716 *
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
719 *
720 * Both properties are important to certain workloads.
721 */
Ingo Molnarb29739f2006-06-27 02:54:51 -0700722
Ingo Molnar36c8b582006-07-03 00:25:41 -0700723static inline int __normal_prio(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724{
725 int bonus, prio;
726
Linus Torvalds1da177e2005-04-16 15:20:36 -0700727 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
728
729 prio = p->static_prio - bonus;
730 if (prio < MAX_RT_PRIO)
731 prio = MAX_RT_PRIO;
732 if (prio > MAX_PRIO-1)
733 prio = MAX_PRIO-1;
734 return prio;
735}
736
737/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
743 * slice expiry etc.
744 */
745
746/*
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
750 */
751#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752#define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754#define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756#define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
758
Ingo Molnar36c8b582006-07-03 00:25:41 -0700759static void set_load_weight(struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700760{
Ingo Molnarb29739f2006-06-27 02:54:51 -0700761 if (has_rt_policy(p)) {
Peter Williams2dd73a42006-06-27 02:54:34 -0700762#ifdef CONFIG_SMP
763 if (p == task_rq(p)->migration_thread)
764 /*
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
767 * adversely.
768 */
769 p->load_weight = 0;
770 else
771#endif
772 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
773 } else
774 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
775}
776
Ingo Molnar36c8b582006-07-03 00:25:41 -0700777static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700778inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700779{
780 rq->raw_weighted_load += p->load_weight;
781}
782
Ingo Molnar36c8b582006-07-03 00:25:41 -0700783static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -0700784dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
Peter Williams2dd73a42006-06-27 02:54:34 -0700785{
786 rq->raw_weighted_load -= p->load_weight;
787}
788
Ingo Molnar70b97a72006-07-03 00:25:42 -0700789static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700790{
791 rq->nr_running++;
792 inc_raw_weighted_load(rq, p);
793}
794
Ingo Molnar70b97a72006-07-03 00:25:42 -0700795static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
Peter Williams2dd73a42006-06-27 02:54:34 -0700796{
797 rq->nr_running--;
798 dec_raw_weighted_load(rq, p);
799}
800
801/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
807 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700808static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700809{
810 int prio;
811
812 if (has_rt_policy(p))
813 prio = MAX_RT_PRIO-1 - p->rt_priority;
814 else
815 prio = __normal_prio(p);
816 return prio;
817}
818
819/*
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
825 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700826static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700827{
828 p->normal_prio = normal_prio(p);
829 /*
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
833 */
834 if (!rt_prio(p->prio))
835 return p->normal_prio;
836 return p->prio;
837}
838
839/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840 * __activate_task - move a task to the runqueue.
841 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700842static void __activate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700843{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700844 struct prio_array *target = rq->active;
Con Kolivasd425b272006-03-31 02:31:29 -0800845
Linus Torvaldsf1adad72006-05-21 18:54:09 -0700846 if (batch_task(p))
Con Kolivasd425b272006-03-31 02:31:29 -0800847 target = rq->expired;
848 enqueue_task(p, target);
Peter Williams2dd73a42006-06-27 02:54:34 -0700849 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850}
851
852/*
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
854 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700855static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856{
857 enqueue_task_head(p, rq->active);
Peter Williams2dd73a42006-06-27 02:54:34 -0700858 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859}
860
Ingo Molnarb29739f2006-06-27 02:54:51 -0700861/*
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
864 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700865static int recalc_task_prio(struct task_struct *p, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866{
867 /* Caller must always ensure 'now >= p->timestamp' */
Con Kolivas72d28542006-06-27 02:54:30 -0700868 unsigned long sleep_time = now - p->timestamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869
Con Kolivasd425b272006-03-31 02:31:29 -0800870 if (batch_task(p))
Ingo Molnarb0a94992006-01-14 13:20:41 -0800871 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872
873 if (likely(sleep_time > 0)) {
874 /*
Con Kolivas72d28542006-06-27 02:54:30 -0700875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
877 * completion.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878 */
Con Kolivas72d28542006-06-27 02:54:30 -0700879 unsigned long ceiling = INTERACTIVE_SLEEP(p);
Con Kolivase72ff0b2006-03-31 02:31:26 -0800880
Con Kolivas72d28542006-06-27 02:54:30 -0700881 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
882 /*
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
885 */
886 p->sleep_avg = ceiling;
887 /*
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
895 */
896 p->sleep_type = SLEEP_NONINTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 } else {
898 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
902 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800903 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
Con Kolivas72d28542006-06-27 02:54:30 -0700904 if (p->sleep_avg >= ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905 sleep_time = 0;
906 else if (p->sleep_avg + sleep_time >=
Con Kolivas72d28542006-06-27 02:54:30 -0700907 ceiling) {
908 p->sleep_avg = ceiling;
909 sleep_time = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910 }
911 }
912
913 /*
914 * This code gives a bonus to interactive tasks.
915 *
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
920 */
921 p->sleep_avg += sleep_time;
922
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923 }
Con Kolivas72d28542006-06-27 02:54:30 -0700924 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
925 p->sleep_avg = NS_MAX_SLEEP_AVG;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926 }
927
Chen Shanga3464a12005-06-25 14:57:31 -0700928 return effective_prio(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929}
930
931/*
932 * activate_task - move a task to the runqueue and do priority recalculation
933 *
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
936 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700937static void activate_task(struct task_struct *p, struct rq *rq, int local)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700938{
939 unsigned long long now;
940
941 now = sched_clock();
942#ifdef CONFIG_SMP
943 if (!local) {
944 /* Compensate for drifting sched_clock */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700945 struct rq *this_rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 now = (now - this_rq->timestamp_last_tick)
947 + rq->timestamp_last_tick;
948 }
949#endif
950
Ingo Molnarece8a682006-12-06 20:37:24 -0800951 /*
952 * Sleep time is in units of nanosecs, so shift by 20 to get a
953 * milliseconds-range estimation of the amount of time that the task
954 * spent sleeping:
955 */
956 if (unlikely(prof_on == SLEEP_PROFILING)) {
957 if (p->state == TASK_UNINTERRUPTIBLE)
958 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
959 (now - p->timestamp) >> 20);
960 }
961
Chen, Kenneth Wa47ab932005-11-09 15:45:29 -0800962 if (!rt_task(p))
963 p->prio = recalc_task_prio(p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964
965 /*
966 * This checks to make sure it's not an uninterruptible task
967 * that is now waking up.
968 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800969 if (p->sleep_type == SLEEP_NORMAL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 /*
971 * Tasks which were woken up by interrupts (ie. hw events)
972 * are most likely of interactive nature. So we give them
973 * the credit of extending their sleep time to the period
974 * of time they spend on the runqueue, waiting for execution
975 * on a CPU, first time around:
976 */
977 if (in_interrupt())
Con Kolivas3dee3862006-03-31 02:31:23 -0800978 p->sleep_type = SLEEP_INTERRUPTED;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700979 else {
980 /*
981 * Normal first-time wakeups get a credit too for
982 * on-runqueue time, but it will be weighted down:
983 */
Con Kolivas3dee3862006-03-31 02:31:23 -0800984 p->sleep_type = SLEEP_INTERACTIVE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985 }
986 }
987 p->timestamp = now;
988
989 __activate_task(p, rq);
990}
991
992/*
993 * deactivate_task - remove a task from the runqueue.
994 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700995static void deactivate_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996{
Peter Williams2dd73a42006-06-27 02:54:34 -0700997 dec_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998 dequeue_task(p, p->array);
999 p->array = NULL;
1000}
1001
1002/*
1003 * resched_task - mark a task 'to be rescheduled now'.
1004 *
1005 * On UP this means the setting of the need_resched flag, on SMP it
1006 * might also involve a cross-CPU call to trigger the scheduler on
1007 * the target CPU.
1008 */
1009#ifdef CONFIG_SMP
Andi Kleen495ab9c2006-06-26 13:59:11 +02001010
1011#ifndef tsk_is_polling
1012#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1013#endif
1014
Ingo Molnar36c8b582006-07-03 00:25:41 -07001015static void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001017 int cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018
1019 assert_spin_locked(&task_rq(p)->lock);
1020
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001021 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1022 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001024 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1025
1026 cpu = task_cpu(p);
1027 if (cpu == smp_processor_id())
1028 return;
1029
Andi Kleen495ab9c2006-06-26 13:59:11 +02001030 /* NEED_RESCHED must be visible before we test polling */
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001031 smp_mb();
Andi Kleen495ab9c2006-06-26 13:59:11 +02001032 if (!tsk_is_polling(p))
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001033 smp_send_reschedule(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034}
1035#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001036static inline void resched_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037{
Nick Piggin64c7c8f2005-11-08 21:39:04 -08001038 assert_spin_locked(&task_rq(p)->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 set_tsk_need_resched(p);
1040}
1041#endif
1042
1043/**
1044 * task_curr - is this task currently executing on a CPU?
1045 * @p: the task in question.
1046 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001047inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048{
1049 return cpu_curr(task_cpu(p)) == p;
1050}
1051
Peter Williams2dd73a42006-06-27 02:54:34 -07001052/* Used instead of source_load when we know the type == 0 */
1053unsigned long weighted_cpuload(const int cpu)
1054{
1055 return cpu_rq(cpu)->raw_weighted_load;
1056}
1057
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058#ifdef CONFIG_SMP
Ingo Molnar70b97a72006-07-03 00:25:42 -07001059struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001061
Ingo Molnar36c8b582006-07-03 00:25:41 -07001062 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063 int dest_cpu;
1064
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001066};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067
1068/*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001072static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001073migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001075 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->array && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001090
Linus Torvalds1da177e2005-04-16 15:20:36 -07001091 return 1;
1092}
1093
1094/*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001103void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001104{
1105 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001106 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107 int preempted;
1108
1109repeat:
1110 rq = task_rq_lock(p, &flags);
1111 /* Must be off runqueue entirely, not preempted. */
1112 if (unlikely(p->array || task_running(rq, p))) {
1113 /* If it's preempted, we yield. It could be a while. */
1114 preempted = !task_running(rq, p);
1115 task_rq_unlock(rq, &flags);
1116 cpu_relax();
1117 if (preempted)
1118 yield();
1119 goto repeat;
1120 }
1121 task_rq_unlock(rq, &flags);
1122}
1123
1124/***
1125 * kick_process - kick a running thread to enter/exit the kernel
1126 * @p: the to-be-kicked thread
1127 *
1128 * Cause a process which is running on another CPU to enter
1129 * kernel-mode, without any delay. (to get signals handled.)
1130 *
1131 * NOTE: this function doesnt have to take the runqueue lock,
1132 * because all it wants to ensure is that the remote task enters
1133 * the kernel. If the IPI races and the task has been migrated
1134 * to another CPU then no harm is done and the purpose has been
1135 * achieved as well.
1136 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001137void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138{
1139 int cpu;
1140
1141 preempt_disable();
1142 cpu = task_cpu(p);
1143 if ((cpu != smp_processor_id()) && task_curr(p))
1144 smp_send_reschedule(cpu);
1145 preempt_enable();
1146}
1147
1148/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001149 * Return a low guess at the load of a migration-source cpu weighted
1150 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151 *
1152 * We want to under-estimate the load of migration sources, to
1153 * balance conservatively.
1154 */
Con Kolivasb9104722005-11-08 21:38:55 -08001155static inline unsigned long source_load(int cpu, int type)
1156{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001157 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001158
Peter Williams2dd73a42006-06-27 02:54:34 -07001159 if (type == 0)
1160 return rq->raw_weighted_load;
1161
1162 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163}
1164
1165/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001166 * Return a high guess at the load of a migration-target cpu weighted
1167 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168 */
Con Kolivasb9104722005-11-08 21:38:55 -08001169static inline unsigned long target_load(int cpu, int type)
1170{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001171 struct rq *rq = cpu_rq(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001172
Peter Williams2dd73a42006-06-27 02:54:34 -07001173 if (type == 0)
1174 return rq->raw_weighted_load;
1175
1176 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1177}
1178
1179/*
1180 * Return the average load per task on the cpu's run queue
1181 */
1182static inline unsigned long cpu_avg_load_per_task(int cpu)
1183{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001184 struct rq *rq = cpu_rq(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001185 unsigned long n = rq->nr_running;
1186
Ingo Molnar48f24c42006-07-03 00:25:40 -07001187 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001188}
1189
Nick Piggin147cbb42005-06-25 14:57:19 -07001190/*
1191 * find_idlest_group finds and returns the least busy CPU group within the
1192 * domain.
1193 */
1194static struct sched_group *
1195find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196{
1197 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1198 unsigned long min_load = ULONG_MAX, this_load = 0;
1199 int load_idx = sd->forkexec_idx;
1200 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201
1202 do {
1203 unsigned long load, avg_load;
1204 int local_group;
1205 int i;
1206
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001207 /* Skip over this group if it has no CPUs allowed */
1208 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1209 goto nextgroup;
1210
Nick Piggin147cbb42005-06-25 14:57:19 -07001211 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001212
1213 /* Tally up the load of all CPUs in the group */
1214 avg_load = 0;
1215
1216 for_each_cpu_mask(i, group->cpumask) {
1217 /* Bias balancing toward cpus of our domain */
1218 if (local_group)
1219 load = source_load(i, load_idx);
1220 else
1221 load = target_load(i, load_idx);
1222
1223 avg_load += load;
1224 }
1225
1226 /* Adjust by relative CPU power of the group */
1227 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1228
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1235 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001236nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001237 group = group->next;
1238 } while (group != sd->groups);
1239
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1243}
1244
1245/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001247 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001248static int
1249find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001250{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001251 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1255
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1258
1259 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001260 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001261
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1265 }
1266 }
1267
1268 return idlest;
1269}
1270
Nick Piggin476d1392005-06-25 14:57:29 -07001271/*
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1275 *
1276 * Balance, ie. select the least loaded group.
1277 *
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1279 *
1280 * preempt must be disabled.
1281 */
1282static int sched_balance_self(int cpu, int flag)
1283{
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001286
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001287 for_each_domain(cpu, tmp) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001288 /*
1289 * If power savings logic is enabled for a domain, stop there.
1290 */
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001293 if (tmp->flags & flag)
1294 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001295 }
Nick Piggin476d1392005-06-25 14:57:29 -07001296
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001300 int new_cpu, weight;
1301
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1305 }
Nick Piggin476d1392005-06-25 14:57:29 -07001306
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001309 if (!group) {
1310 sd = sd->child;
1311 continue;
1312 }
Nick Piggin476d1392005-06-25 14:57:29 -07001313
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001314 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1319 }
Nick Piggin476d1392005-06-25 14:57:29 -07001320
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001321 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001322 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1330 }
1331 /* while loop will break here if sd == NULL */
1332 }
1333
1334 return cpu;
1335}
1336
1337#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338
1339/*
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1344 *
1345 * Returns the CPU we should wake onto.
1346 */
1347#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001348static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349{
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1353
1354 if (idle_cpu(cpu))
1355 return cpu;
1356
1357 for_each_domain(cpu, sd) {
1358 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001359 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 for_each_cpu_mask(i, tmp) {
1361 if (idle_cpu(i))
1362 return i;
1363 }
1364 }
Nick Piggine0f364f2005-06-25 14:57:06 -07001365 else
1366 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001367 }
1368 return cpu;
1369}
1370#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001371static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001372{
1373 return cpu;
1374}
1375#endif
1376
1377/***
1378 * try_to_wake_up - wake up a thread
1379 * @p: the to-be-woken-up thread
1380 * @state: the mask of task states that can be woken
1381 * @sync: do a synchronous wakeup?
1382 *
1383 * Put it on the run-queue if it's not already there. The "current"
1384 * thread is always on the run-queue (except when the actual
1385 * re-schedule is in progress), and as such you're allowed to do
1386 * the simpler "current->state = TASK_RUNNING" to mark yourself
1387 * runnable without the overhead of this.
1388 *
1389 * returns failure only if the task is already active.
1390 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001391static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392{
1393 int cpu, this_cpu, success = 0;
1394 unsigned long flags;
1395 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001396 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001397#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001398 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001399 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001400 int new_cpu;
1401#endif
1402
1403 rq = task_rq_lock(p, &flags);
1404 old_state = p->state;
1405 if (!(old_state & state))
1406 goto out;
1407
1408 if (p->array)
1409 goto out_running;
1410
1411 cpu = task_cpu(p);
1412 this_cpu = smp_processor_id();
1413
1414#ifdef CONFIG_SMP
1415 if (unlikely(task_running(rq, p)))
1416 goto out_activate;
1417
Nick Piggin78979862005-06-25 14:57:13 -07001418 new_cpu = cpu;
1419
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 schedstat_inc(rq, ttwu_cnt);
1421 if (cpu == this_cpu) {
1422 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001423 goto out_set_cpu;
1424 }
1425
1426 for_each_domain(this_cpu, sd) {
1427 if (cpu_isset(cpu, sd->span)) {
1428 schedstat_inc(sd, ttwu_wake_remote);
1429 this_sd = sd;
1430 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 }
1432 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001433
Nick Piggin78979862005-06-25 14:57:13 -07001434 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 goto out_set_cpu;
1436
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437 /*
Nick Piggin78979862005-06-25 14:57:13 -07001438 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 */
Nick Piggin78979862005-06-25 14:57:13 -07001440 if (this_sd) {
1441 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443
Nick Piggina3f21bc2005-06-25 14:57:15 -07001444 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1445
Nick Piggin78979862005-06-25 14:57:13 -07001446 load = source_load(cpu, idx);
1447 this_load = target_load(this_cpu, idx);
1448
Nick Piggin78979862005-06-25 14:57:13 -07001449 new_cpu = this_cpu; /* Wake to this CPU if we can */
1450
Nick Piggina3f21bc2005-06-25 14:57:15 -07001451 if (this_sd->flags & SD_WAKE_AFFINE) {
1452 unsigned long tl = this_load;
Peter Williams2dd73a42006-06-27 02:54:34 -07001453 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001456 * If sync wakeup then subtract the (maximum possible)
1457 * effect of the currently running task from the load
1458 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001460 if (sync)
Peter Williams2dd73a42006-06-27 02:54:34 -07001461 tl -= current->load_weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001462
1463 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001464 tl + target_load(cpu, idx) <= tl_per_task) ||
1465 100*(tl + p->load_weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001466 /*
1467 * This domain has SD_WAKE_AFFINE and
1468 * p is cache cold in this domain, and
1469 * there is no bad imbalance.
1470 */
1471 schedstat_inc(this_sd, ttwu_move_affine);
1472 goto out_set_cpu;
1473 }
1474 }
1475
1476 /*
1477 * Start passive balancing when half the imbalance_pct
1478 * limit is reached.
1479 */
1480 if (this_sd->flags & SD_WAKE_BALANCE) {
1481 if (imbalance*this_load <= 100*load) {
1482 schedstat_inc(this_sd, ttwu_move_balance);
1483 goto out_set_cpu;
1484 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485 }
1486 }
1487
1488 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1489out_set_cpu:
1490 new_cpu = wake_idle(new_cpu, p);
1491 if (new_cpu != cpu) {
1492 set_task_cpu(p, new_cpu);
1493 task_rq_unlock(rq, &flags);
1494 /* might preempt at this point */
1495 rq = task_rq_lock(p, &flags);
1496 old_state = p->state;
1497 if (!(old_state & state))
1498 goto out;
1499 if (p->array)
1500 goto out_running;
1501
1502 this_cpu = smp_processor_id();
1503 cpu = task_cpu(p);
1504 }
1505
1506out_activate:
1507#endif /* CONFIG_SMP */
1508 if (old_state == TASK_UNINTERRUPTIBLE) {
1509 rq->nr_uninterruptible--;
1510 /*
1511 * Tasks on involuntary sleep don't earn
1512 * sleep_avg beyond just interactive state.
1513 */
Con Kolivas3dee3862006-03-31 02:31:23 -08001514 p->sleep_type = SLEEP_NONINTERACTIVE;
Con Kolivase7c38cb2006-03-31 02:31:25 -08001515 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516
1517 /*
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001518 * Tasks that have marked their sleep as noninteractive get
Con Kolivase7c38cb2006-03-31 02:31:25 -08001519 * woken up with their sleep average not weighted in an
1520 * interactive way.
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001521 */
Con Kolivase7c38cb2006-03-31 02:31:25 -08001522 if (old_state & TASK_NONINTERACTIVE)
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1524
1525
1526 activate_task(p, rq, cpu == this_cpu);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001527 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528 * Sync wakeups (i.e. those types of wakeups where the waker
1529 * has indicated that it will leave the CPU in short order)
1530 * don't trigger a preemption, if the woken up task will run on
1531 * this cpu. (in this case the 'I will reschedule' promise of
1532 * the waker guarantees that the freshly woken up task is going
1533 * to be considered on this CPU.)
1534 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001535 if (!sync || cpu != this_cpu) {
1536 if (TASK_PREEMPTS_CURR(p, rq))
1537 resched_task(rq->curr);
1538 }
1539 success = 1;
1540
1541out_running:
1542 p->state = TASK_RUNNING;
1543out:
1544 task_rq_unlock(rq, &flags);
1545
1546 return success;
1547}
1548
Ingo Molnar36c8b582006-07-03 00:25:41 -07001549int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550{
1551 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1552 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1553}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554EXPORT_SYMBOL(wake_up_process);
1555
Ingo Molnar36c8b582006-07-03 00:25:41 -07001556int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557{
1558 return try_to_wake_up(p, state, 0);
1559}
1560
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561/*
1562 * Perform scheduler related setup for a newly forked process p.
1563 * p is forked by current.
1564 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001565void fastcall sched_fork(struct task_struct *p, int clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566{
Nick Piggin476d1392005-06-25 14:57:29 -07001567 int cpu = get_cpu();
1568
1569#ifdef CONFIG_SMP
1570 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1571#endif
1572 set_task_cpu(p, cpu);
1573
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 /*
1575 * We mark the process as running here, but have not actually
1576 * inserted it onto the runqueue yet. This guarantees that
1577 * nobody will actually run it, and a signal or other external
1578 * event cannot wake it up and insert it on the runqueue either.
1579 */
1580 p->state = TASK_RUNNING;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001581
1582 /*
1583 * Make sure we do not leak PI boosting priority to the child:
1584 */
1585 p->prio = current->normal_prio;
1586
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587 INIT_LIST_HEAD(&p->run_list);
1588 p->array = NULL;
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001589#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1590 if (unlikely(sched_info_on()))
1591 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001593#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001594 p->oncpu = 0;
1595#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001597 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001598 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001599#endif
1600 /*
1601 * Share the timeslice between parent and child, thus the
1602 * total amount of pending timeslices in the system doesn't change,
1603 * resulting in more scheduling fairness.
1604 */
1605 local_irq_disable();
1606 p->time_slice = (current->time_slice + 1) >> 1;
1607 /*
1608 * The remainder of the first timeslice might be recovered by
1609 * the parent if the child exits early enough.
1610 */
1611 p->first_time_slice = 1;
1612 current->time_slice >>= 1;
1613 p->timestamp = sched_clock();
1614 if (unlikely(!current->time_slice)) {
1615 /*
1616 * This case is rare, it happens when the parent has only
1617 * a single jiffy left from its timeslice. Taking the
1618 * runqueue lock is not a problem.
1619 */
1620 current->time_slice = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621 scheduler_tick();
Nick Piggin476d1392005-06-25 14:57:29 -07001622 }
1623 local_irq_enable();
1624 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625}
1626
1627/*
1628 * wake_up_new_task - wake up a newly created task for the first time.
1629 *
1630 * This function will do some initial scheduler statistics housekeeping
1631 * that must be done for every newly created context, then puts the task
1632 * on the runqueue and wakes it.
1633 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001634void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001636 struct rq *rq, *this_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 unsigned long flags;
1638 int this_cpu, cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639
1640 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641 BUG_ON(p->state != TASK_RUNNING);
Nick Piggin147cbb42005-06-25 14:57:19 -07001642 this_cpu = smp_processor_id();
1643 cpu = task_cpu(p);
1644
Linus Torvalds1da177e2005-04-16 15:20:36 -07001645 /*
1646 * We decrease the sleep average of forking parents
1647 * and children as well, to keep max-interactive tasks
1648 * from forking tasks that are max-interactive. The parent
1649 * (current) is done further down, under its lock.
1650 */
1651 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1652 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1653
1654 p->prio = effective_prio(p);
1655
1656 if (likely(cpu == this_cpu)) {
1657 if (!(clone_flags & CLONE_VM)) {
1658 /*
1659 * The VM isn't cloned, so we're in a good position to
1660 * do child-runs-first in anticipation of an exec. This
1661 * usually avoids a lot of COW overhead.
1662 */
1663 if (unlikely(!current->array))
1664 __activate_task(p, rq);
1665 else {
1666 p->prio = current->prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07001667 p->normal_prio = current->normal_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001668 list_add_tail(&p->run_list, &current->run_list);
1669 p->array = current->array;
1670 p->array->nr_active++;
Peter Williams2dd73a42006-06-27 02:54:34 -07001671 inc_nr_running(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672 }
1673 set_need_resched();
1674 } else
1675 /* Run child last */
1676 __activate_task(p, rq);
1677 /*
1678 * We skip the following code due to cpu == this_cpu
1679 *
1680 * task_rq_unlock(rq, &flags);
1681 * this_rq = task_rq_lock(current, &flags);
1682 */
1683 this_rq = rq;
1684 } else {
1685 this_rq = cpu_rq(this_cpu);
1686
1687 /*
1688 * Not the local CPU - must adjust timestamp. This should
1689 * get optimised away in the !CONFIG_SMP case.
1690 */
1691 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1692 + rq->timestamp_last_tick;
1693 __activate_task(p, rq);
1694 if (TASK_PREEMPTS_CURR(p, rq))
1695 resched_task(rq->curr);
1696
1697 /*
1698 * Parent and child are on different CPUs, now get the
1699 * parent runqueue to update the parent's ->sleep_avg:
1700 */
1701 task_rq_unlock(rq, &flags);
1702 this_rq = task_rq_lock(current, &flags);
1703 }
1704 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1705 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1706 task_rq_unlock(this_rq, &flags);
1707}
1708
1709/*
1710 * Potentially available exiting-child timeslices are
1711 * retrieved here - this way the parent does not get
1712 * penalized for creating too many threads.
1713 *
1714 * (this cannot be used to 'generate' timeslices
1715 * artificially, because any timeslice recovered here
1716 * was given away by the parent in the first place.)
1717 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001718void fastcall sched_exit(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719{
1720 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001721 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722
1723 /*
1724 * If the child was a (relative-) CPU hog then decrease
1725 * the sleep_avg of the parent as well.
1726 */
1727 rq = task_rq_lock(p->parent, &flags);
Oleg Nesterov889dfaf2005-11-04 18:54:30 +03001728 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729 p->parent->time_slice += p->time_slice;
1730 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1731 p->parent->time_slice = task_timeslice(p);
1732 }
1733 if (p->sleep_avg < p->parent->sleep_avg)
1734 p->parent->sleep_avg = p->parent->sleep_avg /
1735 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1736 (EXIT_WEIGHT + 1);
1737 task_rq_unlock(rq, &flags);
1738}
1739
1740/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001741 * prepare_task_switch - prepare to switch tasks
1742 * @rq: the runqueue preparing to switch
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001752static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001753{
1754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1756}
1757
1758/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001760 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761 * @prev: the thread we just switched away from.
1762 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 *
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1772 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001773static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 __releases(rq->lock)
1775{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001777 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778
1779 rq->prev_mm = NULL;
1780
1781 /*
1782 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001786 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1791 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001792 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 if (mm)
1796 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001797 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001798 /*
1799 * Remove function-return probe instances associated with this
1800 * task and put them back on the free list.
1801 */
1802 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001804 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805}
1806
1807/**
1808 * schedule_tail - first thing a freshly forked thread must call.
1809 * @prev: the thread we just switched away from.
1810 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001811asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812 __releases(rq->lock)
1813{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001814 struct rq *rq = this_rq();
1815
Nick Piggin4866cde2005-06-25 14:57:23 -07001816 finish_task_switch(rq, prev);
1817#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1818 /* In this case, finish_task_switch does not reenable preemption */
1819 preempt_enable();
1820#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821 if (current->set_child_tid)
1822 put_user(current->pid, current->set_child_tid);
1823}
1824
1825/*
1826 * context_switch - switch to the new MM and the new
1827 * thread's register state.
1828 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001829static inline struct task_struct *
Ingo Molnar70b97a72006-07-03 00:25:42 -07001830context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001831 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832{
1833 struct mm_struct *mm = next->mm;
1834 struct mm_struct *oldmm = prev->active_mm;
1835
Nick Pigginbeed33a2006-10-11 01:21:52 -07001836 if (!mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1842
Nick Pigginbeed33a2006-10-11 01:21:52 -07001843 if (!prev->mm) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 prev->active_mm = NULL;
1845 WARN_ON(rq->prev_mm);
1846 rq->prev_mm = oldmm;
1847 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001848 /*
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1853 */
1854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001856#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1860
1861 return prev;
1862}
1863
1864/*
1865 * nr_running, nr_uninterruptible and nr_context_switches:
1866 *
1867 * externally visible scheduler statistics: current number of runnable
1868 * threads, current number of uninterruptible-sleeping threads, total
1869 * number of context switches performed since bootup.
1870 */
1871unsigned long nr_running(void)
1872{
1873 unsigned long i, sum = 0;
1874
1875 for_each_online_cpu(i)
1876 sum += cpu_rq(i)->nr_running;
1877
1878 return sum;
1879}
1880
1881unsigned long nr_uninterruptible(void)
1882{
1883 unsigned long i, sum = 0;
1884
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001885 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 sum += cpu_rq(i)->nr_uninterruptible;
1887
1888 /*
1889 * Since we read the counters lockless, it might be slightly
1890 * inaccurate. Do not allow it to go below zero though:
1891 */
1892 if (unlikely((long)sum < 0))
1893 sum = 0;
1894
1895 return sum;
1896}
1897
1898unsigned long long nr_context_switches(void)
1899{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001900 int i;
1901 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001902
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001903 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001904 sum += cpu_rq(i)->nr_switches;
1905
1906 return sum;
1907}
1908
1909unsigned long nr_iowait(void)
1910{
1911 unsigned long i, sum = 0;
1912
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001913 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1915
1916 return sum;
1917}
1918
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001919unsigned long nr_active(void)
1920{
1921 unsigned long i, running = 0, uninterruptible = 0;
1922
1923 for_each_online_cpu(i) {
1924 running += cpu_rq(i)->nr_running;
1925 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1926 }
1927
1928 if (unlikely((long)uninterruptible < 0))
1929 uninterruptible = 0;
1930
1931 return running + uninterruptible;
1932}
1933
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934#ifdef CONFIG_SMP
1935
1936/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07001937 * Is this task likely cache-hot:
1938 */
1939static inline int
1940task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1941{
1942 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1943}
1944
1945/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001946 * double_rq_lock - safely lock two runqueues
1947 *
1948 * Note this does not disable interrupts like task_rq_lock,
1949 * you need to do so manually before calling.
1950 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001951static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 __acquires(rq1->lock)
1953 __acquires(rq2->lock)
1954{
1955 if (rq1 == rq2) {
1956 spin_lock(&rq1->lock);
1957 __acquire(rq2->lock); /* Fake it out ;) */
1958 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001959 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 spin_lock(&rq1->lock);
1961 spin_lock(&rq2->lock);
1962 } else {
1963 spin_lock(&rq2->lock);
1964 spin_lock(&rq1->lock);
1965 }
1966 }
1967}
1968
1969/*
1970 * double_rq_unlock - safely unlock two runqueues
1971 *
1972 * Note this does not restore interrupts like task_rq_unlock,
1973 * you need to do so manually after calling.
1974 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001975static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001976 __releases(rq1->lock)
1977 __releases(rq2->lock)
1978{
1979 spin_unlock(&rq1->lock);
1980 if (rq1 != rq2)
1981 spin_unlock(&rq2->lock);
1982 else
1983 __release(rq2->lock);
1984}
1985
1986/*
1987 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1988 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001989static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001990 __releases(this_rq->lock)
1991 __acquires(busiest->lock)
1992 __acquires(this_rq->lock)
1993{
1994 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001995 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001996 spin_unlock(&this_rq->lock);
1997 spin_lock(&busiest->lock);
1998 spin_lock(&this_rq->lock);
1999 } else
2000 spin_lock(&busiest->lock);
2001 }
2002}
2003
2004/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 * If dest_cpu is allowed for this process, migrate the task to it.
2006 * This is accomplished by forcing the cpu_allowed mask to only
2007 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2008 * the cpu_allowed mask is restored.
2009 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002010static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002012 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002014 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015
2016 rq = task_rq_lock(p, &flags);
2017 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2018 || unlikely(cpu_is_offline(dest_cpu)))
2019 goto out;
2020
2021 /* force the process onto the specified CPU */
2022 if (migrate_task(p, dest_cpu, &req)) {
2023 /* Need to wait for migration thread (might exit: take ref). */
2024 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002025
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026 get_task_struct(mt);
2027 task_rq_unlock(rq, &flags);
2028 wake_up_process(mt);
2029 put_task_struct(mt);
2030 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002031
Linus Torvalds1da177e2005-04-16 15:20:36 -07002032 return;
2033 }
2034out:
2035 task_rq_unlock(rq, &flags);
2036}
2037
2038/*
Nick Piggin476d1392005-06-25 14:57:29 -07002039 * sched_exec - execve() is a valuable balancing opportunity, because at
2040 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041 */
2042void sched_exec(void)
2043{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002044 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002045 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002046 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002047 if (new_cpu != this_cpu)
2048 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049}
2050
2051/*
2052 * pull_task - move a task from a remote runqueue to the local runqueue.
2053 * Both runqueues must be locked.
2054 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002055static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2056 struct task_struct *p, struct rq *this_rq,
2057 struct prio_array *this_array, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002058{
2059 dequeue_task(p, src_array);
Peter Williams2dd73a42006-06-27 02:54:34 -07002060 dec_nr_running(p, src_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061 set_task_cpu(p, this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07002062 inc_nr_running(p, this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063 enqueue_task(p, this_array);
2064 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2065 + this_rq->timestamp_last_tick;
2066 /*
2067 * Note that idle threads have a prio of MAX_PRIO, for this test
2068 * to be always true for them.
2069 */
2070 if (TASK_PREEMPTS_CURR(p, this_rq))
2071 resched_task(this_rq->curr);
2072}
2073
2074/*
2075 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2076 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002077static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002078int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002079 struct sched_domain *sd, enum idle_type idle,
2080 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081{
2082 /*
2083 * We do not migrate tasks that are:
2084 * 1) running (obviously), or
2085 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2086 * 3) are cache-hot on their current CPU.
2087 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002088 if (!cpu_isset(this_cpu, p->cpus_allowed))
2089 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002090 *all_pinned = 0;
2091
2092 if (task_running(rq, p))
2093 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002094
2095 /*
2096 * Aggressive migration if:
Nick Piggincafb20c2005-06-25 14:57:17 -07002097 * 1) task is cache cold, or
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 * 2) too many balance attempts have failed.
2099 */
2100
Nick Piggincafb20c2005-06-25 14:57:17 -07002101 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 return 1;
2103
2104 if (task_hot(p, rq->timestamp_last_tick, sd))
Nick Piggin81026792005-06-25 14:57:07 -07002105 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002106 return 1;
2107}
2108
Peter Williams615052d2006-06-27 02:54:37 -07002109#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002110
Linus Torvalds1da177e2005-04-16 15:20:36 -07002111/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002112 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2113 * load from busiest to this_rq, as part of a balancing operation within
2114 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115 *
2116 * Called with both runqueues locked.
2117 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002118static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002119 unsigned long max_nr_move, unsigned long max_load_move,
2120 struct sched_domain *sd, enum idle_type idle,
2121 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002123 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2124 best_prio_seen, skip_for_load;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002125 struct prio_array *array, *dst_array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126 struct list_head *head, *curr;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002127 struct task_struct *tmp;
Peter Williams2dd73a42006-06-27 02:54:34 -07002128 long rem_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129
Peter Williams2dd73a42006-06-27 02:54:34 -07002130 if (max_nr_move == 0 || max_load_move == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131 goto out;
2132
Peter Williams2dd73a42006-06-27 02:54:34 -07002133 rem_load_move = max_load_move;
Nick Piggin81026792005-06-25 14:57:07 -07002134 pinned = 1;
Peter Williams615052d2006-06-27 02:54:37 -07002135 this_best_prio = rq_best_prio(this_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002136 best_prio = rq_best_prio(busiest);
Peter Williams615052d2006-06-27 02:54:37 -07002137 /*
2138 * Enable handling of the case where there is more than one task
2139 * with the best priority. If the current running task is one
Ingo Molnar48f24c42006-07-03 00:25:40 -07002140 * of those with prio==best_prio we know it won't be moved
Peter Williams615052d2006-06-27 02:54:37 -07002141 * and therefore it's safe to override the skip (based on load) of
2142 * any task we find with that prio.
2143 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002144 best_prio_seen = best_prio == busiest->curr->prio;
Nick Piggin81026792005-06-25 14:57:07 -07002145
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146 /*
2147 * We first consider expired tasks. Those will likely not be
2148 * executed in the near future, and they are most likely to
2149 * be cache-cold, thus switching CPUs has the least effect
2150 * on them.
2151 */
2152 if (busiest->expired->nr_active) {
2153 array = busiest->expired;
2154 dst_array = this_rq->expired;
2155 } else {
2156 array = busiest->active;
2157 dst_array = this_rq->active;
2158 }
2159
2160new_array:
2161 /* Start searching at priority 0: */
2162 idx = 0;
2163skip_bitmap:
2164 if (!idx)
2165 idx = sched_find_first_bit(array->bitmap);
2166 else
2167 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2168 if (idx >= MAX_PRIO) {
2169 if (array == busiest->expired && busiest->active->nr_active) {
2170 array = busiest->active;
2171 dst_array = this_rq->active;
2172 goto new_array;
2173 }
2174 goto out;
2175 }
2176
2177 head = array->queue + idx;
2178 curr = head->prev;
2179skip_queue:
Ingo Molnar36c8b582006-07-03 00:25:41 -07002180 tmp = list_entry(curr, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002181
2182 curr = curr->prev;
2183
Peter Williams50ddd962006-06-27 02:54:36 -07002184 /*
2185 * To help distribute high priority tasks accross CPUs we don't
2186 * skip a task if it will be the highest priority task (i.e. smallest
2187 * prio value) on its new queue regardless of its load weight
2188 */
Peter Williams615052d2006-06-27 02:54:37 -07002189 skip_for_load = tmp->load_weight > rem_load_move;
2190 if (skip_for_load && idx < this_best_prio)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002191 skip_for_load = !best_prio_seen && idx == best_prio;
Peter Williams615052d2006-06-27 02:54:37 -07002192 if (skip_for_load ||
Peter Williams2dd73a42006-06-27 02:54:34 -07002193 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002194
2195 best_prio_seen |= idx == best_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196 if (curr != head)
2197 goto skip_queue;
2198 idx++;
2199 goto skip_bitmap;
2200 }
2201
2202#ifdef CONFIG_SCHEDSTATS
2203 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2204 schedstat_inc(sd, lb_hot_gained[idle]);
2205#endif
2206
2207 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2208 pulled++;
Peter Williams2dd73a42006-06-27 02:54:34 -07002209 rem_load_move -= tmp->load_weight;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210
Peter Williams2dd73a42006-06-27 02:54:34 -07002211 /*
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2214 */
2215 if (pulled < max_nr_move && rem_load_move > 0) {
Peter Williams615052d2006-06-27 02:54:37 -07002216 if (idx < this_best_prio)
2217 this_best_prio = idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 if (curr != head)
2219 goto skip_queue;
2220 idx++;
2221 goto skip_bitmap;
2222 }
2223out:
2224 /*
2225 * Right now, this is the only place pull_task() is called,
2226 * so we can safely collect pull_task() stats here rather than
2227 * inside pull_task().
2228 */
2229 schedstat_add(sd, lb_gained[idle], pulled);
Nick Piggin81026792005-06-25 14:57:07 -07002230
2231 if (all_pinned)
2232 *all_pinned = pinned;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 return pulled;
2234}
2235
2236/*
2237 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002238 * domain. It calculates and returns the amount of weighted load which
2239 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 */
2241static struct sched_group *
2242find_busiest_group(struct sched_domain *sd, int this_cpu,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002243 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2244 cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245{
2246 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2247 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002248 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002249 unsigned long busiest_load_per_task, busiest_nr_running;
2250 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002251 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002252#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2253 int power_savings_balance = 1;
2254 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2255 unsigned long min_nr_running = ULONG_MAX;
2256 struct sched_group *group_min = NULL, *group_leader = NULL;
2257#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258
2259 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002260 busiest_load_per_task = busiest_nr_running = 0;
2261 this_load_per_task = this_nr_running = 0;
Nick Piggin78979862005-06-25 14:57:13 -07002262 if (idle == NOT_IDLE)
2263 load_idx = sd->busy_idx;
2264 else if (idle == NEWLY_IDLE)
2265 load_idx = sd->newidle_idx;
2266 else
2267 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268
2269 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002270 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271 int local_group;
2272 int i;
Peter Williams2dd73a42006-06-27 02:54:34 -07002273 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274
2275 local_group = cpu_isset(this_cpu, group->cpumask);
2276
2277 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002278 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279
2280 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002281 struct rq *rq;
2282
2283 if (!cpu_isset(i, *cpus))
2284 continue;
2285
2286 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002287
Nick Piggin5969fe02005-09-10 00:26:19 -07002288 if (*sd_idle && !idle_cpu(i))
2289 *sd_idle = 0;
2290
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291 /* Bias balancing toward cpus of our domain */
2292 if (local_group)
Nick Piggina2000572006-02-10 01:51:02 -08002293 load = target_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294 else
Nick Piggina2000572006-02-10 01:51:02 -08002295 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296
2297 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002298 sum_nr_running += rq->nr_running;
2299 sum_weighted_load += rq->raw_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 }
2301
2302 total_load += avg_load;
2303 total_pwr += group->cpu_power;
2304
2305 /* Adjust by relative CPU power of the group */
2306 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2307
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002308 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2309
Linus Torvalds1da177e2005-04-16 15:20:36 -07002310 if (local_group) {
2311 this_load = avg_load;
2312 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002313 this_nr_running = sum_nr_running;
2314 this_load_per_task = sum_weighted_load;
2315 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002316 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317 max_load = avg_load;
2318 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002319 busiest_nr_running = sum_nr_running;
2320 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002322
2323#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2324 /*
2325 * Busy processors will not participate in power savings
2326 * balance.
2327 */
2328 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2329 goto group_next;
2330
2331 /*
2332 * If the local group is idle or completely loaded
2333 * no need to do power savings balance at this domain
2334 */
2335 if (local_group && (this_nr_running >= group_capacity ||
2336 !this_nr_running))
2337 power_savings_balance = 0;
2338
2339 /*
2340 * If a group is already running at full capacity or idle,
2341 * don't include that group in power savings calculations
2342 */
2343 if (!power_savings_balance || sum_nr_running >= group_capacity
2344 || !sum_nr_running)
2345 goto group_next;
2346
2347 /*
2348 * Calculate the group which has the least non-idle load.
2349 * This is the group from where we need to pick up the load
2350 * for saving power
2351 */
2352 if ((sum_nr_running < min_nr_running) ||
2353 (sum_nr_running == min_nr_running &&
2354 first_cpu(group->cpumask) <
2355 first_cpu(group_min->cpumask))) {
2356 group_min = group;
2357 min_nr_running = sum_nr_running;
2358 min_load_per_task = sum_weighted_load /
2359 sum_nr_running;
2360 }
2361
2362 /*
2363 * Calculate the group which is almost near its
2364 * capacity but still has some space to pick up some load
2365 * from other group and save more power
2366 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002367 if (sum_nr_running <= group_capacity - 1) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002368 if (sum_nr_running > leader_nr_running ||
2369 (sum_nr_running == leader_nr_running &&
2370 first_cpu(group->cpumask) >
2371 first_cpu(group_leader->cpumask))) {
2372 group_leader = group;
2373 leader_nr_running = sum_nr_running;
2374 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002375 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002376group_next:
2377#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 group = group->next;
2379 } while (group != sd->groups);
2380
Peter Williams2dd73a42006-06-27 02:54:34 -07002381 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382 goto out_balanced;
2383
2384 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2385
2386 if (this_load >= avg_load ||
2387 100*max_load <= sd->imbalance_pct*this_load)
2388 goto out_balanced;
2389
Peter Williams2dd73a42006-06-27 02:54:34 -07002390 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391 /*
2392 * We're trying to get all the cpus to the average_load, so we don't
2393 * want to push ourselves above the average load, nor do we wish to
2394 * reduce the max loaded cpu below the average load, as either of these
2395 * actions would just result in more rebalancing later, and ping-pong
2396 * tasks around. Thus we look for the minimum possible imbalance.
2397 * Negative imbalances (*we* are more loaded than anyone else) will
2398 * be counted as no imbalance for these purposes -- we can't fix that
2399 * by pulling tasks to us. Be careful of negative numbers as they'll
2400 * appear as very large values with unsigned longs.
2401 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002402 if (max_load <= busiest_load_per_task)
2403 goto out_balanced;
2404
2405 /*
2406 * In the presence of smp nice balancing, certain scenarios can have
2407 * max load less than avg load(as we skip the groups at or below
2408 * its cpu_power, while calculating max_load..)
2409 */
2410 if (max_load < avg_load) {
2411 *imbalance = 0;
2412 goto small_imbalance;
2413 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002414
2415 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002416 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002417
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 /* How much load to actually move to equalise the imbalance */
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002419 *imbalance = min(max_pull * busiest->cpu_power,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002420 (avg_load - this_load) * this->cpu_power)
2421 / SCHED_LOAD_SCALE;
2422
Peter Williams2dd73a42006-06-27 02:54:34 -07002423 /*
2424 * if *imbalance is less than the average load per runnable task
2425 * there is no gaurantee that any tasks will be moved so we'll have
2426 * a think about bumping its value to force at least one task to be
2427 * moved
2428 */
2429 if (*imbalance < busiest_load_per_task) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002430 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002431 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002432
Peter Williams2dd73a42006-06-27 02:54:34 -07002433small_imbalance:
2434 pwr_move = pwr_now = 0;
2435 imbn = 2;
2436 if (this_nr_running) {
2437 this_load_per_task /= this_nr_running;
2438 if (busiest_load_per_task > this_load_per_task)
2439 imbn = 1;
2440 } else
2441 this_load_per_task = SCHED_LOAD_SCALE;
2442
2443 if (max_load - this_load >= busiest_load_per_task * imbn) {
2444 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445 return busiest;
2446 }
2447
2448 /*
2449 * OK, we don't have enough imbalance to justify moving tasks,
2450 * however we may be able to increase total CPU power used by
2451 * moving them.
2452 */
2453
Peter Williams2dd73a42006-06-27 02:54:34 -07002454 pwr_now += busiest->cpu_power *
2455 min(busiest_load_per_task, max_load);
2456 pwr_now += this->cpu_power *
2457 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 pwr_now /= SCHED_LOAD_SCALE;
2459
2460 /* Amount of load we'd subtract */
Peter Williams2dd73a42006-06-27 02:54:34 -07002461 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462 if (max_load > tmp)
Peter Williams2dd73a42006-06-27 02:54:34 -07002463 pwr_move += busiest->cpu_power *
2464 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465
2466 /* Amount of load we'd add */
2467 if (max_load*busiest->cpu_power <
Peter Williams2dd73a42006-06-27 02:54:34 -07002468 busiest_load_per_task*SCHED_LOAD_SCALE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469 tmp = max_load*busiest->cpu_power/this->cpu_power;
2470 else
Peter Williams2dd73a42006-06-27 02:54:34 -07002471 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2472 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002473 pwr_move /= SCHED_LOAD_SCALE;
2474
2475 /* Move if we gain throughput */
2476 if (pwr_move <= pwr_now)
2477 goto out_balanced;
2478
Peter Williams2dd73a42006-06-27 02:54:34 -07002479 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480 }
2481
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 return busiest;
2483
2484out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002485#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2486 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2487 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002489 if (this == group_leader && group_leader != group_min) {
2490 *imbalance = min_load_per_task;
2491 return group_min;
2492 }
2493ret:
2494#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002495 *imbalance = 0;
2496 return NULL;
2497}
2498
2499/*
2500 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2501 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002502static struct rq *
Ingo Molnar48f24c42006-07-03 00:25:40 -07002503find_busiest_queue(struct sched_group *group, enum idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002504 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002506 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002507 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002508 int i;
2509
2510 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002511
2512 if (!cpu_isset(i, *cpus))
2513 continue;
2514
Ingo Molnar48f24c42006-07-03 00:25:40 -07002515 rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516
Ingo Molnar48f24c42006-07-03 00:25:40 -07002517 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002518 continue;
2519
Ingo Molnar48f24c42006-07-03 00:25:40 -07002520 if (rq->raw_weighted_load > max_load) {
2521 max_load = rq->raw_weighted_load;
2522 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523 }
2524 }
2525
2526 return busiest;
2527}
2528
2529/*
Nick Piggin77391d72005-06-25 14:57:30 -07002530 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2531 * so long as it is large enough.
2532 */
2533#define MAX_PINNED_INTERVAL 512
2534
Ingo Molnar48f24c42006-07-03 00:25:40 -07002535static inline unsigned long minus_1_or_zero(unsigned long n)
2536{
2537 return n > 0 ? n - 1 : 0;
2538}
2539
Nick Piggin77391d72005-06-25 14:57:30 -07002540/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2542 * tasks if there is an imbalance.
2543 *
2544 * Called with this_rq unlocked.
2545 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002546static int load_balance(int this_cpu, struct rq *this_rq,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002547 struct sched_domain *sd, enum idle_type idle)
2548{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002549 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002551 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002552 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002553 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002554
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002555 /*
2556 * When power savings policy is enabled for the parent domain, idle
2557 * sibling can pick up load irrespective of busy siblings. In this case,
2558 * let the state of idle sibling percolate up as IDLE, instead of
2559 * portraying it as NOT_IDLE.
2560 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002561 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002562 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002563 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 schedstat_inc(sd, lb_cnt[idle]);
2566
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002567redo:
2568 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2569 &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 if (!group) {
2571 schedstat_inc(sd, lb_nobusyg[idle]);
2572 goto out_balanced;
2573 }
2574
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002575 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002576 if (!busiest) {
2577 schedstat_inc(sd, lb_nobusyq[idle]);
2578 goto out_balanced;
2579 }
2580
Nick Piggindb935db2005-06-25 14:57:11 -07002581 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002582
2583 schedstat_add(sd, lb_imbalance[idle], imbalance);
2584
2585 nr_moved = 0;
2586 if (busiest->nr_running > 1) {
2587 /*
2588 * Attempt to move tasks. If find_busiest_group has found
2589 * an imbalance but busiest->nr_running <= 1, the group is
2590 * still unbalanced. nr_moved simply stays zero, so it is
2591 * correctly treated as an imbalance.
2592 */
Nick Piggine17224b2005-09-10 00:26:18 -07002593 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002595 minus_1_or_zero(busiest->nr_running),
2596 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002597 double_rq_unlock(this_rq, busiest);
Nick Piggin81026792005-06-25 14:57:07 -07002598
2599 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002600 if (unlikely(all_pinned)) {
2601 cpu_clear(cpu_of(busiest), cpus);
2602 if (!cpus_empty(cpus))
2603 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002604 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002605 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002606 }
Nick Piggin81026792005-06-25 14:57:07 -07002607
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608 if (!nr_moved) {
2609 schedstat_inc(sd, lb_failed[idle]);
2610 sd->nr_balance_failed++;
2611
2612 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613
2614 spin_lock(&busiest->lock);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002615
2616 /* don't kick the migration_thread, if the curr
2617 * task on busiest cpu can't be moved to this_cpu
2618 */
2619 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2620 spin_unlock(&busiest->lock);
2621 all_pinned = 1;
2622 goto out_one_pinned;
2623 }
2624
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 if (!busiest->active_balance) {
2626 busiest->active_balance = 1;
2627 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002628 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629 }
2630 spin_unlock(&busiest->lock);
Nick Piggin81026792005-06-25 14:57:07 -07002631 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632 wake_up_process(busiest->migration_thread);
2633
2634 /*
2635 * We've kicked active balancing, reset the failure
2636 * counter.
2637 */
Nick Piggin39507452005-06-25 14:57:09 -07002638 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 }
Nick Piggin81026792005-06-25 14:57:07 -07002640 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 sd->nr_balance_failed = 0;
2642
Nick Piggin81026792005-06-25 14:57:07 -07002643 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002644 /* We were unbalanced, so reset the balancing interval */
2645 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002646 } else {
2647 /*
2648 * If we've begun active balancing, start to back off. This
2649 * case may not be covered by the all_pinned logic if there
2650 * is only 1 task on the busy runqueue (because we don't call
2651 * move_tasks).
2652 */
2653 if (sd->balance_interval < sd->max_interval)
2654 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 }
2656
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002657 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002659 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 return nr_moved;
2661
2662out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663 schedstat_inc(sd, lb_balanced[idle]);
2664
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002665 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002666
2667out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002669 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2670 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671 sd->balance_interval *= 2;
2672
Ingo Molnar48f24c42006-07-03 00:25:40 -07002673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002675 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 return 0;
2677}
2678
2679/*
2680 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2681 * tasks if there is an imbalance.
2682 *
2683 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2684 * this_rq is locked.
2685 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002686static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002687load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688{
2689 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002690 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002691 unsigned long imbalance;
2692 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002693 int sd_idle = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002694 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002695
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002696 /*
2697 * When power savings policy is enabled for the parent domain, idle
2698 * sibling can pick up load irrespective of busy siblings. In this case,
2699 * let the state of idle sibling percolate up as IDLE, instead of
2700 * portraying it as NOT_IDLE.
2701 */
2702 if (sd->flags & SD_SHARE_CPUPOWER &&
2703 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002704 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705
2706 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002707redo:
2708 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2709 &sd_idle, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 if (!group) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002712 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002713 }
2714
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002715 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2716 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002717 if (!busiest) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002719 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720 }
2721
Nick Piggindb935db2005-06-25 14:57:11 -07002722 BUG_ON(busiest == this_rq);
2723
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002725
2726 nr_moved = 0;
2727 if (busiest->nr_running > 1) {
2728 /* Attempt to move tasks */
2729 double_lock_balance(this_rq, busiest);
2730 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002731 minus_1_or_zero(busiest->nr_running),
Nick Piggin81026792005-06-25 14:57:07 -07002732 imbalance, sd, NEWLY_IDLE, NULL);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002733 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002734
2735 if (!nr_moved) {
2736 cpu_clear(cpu_of(busiest), cpus);
2737 if (!cpus_empty(cpus))
2738 goto redo;
2739 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002740 }
2741
Nick Piggin5969fe02005-09-10 00:26:19 -07002742 if (!nr_moved) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002744 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002746 return -1;
2747 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002748 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002751
2752out_balanced:
2753 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002754 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002756 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002757 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002758
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002759 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760}
2761
2762/*
2763 * idle_balance is called by schedule() if this_cpu is about to become
2764 * idle. Attempts to pull tasks from other CPUs.
2765 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002766static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767{
2768 struct sched_domain *sd;
2769
2770 for_each_domain(this_cpu, sd) {
2771 if (sd->flags & SD_BALANCE_NEWIDLE) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002772 /* If we've pulled tasks over stop searching: */
2773 if (load_balance_newidle(this_cpu, this_rq, sd))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002774 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 }
2776 }
2777}
2778
2779/*
2780 * active_load_balance is run by migration threads. It pushes running tasks
2781 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2782 * running on each physical CPU where possible, and avoids physical /
2783 * logical imbalances.
2784 *
2785 * Called with busiest_rq locked.
2786 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002787static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788{
Nick Piggin39507452005-06-25 14:57:09 -07002789 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002790 struct sched_domain *sd;
2791 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002792
Ingo Molnar48f24c42006-07-03 00:25:40 -07002793 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002794 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002795 return;
2796
2797 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002798
2799 /*
Nick Piggin39507452005-06-25 14:57:09 -07002800 * This condition is "impossible", if it occurs
2801 * we need to fix it. Originally reported by
2802 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 */
Nick Piggin39507452005-06-25 14:57:09 -07002804 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805
Nick Piggin39507452005-06-25 14:57:09 -07002806 /* move a task from busiest_rq to target_rq */
2807 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808
Nick Piggin39507452005-06-25 14:57:09 -07002809 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002810 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002811 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002812 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002813 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002814 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815
Ingo Molnar48f24c42006-07-03 00:25:40 -07002816 if (likely(sd)) {
2817 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818
Ingo Molnar48f24c42006-07-03 00:25:40 -07002819 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2820 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2821 NULL))
2822 schedstat_inc(sd, alb_pushed);
2823 else
2824 schedstat_inc(sd, alb_failed);
2825 }
Nick Piggin39507452005-06-25 14:57:09 -07002826 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002827}
2828
2829/*
2830 * rebalance_tick will get called every timer tick, on every CPU.
2831 *
2832 * It checks each scheduling domain to see if it is due to be balanced,
2833 * and initiates a balancing operation if so.
2834 *
2835 * Balancing parameters are set up in arch_init_sched_domains.
2836 */
2837
Ingo Molnar48f24c42006-07-03 00:25:40 -07002838/* Don't have all balancing operations going off at once: */
2839static inline unsigned long cpu_offset(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002840{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002841 return jiffies + cpu * HZ / NR_CPUS;
2842}
2843
2844static void
Ingo Molnar70b97a72006-07-03 00:25:42 -07002845rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002846{
2847 unsigned long this_load, interval, j = cpu_offset(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002848 struct sched_domain *sd;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002849 int i, scale;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850
Peter Williams2dd73a42006-06-27 02:54:34 -07002851 this_load = this_rq->raw_weighted_load;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002852
2853 /* Update our load: */
2854 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2855 unsigned long old_load, new_load;
2856
Nick Piggin78979862005-06-25 14:57:13 -07002857 old_load = this_rq->cpu_load[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07002858 new_load = this_load;
Nick Piggin78979862005-06-25 14:57:13 -07002859 /*
2860 * Round up the averaging division if load is increasing. This
2861 * prevents us from getting stuck on 9 if the load is 10, for
2862 * example.
2863 */
2864 if (new_load > old_load)
2865 new_load += scale-1;
2866 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2867 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868
2869 for_each_domain(this_cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002870 if (!(sd->flags & SD_LOAD_BALANCE))
2871 continue;
2872
2873 interval = sd->balance_interval;
2874 if (idle != SCHED_IDLE)
2875 interval *= sd->busy_factor;
2876
2877 /* scale ms to jiffies */
2878 interval = msecs_to_jiffies(interval);
2879 if (unlikely(!interval))
2880 interval = 1;
2881
2882 if (j - sd->last_balance >= interval) {
2883 if (load_balance(this_cpu, this_rq, sd, idle)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002884 /*
2885 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07002886 * longer idle, or one of our SMT siblings is
2887 * not idle.
2888 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889 idle = NOT_IDLE;
2890 }
2891 sd->last_balance += interval;
2892 }
2893 }
2894}
2895#else
2896/*
2897 * on UP we do not need to balance between CPUs:
2898 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002899static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900{
2901}
Ingo Molnar70b97a72006-07-03 00:25:42 -07002902static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903{
2904}
2905#endif
2906
Ingo Molnar70b97a72006-07-03 00:25:42 -07002907static inline int wake_priority_sleeper(struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908{
2909 int ret = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002910
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911#ifdef CONFIG_SCHED_SMT
2912 spin_lock(&rq->lock);
2913 /*
2914 * If an SMT sibling task has been put to sleep for priority
2915 * reasons reschedule the idle task to see if it can now run.
2916 */
2917 if (rq->nr_running) {
2918 resched_task(rq->idle);
2919 ret = 1;
2920 }
2921 spin_unlock(&rq->lock);
2922#endif
2923 return ret;
2924}
2925
2926DEFINE_PER_CPU(struct kernel_stat, kstat);
2927
2928EXPORT_PER_CPU_SYMBOL(kstat);
2929
2930/*
2931 * This is called on clock ticks and on context switches.
2932 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2933 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002934static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07002935update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002937 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002938}
2939
2940/*
2941 * Return current->sched_time plus any more ns on the sched_clock
2942 * that have not yet been banked.
2943 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002944unsigned long long current_sched_time(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945{
2946 unsigned long long ns;
2947 unsigned long flags;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002948
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 local_irq_save(flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002950 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2951 ns = p->sched_time + sched_clock() - ns;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952 local_irq_restore(flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002953
Linus Torvalds1da177e2005-04-16 15:20:36 -07002954 return ns;
2955}
2956
2957/*
Linus Torvaldsf1adad72006-05-21 18:54:09 -07002958 * We place interactive tasks back into the active array, if possible.
2959 *
2960 * To guarantee that this does not starve expired tasks we ignore the
2961 * interactivity of a task if the first expired task had to wait more
2962 * than a 'reasonable' amount of time. This deadline timeout is
2963 * load-dependent, as the frequency of array switched decreases with
2964 * increasing number of running tasks. We also ignore the interactivity
2965 * if a better static_prio task has expired:
2966 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002967static inline int expired_starving(struct rq *rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002968{
2969 if (rq->curr->static_prio > rq->best_expired_prio)
2970 return 1;
2971 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2972 return 0;
2973 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2974 return 1;
2975 return 0;
2976}
Linus Torvaldsf1adad72006-05-21 18:54:09 -07002977
2978/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979 * Account user cpu time to a process.
2980 * @p: the process that the cpu time gets accounted to
2981 * @hardirq_offset: the offset to subtract from hardirq_count()
2982 * @cputime: the cpu time spent in user space since the last update
2983 */
2984void account_user_time(struct task_struct *p, cputime_t cputime)
2985{
2986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2987 cputime64_t tmp;
2988
2989 p->utime = cputime_add(p->utime, cputime);
2990
2991 /* Add user time to cpustat. */
2992 tmp = cputime_to_cputime64(cputime);
2993 if (TASK_NICE(p) > 0)
2994 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2995 else
2996 cpustat->user = cputime64_add(cpustat->user, tmp);
2997}
2998
2999/*
3000 * Account system cpu time to a process.
3001 * @p: the process that the cpu time gets accounted to
3002 * @hardirq_offset: the offset to subtract from hardirq_count()
3003 * @cputime: the cpu time spent in kernel space since the last update
3004 */
3005void account_system_time(struct task_struct *p, int hardirq_offset,
3006 cputime_t cputime)
3007{
3008 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003009 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010 cputime64_t tmp;
3011
3012 p->stime = cputime_add(p->stime, cputime);
3013
3014 /* Add system time to cpustat. */
3015 tmp = cputime_to_cputime64(cputime);
3016 if (hardirq_count() - hardirq_offset)
3017 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3018 else if (softirq_count())
3019 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3020 else if (p != rq->idle)
3021 cpustat->system = cputime64_add(cpustat->system, tmp);
3022 else if (atomic_read(&rq->nr_iowait) > 0)
3023 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3024 else
3025 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3026 /* Account for system time used */
3027 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003028}
3029
3030/*
3031 * Account for involuntary wait time.
3032 * @p: the process from which the cpu time has been stolen
3033 * @steal: the cpu time spent in involuntary wait
3034 */
3035void account_steal_time(struct task_struct *p, cputime_t steal)
3036{
3037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3038 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003039 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003040
3041 if (p == rq->idle) {
3042 p->stime = cputime_add(p->stime, steal);
3043 if (atomic_read(&rq->nr_iowait) > 0)
3044 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3045 else
3046 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3047 } else
3048 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3049}
3050
3051/*
3052 * This function gets called by the timer code, with HZ frequency.
3053 * We call it with interrupts disabled.
3054 *
3055 * It also gets called by the fork code, when changing the parent's
3056 * timeslices.
3057 */
3058void scheduler_tick(void)
3059{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003060 unsigned long long now = sched_clock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07003061 struct task_struct *p = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003062 int cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07003063 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003064
3065 update_cpu_clock(p, rq, now);
3066
3067 rq->timestamp_last_tick = now;
3068
3069 if (p == rq->idle) {
3070 if (wake_priority_sleeper(rq))
3071 goto out;
3072 rebalance_tick(cpu, rq, SCHED_IDLE);
3073 return;
3074 }
3075
3076 /* Task might have expired already, but not scheduled off yet */
3077 if (p->array != rq->active) {
3078 set_tsk_need_resched(p);
3079 goto out;
3080 }
3081 spin_lock(&rq->lock);
3082 /*
3083 * The task was running during this tick - update the
3084 * time slice counter. Note: we do not update a thread's
3085 * priority until it either goes to sleep or uses up its
3086 * timeslice. This makes it possible for interactive tasks
3087 * to use up their timeslices at their highest priority levels.
3088 */
3089 if (rt_task(p)) {
3090 /*
3091 * RR tasks need a special form of timeslice management.
3092 * FIFO tasks have no timeslices.
3093 */
3094 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3095 p->time_slice = task_timeslice(p);
3096 p->first_time_slice = 0;
3097 set_tsk_need_resched(p);
3098
3099 /* put it at the end of the queue: */
3100 requeue_task(p, rq->active);
3101 }
3102 goto out_unlock;
3103 }
3104 if (!--p->time_slice) {
3105 dequeue_task(p, rq->active);
3106 set_tsk_need_resched(p);
3107 p->prio = effective_prio(p);
3108 p->time_slice = task_timeslice(p);
3109 p->first_time_slice = 0;
3110
3111 if (!rq->expired_timestamp)
3112 rq->expired_timestamp = jiffies;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003113 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003114 enqueue_task(p, rq->expired);
3115 if (p->static_prio < rq->best_expired_prio)
3116 rq->best_expired_prio = p->static_prio;
3117 } else
3118 enqueue_task(p, rq->active);
3119 } else {
3120 /*
3121 * Prevent a too long timeslice allowing a task to monopolize
3122 * the CPU. We do this by splitting up the timeslice into
3123 * smaller pieces.
3124 *
3125 * Note: this does not mean the task's timeslices expire or
3126 * get lost in any way, they just might be preempted by
3127 * another task of equal priority. (one with higher
3128 * priority would have preempted this task already.) We
3129 * requeue this task to the end of the list on this priority
3130 * level, which is in essence a round-robin of tasks with
3131 * equal priority.
3132 *
3133 * This only applies to tasks in the interactive
3134 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3135 */
3136 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3137 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3138 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3139 (p->array == rq->active)) {
3140
3141 requeue_task(p, rq->active);
3142 set_tsk_need_resched(p);
3143 }
3144 }
3145out_unlock:
3146 spin_unlock(&rq->lock);
3147out:
3148 rebalance_tick(cpu, rq, NOT_IDLE);
3149}
3150
3151#ifdef CONFIG_SCHED_SMT
Ingo Molnar70b97a72006-07-03 00:25:42 -07003152static inline void wakeup_busy_runqueue(struct rq *rq)
Con Kolivasfc38ed72005-09-10 00:26:08 -07003153{
3154 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3155 if (rq->curr == rq->idle && rq->nr_running)
3156 resched_task(rq->idle);
3157}
3158
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003159/*
3160 * Called with interrupt disabled and this_rq's runqueue locked.
3161 */
3162static void wake_sleeping_dependent(int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163{
Nick Piggin41c7ce92005-06-25 14:57:24 -07003164 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165 int i;
3166
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003167 for_each_domain(this_cpu, tmp) {
3168 if (tmp->flags & SD_SHARE_CPUPOWER) {
Nick Piggin41c7ce92005-06-25 14:57:24 -07003169 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003170 break;
3171 }
3172 }
Nick Piggin41c7ce92005-06-25 14:57:24 -07003173
3174 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003175 return;
3176
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003177 for_each_cpu_mask(i, sd->span) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07003178 struct rq *smt_rq = cpu_rq(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003179
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003180 if (i == this_cpu)
3181 continue;
3182 if (unlikely(!spin_trylock(&smt_rq->lock)))
3183 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003184
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003185 wakeup_busy_runqueue(smt_rq);
3186 spin_unlock(&smt_rq->lock);
3187 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188}
3189
Ingo Molnar67f9a612005-09-10 00:26:16 -07003190/*
3191 * number of 'lost' timeslices this task wont be able to fully
3192 * utilize, if another task runs on a sibling. This models the
3193 * slowdown effect of other tasks running on siblings:
3194 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003195static inline unsigned long
3196smt_slice(struct task_struct *p, struct sched_domain *sd)
Ingo Molnar67f9a612005-09-10 00:26:16 -07003197{
3198 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3199}
3200
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003201/*
3202 * To minimise lock contention and not have to drop this_rq's runlock we only
3203 * trylock the sibling runqueues and bypass those runqueues if we fail to
3204 * acquire their lock. As we only trylock the normal locking order does not
3205 * need to be obeyed.
3206 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003207static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07003208dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003209{
Nick Piggin41c7ce92005-06-25 14:57:24 -07003210 struct sched_domain *tmp, *sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003211 int ret = 0, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003213 /* kernel/rt threads do not participate in dependent sleeping */
3214 if (!p->mm || rt_task(p))
3215 return 0;
3216
3217 for_each_domain(this_cpu, tmp) {
3218 if (tmp->flags & SD_SHARE_CPUPOWER) {
Nick Piggin41c7ce92005-06-25 14:57:24 -07003219 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003220 break;
3221 }
3222 }
Nick Piggin41c7ce92005-06-25 14:57:24 -07003223
3224 if (!sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003225 return 0;
3226
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003227 for_each_cpu_mask(i, sd->span) {
Ingo Molnar36c8b582006-07-03 00:25:41 -07003228 struct task_struct *smt_curr;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003229 struct rq *smt_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003230
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003231 if (i == this_cpu)
3232 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003234 smt_rq = cpu_rq(i);
3235 if (unlikely(!spin_trylock(&smt_rq->lock)))
3236 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003237
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003238 smt_curr = smt_rq->curr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003240 if (!smt_curr->mm)
3241 goto unlock;
Con Kolivasfc38ed72005-09-10 00:26:08 -07003242
Linus Torvalds1da177e2005-04-16 15:20:36 -07003243 /*
3244 * If a user task with lower static priority than the
3245 * running task on the SMT sibling is trying to schedule,
3246 * delay it till there is proportionately less timeslice
3247 * left of the sibling task to prevent a lower priority
3248 * task from using an unfair proportion of the
3249 * physical cpu's resources. -ck
3250 */
Con Kolivasfc38ed72005-09-10 00:26:08 -07003251 if (rt_task(smt_curr)) {
3252 /*
3253 * With real time tasks we run non-rt tasks only
3254 * per_cpu_gain% of the time.
3255 */
3256 if ((jiffies % DEF_TIMESLICE) >
3257 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3258 ret = 1;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003259 } else {
Ingo Molnar67f9a612005-09-10 00:26:16 -07003260 if (smt_curr->static_prio < p->static_prio &&
3261 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3262 smt_slice(smt_curr, sd) > task_timeslice(p))
Con Kolivasfc38ed72005-09-10 00:26:08 -07003263 ret = 1;
Con Kolivasfc38ed72005-09-10 00:26:08 -07003264 }
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003265unlock:
3266 spin_unlock(&smt_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003267 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003268 return ret;
3269}
3270#else
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003271static inline void wake_sleeping_dependent(int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003272{
3273}
Ingo Molnar48f24c42006-07-03 00:25:40 -07003274static inline int
Ingo Molnar70b97a72006-07-03 00:25:42 -07003275dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003276{
3277 return 0;
3278}
3279#endif
3280
3281#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3282
3283void fastcall add_preempt_count(int val)
3284{
3285 /*
3286 * Underflow?
3287 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003288 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3289 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003290 preempt_count() += val;
3291 /*
3292 * Spinlock count overflowing soon?
3293 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295}
3296EXPORT_SYMBOL(add_preempt_count);
3297
3298void fastcall sub_preempt_count(int val)
3299{
3300 /*
3301 * Underflow?
3302 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003303 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3304 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003305 /*
3306 * Is the spinlock portion underflowing?
3307 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003308 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3309 !(preempt_count() & PREEMPT_MASK)))
3310 return;
3311
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312 preempt_count() -= val;
3313}
3314EXPORT_SYMBOL(sub_preempt_count);
3315
3316#endif
3317
Con Kolivas3dee3862006-03-31 02:31:23 -08003318static inline int interactive_sleep(enum sleep_type sleep_type)
3319{
3320 return (sleep_type == SLEEP_INTERACTIVE ||
3321 sleep_type == SLEEP_INTERRUPTED);
3322}
3323
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324/*
3325 * schedule() is the main scheduler function.
3326 */
3327asmlinkage void __sched schedule(void)
3328{
Ingo Molnar36c8b582006-07-03 00:25:41 -07003329 struct task_struct *prev, *next;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003330 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003331 struct list_head *queue;
3332 unsigned long long now;
3333 unsigned long run_time;
Chen Shanga3464a12005-06-25 14:57:31 -07003334 int cpu, idx, new_prio;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003335 long *switch_count;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003336 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003337
3338 /*
3339 * Test if we are atomic. Since do_exit() needs to call into
3340 * schedule() atomically, we ignore that path for now.
3341 * Otherwise, whine if we are scheduling when we should not be.
3342 */
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003343 if (unlikely(in_atomic() && !current->exit_state)) {
3344 printk(KERN_ERR "BUG: scheduling while atomic: "
3345 "%s/0x%08x/%d\n",
3346 current->comm, preempt_count(), current->pid);
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08003347 debug_show_held_locks(current);
Andreas Mohr77e4bfb2006-03-27 01:15:20 -08003348 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349 }
3350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3351
3352need_resched:
3353 preempt_disable();
3354 prev = current;
3355 release_kernel_lock(prev);
3356need_resched_nonpreemptible:
3357 rq = this_rq();
3358
3359 /*
3360 * The idle thread is not allowed to schedule!
3361 * Remove this check after it has been exercised a bit.
3362 */
3363 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3364 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3365 dump_stack();
3366 }
3367
3368 schedstat_inc(rq, sched_cnt);
3369 now = sched_clock();
Ingo Molnar238628e2005-04-18 10:58:36 -07003370 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003371 run_time = now - prev->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003372 if (unlikely((long long)(now - prev->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373 run_time = 0;
3374 } else
3375 run_time = NS_MAX_SLEEP_AVG;
3376
3377 /*
3378 * Tasks charged proportionately less run_time at high sleep_avg to
3379 * delay them losing their interactive status
3380 */
3381 run_time /= (CURRENT_BONUS(prev) ? : 1);
3382
3383 spin_lock_irq(&rq->lock);
3384
Linus Torvalds1da177e2005-04-16 15:20:36 -07003385 switch_count = &prev->nivcsw;
3386 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3387 switch_count = &prev->nvcsw;
3388 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3389 unlikely(signal_pending(prev))))
3390 prev->state = TASK_RUNNING;
3391 else {
3392 if (prev->state == TASK_UNINTERRUPTIBLE)
3393 rq->nr_uninterruptible++;
3394 deactivate_task(prev, rq);
3395 }
3396 }
3397
3398 cpu = smp_processor_id();
3399 if (unlikely(!rq->nr_running)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003400 idle_balance(cpu, rq);
3401 if (!rq->nr_running) {
3402 next = rq->idle;
3403 rq->expired_timestamp = 0;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003404 wake_sleeping_dependent(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405 goto switch_tasks;
3406 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003407 }
3408
3409 array = rq->active;
3410 if (unlikely(!array->nr_active)) {
3411 /*
3412 * Switch the active and expired arrays.
3413 */
3414 schedstat_inc(rq, sched_switch);
3415 rq->active = rq->expired;
3416 rq->expired = array;
3417 array = rq->active;
3418 rq->expired_timestamp = 0;
3419 rq->best_expired_prio = MAX_PRIO;
3420 }
3421
3422 idx = sched_find_first_bit(array->bitmap);
3423 queue = array->queue + idx;
Ingo Molnar36c8b582006-07-03 00:25:41 -07003424 next = list_entry(queue->next, struct task_struct, run_list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003425
Con Kolivas3dee3862006-03-31 02:31:23 -08003426 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427 unsigned long long delta = now - next->timestamp;
Ingo Molnar238628e2005-04-18 10:58:36 -07003428 if (unlikely((long long)(now - next->timestamp) < 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003429 delta = 0;
3430
Con Kolivas3dee3862006-03-31 02:31:23 -08003431 if (next->sleep_type == SLEEP_INTERACTIVE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003432 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3433
3434 array = next->array;
Chen Shanga3464a12005-06-25 14:57:31 -07003435 new_prio = recalc_task_prio(next, next->timestamp + delta);
3436
3437 if (unlikely(next->prio != new_prio)) {
3438 dequeue_task(next, array);
3439 next->prio = new_prio;
3440 enqueue_task(next, array);
Con Kolivas7c4bb1f2006-03-31 02:31:29 -08003441 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003442 }
Con Kolivas3dee3862006-03-31 02:31:23 -08003443 next->sleep_type = SLEEP_NORMAL;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07003444 if (dependent_sleeper(cpu, rq, next))
3445 next = rq->idle;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003446switch_tasks:
3447 if (next == rq->idle)
3448 schedstat_inc(rq, sched_goidle);
3449 prefetch(next);
Chen, Kenneth W383f2832005-09-09 13:02:02 -07003450 prefetch_stack(next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451 clear_tsk_need_resched(prev);
3452 rcu_qsctr_inc(task_cpu(prev));
3453
3454 update_cpu_clock(prev, rq, now);
3455
3456 prev->sleep_avg -= run_time;
3457 if ((long)prev->sleep_avg <= 0)
3458 prev->sleep_avg = 0;
3459 prev->timestamp = prev->last_ran = now;
3460
3461 sched_info_switch(prev, next);
3462 if (likely(prev != next)) {
3463 next->timestamp = now;
3464 rq->nr_switches++;
3465 rq->curr = next;
3466 ++*switch_count;
3467
Nick Piggin4866cde2005-06-25 14:57:23 -07003468 prepare_task_switch(rq, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003469 prev = context_switch(rq, prev, next);
3470 barrier();
Nick Piggin4866cde2005-06-25 14:57:23 -07003471 /*
3472 * this_rq must be evaluated again because prev may have moved
3473 * CPUs since it called schedule(), thus the 'rq' on its stack
3474 * frame will be invalid.
3475 */
3476 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003477 } else
3478 spin_unlock_irq(&rq->lock);
3479
3480 prev = current;
3481 if (unlikely(reacquire_kernel_lock(prev) < 0))
3482 goto need_resched_nonpreemptible;
3483 preempt_enable_no_resched();
3484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3485 goto need_resched;
3486}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487EXPORT_SYMBOL(schedule);
3488
3489#ifdef CONFIG_PREEMPT
3490/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003491 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003492 * off of preempt_enable. Kernel preemptions off return from interrupt
3493 * occur there and call schedule directly.
3494 */
3495asmlinkage void __sched preempt_schedule(void)
3496{
3497 struct thread_info *ti = current_thread_info();
3498#ifdef CONFIG_PREEMPT_BKL
3499 struct task_struct *task = current;
3500 int saved_lock_depth;
3501#endif
3502 /*
3503 * If there is a non-zero preempt_count or interrupts are disabled,
3504 * we do not want to preempt the current task. Just return..
3505 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003506 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 return;
3508
3509need_resched:
3510 add_preempt_count(PREEMPT_ACTIVE);
3511 /*
3512 * We keep the big kernel semaphore locked, but we
3513 * clear ->lock_depth so that schedule() doesnt
3514 * auto-release the semaphore:
3515 */
3516#ifdef CONFIG_PREEMPT_BKL
3517 saved_lock_depth = task->lock_depth;
3518 task->lock_depth = -1;
3519#endif
3520 schedule();
3521#ifdef CONFIG_PREEMPT_BKL
3522 task->lock_depth = saved_lock_depth;
3523#endif
3524 sub_preempt_count(PREEMPT_ACTIVE);
3525
3526 /* we could miss a preemption opportunity between schedule and now */
3527 barrier();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3529 goto need_resched;
3530}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003531EXPORT_SYMBOL(preempt_schedule);
3532
3533/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003534 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 * off of irq context.
3536 * Note, that this is called and return with irqs disabled. This will
3537 * protect us against recursive calling from irq.
3538 */
3539asmlinkage void __sched preempt_schedule_irq(void)
3540{
3541 struct thread_info *ti = current_thread_info();
3542#ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct *task = current;
3544 int saved_lock_depth;
3545#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003546 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547 BUG_ON(ti->preempt_count || !irqs_disabled());
3548
3549need_resched:
3550 add_preempt_count(PREEMPT_ACTIVE);
3551 /*
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3555 */
3556#ifdef CONFIG_PREEMPT_BKL
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
3559#endif
3560 local_irq_enable();
3561 schedule();
3562 local_irq_disable();
3563#ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565#endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3567
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3572}
3573
3574#endif /* CONFIG_PREEMPT */
3575
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003576int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3577 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003578{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003579 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581EXPORT_SYMBOL(default_wake_function);
3582
3583/*
3584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3586 * number) then we wake all the non-exclusive tasks and one exclusive task.
3587 *
3588 * There are circumstances in which we can try to wake a task which has already
3589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3591 */
3592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3593 int nr_exclusive, int sync, void *key)
3594{
3595 struct list_head *tmp, *next;
3596
3597 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003598 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3599 unsigned flags = curr->flags;
3600
Linus Torvalds1da177e2005-04-16 15:20:36 -07003601 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603 break;
3604 }
3605}
3606
3607/**
3608 * __wake_up - wake up threads blocked on a waitqueue.
3609 * @q: the waitqueue
3610 * @mode: which threads
3611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003612 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613 */
3614void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003615 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616{
3617 unsigned long flags;
3618
3619 spin_lock_irqsave(&q->lock, flags);
3620 __wake_up_common(q, mode, nr_exclusive, 0, key);
3621 spin_unlock_irqrestore(&q->lock, flags);
3622}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003623EXPORT_SYMBOL(__wake_up);
3624
3625/*
3626 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3627 */
3628void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3629{
3630 __wake_up_common(q, mode, 1, 0, NULL);
3631}
3632
3633/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003634 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003635 * @q: the waitqueue
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3638 *
3639 * The sync wakeup differs that the waker knows that it will schedule
3640 * away soon, so while the target thread will be woken up, it will not
3641 * be migrated to another CPU - ie. the two threads are 'synchronized'
3642 * with each other. This can prevent needless bouncing between CPUs.
3643 *
3644 * On UP it can prevent extra preemption.
3645 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003646void fastcall
3647__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003648{
3649 unsigned long flags;
3650 int sync = 1;
3651
3652 if (unlikely(!q))
3653 return;
3654
3655 if (unlikely(!nr_exclusive))
3656 sync = 0;
3657
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3660 spin_unlock_irqrestore(&q->lock, flags);
3661}
3662EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3663
3664void fastcall complete(struct completion *x)
3665{
3666 unsigned long flags;
3667
3668 spin_lock_irqsave(&x->wait.lock, flags);
3669 x->done++;
3670 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3671 1, 0, NULL);
3672 spin_unlock_irqrestore(&x->wait.lock, flags);
3673}
3674EXPORT_SYMBOL(complete);
3675
3676void fastcall complete_all(struct completion *x)
3677{
3678 unsigned long flags;
3679
3680 spin_lock_irqsave(&x->wait.lock, flags);
3681 x->done += UINT_MAX/2;
3682 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3683 0, 0, NULL);
3684 spin_unlock_irqrestore(&x->wait.lock, flags);
3685}
3686EXPORT_SYMBOL(complete_all);
3687
3688void fastcall __sched wait_for_completion(struct completion *x)
3689{
3690 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003691
Linus Torvalds1da177e2005-04-16 15:20:36 -07003692 spin_lock_irq(&x->wait.lock);
3693 if (!x->done) {
3694 DECLARE_WAITQUEUE(wait, current);
3695
3696 wait.flags |= WQ_FLAG_EXCLUSIVE;
3697 __add_wait_queue_tail(&x->wait, &wait);
3698 do {
3699 __set_current_state(TASK_UNINTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 schedule();
3702 spin_lock_irq(&x->wait.lock);
3703 } while (!x->done);
3704 __remove_wait_queue(&x->wait, &wait);
3705 }
3706 x->done--;
3707 spin_unlock_irq(&x->wait.lock);
3708}
3709EXPORT_SYMBOL(wait_for_completion);
3710
3711unsigned long fastcall __sched
3712wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3713{
3714 might_sleep();
3715
3716 spin_lock_irq(&x->wait.lock);
3717 if (!x->done) {
3718 DECLARE_WAITQUEUE(wait, current);
3719
3720 wait.flags |= WQ_FLAG_EXCLUSIVE;
3721 __add_wait_queue_tail(&x->wait, &wait);
3722 do {
3723 __set_current_state(TASK_UNINTERRUPTIBLE);
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
3729 goto out;
3730 }
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3733 }
3734 x->done--;
3735out:
3736 spin_unlock_irq(&x->wait.lock);
3737 return timeout;
3738}
3739EXPORT_SYMBOL(wait_for_completion_timeout);
3740
3741int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3742{
3743 int ret = 0;
3744
3745 might_sleep();
3746
3747 spin_lock_irq(&x->wait.lock);
3748 if (!x->done) {
3749 DECLARE_WAITQUEUE(wait, current);
3750
3751 wait.flags |= WQ_FLAG_EXCLUSIVE;
3752 __add_wait_queue_tail(&x->wait, &wait);
3753 do {
3754 if (signal_pending(current)) {
3755 ret = -ERESTARTSYS;
3756 __remove_wait_queue(&x->wait, &wait);
3757 goto out;
3758 }
3759 __set_current_state(TASK_INTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 schedule();
3762 spin_lock_irq(&x->wait.lock);
3763 } while (!x->done);
3764 __remove_wait_queue(&x->wait, &wait);
3765 }
3766 x->done--;
3767out:
3768 spin_unlock_irq(&x->wait.lock);
3769
3770 return ret;
3771}
3772EXPORT_SYMBOL(wait_for_completion_interruptible);
3773
3774unsigned long fastcall __sched
3775wait_for_completion_interruptible_timeout(struct completion *x,
3776 unsigned long timeout)
3777{
3778 might_sleep();
3779
3780 spin_lock_irq(&x->wait.lock);
3781 if (!x->done) {
3782 DECLARE_WAITQUEUE(wait, current);
3783
3784 wait.flags |= WQ_FLAG_EXCLUSIVE;
3785 __add_wait_queue_tail(&x->wait, &wait);
3786 do {
3787 if (signal_pending(current)) {
3788 timeout = -ERESTARTSYS;
3789 __remove_wait_queue(&x->wait, &wait);
3790 goto out;
3791 }
3792 __set_current_state(TASK_INTERRUPTIBLE);
3793 spin_unlock_irq(&x->wait.lock);
3794 timeout = schedule_timeout(timeout);
3795 spin_lock_irq(&x->wait.lock);
3796 if (!timeout) {
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3799 }
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3802 }
3803 x->done--;
3804out:
3805 spin_unlock_irq(&x->wait.lock);
3806 return timeout;
3807}
3808EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3809
3810
3811#define SLEEP_ON_VAR \
3812 unsigned long flags; \
3813 wait_queue_t wait; \
3814 init_waitqueue_entry(&wait, current);
3815
3816#define SLEEP_ON_HEAD \
3817 spin_lock_irqsave(&q->lock,flags); \
3818 __add_wait_queue(q, &wait); \
3819 spin_unlock(&q->lock);
3820
3821#define SLEEP_ON_TAIL \
3822 spin_lock_irq(&q->lock); \
3823 __remove_wait_queue(q, &wait); \
3824 spin_unlock_irqrestore(&q->lock, flags);
3825
3826void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3827{
3828 SLEEP_ON_VAR
3829
3830 current->state = TASK_INTERRUPTIBLE;
3831
3832 SLEEP_ON_HEAD
3833 schedule();
3834 SLEEP_ON_TAIL
3835}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003836EXPORT_SYMBOL(interruptible_sleep_on);
3837
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003838long fastcall __sched
3839interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003840{
3841 SLEEP_ON_VAR
3842
3843 current->state = TASK_INTERRUPTIBLE;
3844
3845 SLEEP_ON_HEAD
3846 timeout = schedule_timeout(timeout);
3847 SLEEP_ON_TAIL
3848
3849 return timeout;
3850}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003851EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3852
3853void fastcall __sched sleep_on(wait_queue_head_t *q)
3854{
3855 SLEEP_ON_VAR
3856
3857 current->state = TASK_UNINTERRUPTIBLE;
3858
3859 SLEEP_ON_HEAD
3860 schedule();
3861 SLEEP_ON_TAIL
3862}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863EXPORT_SYMBOL(sleep_on);
3864
3865long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3866{
3867 SLEEP_ON_VAR
3868
3869 current->state = TASK_UNINTERRUPTIBLE;
3870
3871 SLEEP_ON_HEAD
3872 timeout = schedule_timeout(timeout);
3873 SLEEP_ON_TAIL
3874
3875 return timeout;
3876}
3877
3878EXPORT_SYMBOL(sleep_on_timeout);
3879
Ingo Molnarb29739f2006-06-27 02:54:51 -07003880#ifdef CONFIG_RT_MUTEXES
3881
3882/*
3883 * rt_mutex_setprio - set the current priority of a task
3884 * @p: task
3885 * @prio: prio value (kernel-internal form)
3886 *
3887 * This function changes the 'effective' priority of a task. It does
3888 * not touch ->normal_prio like __setscheduler().
3889 *
3890 * Used by the rt_mutex code to implement priority inheritance logic.
3891 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003892void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003893{
Ingo Molnar70b97a72006-07-03 00:25:42 -07003894 struct prio_array *array;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003895 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003896 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003897 int oldprio;
3898
3899 BUG_ON(prio < 0 || prio > MAX_PRIO);
3900
3901 rq = task_rq_lock(p, &flags);
3902
3903 oldprio = p->prio;
3904 array = p->array;
3905 if (array)
3906 dequeue_task(p, array);
3907 p->prio = prio;
3908
3909 if (array) {
3910 /*
3911 * If changing to an RT priority then queue it
3912 * in the active array!
3913 */
3914 if (rt_task(p))
3915 array = rq->active;
3916 enqueue_task(p, array);
3917 /*
3918 * Reschedule if we are currently running on this runqueue and
3919 * our priority decreased, or if we are not currently running on
3920 * this runqueue and our priority is higher than the current's
3921 */
3922 if (task_running(rq, p)) {
3923 if (p->prio > oldprio)
3924 resched_task(rq->curr);
3925 } else if (TASK_PREEMPTS_CURR(p, rq))
3926 resched_task(rq->curr);
3927 }
3928 task_rq_unlock(rq, &flags);
3929}
3930
3931#endif
3932
Ingo Molnar36c8b582006-07-03 00:25:41 -07003933void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003934{
Ingo Molnar70b97a72006-07-03 00:25:42 -07003935 struct prio_array *array;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003936 int old_prio, delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003937 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003938 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003939
3940 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3941 return;
3942 /*
3943 * We have to be careful, if called from sys_setpriority(),
3944 * the task might be in the middle of scheduling on another CPU.
3945 */
3946 rq = task_rq_lock(p, &flags);
3947 /*
3948 * The RT priorities are set via sched_setscheduler(), but we still
3949 * allow the 'normal' nice value to be set - but as expected
3950 * it wont have any effect on scheduling until the task is
Ingo Molnarb0a94992006-01-14 13:20:41 -08003951 * not SCHED_NORMAL/SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07003953 if (has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003954 p->static_prio = NICE_TO_PRIO(nice);
3955 goto out_unlock;
3956 }
3957 array = p->array;
Peter Williams2dd73a42006-06-27 02:54:34 -07003958 if (array) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003959 dequeue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07003960 dec_raw_weighted_load(rq, p);
3961 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003962
Linus Torvalds1da177e2005-04-16 15:20:36 -07003963 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003964 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003965 old_prio = p->prio;
3966 p->prio = effective_prio(p);
3967 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003968
3969 if (array) {
3970 enqueue_task(p, array);
Peter Williams2dd73a42006-06-27 02:54:34 -07003971 inc_raw_weighted_load(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003972 /*
3973 * If the task increased its priority or is running and
3974 * lowered its priority, then reschedule its CPU:
3975 */
3976 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3977 resched_task(rq->curr);
3978 }
3979out_unlock:
3980 task_rq_unlock(rq, &flags);
3981}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982EXPORT_SYMBOL(set_user_nice);
3983
Matt Mackalle43379f2005-05-01 08:59:00 -07003984/*
3985 * can_nice - check if a task can reduce its nice value
3986 * @p: task
3987 * @nice: nice value
3988 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003989int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07003990{
Matt Mackall024f4742005-08-18 11:24:19 -07003991 /* convert nice value [19,-20] to rlimit style value [1,40] */
3992 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003993
Matt Mackalle43379f2005-05-01 08:59:00 -07003994 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3995 capable(CAP_SYS_NICE));
3996}
3997
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998#ifdef __ARCH_WANT_SYS_NICE
3999
4000/*
4001 * sys_nice - change the priority of the current process.
4002 * @increment: priority increment
4003 *
4004 * sys_setpriority is a more generic, but much slower function that
4005 * does similar things.
4006 */
4007asmlinkage long sys_nice(int increment)
4008{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004009 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004010
4011 /*
4012 * Setpriority might change our priority at the same moment.
4013 * We don't have to worry. Conceptually one call occurs first
4014 * and we have a single winner.
4015 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004016 if (increment < -40)
4017 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004018 if (increment > 40)
4019 increment = 40;
4020
4021 nice = PRIO_TO_NICE(current->static_prio) + increment;
4022 if (nice < -20)
4023 nice = -20;
4024 if (nice > 19)
4025 nice = 19;
4026
Matt Mackalle43379f2005-05-01 08:59:00 -07004027 if (increment < 0 && !can_nice(current, nice))
4028 return -EPERM;
4029
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030 retval = security_task_setnice(current, nice);
4031 if (retval)
4032 return retval;
4033
4034 set_user_nice(current, nice);
4035 return 0;
4036}
4037
4038#endif
4039
4040/**
4041 * task_prio - return the priority value of a given task.
4042 * @p: the task in question.
4043 *
4044 * This is the priority value as seen by users in /proc.
4045 * RT tasks are offset by -200. Normal tasks are centered
4046 * around 0, value goes from -16 to +15.
4047 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004048int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004049{
4050 return p->prio - MAX_RT_PRIO;
4051}
4052
4053/**
4054 * task_nice - return the nice value of a given task.
4055 * @p: the task in question.
4056 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004057int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004058{
4059 return TASK_NICE(p);
4060}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004061EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004062
4063/**
4064 * idle_cpu - is a given cpu idle currently?
4065 * @cpu: the processor in question.
4066 */
4067int idle_cpu(int cpu)
4068{
4069 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4070}
4071
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072/**
4073 * idle_task - return the idle task for a given cpu.
4074 * @cpu: the processor in question.
4075 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004076struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004077{
4078 return cpu_rq(cpu)->idle;
4079}
4080
4081/**
4082 * find_process_by_pid - find a process with a matching PID value.
4083 * @pid: the pid in question.
4084 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004085static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086{
4087 return pid ? find_task_by_pid(pid) : current;
4088}
4089
4090/* Actually do priority change: must hold rq lock. */
4091static void __setscheduler(struct task_struct *p, int policy, int prio)
4092{
4093 BUG_ON(p->array);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004094
Linus Torvalds1da177e2005-04-16 15:20:36 -07004095 p->policy = policy;
4096 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004097 p->normal_prio = normal_prio(p);
4098 /* we are holding p->pi_lock already */
4099 p->prio = rt_mutex_getprio(p);
4100 /*
4101 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4102 */
4103 if (policy == SCHED_BATCH)
4104 p->sleep_avg = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07004105 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106}
4107
4108/**
4109 * sched_setscheduler - change the scheduling policy and/or RT priority of
4110 * a thread.
4111 * @p: the task in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004114 *
4115 * NOTE: the task may be already dead
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004117int sched_setscheduler(struct task_struct *p, int policy,
4118 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004119{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004120 int retval, oldprio, oldpolicy = -1;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004121 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004123 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124
Steven Rostedt66e53932006-06-27 02:54:44 -07004125 /* may grab non-irq protected spin_locks */
4126 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127recheck:
4128 /* double check policy once rq lock held */
4129 if (policy < 0)
4130 policy = oldpolicy = p->policy;
4131 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnarb0a94992006-01-14 13:20:41 -08004132 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4133 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004134 /*
4135 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnarb0a94992006-01-14 13:20:41 -08004136 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4137 * SCHED_BATCH is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138 */
4139 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004140 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004141 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004142 return -EINVAL;
Oleg Nesterov57a6f512006-09-29 02:00:49 -07004143 if (is_rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004144 return -EINVAL;
4145
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004146 /*
4147 * Allow unprivileged RT tasks to decrease priority:
4148 */
4149 if (!capable(CAP_SYS_NICE)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004150 if (is_rt_policy(policy)) {
4151 unsigned long rlim_rtprio;
4152 unsigned long flags;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004153
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004154 if (!lock_task_sighand(p, &flags))
4155 return -ESRCH;
4156 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4157 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004158
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004159 /* can't set/change the rt policy */
4160 if (policy != p->policy && !rlim_rtprio)
4161 return -EPERM;
4162
4163 /* can't increase priority */
4164 if (param->sched_priority > p->rt_priority &&
4165 param->sched_priority > rlim_rtprio)
4166 return -EPERM;
4167 }
4168
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004169 /* can't change other user's priorities */
4170 if ((current->euid != p->euid) &&
4171 (current->euid != p->uid))
4172 return -EPERM;
4173 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004174
4175 retval = security_task_setscheduler(p, policy, param);
4176 if (retval)
4177 return retval;
4178 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004179 * make sure no PI-waiters arrive (or leave) while we are
4180 * changing the priority of the task:
4181 */
4182 spin_lock_irqsave(&p->pi_lock, flags);
4183 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184 * To be able to change p->policy safely, the apropriate
4185 * runqueue lock must be held.
4186 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004187 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004188 /* recheck policy now with rq lock held */
4189 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4190 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004191 __task_rq_unlock(rq);
4192 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193 goto recheck;
4194 }
4195 array = p->array;
4196 if (array)
4197 deactivate_task(p, rq);
4198 oldprio = p->prio;
4199 __setscheduler(p, policy, param->sched_priority);
4200 if (array) {
4201 __activate_task(p, rq);
4202 /*
4203 * Reschedule if we are currently running on this runqueue and
4204 * our priority decreased, or if we are not currently running on
4205 * this runqueue and our priority is higher than the current's
4206 */
4207 if (task_running(rq, p)) {
4208 if (p->prio > oldprio)
4209 resched_task(rq->curr);
4210 } else if (TASK_PREEMPTS_CURR(p, rq))
4211 resched_task(rq->curr);
4212 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004213 __task_rq_unlock(rq);
4214 spin_unlock_irqrestore(&p->pi_lock, flags);
4215
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004216 rt_mutex_adjust_pi(p);
4217
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 return 0;
4219}
4220EXPORT_SYMBOL_GPL(sched_setscheduler);
4221
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004222static int
4223do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004224{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225 struct sched_param lparam;
4226 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004227 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004228
4229 if (!param || pid < 0)
4230 return -EINVAL;
4231 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4232 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004233
4234 rcu_read_lock();
4235 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004236 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004237 if (p != NULL)
4238 retval = sched_setscheduler(p, policy, &lparam);
4239 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004240
Linus Torvalds1da177e2005-04-16 15:20:36 -07004241 return retval;
4242}
4243
4244/**
4245 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4246 * @pid: the pid in question.
4247 * @policy: new policy.
4248 * @param: structure containing the new RT priority.
4249 */
4250asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4251 struct sched_param __user *param)
4252{
Jason Baronc21761f2006-01-18 17:43:03 -08004253 /* negative values for policy are not valid */
4254 if (policy < 0)
4255 return -EINVAL;
4256
Linus Torvalds1da177e2005-04-16 15:20:36 -07004257 return do_sched_setscheduler(pid, policy, param);
4258}
4259
4260/**
4261 * sys_sched_setparam - set/change the RT priority of a thread
4262 * @pid: the pid in question.
4263 * @param: structure containing the new RT priority.
4264 */
4265asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4266{
4267 return do_sched_setscheduler(pid, -1, param);
4268}
4269
4270/**
4271 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4272 * @pid: the pid in question.
4273 */
4274asmlinkage long sys_sched_getscheduler(pid_t pid)
4275{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004276 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278
4279 if (pid < 0)
4280 goto out_nounlock;
4281
4282 retval = -ESRCH;
4283 read_lock(&tasklist_lock);
4284 p = find_process_by_pid(pid);
4285 if (p) {
4286 retval = security_task_getscheduler(p);
4287 if (!retval)
4288 retval = p->policy;
4289 }
4290 read_unlock(&tasklist_lock);
4291
4292out_nounlock:
4293 return retval;
4294}
4295
4296/**
4297 * sys_sched_getscheduler - get the RT priority of a thread
4298 * @pid: the pid in question.
4299 * @param: structure containing the RT priority.
4300 */
4301asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4302{
4303 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004304 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306
4307 if (!param || pid < 0)
4308 goto out_nounlock;
4309
4310 read_lock(&tasklist_lock);
4311 p = find_process_by_pid(pid);
4312 retval = -ESRCH;
4313 if (!p)
4314 goto out_unlock;
4315
4316 retval = security_task_getscheduler(p);
4317 if (retval)
4318 goto out_unlock;
4319
4320 lp.sched_priority = p->rt_priority;
4321 read_unlock(&tasklist_lock);
4322
4323 /*
4324 * This one might sleep, we cannot do it with a spinlock held ...
4325 */
4326 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4327
4328out_nounlock:
4329 return retval;
4330
4331out_unlock:
4332 read_unlock(&tasklist_lock);
4333 return retval;
4334}
4335
4336long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4337{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004338 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004339 struct task_struct *p;
4340 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341
4342 lock_cpu_hotplug();
4343 read_lock(&tasklist_lock);
4344
4345 p = find_process_by_pid(pid);
4346 if (!p) {
4347 read_unlock(&tasklist_lock);
4348 unlock_cpu_hotplug();
4349 return -ESRCH;
4350 }
4351
4352 /*
4353 * It is not safe to call set_cpus_allowed with the
4354 * tasklist_lock held. We will bump the task_struct's
4355 * usage count and then drop tasklist_lock.
4356 */
4357 get_task_struct(p);
4358 read_unlock(&tasklist_lock);
4359
4360 retval = -EPERM;
4361 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4362 !capable(CAP_SYS_NICE))
4363 goto out_unlock;
4364
David Quigleye7834f82006-06-23 02:03:59 -07004365 retval = security_task_setscheduler(p, 0, NULL);
4366 if (retval)
4367 goto out_unlock;
4368
Linus Torvalds1da177e2005-04-16 15:20:36 -07004369 cpus_allowed = cpuset_cpus_allowed(p);
4370 cpus_and(new_mask, new_mask, cpus_allowed);
4371 retval = set_cpus_allowed(p, new_mask);
4372
4373out_unlock:
4374 put_task_struct(p);
4375 unlock_cpu_hotplug();
4376 return retval;
4377}
4378
4379static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4380 cpumask_t *new_mask)
4381{
4382 if (len < sizeof(cpumask_t)) {
4383 memset(new_mask, 0, sizeof(cpumask_t));
4384 } else if (len > sizeof(cpumask_t)) {
4385 len = sizeof(cpumask_t);
4386 }
4387 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4388}
4389
4390/**
4391 * sys_sched_setaffinity - set the cpu affinity of a process
4392 * @pid: pid of the process
4393 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4394 * @user_mask_ptr: user-space pointer to the new cpu mask
4395 */
4396asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4397 unsigned long __user *user_mask_ptr)
4398{
4399 cpumask_t new_mask;
4400 int retval;
4401
4402 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4403 if (retval)
4404 return retval;
4405
4406 return sched_setaffinity(pid, new_mask);
4407}
4408
4409/*
4410 * Represents all cpu's present in the system
4411 * In systems capable of hotplug, this map could dynamically grow
4412 * as new cpu's are detected in the system via any platform specific
4413 * method, such as ACPI for e.g.
4414 */
4415
Andi Kleen4cef0c62006-01-11 22:44:57 +01004416cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004417EXPORT_SYMBOL(cpu_present_map);
4418
4419#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004420cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004421EXPORT_SYMBOL(cpu_online_map);
4422
Andi Kleen4cef0c62006-01-11 22:44:57 +01004423cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004424EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425#endif
4426
4427long sched_getaffinity(pid_t pid, cpumask_t *mask)
4428{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004429 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004430 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431
4432 lock_cpu_hotplug();
4433 read_lock(&tasklist_lock);
4434
4435 retval = -ESRCH;
4436 p = find_process_by_pid(pid);
4437 if (!p)
4438 goto out_unlock;
4439
David Quigleye7834f82006-06-23 02:03:59 -07004440 retval = security_task_getscheduler(p);
4441 if (retval)
4442 goto out_unlock;
4443
Jack Steiner2f7016d2006-02-01 03:05:18 -08004444 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004445
4446out_unlock:
4447 read_unlock(&tasklist_lock);
4448 unlock_cpu_hotplug();
4449 if (retval)
4450 return retval;
4451
4452 return 0;
4453}
4454
4455/**
4456 * sys_sched_getaffinity - get the cpu affinity of a process
4457 * @pid: pid of the process
4458 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4459 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4460 */
4461asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4462 unsigned long __user *user_mask_ptr)
4463{
4464 int ret;
4465 cpumask_t mask;
4466
4467 if (len < sizeof(cpumask_t))
4468 return -EINVAL;
4469
4470 ret = sched_getaffinity(pid, &mask);
4471 if (ret < 0)
4472 return ret;
4473
4474 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4475 return -EFAULT;
4476
4477 return sizeof(cpumask_t);
4478}
4479
4480/**
4481 * sys_sched_yield - yield the current processor to other threads.
4482 *
4483 * this function yields the current CPU by moving the calling thread
4484 * to the expired array. If there are no other threads running on this
4485 * CPU then this function will return.
4486 */
4487asmlinkage long sys_sched_yield(void)
4488{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004489 struct rq *rq = this_rq_lock();
4490 struct prio_array *array = current->array, *target = rq->expired;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004491
4492 schedstat_inc(rq, yld_cnt);
4493 /*
4494 * We implement yielding by moving the task into the expired
4495 * queue.
4496 *
4497 * (special rule: RT tasks will just roundrobin in the active
4498 * array.)
4499 */
4500 if (rt_task(current))
4501 target = rq->active;
4502
Renaud Lienhart5927ad72005-09-10 00:26:20 -07004503 if (array->nr_active == 1) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004504 schedstat_inc(rq, yld_act_empty);
4505 if (!rq->expired->nr_active)
4506 schedstat_inc(rq, yld_both_empty);
4507 } else if (!rq->expired->nr_active)
4508 schedstat_inc(rq, yld_exp_empty);
4509
4510 if (array != target) {
4511 dequeue_task(current, array);
4512 enqueue_task(current, target);
4513 } else
4514 /*
4515 * requeue_task is cheaper so perform that if possible.
4516 */
4517 requeue_task(current, array);
4518
4519 /*
4520 * Since we are going to call schedule() anyway, there's
4521 * no need to preempt or enable interrupts:
4522 */
4523 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004524 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004525 _raw_spin_unlock(&rq->lock);
4526 preempt_enable_no_resched();
4527
4528 schedule();
4529
4530 return 0;
4531}
4532
Jim Houston2d7d2532006-07-30 03:03:39 -07004533static inline int __resched_legal(int expected_preempt_count)
Andrew Mortone7b38402006-06-30 01:56:00 -07004534{
Jim Houston2d7d2532006-07-30 03:03:39 -07004535 if (unlikely(preempt_count() != expected_preempt_count))
Andrew Mortone7b38402006-06-30 01:56:00 -07004536 return 0;
4537 if (unlikely(system_state != SYSTEM_RUNNING))
4538 return 0;
4539 return 1;
4540}
4541
4542static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004543{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004544#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4545 __might_sleep(__FILE__, __LINE__);
4546#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004547 /*
4548 * The BKS might be reacquired before we have dropped
4549 * PREEMPT_ACTIVE, which could trigger a second
4550 * cond_resched() call.
4551 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004552 do {
4553 add_preempt_count(PREEMPT_ACTIVE);
4554 schedule();
4555 sub_preempt_count(PREEMPT_ACTIVE);
4556 } while (need_resched());
4557}
4558
4559int __sched cond_resched(void)
4560{
Jim Houston2d7d2532006-07-30 03:03:39 -07004561 if (need_resched() && __resched_legal(0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004562 __cond_resched();
4563 return 1;
4564 }
4565 return 0;
4566}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004567EXPORT_SYMBOL(cond_resched);
4568
4569/*
4570 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4571 * call schedule, and on return reacquire the lock.
4572 *
4573 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4574 * operations here to prevent schedule() from being called twice (once via
4575 * spin_unlock(), once by hand).
4576 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004577int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578{
Jan Kara6df3cec2005-06-13 15:52:32 -07004579 int ret = 0;
4580
Linus Torvalds1da177e2005-04-16 15:20:36 -07004581 if (need_lockbreak(lock)) {
4582 spin_unlock(lock);
4583 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004584 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004585 spin_lock(lock);
4586 }
Jim Houston2d7d2532006-07-30 03:03:39 -07004587 if (need_resched() && __resched_legal(1)) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004588 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004589 _raw_spin_unlock(lock);
4590 preempt_enable_no_resched();
4591 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004592 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004593 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004594 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004595 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004596}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004597EXPORT_SYMBOL(cond_resched_lock);
4598
4599int __sched cond_resched_softirq(void)
4600{
4601 BUG_ON(!in_softirq());
4602
Jim Houston2d7d2532006-07-30 03:03:39 -07004603 if (need_resched() && __resched_legal(0)) {
Ingo Molnarde30a2b2006-07-03 00:24:42 -07004604 raw_local_irq_disable();
4605 _local_bh_enable();
4606 raw_local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004607 __cond_resched();
4608 local_bh_disable();
4609 return 1;
4610 }
4611 return 0;
4612}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613EXPORT_SYMBOL(cond_resched_softirq);
4614
Linus Torvalds1da177e2005-04-16 15:20:36 -07004615/**
4616 * yield - yield the current processor to other threads.
4617 *
4618 * this is a shortcut for kernel-space yielding - it marks the
4619 * thread runnable and calls sys_sched_yield().
4620 */
4621void __sched yield(void)
4622{
4623 set_current_state(TASK_RUNNING);
4624 sys_sched_yield();
4625}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004626EXPORT_SYMBOL(yield);
4627
4628/*
4629 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4630 * that process accounting knows that this is a task in IO wait state.
4631 *
4632 * But don't do that if it is a deliberate, throttling IO wait (this task
4633 * has set its backing_dev_info: the queue against which it should throttle)
4634 */
4635void __sched io_schedule(void)
4636{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004637 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004638
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004639 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004640 atomic_inc(&rq->nr_iowait);
4641 schedule();
4642 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004643 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004644}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004645EXPORT_SYMBOL(io_schedule);
4646
4647long __sched io_schedule_timeout(long timeout)
4648{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004649 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004650 long ret;
4651
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004652 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004653 atomic_inc(&rq->nr_iowait);
4654 ret = schedule_timeout(timeout);
4655 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004656 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004657 return ret;
4658}
4659
4660/**
4661 * sys_sched_get_priority_max - return maximum RT priority.
4662 * @policy: scheduling class.
4663 *
4664 * this syscall returns the maximum rt_priority that can be used
4665 * by a given scheduling class.
4666 */
4667asmlinkage long sys_sched_get_priority_max(int policy)
4668{
4669 int ret = -EINVAL;
4670
4671 switch (policy) {
4672 case SCHED_FIFO:
4673 case SCHED_RR:
4674 ret = MAX_USER_RT_PRIO-1;
4675 break;
4676 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004677 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004678 ret = 0;
4679 break;
4680 }
4681 return ret;
4682}
4683
4684/**
4685 * sys_sched_get_priority_min - return minimum RT priority.
4686 * @policy: scheduling class.
4687 *
4688 * this syscall returns the minimum rt_priority that can be used
4689 * by a given scheduling class.
4690 */
4691asmlinkage long sys_sched_get_priority_min(int policy)
4692{
4693 int ret = -EINVAL;
4694
4695 switch (policy) {
4696 case SCHED_FIFO:
4697 case SCHED_RR:
4698 ret = 1;
4699 break;
4700 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004701 case SCHED_BATCH:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004702 ret = 0;
4703 }
4704 return ret;
4705}
4706
4707/**
4708 * sys_sched_rr_get_interval - return the default timeslice of a process.
4709 * @pid: pid of the process.
4710 * @interval: userspace pointer to the timeslice value.
4711 *
4712 * this syscall writes the default timeslice value of a given process
4713 * into the user-space timespec buffer. A value of '0' means infinity.
4714 */
4715asmlinkage
4716long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4717{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004718 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004719 int retval = -EINVAL;
4720 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004721
4722 if (pid < 0)
4723 goto out_nounlock;
4724
4725 retval = -ESRCH;
4726 read_lock(&tasklist_lock);
4727 p = find_process_by_pid(pid);
4728 if (!p)
4729 goto out_unlock;
4730
4731 retval = security_task_getscheduler(p);
4732 if (retval)
4733 goto out_unlock;
4734
Peter Williamsb78709c2006-06-26 16:58:00 +10004735 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736 0 : task_timeslice(p), &t);
4737 read_unlock(&tasklist_lock);
4738 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4739out_nounlock:
4740 return retval;
4741out_unlock:
4742 read_unlock(&tasklist_lock);
4743 return retval;
4744}
4745
4746static inline struct task_struct *eldest_child(struct task_struct *p)
4747{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004748 if (list_empty(&p->children))
4749 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004750 return list_entry(p->children.next,struct task_struct,sibling);
4751}
4752
4753static inline struct task_struct *older_sibling(struct task_struct *p)
4754{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004755 if (p->sibling.prev==&p->parent->children)
4756 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004757 return list_entry(p->sibling.prev,struct task_struct,sibling);
4758}
4759
4760static inline struct task_struct *younger_sibling(struct task_struct *p)
4761{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004762 if (p->sibling.next==&p->parent->children)
4763 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004764 return list_entry(p->sibling.next,struct task_struct,sibling);
4765}
4766
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004767static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004768
4769static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004770{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004771 struct task_struct *relative;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004772 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004773 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004774
Linus Torvalds1da177e2005-04-16 15:20:36 -07004775 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004776 printk("%-13.13s %c", p->comm,
4777 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004778#if (BITS_PER_LONG == 32)
4779 if (state == TASK_RUNNING)
4780 printk(" running ");
4781 else
4782 printk(" %08lX ", thread_saved_pc(p));
4783#else
4784 if (state == TASK_RUNNING)
4785 printk(" running task ");
4786 else
4787 printk(" %016lx ", thread_saved_pc(p));
4788#endif
4789#ifdef CONFIG_DEBUG_STACK_USAGE
4790 {
Al Viro10ebffd2005-11-13 16:06:56 -08004791 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792 while (!*n)
4793 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004794 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004795 }
4796#endif
4797 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4798 if ((relative = eldest_child(p)))
4799 printk("%5d ", relative->pid);
4800 else
4801 printk(" ");
4802 if ((relative = younger_sibling(p)))
4803 printk("%7d", relative->pid);
4804 else
4805 printk(" ");
4806 if ((relative = older_sibling(p)))
4807 printk(" %5d", relative->pid);
4808 else
4809 printk(" ");
4810 if (!p->mm)
4811 printk(" (L-TLB)\n");
4812 else
4813 printk(" (NOTLB)\n");
4814
4815 if (state != TASK_RUNNING)
4816 show_stack(p, NULL);
4817}
4818
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004819void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004821 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004822
4823#if (BITS_PER_LONG == 32)
4824 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004825 " free sibling\n");
4826 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004827#else
4828 printk("\n"
Chris Caputo301827a2006-12-06 20:39:11 -08004829 " free sibling\n");
4830 printk(" task PC stack pid father child younger older\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004831#endif
4832 read_lock(&tasklist_lock);
4833 do_each_thread(g, p) {
4834 /*
4835 * reset the NMI-timeout, listing all files on a slow
4836 * console might take alot of time:
4837 */
4838 touch_nmi_watchdog();
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004839 if (p->state & state_filter)
4840 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004841 } while_each_thread(g, p);
4842
4843 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004844 /*
4845 * Only show locks if all tasks are dumped:
4846 */
4847 if (state_filter == -1)
4848 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004849}
4850
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004851/**
4852 * init_idle - set up an idle thread for a given CPU
4853 * @idle: task in question
4854 * @cpu: cpu the idle task belongs to
4855 *
4856 * NOTE: this function does not set the idle thread's NEED_RESCHED
4857 * flag, to make booting more robust.
4858 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004859void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004860{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004861 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004862 unsigned long flags;
4863
Ingo Molnar81c29a82006-03-07 21:55:27 -08004864 idle->timestamp = sched_clock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004865 idle->sleep_avg = 0;
4866 idle->array = NULL;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004867 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004868 idle->state = TASK_RUNNING;
4869 idle->cpus_allowed = cpumask_of_cpu(cpu);
4870 set_task_cpu(idle, cpu);
4871
4872 spin_lock_irqsave(&rq->lock, flags);
4873 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004874#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4875 idle->oncpu = 1;
4876#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004877 spin_unlock_irqrestore(&rq->lock, flags);
4878
4879 /* Set the preempt count _outside_ the spinlocks! */
4880#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004881 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004882#else
Al Viroa1261f52005-11-13 16:06:55 -08004883 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004884#endif
4885}
4886
4887/*
4888 * In a system that switches off the HZ timer nohz_cpu_mask
4889 * indicates which cpus entered this state. This is used
4890 * in the rcu update to wait only for active cpus. For system
4891 * which do not switch off the HZ timer nohz_cpu_mask should
4892 * always be CPU_MASK_NONE.
4893 */
4894cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4895
4896#ifdef CONFIG_SMP
4897/*
4898 * This is how migration works:
4899 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004900 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004901 * runqueue and wake up that CPU's migration thread.
4902 * 2) we down() the locked semaphore => thread blocks.
4903 * 3) migration thread wakes up (implicitly it forces the migrated
4904 * thread off the CPU)
4905 * 4) it gets the migration request and checks whether the migrated
4906 * task is still in the wrong runqueue.
4907 * 5) if it's in the wrong runqueue then the migration thread removes
4908 * it and puts it into the right queue.
4909 * 6) migration thread up()s the semaphore.
4910 * 7) we wake up and the migration is done.
4911 */
4912
4913/*
4914 * Change a given task's CPU affinity. Migrate the thread to a
4915 * proper CPU and schedule it away if the CPU it's executing on
4916 * is removed from the allowed bitmask.
4917 *
4918 * NOTE: the caller must have a valid reference to the task, the
4919 * task must not exit() & deallocate itself prematurely. The
4920 * call is not atomic; no spinlocks may be held.
4921 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004922int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004924 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004925 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004926 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004927 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004928
4929 rq = task_rq_lock(p, &flags);
4930 if (!cpus_intersects(new_mask, cpu_online_map)) {
4931 ret = -EINVAL;
4932 goto out;
4933 }
4934
4935 p->cpus_allowed = new_mask;
4936 /* Can the task run on the task's current CPU? If so, we're done */
4937 if (cpu_isset(task_cpu(p), new_mask))
4938 goto out;
4939
4940 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4941 /* Need help from migration thread: drop lock and wait. */
4942 task_rq_unlock(rq, &flags);
4943 wake_up_process(rq->migration_thread);
4944 wait_for_completion(&req.done);
4945 tlb_migrate_finish(p->mm);
4946 return 0;
4947 }
4948out:
4949 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004950
Linus Torvalds1da177e2005-04-16 15:20:36 -07004951 return ret;
4952}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004953EXPORT_SYMBOL_GPL(set_cpus_allowed);
4954
4955/*
4956 * Move (not current) task off this cpu, onto dest cpu. We're doing
4957 * this because either it can't run here any more (set_cpus_allowed()
4958 * away from this CPU, or CPU going down), or because we're
4959 * attempting to rebalance this task on exec (sched_exec).
4960 *
4961 * So we race with normal scheduler movements, but that's OK, as long
4962 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004963 *
4964 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004965 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004966static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004967{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004968 struct rq *rq_dest, *rq_src;
Kirill Korotaevefc30812006-06-27 02:54:32 -07004969 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004970
4971 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004972 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004973
4974 rq_src = cpu_rq(src_cpu);
4975 rq_dest = cpu_rq(dest_cpu);
4976
4977 double_rq_lock(rq_src, rq_dest);
4978 /* Already moved. */
4979 if (task_cpu(p) != src_cpu)
4980 goto out;
4981 /* Affinity changed (again). */
4982 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4983 goto out;
4984
4985 set_task_cpu(p, dest_cpu);
4986 if (p->array) {
4987 /*
4988 * Sync timestamp with rq_dest's before activating.
4989 * The same thing could be achieved by doing this step
4990 * afterwards, and pretending it was a local activate.
4991 * This way is cleaner and logically correct.
4992 */
4993 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4994 + rq_dest->timestamp_last_tick;
4995 deactivate_task(p, rq_src);
Peter Williams0a565f72006-07-10 04:43:51 -07004996 __activate_task(p, rq_dest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004997 if (TASK_PREEMPTS_CURR(p, rq_dest))
4998 resched_task(rq_dest->curr);
4999 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07005000 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001out:
5002 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005003 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005004}
5005
5006/*
5007 * migration_thread - this is a highprio system thread that performs
5008 * thread migration by bumping thread off CPU then 'pushing' onto
5009 * another runqueue.
5010 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07005011static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005012{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005013 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005014 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005015
5016 rq = cpu_rq(cpu);
5017 BUG_ON(rq->migration_thread != current);
5018
5019 set_current_state(TASK_INTERRUPTIBLE);
5020 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005021 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005022 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005023
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07005024 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005025
5026 spin_lock_irq(&rq->lock);
5027
5028 if (cpu_is_offline(cpu)) {
5029 spin_unlock_irq(&rq->lock);
5030 goto wait_to_die;
5031 }
5032
5033 if (rq->active_balance) {
5034 active_load_balance(rq, cpu);
5035 rq->active_balance = 0;
5036 }
5037
5038 head = &rq->migration_queue;
5039
5040 if (list_empty(head)) {
5041 spin_unlock_irq(&rq->lock);
5042 schedule();
5043 set_current_state(TASK_INTERRUPTIBLE);
5044 continue;
5045 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005046 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005047 list_del_init(head->next);
5048
Nick Piggin674311d2005-06-25 14:57:27 -07005049 spin_unlock(&rq->lock);
5050 __migrate_task(req->task, cpu, req->dest_cpu);
5051 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005052
5053 complete(&req->done);
5054 }
5055 __set_current_state(TASK_RUNNING);
5056 return 0;
5057
5058wait_to_die:
5059 /* Wait for kthread_stop */
5060 set_current_state(TASK_INTERRUPTIBLE);
5061 while (!kthread_should_stop()) {
5062 schedule();
5063 set_current_state(TASK_INTERRUPTIBLE);
5064 }
5065 __set_current_state(TASK_RUNNING);
5066 return 0;
5067}
5068
5069#ifdef CONFIG_HOTPLUG_CPU
5070/* Figure out where task on dead CPU should go, use force if neccessary. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005071static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005073 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005074 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005075 struct rq *rq;
5076 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005077
Kirill Korotaevefc30812006-06-27 02:54:32 -07005078restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079 /* On same node? */
5080 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005081 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005082 dest_cpu = any_online_cpu(mask);
5083
5084 /* On any allowed CPU? */
5085 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005086 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005087
5088 /* No more Mr. Nice Guy. */
5089 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005090 rq = task_rq_lock(p, &flags);
5091 cpus_setall(p->cpus_allowed);
5092 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005093 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005094
5095 /*
5096 * Don't tell them about moving exiting tasks or
5097 * kernel threads (both mm NULL), since they never
5098 * leave kernel.
5099 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005100 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005101 printk(KERN_INFO "process %d (%s) no "
5102 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005103 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005104 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005105 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005106 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005107}
5108
5109/*
5110 * While a dead CPU has no uninterruptible tasks queued at this point,
5111 * it might still have a nonzero ->nr_uninterruptible counter, because
5112 * for performance reasons the counter is not stricly tracking tasks to
5113 * their home CPUs. So we just add the counter to another CPU's counter,
5114 * to keep the global sum constant after CPU-down:
5115 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005116static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005117{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005118 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005119 unsigned long flags;
5120
5121 local_irq_save(flags);
5122 double_rq_lock(rq_src, rq_dest);
5123 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5124 rq_src->nr_uninterruptible = 0;
5125 double_rq_unlock(rq_src, rq_dest);
5126 local_irq_restore(flags);
5127}
5128
5129/* Run through task list and migrate tasks from the dead cpu. */
5130static void migrate_live_tasks(int src_cpu)
5131{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005132 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005133
5134 write_lock_irq(&tasklist_lock);
5135
Ingo Molnar48f24c42006-07-03 00:25:40 -07005136 do_each_thread(t, p) {
5137 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005138 continue;
5139
Ingo Molnar48f24c42006-07-03 00:25:40 -07005140 if (task_cpu(p) == src_cpu)
5141 move_task_off_dead_cpu(src_cpu, p);
5142 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005143
5144 write_unlock_irq(&tasklist_lock);
5145}
5146
5147/* Schedules idle task to be the next runnable task on current CPU.
5148 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005149 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150 */
5151void sched_idle_next(void)
5152{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005153 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005154 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005155 struct task_struct *p = rq->idle;
5156 unsigned long flags;
5157
5158 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005159 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160
Ingo Molnar48f24c42006-07-03 00:25:40 -07005161 /*
5162 * Strictly not necessary since rest of the CPUs are stopped by now
5163 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005164 */
5165 spin_lock_irqsave(&rq->lock, flags);
5166
5167 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005168
5169 /* Add idle task to the _front_ of its priority queue: */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005170 __activate_idle_task(p, rq);
5171
5172 spin_unlock_irqrestore(&rq->lock, flags);
5173}
5174
Ingo Molnar48f24c42006-07-03 00:25:40 -07005175/*
5176 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005177 * offline.
5178 */
5179void idle_task_exit(void)
5180{
5181 struct mm_struct *mm = current->active_mm;
5182
5183 BUG_ON(cpu_online(smp_processor_id()));
5184
5185 if (mm != &init_mm)
5186 switch_mm(mm, &init_mm, current);
5187 mmdrop(mm);
5188}
5189
Ingo Molnar36c8b582006-07-03 00:25:41 -07005190static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005192 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005193
5194 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005195 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005196
5197 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005198 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005199
Ingo Molnar48f24c42006-07-03 00:25:40 -07005200 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005201
5202 /*
5203 * Drop lock around migration; if someone else moves it,
5204 * that's OK. No task can be added to this CPU, so iteration is
5205 * fine.
5206 */
5207 spin_unlock_irq(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005208 move_task_off_dead_cpu(dead_cpu, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209 spin_lock_irq(&rq->lock);
5210
Ingo Molnar48f24c42006-07-03 00:25:40 -07005211 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005212}
5213
5214/* release_task() removes task from tasklist, so we won't find dead tasks. */
5215static void migrate_dead_tasks(unsigned int dead_cpu)
5216{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005217 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005218 unsigned int arr, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005219
5220 for (arr = 0; arr < 2; arr++) {
5221 for (i = 0; i < MAX_PRIO; i++) {
5222 struct list_head *list = &rq->arrays[arr].queue[i];
Ingo Molnar48f24c42006-07-03 00:25:40 -07005223
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224 while (!list_empty(list))
Ingo Molnar36c8b582006-07-03 00:25:41 -07005225 migrate_dead(dead_cpu, list_entry(list->next,
5226 struct task_struct, run_list));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005227 }
5228 }
5229}
5230#endif /* CONFIG_HOTPLUG_CPU */
5231
5232/*
5233 * migration_call - callback that gets triggered when a CPU is added.
5234 * Here we can start up the necessary migration thread for the new CPU.
5235 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005236static int __cpuinit
5237migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005238{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005240 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005241 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005242 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005243
5244 switch (action) {
5245 case CPU_UP_PREPARE:
5246 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5247 if (IS_ERR(p))
5248 return NOTIFY_BAD;
5249 p->flags |= PF_NOFREEZE;
5250 kthread_bind(p, cpu);
5251 /* Must be high prio: stop_machine expects to yield to it. */
5252 rq = task_rq_lock(p, &flags);
5253 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5254 task_rq_unlock(rq, &flags);
5255 cpu_rq(cpu)->migration_thread = p;
5256 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005257
Linus Torvalds1da177e2005-04-16 15:20:36 -07005258 case CPU_ONLINE:
5259 /* Strictly unneccessary, as first user will wake it. */
5260 wake_up_process(cpu_rq(cpu)->migration_thread);
5261 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005262
Linus Torvalds1da177e2005-04-16 15:20:36 -07005263#ifdef CONFIG_HOTPLUG_CPU
5264 case CPU_UP_CANCELED:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005265 if (!cpu_rq(cpu)->migration_thread)
5266 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005267 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005268 kthread_bind(cpu_rq(cpu)->migration_thread,
5269 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005270 kthread_stop(cpu_rq(cpu)->migration_thread);
5271 cpu_rq(cpu)->migration_thread = NULL;
5272 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005273
Linus Torvalds1da177e2005-04-16 15:20:36 -07005274 case CPU_DEAD:
5275 migrate_live_tasks(cpu);
5276 rq = cpu_rq(cpu);
5277 kthread_stop(rq->migration_thread);
5278 rq->migration_thread = NULL;
5279 /* Idle task back to normal (off runqueue, low prio) */
5280 rq = task_rq_lock(rq->idle, &flags);
5281 deactivate_task(rq->idle, rq);
5282 rq->idle->static_prio = MAX_PRIO;
5283 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5284 migrate_dead_tasks(cpu);
5285 task_rq_unlock(rq, &flags);
5286 migrate_nr_uninterruptible(rq);
5287 BUG_ON(rq->nr_running != 0);
5288
5289 /* No need to migrate the tasks: it was best-effort if
5290 * they didn't do lock_cpu_hotplug(). Just wake up
5291 * the requestors. */
5292 spin_lock_irq(&rq->lock);
5293 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005294 struct migration_req *req;
5295
Linus Torvalds1da177e2005-04-16 15:20:36 -07005296 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005297 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005298 list_del_init(&req->list);
5299 complete(&req->done);
5300 }
5301 spin_unlock_irq(&rq->lock);
5302 break;
5303#endif
5304 }
5305 return NOTIFY_OK;
5306}
5307
5308/* Register at highest priority so that task migration (migrate_all_tasks)
5309 * happens before everything else.
5310 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005311static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005312 .notifier_call = migration_call,
5313 .priority = 10
5314};
5315
5316int __init migration_init(void)
5317{
5318 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005319 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005320
5321 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005322 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5323 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005324 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5325 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005326
Linus Torvalds1da177e2005-04-16 15:20:36 -07005327 return 0;
5328}
5329#endif
5330
5331#ifdef CONFIG_SMP
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005332#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005333#ifdef SCHED_DOMAIN_DEBUG
5334static void sched_domain_debug(struct sched_domain *sd, int cpu)
5335{
5336 int level = 0;
5337
Nick Piggin41c7ce92005-06-25 14:57:24 -07005338 if (!sd) {
5339 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5340 return;
5341 }
5342
Linus Torvalds1da177e2005-04-16 15:20:36 -07005343 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5344
5345 do {
5346 int i;
5347 char str[NR_CPUS];
5348 struct sched_group *group = sd->groups;
5349 cpumask_t groupmask;
5350
5351 cpumask_scnprintf(str, NR_CPUS, sd->span);
5352 cpus_clear(groupmask);
5353
5354 printk(KERN_DEBUG);
5355 for (i = 0; i < level + 1; i++)
5356 printk(" ");
5357 printk("domain %d: ", level);
5358
5359 if (!(sd->flags & SD_LOAD_BALANCE)) {
5360 printk("does not load-balance\n");
5361 if (sd->parent)
5362 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5363 break;
5364 }
5365
5366 printk("span %s\n", str);
5367
5368 if (!cpu_isset(cpu, sd->span))
5369 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5370 if (!cpu_isset(cpu, group->cpumask))
5371 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5372
5373 printk(KERN_DEBUG);
5374 for (i = 0; i < level + 2; i++)
5375 printk(" ");
5376 printk("groups:");
5377 do {
5378 if (!group) {
5379 printk("\n");
5380 printk(KERN_ERR "ERROR: group is NULL\n");
5381 break;
5382 }
5383
5384 if (!group->cpu_power) {
5385 printk("\n");
5386 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5387 }
5388
5389 if (!cpus_weight(group->cpumask)) {
5390 printk("\n");
5391 printk(KERN_ERR "ERROR: empty group\n");
5392 }
5393
5394 if (cpus_intersects(groupmask, group->cpumask)) {
5395 printk("\n");
5396 printk(KERN_ERR "ERROR: repeated CPUs\n");
5397 }
5398
5399 cpus_or(groupmask, groupmask, group->cpumask);
5400
5401 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5402 printk(" %s", str);
5403
5404 group = group->next;
5405 } while (group != sd->groups);
5406 printk("\n");
5407
5408 if (!cpus_equal(sd->span, groupmask))
5409 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5410
5411 level++;
5412 sd = sd->parent;
5413
5414 if (sd) {
5415 if (!cpus_subset(groupmask, sd->span))
5416 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5417 }
5418
5419 } while (sd);
5420}
5421#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005422# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005423#endif
5424
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005425static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005426{
5427 if (cpus_weight(sd->span) == 1)
5428 return 1;
5429
5430 /* Following flags need at least 2 groups */
5431 if (sd->flags & (SD_LOAD_BALANCE |
5432 SD_BALANCE_NEWIDLE |
5433 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005434 SD_BALANCE_EXEC |
5435 SD_SHARE_CPUPOWER |
5436 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005437 if (sd->groups != sd->groups->next)
5438 return 0;
5439 }
5440
5441 /* Following flags don't use groups */
5442 if (sd->flags & (SD_WAKE_IDLE |
5443 SD_WAKE_AFFINE |
5444 SD_WAKE_BALANCE))
5445 return 0;
5446
5447 return 1;
5448}
5449
Ingo Molnar48f24c42006-07-03 00:25:40 -07005450static int
5451sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005452{
5453 unsigned long cflags = sd->flags, pflags = parent->flags;
5454
5455 if (sd_degenerate(parent))
5456 return 1;
5457
5458 if (!cpus_equal(sd->span, parent->span))
5459 return 0;
5460
5461 /* Does parent contain flags not in child? */
5462 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5463 if (cflags & SD_WAKE_AFFINE)
5464 pflags &= ~SD_WAKE_BALANCE;
5465 /* Flags needing groups don't count if only 1 group in parent */
5466 if (parent->groups == parent->groups->next) {
5467 pflags &= ~(SD_LOAD_BALANCE |
5468 SD_BALANCE_NEWIDLE |
5469 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005470 SD_BALANCE_EXEC |
5471 SD_SHARE_CPUPOWER |
5472 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005473 }
5474 if (~cflags & pflags)
5475 return 0;
5476
5477 return 1;
5478}
5479
Linus Torvalds1da177e2005-04-16 15:20:36 -07005480/*
5481 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5482 * hold the hotplug lock.
5483 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005484static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005485{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005486 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005487 struct sched_domain *tmp;
5488
5489 /* Remove the sched domains which do not contribute to scheduling. */
5490 for (tmp = sd; tmp; tmp = tmp->parent) {
5491 struct sched_domain *parent = tmp->parent;
5492 if (!parent)
5493 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005494 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005495 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005496 if (parent->parent)
5497 parent->parent->child = tmp;
5498 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005499 }
5500
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005501 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005502 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005503 if (sd)
5504 sd->child = NULL;
5505 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005506
5507 sched_domain_debug(sd, cpu);
5508
Nick Piggin674311d2005-06-25 14:57:27 -07005509 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005510}
5511
5512/* cpus with isolated domains */
Nick Piggin5c1e1762006-10-03 01:14:04 -07005513static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005514
5515/* Setup the mask of cpus configured for isolated domains */
5516static int __init isolated_cpu_setup(char *str)
5517{
5518 int ints[NR_CPUS], i;
5519
5520 str = get_options(str, ARRAY_SIZE(ints), ints);
5521 cpus_clear(cpu_isolated_map);
5522 for (i = 1; i <= ints[0]; i++)
5523 if (ints[i] < NR_CPUS)
5524 cpu_set(ints[i], cpu_isolated_map);
5525 return 1;
5526}
5527
5528__setup ("isolcpus=", isolated_cpu_setup);
5529
5530/*
5531 * init_sched_build_groups takes an array of groups, the cpumask we wish
5532 * to span, and a pointer to a function which identifies what group a CPU
5533 * belongs to. The return value of group_fn must be a valid index into the
5534 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5535 * keep track of groups covered with a cpumask_t).
5536 *
5537 * init_sched_build_groups will build a circular linked list of the groups
5538 * covered by the given span, and will set each group's ->cpumask correctly,
5539 * and ->cpu_power to 0.
5540 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005541static void
5542init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5543 const cpumask_t *cpu_map,
5544 int (*group_fn)(int cpu, const cpumask_t *cpu_map))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005545{
5546 struct sched_group *first = NULL, *last = NULL;
5547 cpumask_t covered = CPU_MASK_NONE;
5548 int i;
5549
5550 for_each_cpu_mask(i, span) {
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005551 int group = group_fn(i, cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005552 struct sched_group *sg = &groups[group];
5553 int j;
5554
5555 if (cpu_isset(i, covered))
5556 continue;
5557
5558 sg->cpumask = CPU_MASK_NONE;
5559 sg->cpu_power = 0;
5560
5561 for_each_cpu_mask(j, span) {
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005562 if (group_fn(j, cpu_map) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005563 continue;
5564
5565 cpu_set(j, covered);
5566 cpu_set(j, sg->cpumask);
5567 }
5568 if (!first)
5569 first = sg;
5570 if (last)
5571 last->next = sg;
5572 last = sg;
5573 }
5574 last->next = first;
5575}
5576
John Hawkes9c1cfda2005-09-06 15:18:14 -07005577#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005578
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005579/*
5580 * Self-tuning task migration cost measurement between source and target CPUs.
5581 *
5582 * This is done by measuring the cost of manipulating buffers of varying
5583 * sizes. For a given buffer-size here are the steps that are taken:
5584 *
5585 * 1) the source CPU reads+dirties a shared buffer
5586 * 2) the target CPU reads+dirties the same shared buffer
5587 *
5588 * We measure how long they take, in the following 4 scenarios:
5589 *
5590 * - source: CPU1, target: CPU2 | cost1
5591 * - source: CPU2, target: CPU1 | cost2
5592 * - source: CPU1, target: CPU1 | cost3
5593 * - source: CPU2, target: CPU2 | cost4
5594 *
5595 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5596 * the cost of migration.
5597 *
5598 * We then start off from a small buffer-size and iterate up to larger
5599 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5600 * doing a maximum search for the cost. (The maximum cost for a migration
5601 * normally occurs when the working set size is around the effective cache
5602 * size.)
5603 */
5604#define SEARCH_SCOPE 2
5605#define MIN_CACHE_SIZE (64*1024U)
5606#define DEFAULT_CACHE_SIZE (5*1024*1024U)
Ingo Molnar70b4d632006-01-30 20:24:38 +01005607#define ITERATIONS 1
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005608#define SIZE_THRESH 130
5609#define COST_THRESH 130
5610
5611/*
5612 * The migration cost is a function of 'domain distance'. Domain
5613 * distance is the number of steps a CPU has to iterate down its
5614 * domain tree to share a domain with the other CPU. The farther
5615 * two CPUs are from each other, the larger the distance gets.
5616 *
5617 * Note that we use the distance only to cache measurement results,
5618 * the distance value is not used numerically otherwise. When two
5619 * CPUs have the same distance it is assumed that the migration
5620 * cost is the same. (this is a simplification but quite practical)
5621 */
5622#define MAX_DOMAIN_DISTANCE 32
5623
5624static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
Ingo Molnar4bbf39c2006-02-17 13:52:44 -08005625 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5626/*
5627 * Architectures may override the migration cost and thus avoid
5628 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5629 * virtualized hardware:
5630 */
5631#ifdef CONFIG_DEFAULT_MIGRATION_COST
5632 CONFIG_DEFAULT_MIGRATION_COST
5633#else
5634 -1LL
5635#endif
5636};
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005637
5638/*
5639 * Allow override of migration cost - in units of microseconds.
5640 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5641 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5642 */
5643static int __init migration_cost_setup(char *str)
5644{
5645 int ints[MAX_DOMAIN_DISTANCE+1], i;
5646
5647 str = get_options(str, ARRAY_SIZE(ints), ints);
5648
5649 printk("#ints: %d\n", ints[0]);
5650 for (i = 1; i <= ints[0]; i++) {
5651 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5652 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5653 }
5654 return 1;
5655}
5656
5657__setup ("migration_cost=", migration_cost_setup);
5658
5659/*
5660 * Global multiplier (divisor) for migration-cutoff values,
5661 * in percentiles. E.g. use a value of 150 to get 1.5 times
5662 * longer cache-hot cutoff times.
5663 *
5664 * (We scale it from 100 to 128 to long long handling easier.)
5665 */
5666
5667#define MIGRATION_FACTOR_SCALE 128
5668
5669static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5670
5671static int __init setup_migration_factor(char *str)
5672{
5673 get_option(&str, &migration_factor);
5674 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5675 return 1;
5676}
5677
5678__setup("migration_factor=", setup_migration_factor);
5679
5680/*
5681 * Estimated distance of two CPUs, measured via the number of domains
5682 * we have to pass for the two CPUs to be in the same span:
5683 */
5684static unsigned long domain_distance(int cpu1, int cpu2)
5685{
5686 unsigned long distance = 0;
5687 struct sched_domain *sd;
5688
5689 for_each_domain(cpu1, sd) {
5690 WARN_ON(!cpu_isset(cpu1, sd->span));
5691 if (cpu_isset(cpu2, sd->span))
5692 return distance;
5693 distance++;
5694 }
5695 if (distance >= MAX_DOMAIN_DISTANCE) {
5696 WARN_ON(1);
5697 distance = MAX_DOMAIN_DISTANCE-1;
5698 }
5699
5700 return distance;
5701}
5702
5703static unsigned int migration_debug;
5704
5705static int __init setup_migration_debug(char *str)
5706{
5707 get_option(&str, &migration_debug);
5708 return 1;
5709}
5710
5711__setup("migration_debug=", setup_migration_debug);
5712
5713/*
5714 * Maximum cache-size that the scheduler should try to measure.
5715 * Architectures with larger caches should tune this up during
5716 * bootup. Gets used in the domain-setup code (i.e. during SMP
5717 * bootup).
5718 */
5719unsigned int max_cache_size;
5720
5721static int __init setup_max_cache_size(char *str)
5722{
5723 get_option(&str, &max_cache_size);
5724 return 1;
5725}
5726
5727__setup("max_cache_size=", setup_max_cache_size);
5728
5729/*
5730 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5731 * is the operation that is timed, so we try to generate unpredictable
5732 * cachemisses that still end up filling the L2 cache:
5733 */
5734static void touch_cache(void *__cache, unsigned long __size)
5735{
5736 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5737 chunk2 = 2*size/3;
5738 unsigned long *cache = __cache;
5739 int i;
5740
5741 for (i = 0; i < size/6; i += 8) {
5742 switch (i % 6) {
5743 case 0: cache[i]++;
5744 case 1: cache[size-1-i]++;
5745 case 2: cache[chunk1-i]++;
5746 case 3: cache[chunk1+i]++;
5747 case 4: cache[chunk2-i]++;
5748 case 5: cache[chunk2+i]++;
5749 }
5750 }
5751}
5752
5753/*
5754 * Measure the cache-cost of one task migration. Returns in units of nsec.
5755 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005756static unsigned long long
5757measure_one(void *cache, unsigned long size, int source, int target)
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005758{
5759 cpumask_t mask, saved_mask;
5760 unsigned long long t0, t1, t2, t3, cost;
5761
5762 saved_mask = current->cpus_allowed;
5763
5764 /*
5765 * Flush source caches to RAM and invalidate them:
5766 */
5767 sched_cacheflush();
5768
5769 /*
5770 * Migrate to the source CPU:
5771 */
5772 mask = cpumask_of_cpu(source);
5773 set_cpus_allowed(current, mask);
5774 WARN_ON(smp_processor_id() != source);
5775
5776 /*
5777 * Dirty the working set:
5778 */
5779 t0 = sched_clock();
5780 touch_cache(cache, size);
5781 t1 = sched_clock();
5782
5783 /*
5784 * Migrate to the target CPU, dirty the L2 cache and access
5785 * the shared buffer. (which represents the working set
5786 * of a migrated task.)
5787 */
5788 mask = cpumask_of_cpu(target);
5789 set_cpus_allowed(current, mask);
5790 WARN_ON(smp_processor_id() != target);
5791
5792 t2 = sched_clock();
5793 touch_cache(cache, size);
5794 t3 = sched_clock();
5795
5796 cost = t1-t0 + t3-t2;
5797
5798 if (migration_debug >= 2)
5799 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5800 source, target, t1-t0, t1-t0, t3-t2, cost);
5801 /*
5802 * Flush target caches to RAM and invalidate them:
5803 */
5804 sched_cacheflush();
5805
5806 set_cpus_allowed(current, saved_mask);
5807
5808 return cost;
5809}
5810
5811/*
5812 * Measure a series of task migrations and return the average
5813 * result. Since this code runs early during bootup the system
5814 * is 'undisturbed' and the average latency makes sense.
5815 *
5816 * The algorithm in essence auto-detects the relevant cache-size,
5817 * so it will properly detect different cachesizes for different
5818 * cache-hierarchies, depending on how the CPUs are connected.
5819 *
5820 * Architectures can prime the upper limit of the search range via
5821 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5822 */
5823static unsigned long long
5824measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5825{
5826 unsigned long long cost1, cost2;
5827 int i;
5828
5829 /*
5830 * Measure the migration cost of 'size' bytes, over an
5831 * average of 10 runs:
5832 *
5833 * (We perturb the cache size by a small (0..4k)
5834 * value to compensate size/alignment related artifacts.
5835 * We also subtract the cost of the operation done on
5836 * the same CPU.)
5837 */
5838 cost1 = 0;
5839
5840 /*
5841 * dry run, to make sure we start off cache-cold on cpu1,
5842 * and to get any vmalloc pagefaults in advance:
5843 */
5844 measure_one(cache, size, cpu1, cpu2);
5845 for (i = 0; i < ITERATIONS; i++)
5846 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5847
5848 measure_one(cache, size, cpu2, cpu1);
5849 for (i = 0; i < ITERATIONS; i++)
5850 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5851
5852 /*
5853 * (We measure the non-migrating [cached] cost on both
5854 * cpu1 and cpu2, to handle CPUs with different speeds)
5855 */
5856 cost2 = 0;
5857
5858 measure_one(cache, size, cpu1, cpu1);
5859 for (i = 0; i < ITERATIONS; i++)
5860 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5861
5862 measure_one(cache, size, cpu2, cpu2);
5863 for (i = 0; i < ITERATIONS; i++)
5864 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5865
5866 /*
5867 * Get the per-iteration migration cost:
5868 */
5869 do_div(cost1, 2*ITERATIONS);
5870 do_div(cost2, 2*ITERATIONS);
5871
5872 return cost1 - cost2;
5873}
5874
5875static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5876{
5877 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5878 unsigned int max_size, size, size_found = 0;
5879 long long cost = 0, prev_cost;
5880 void *cache;
5881
5882 /*
5883 * Search from max_cache_size*5 down to 64K - the real relevant
5884 * cachesize has to lie somewhere inbetween.
5885 */
5886 if (max_cache_size) {
5887 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5888 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5889 } else {
5890 /*
5891 * Since we have no estimation about the relevant
5892 * search range
5893 */
5894 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5895 size = MIN_CACHE_SIZE;
5896 }
5897
5898 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5899 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5900 return 0;
5901 }
5902
5903 /*
5904 * Allocate the working set:
5905 */
5906 cache = vmalloc(max_size);
5907 if (!cache) {
5908 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
Andreas Mohr2ed6e342006-07-10 04:43:52 -07005909 return 1000000; /* return 1 msec on very small boxen */
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005910 }
5911
5912 while (size <= max_size) {
5913 prev_cost = cost;
5914 cost = measure_cost(cpu1, cpu2, cache, size);
5915
5916 /*
5917 * Update the max:
5918 */
5919 if (cost > 0) {
5920 if (max_cost < cost) {
5921 max_cost = cost;
5922 size_found = size;
5923 }
5924 }
5925 /*
5926 * Calculate average fluctuation, we use this to prevent
5927 * noise from triggering an early break out of the loop:
5928 */
5929 fluct = abs(cost - prev_cost);
5930 avg_fluct = (avg_fluct + fluct)/2;
5931
5932 if (migration_debug)
5933 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5934 cpu1, cpu2, size,
5935 (long)cost / 1000000,
5936 ((long)cost / 100000) % 10,
5937 (long)max_cost / 1000000,
5938 ((long)max_cost / 100000) % 10,
5939 domain_distance(cpu1, cpu2),
5940 cost, avg_fluct);
5941
5942 /*
5943 * If we iterated at least 20% past the previous maximum,
5944 * and the cost has dropped by more than 20% already,
5945 * (taking fluctuations into account) then we assume to
5946 * have found the maximum and break out of the loop early:
5947 */
5948 if (size_found && (size*100 > size_found*SIZE_THRESH))
5949 if (cost+avg_fluct <= 0 ||
5950 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5951
5952 if (migration_debug)
5953 printk("-> found max.\n");
5954 break;
5955 }
5956 /*
Ingo Molnar70b4d632006-01-30 20:24:38 +01005957 * Increase the cachesize in 10% steps:
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005958 */
Ingo Molnar70b4d632006-01-30 20:24:38 +01005959 size = size * 10 / 9;
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005960 }
5961
5962 if (migration_debug)
5963 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5964 cpu1, cpu2, size_found, max_cost);
5965
5966 vfree(cache);
5967
5968 /*
5969 * A task is considered 'cache cold' if at least 2 times
5970 * the worst-case cost of migration has passed.
5971 *
5972 * (this limit is only listened to if the load-balancing
5973 * situation is 'nice' - if there is a large imbalance we
5974 * ignore it for the sake of CPU utilization and
5975 * processing fairness.)
5976 */
5977 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5978}
5979
5980static void calibrate_migration_costs(const cpumask_t *cpu_map)
5981{
5982 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5983 unsigned long j0, j1, distance, max_distance = 0;
5984 struct sched_domain *sd;
5985
5986 j0 = jiffies;
5987
5988 /*
5989 * First pass - calculate the cacheflush times:
5990 */
5991 for_each_cpu_mask(cpu1, *cpu_map) {
5992 for_each_cpu_mask(cpu2, *cpu_map) {
5993 if (cpu1 == cpu2)
5994 continue;
5995 distance = domain_distance(cpu1, cpu2);
5996 max_distance = max(max_distance, distance);
5997 /*
5998 * No result cached yet?
5999 */
6000 if (migration_cost[distance] == -1LL)
6001 migration_cost[distance] =
6002 measure_migration_cost(cpu1, cpu2);
6003 }
6004 }
6005 /*
6006 * Second pass - update the sched domain hierarchy with
6007 * the new cache-hot-time estimations:
6008 */
6009 for_each_cpu_mask(cpu, *cpu_map) {
6010 distance = 0;
6011 for_each_domain(cpu, sd) {
6012 sd->cache_hot_time = migration_cost[distance];
6013 distance++;
6014 }
6015 }
6016 /*
6017 * Print the matrix:
6018 */
6019 if (migration_debug)
6020 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6021 max_cache_size,
6022#ifdef CONFIG_X86
6023 cpu_khz/1000
6024#else
6025 -1
6026#endif
6027 );
Chuck Ebbertbd576c92006-02-04 23:27:42 -08006028 if (system_state == SYSTEM_BOOTING) {
Dave Jones74732642006-10-03 01:14:07 -07006029 if (num_online_cpus() > 1) {
6030 printk("migration_cost=");
6031 for (distance = 0; distance <= max_distance; distance++) {
6032 if (distance)
6033 printk(",");
6034 printk("%ld", (long)migration_cost[distance] / 1000);
6035 }
6036 printk("\n");
Chuck Ebbertbd576c92006-02-04 23:27:42 -08006037 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006038 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006039 j1 = jiffies;
6040 if (migration_debug)
6041 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6042
6043 /*
6044 * Move back to the original CPU. NUMA-Q gets confused
6045 * if we migrate to another quad during bootup.
6046 */
6047 if (raw_smp_processor_id() != orig_cpu) {
6048 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6049 saved_mask = current->cpus_allowed;
6050
6051 set_cpus_allowed(current, mask);
6052 set_cpus_allowed(current, saved_mask);
6053 }
6054}
6055
John Hawkes9c1cfda2005-09-06 15:18:14 -07006056#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006057
John Hawkes9c1cfda2005-09-06 15:18:14 -07006058/**
6059 * find_next_best_node - find the next node to include in a sched_domain
6060 * @node: node whose sched_domain we're building
6061 * @used_nodes: nodes already in the sched_domain
6062 *
6063 * Find the next node to include in a given scheduling domain. Simply
6064 * finds the closest node not already in the @used_nodes map.
6065 *
6066 * Should use nodemask_t.
6067 */
6068static int find_next_best_node(int node, unsigned long *used_nodes)
6069{
6070 int i, n, val, min_val, best_node = 0;
6071
6072 min_val = INT_MAX;
6073
6074 for (i = 0; i < MAX_NUMNODES; i++) {
6075 /* Start at @node */
6076 n = (node + i) % MAX_NUMNODES;
6077
6078 if (!nr_cpus_node(n))
6079 continue;
6080
6081 /* Skip already used nodes */
6082 if (test_bit(n, used_nodes))
6083 continue;
6084
6085 /* Simple min distance search */
6086 val = node_distance(node, n);
6087
6088 if (val < min_val) {
6089 min_val = val;
6090 best_node = n;
6091 }
6092 }
6093
6094 set_bit(best_node, used_nodes);
6095 return best_node;
6096}
6097
6098/**
6099 * sched_domain_node_span - get a cpumask for a node's sched_domain
6100 * @node: node whose cpumask we're constructing
6101 * @size: number of nodes to include in this span
6102 *
6103 * Given a node, construct a good cpumask for its sched_domain to span. It
6104 * should be one that prevents unnecessary balancing, but also spreads tasks
6105 * out optimally.
6106 */
6107static cpumask_t sched_domain_node_span(int node)
6108{
John Hawkes9c1cfda2005-09-06 15:18:14 -07006109 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006110 cpumask_t span, nodemask;
6111 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006112
6113 cpus_clear(span);
6114 bitmap_zero(used_nodes, MAX_NUMNODES);
6115
6116 nodemask = node_to_cpumask(node);
6117 cpus_or(span, span, nodemask);
6118 set_bit(node, used_nodes);
6119
6120 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6121 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07006122
John Hawkes9c1cfda2005-09-06 15:18:14 -07006123 nodemask = node_to_cpumask(next_node);
6124 cpus_or(span, span, nodemask);
6125 }
6126
6127 return span;
6128}
6129#endif
6130
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006131int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006132
John Hawkes9c1cfda2005-09-06 15:18:14 -07006133/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07006134 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07006135 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006136#ifdef CONFIG_SCHED_SMT
6137static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6138static struct sched_group sched_group_cpus[NR_CPUS];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006139
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006140static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006141{
6142 return cpu;
6143}
6144#endif
6145
Ingo Molnar48f24c42006-07-03 00:25:40 -07006146/*
6147 * multi-core sched-domains:
6148 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006149#ifdef CONFIG_SCHED_MC
6150static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006151static struct sched_group sched_group_core[NR_CPUS];
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006152#endif
6153
6154#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006155static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006156{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006157 cpumask_t mask = cpu_sibling_map[cpu];
6158 cpus_and(mask, mask, *cpu_map);
6159 return first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006160}
6161#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006162static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006163{
6164 return cpu;
6165}
6166#endif
6167
Linus Torvalds1da177e2005-04-16 15:20:36 -07006168static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006169static struct sched_group sched_group_phys[NR_CPUS];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006170
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006171static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006172{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006173#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006174 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006175 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006176 return first_cpu(mask);
6177#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006178 cpumask_t mask = cpu_sibling_map[cpu];
6179 cpus_and(mask, mask, *cpu_map);
6180 return first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006181#else
6182 return cpu;
6183#endif
6184}
6185
6186#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07006187/*
6188 * The init_sched_build_groups can't handle what we want to do with node
6189 * groups, so roll our own. Now each node has its own list of groups which
6190 * gets dynamically allocated.
6191 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006192static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07006193static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07006194
6195static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07006196static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07006197
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006198static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006199{
6200 return cpu_to_node(cpu);
6201}
Siddha, Suresh B08069032006-03-27 01:15:23 -08006202static void init_numa_sched_groups_power(struct sched_group *group_head)
6203{
6204 struct sched_group *sg = group_head;
6205 int j;
6206
6207 if (!sg)
6208 return;
6209next_sg:
6210 for_each_cpu_mask(j, sg->cpumask) {
6211 struct sched_domain *sd;
6212
6213 sd = &per_cpu(phys_domains, j);
6214 if (j != first_cpu(sd->groups->cpumask)) {
6215 /*
6216 * Only add "power" once for each
6217 * physical package.
6218 */
6219 continue;
6220 }
6221
6222 sg->cpu_power += sd->groups->cpu_power;
6223 }
6224 sg = sg->next;
6225 if (sg != group_head)
6226 goto next_sg;
6227}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006228#endif
6229
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006230#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006231/* Free memory allocated for various sched_group structures */
6232static void free_sched_groups(const cpumask_t *cpu_map)
6233{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006234 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006235
6236 for_each_cpu_mask(cpu, *cpu_map) {
6237 struct sched_group *sched_group_allnodes
6238 = sched_group_allnodes_bycpu[cpu];
6239 struct sched_group **sched_group_nodes
6240 = sched_group_nodes_bycpu[cpu];
6241
6242 if (sched_group_allnodes) {
6243 kfree(sched_group_allnodes);
6244 sched_group_allnodes_bycpu[cpu] = NULL;
6245 }
6246
6247 if (!sched_group_nodes)
6248 continue;
6249
6250 for (i = 0; i < MAX_NUMNODES; i++) {
6251 cpumask_t nodemask = node_to_cpumask(i);
6252 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6253
6254 cpus_and(nodemask, nodemask, *cpu_map);
6255 if (cpus_empty(nodemask))
6256 continue;
6257
6258 if (sg == NULL)
6259 continue;
6260 sg = sg->next;
6261next_sg:
6262 oldsg = sg;
6263 sg = sg->next;
6264 kfree(oldsg);
6265 if (oldsg != sched_group_nodes[i])
6266 goto next_sg;
6267 }
6268 kfree(sched_group_nodes);
6269 sched_group_nodes_bycpu[cpu] = NULL;
6270 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006271}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006272#else
6273static void free_sched_groups(const cpumask_t *cpu_map)
6274{
6275}
6276#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006277
Linus Torvalds1da177e2005-04-16 15:20:36 -07006278/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006279 * Initialize sched groups cpu_power.
6280 *
6281 * cpu_power indicates the capacity of sched group, which is used while
6282 * distributing the load between different sched groups in a sched domain.
6283 * Typically cpu_power for all the groups in a sched domain will be same unless
6284 * there are asymmetries in the topology. If there are asymmetries, group
6285 * having more cpu_power will pickup more load compared to the group having
6286 * less cpu_power.
6287 *
6288 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6289 * the maximum number of tasks a group can handle in the presence of other idle
6290 * or lightly loaded groups in the same sched domain.
6291 */
6292static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6293{
6294 struct sched_domain *child;
6295 struct sched_group *group;
6296
6297 WARN_ON(!sd || !sd->groups);
6298
6299 if (cpu != first_cpu(sd->groups->cpumask))
6300 return;
6301
6302 child = sd->child;
6303
6304 /*
6305 * For perf policy, if the groups in child domain share resources
6306 * (for example cores sharing some portions of the cache hierarchy
6307 * or SMT), then set this domain groups cpu_power such that each group
6308 * can handle only one task, when there are other idle groups in the
6309 * same sched domain.
6310 */
6311 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6312 (child->flags &
6313 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6314 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6315 return;
6316 }
6317
6318 sd->groups->cpu_power = 0;
6319
6320 /*
6321 * add cpu_power of each child group to this groups cpu_power
6322 */
6323 group = child->groups;
6324 do {
6325 sd->groups->cpu_power += group->cpu_power;
6326 group = group->next;
6327 } while (group != child->groups);
6328}
6329
6330/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006331 * Build sched domains for a given set of cpus and attach the sched domains
6332 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07006333 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006334static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006335{
6336 int i;
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006337 struct sched_domain *sd;
John Hawkesd1b55132005-09-06 15:18:14 -07006338#ifdef CONFIG_NUMA
6339 struct sched_group **sched_group_nodes = NULL;
6340 struct sched_group *sched_group_allnodes = NULL;
6341
6342 /*
6343 * Allocate the per-node list of sched groups
6344 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006345 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006346 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006347 if (!sched_group_nodes) {
6348 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006349 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006350 }
6351 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6352#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006353
6354 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006355 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006356 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006357 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006358 int group;
6359 struct sched_domain *sd = NULL, *p;
6360 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6361
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006362 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006363
6364#ifdef CONFIG_NUMA
John Hawkesd1b55132005-09-06 15:18:14 -07006365 if (cpus_weight(*cpu_map)
John Hawkes9c1cfda2005-09-06 15:18:14 -07006366 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkesd1b55132005-09-06 15:18:14 -07006367 if (!sched_group_allnodes) {
6368 sched_group_allnodes
Christoph Lameterce164422006-10-03 01:14:11 -07006369 = kmalloc_node(sizeof(struct sched_group)
6370 * MAX_NUMNODES,
6371 GFP_KERNEL,
6372 cpu_to_node(i));
John Hawkesd1b55132005-09-06 15:18:14 -07006373 if (!sched_group_allnodes) {
6374 printk(KERN_WARNING
6375 "Can not alloc allnodes sched group\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006376 goto error;
John Hawkesd1b55132005-09-06 15:18:14 -07006377 }
6378 sched_group_allnodes_bycpu[i]
6379 = sched_group_allnodes;
6380 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006381 sd = &per_cpu(allnodes_domains, i);
6382 *sd = SD_ALLNODES_INIT;
6383 sd->span = *cpu_map;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006384 group = cpu_to_allnodes_group(i, cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006385 sd->groups = &sched_group_allnodes[group];
6386 p = sd;
6387 } else
6388 p = NULL;
6389
Linus Torvalds1da177e2005-04-16 15:20:36 -07006390 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006391 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006392 sd->span = sched_domain_node_span(cpu_to_node(i));
6393 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006394 if (p)
6395 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006396 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006397#endif
6398
6399 p = sd;
6400 sd = &per_cpu(phys_domains, i);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006401 group = cpu_to_phys_group(i, cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006402 *sd = SD_CPU_INIT;
6403 sd->span = nodemask;
6404 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006405 if (p)
6406 p->child = sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006407 sd->groups = &sched_group_phys[group];
6408
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006409#ifdef CONFIG_SCHED_MC
6410 p = sd;
6411 sd = &per_cpu(core_domains, i);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006412 group = cpu_to_core_group(i, cpu_map);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006413 *sd = SD_MC_INIT;
6414 sd->span = cpu_coregroup_map(i);
6415 cpus_and(sd->span, sd->span, *cpu_map);
6416 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006417 p->child = sd;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006418 sd->groups = &sched_group_core[group];
6419#endif
6420
Linus Torvalds1da177e2005-04-16 15:20:36 -07006421#ifdef CONFIG_SCHED_SMT
6422 p = sd;
6423 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006424 group = cpu_to_cpu_group(i, cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006425 *sd = SD_SIBLING_INIT;
6426 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006427 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006428 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006429 p->child = sd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006430 sd->groups = &sched_group_cpus[group];
6431#endif
6432 }
6433
6434#ifdef CONFIG_SCHED_SMT
6435 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006436 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006437 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006438 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006439 if (i != first_cpu(this_sibling_map))
6440 continue;
6441
6442 init_sched_build_groups(sched_group_cpus, this_sibling_map,
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006443 cpu_map, &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006444 }
6445#endif
6446
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006447#ifdef CONFIG_SCHED_MC
6448 /* Set up multi-core groups */
6449 for_each_cpu_mask(i, *cpu_map) {
6450 cpumask_t this_core_map = cpu_coregroup_map(i);
6451 cpus_and(this_core_map, this_core_map, *cpu_map);
6452 if (i != first_cpu(this_core_map))
6453 continue;
6454 init_sched_build_groups(sched_group_core, this_core_map,
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006455 cpu_map, &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006456 }
6457#endif
6458
6459
Linus Torvalds1da177e2005-04-16 15:20:36 -07006460 /* Set up physical groups */
6461 for (i = 0; i < MAX_NUMNODES; i++) {
6462 cpumask_t nodemask = node_to_cpumask(i);
6463
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006464 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006465 if (cpus_empty(nodemask))
6466 continue;
6467
6468 init_sched_build_groups(sched_group_phys, nodemask,
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006469 cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006470 }
6471
6472#ifdef CONFIG_NUMA
6473 /* Set up node groups */
John Hawkesd1b55132005-09-06 15:18:14 -07006474 if (sched_group_allnodes)
6475 init_sched_build_groups(sched_group_allnodes, *cpu_map,
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006476 cpu_map, &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006477
6478 for (i = 0; i < MAX_NUMNODES; i++) {
6479 /* Set up node groups */
6480 struct sched_group *sg, *prev;
6481 cpumask_t nodemask = node_to_cpumask(i);
6482 cpumask_t domainspan;
6483 cpumask_t covered = CPU_MASK_NONE;
6484 int j;
6485
6486 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006487 if (cpus_empty(nodemask)) {
6488 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006489 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006490 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006491
6492 domainspan = sched_domain_node_span(i);
6493 cpus_and(domainspan, domainspan, *cpu_map);
6494
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006495 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006496 if (!sg) {
6497 printk(KERN_WARNING "Can not alloc domain group for "
6498 "node %d\n", i);
6499 goto error;
6500 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006501 sched_group_nodes[i] = sg;
6502 for_each_cpu_mask(j, nodemask) {
6503 struct sched_domain *sd;
6504 sd = &per_cpu(node_domains, j);
6505 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006506 }
6507 sg->cpu_power = 0;
6508 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006509 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006510 cpus_or(covered, covered, nodemask);
6511 prev = sg;
6512
6513 for (j = 0; j < MAX_NUMNODES; j++) {
6514 cpumask_t tmp, notcovered;
6515 int n = (i + j) % MAX_NUMNODES;
6516
6517 cpus_complement(notcovered, covered);
6518 cpus_and(tmp, notcovered, *cpu_map);
6519 cpus_and(tmp, tmp, domainspan);
6520 if (cpus_empty(tmp))
6521 break;
6522
6523 nodemask = node_to_cpumask(n);
6524 cpus_and(tmp, tmp, nodemask);
6525 if (cpus_empty(tmp))
6526 continue;
6527
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006528 sg = kmalloc_node(sizeof(struct sched_group),
6529 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006530 if (!sg) {
6531 printk(KERN_WARNING
6532 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006533 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006534 }
6535 sg->cpu_power = 0;
6536 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006537 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006538 cpus_or(covered, covered, tmp);
6539 prev->next = sg;
6540 prev = sg;
6541 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006542 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006543#endif
6544
6545 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006546#ifdef CONFIG_SCHED_SMT
6547 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006548 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006549 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006550 }
6551#endif
6552#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006553 for_each_cpu_mask(i, *cpu_map) {
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006554 sd = &per_cpu(core_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006555 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006556 }
6557#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006558
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006559 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 sd = &per_cpu(phys_domains, i);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006561 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006562 }
6563
John Hawkes9c1cfda2005-09-06 15:18:14 -07006564#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006565 for (i = 0; i < MAX_NUMNODES; i++)
6566 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006567
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006568 if (sched_group_allnodes) {
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006569 int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006570 struct sched_group *sg = &sched_group_allnodes[group];
6571
6572 init_numa_sched_groups_power(sg);
6573 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006574#endif
6575
Linus Torvalds1da177e2005-04-16 15:20:36 -07006576 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006577 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006578 struct sched_domain *sd;
6579#ifdef CONFIG_SCHED_SMT
6580 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006581#elif defined(CONFIG_SCHED_MC)
6582 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006583#else
6584 sd = &per_cpu(phys_domains, i);
6585#endif
6586 cpu_attach_domain(sd, i);
6587 }
akpm@osdl.org198e2f12006-01-12 01:05:30 -08006588 /*
6589 * Tune cache-hot values:
6590 */
6591 calibrate_migration_costs(cpu_map);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006592
6593 return 0;
6594
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006595#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006596error:
6597 free_sched_groups(cpu_map);
6598 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006599#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006600}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006601/*
6602 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6603 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006604static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006605{
6606 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006607 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006608
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006609 /*
6610 * Setup mask for cpus without special case scheduling requirements.
6611 * For now this just excludes isolated cpus, but could be used to
6612 * exclude other special cases in the future.
6613 */
6614 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6615
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006616 err = build_sched_domains(&cpu_default_map);
6617
6618 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006619}
6620
6621static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006622{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006623 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006624}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006625
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006626/*
6627 * Detach sched domains from a group of cpus specified in cpu_map
6628 * These cpus will now be attached to the NULL domain
6629 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006630static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006631{
6632 int i;
6633
6634 for_each_cpu_mask(i, *cpu_map)
6635 cpu_attach_domain(NULL, i);
6636 synchronize_sched();
6637 arch_destroy_sched_domains(cpu_map);
6638}
6639
6640/*
6641 * Partition sched domains as specified by the cpumasks below.
6642 * This attaches all cpus from the cpumasks to the NULL domain,
6643 * waits for a RCU quiescent period, recalculates sched
6644 * domain information and then attaches them back to the
6645 * correct sched domains
6646 * Call with hotplug lock held
6647 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006648int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006649{
6650 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006651 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006652
6653 cpus_and(*partition1, *partition1, cpu_online_map);
6654 cpus_and(*partition2, *partition2, cpu_online_map);
6655 cpus_or(change_map, *partition1, *partition2);
6656
6657 /* Detach sched domains from all of the affected cpus */
6658 detach_destroy_domains(&change_map);
6659 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006660 err = build_sched_domains(partition1);
6661 if (!err && !cpus_empty(*partition2))
6662 err = build_sched_domains(partition2);
6663
6664 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006665}
6666
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006667#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6668int arch_reinit_sched_domains(void)
6669{
6670 int err;
6671
6672 lock_cpu_hotplug();
6673 detach_destroy_domains(&cpu_online_map);
6674 err = arch_init_sched_domains(&cpu_online_map);
6675 unlock_cpu_hotplug();
6676
6677 return err;
6678}
6679
6680static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6681{
6682 int ret;
6683
6684 if (buf[0] != '0' && buf[0] != '1')
6685 return -EINVAL;
6686
6687 if (smt)
6688 sched_smt_power_savings = (buf[0] == '1');
6689 else
6690 sched_mc_power_savings = (buf[0] == '1');
6691
6692 ret = arch_reinit_sched_domains();
6693
6694 return ret ? ret : count;
6695}
6696
6697int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6698{
6699 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006700
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006701#ifdef CONFIG_SCHED_SMT
6702 if (smt_capable())
6703 err = sysfs_create_file(&cls->kset.kobj,
6704 &attr_sched_smt_power_savings.attr);
6705#endif
6706#ifdef CONFIG_SCHED_MC
6707 if (!err && mc_capable())
6708 err = sysfs_create_file(&cls->kset.kobj,
6709 &attr_sched_mc_power_savings.attr);
6710#endif
6711 return err;
6712}
6713#endif
6714
6715#ifdef CONFIG_SCHED_MC
6716static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6717{
6718 return sprintf(page, "%u\n", sched_mc_power_savings);
6719}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006720static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6721 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006722{
6723 return sched_power_savings_store(buf, count, 0);
6724}
6725SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6726 sched_mc_power_savings_store);
6727#endif
6728
6729#ifdef CONFIG_SCHED_SMT
6730static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6731{
6732 return sprintf(page, "%u\n", sched_smt_power_savings);
6733}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006734static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6735 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006736{
6737 return sched_power_savings_store(buf, count, 1);
6738}
6739SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6740 sched_smt_power_savings_store);
6741#endif
6742
Linus Torvalds1da177e2005-04-16 15:20:36 -07006743/*
6744 * Force a reinitialization of the sched domains hierarchy. The domains
6745 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006746 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006747 * which will prevent rebalancing while the sched domains are recalculated.
6748 */
6749static int update_sched_domains(struct notifier_block *nfb,
6750 unsigned long action, void *hcpu)
6751{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006752 switch (action) {
6753 case CPU_UP_PREPARE:
6754 case CPU_DOWN_PREPARE:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006755 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006756 return NOTIFY_OK;
6757
6758 case CPU_UP_CANCELED:
6759 case CPU_DOWN_FAILED:
6760 case CPU_ONLINE:
6761 case CPU_DEAD:
6762 /*
6763 * Fall through and re-initialise the domains.
6764 */
6765 break;
6766 default:
6767 return NOTIFY_DONE;
6768 }
6769
6770 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006771 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006772
6773 return NOTIFY_OK;
6774}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006775
6776void __init sched_init_smp(void)
6777{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006778 cpumask_t non_isolated_cpus;
6779
Linus Torvalds1da177e2005-04-16 15:20:36 -07006780 lock_cpu_hotplug();
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006781 arch_init_sched_domains(&cpu_online_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006782 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6783 if (cpus_empty(non_isolated_cpus))
6784 cpu_set(smp_processor_id(), non_isolated_cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006785 unlock_cpu_hotplug();
6786 /* XXX: Theoretical race here - CPU may be hotplugged now */
6787 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006788
6789 /* Move init over to a non-isolated CPU */
6790 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6791 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006792}
6793#else
6794void __init sched_init_smp(void)
6795{
6796}
6797#endif /* CONFIG_SMP */
6798
6799int in_sched_functions(unsigned long addr)
6800{
6801 /* Linker adds these: start and end of __sched functions */
6802 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006803
Linus Torvalds1da177e2005-04-16 15:20:36 -07006804 return in_lock_functions(addr) ||
6805 (addr >= (unsigned long)__sched_text_start
6806 && addr < (unsigned long)__sched_text_end);
6807}
6808
6809void __init sched_init(void)
6810{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006811 int i, j, k;
6812
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006813 for_each_possible_cpu(i) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07006814 struct prio_array *array;
6815 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006816
6817 rq = cpu_rq(i);
6818 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006819 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006820 rq->nr_running = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006821 rq->active = rq->arrays;
6822 rq->expired = rq->arrays + 1;
6823 rq->best_expired_prio = MAX_PRIO;
6824
6825#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006826 rq->sd = NULL;
Nick Piggin78979862005-06-25 14:57:13 -07006827 for (j = 1; j < 3; j++)
6828 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006829 rq->active_balance = 0;
6830 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006831 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006832 rq->migration_thread = NULL;
6833 INIT_LIST_HEAD(&rq->migration_queue);
6834#endif
6835 atomic_set(&rq->nr_iowait, 0);
6836
6837 for (j = 0; j < 2; j++) {
6838 array = rq->arrays + j;
6839 for (k = 0; k < MAX_PRIO; k++) {
6840 INIT_LIST_HEAD(array->queue + k);
6841 __clear_bit(k, array->bitmap);
6842 }
6843 // delimiter for bitsearch
6844 __set_bit(MAX_PRIO, array->bitmap);
6845 }
6846 }
6847
Peter Williams2dd73a42006-06-27 02:54:34 -07006848 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006849
6850#ifdef CONFIG_RT_MUTEXES
6851 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6852#endif
6853
Linus Torvalds1da177e2005-04-16 15:20:36 -07006854 /*
6855 * The boot idle thread does lazy MMU switching as well:
6856 */
6857 atomic_inc(&init_mm.mm_count);
6858 enter_lazy_tlb(&init_mm, current);
6859
6860 /*
6861 * Make us the idle thread. Technically, schedule() should not be
6862 * called from this thread, however somewhere below it might be,
6863 * but because we are the idle thread, we just pick up running again
6864 * when this runqueue becomes "idle".
6865 */
6866 init_idle(current, smp_processor_id());
6867}
6868
6869#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6870void __might_sleep(char *file, int line)
6871{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006872#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006873 static unsigned long prev_jiffy; /* ratelimiting */
6874
6875 if ((in_atomic() || irqs_disabled()) &&
6876 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6877 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6878 return;
6879 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006880 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006881 " context at %s:%d\n", file, line);
6882 printk("in_atomic():%d, irqs_disabled():%d\n",
6883 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006884 debug_show_held_locks(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006885 dump_stack();
6886 }
6887#endif
6888}
6889EXPORT_SYMBOL(__might_sleep);
6890#endif
6891
6892#ifdef CONFIG_MAGIC_SYSRQ
6893void normalize_rt_tasks(void)
6894{
Ingo Molnar70b97a72006-07-03 00:25:42 -07006895 struct prio_array *array;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006896 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006897 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006898 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006899
6900 read_lock_irq(&tasklist_lock);
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07006901 for_each_process(p) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006902 if (!rt_task(p))
6903 continue;
6904
Ingo Molnarb29739f2006-06-27 02:54:51 -07006905 spin_lock_irqsave(&p->pi_lock, flags);
6906 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006907
6908 array = p->array;
6909 if (array)
6910 deactivate_task(p, task_rq(p));
6911 __setscheduler(p, SCHED_NORMAL, 0);
6912 if (array) {
6913 __activate_task(p, task_rq(p));
6914 resched_task(rq->curr);
6915 }
6916
Ingo Molnarb29739f2006-06-27 02:54:51 -07006917 __task_rq_unlock(rq);
6918 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006919 }
6920 read_unlock_irq(&tasklist_lock);
6921}
6922
6923#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006924
6925#ifdef CONFIG_IA64
6926/*
6927 * These functions are only useful for the IA64 MCA handling.
6928 *
6929 * They can only be called when the whole system has been
6930 * stopped - every CPU needs to be quiescent, and no scheduling
6931 * activity can take place. Using them for anything else would
6932 * be a serious bug, and as a result, they aren't even visible
6933 * under any other configuration.
6934 */
6935
6936/**
6937 * curr_task - return the current task for a given cpu.
6938 * @cpu: the processor in question.
6939 *
6940 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6941 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006942struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006943{
6944 return cpu_curr(cpu);
6945}
6946
6947/**
6948 * set_curr_task - set the current task for a given cpu.
6949 * @cpu: the processor in question.
6950 * @p: the task pointer to set.
6951 *
6952 * Description: This function must only be used when non-maskable interrupts
6953 * are serviced on a separate stack. It allows the architecture to switch the
6954 * notion of the current task on a cpu in a non-blocking manner. This function
6955 * must be called with all CPU's synchronized, and interrupts disabled, the
6956 * and caller must save the original value of the current task (see
6957 * curr_task() above) and restore that value before reenabling interrupts and
6958 * re-starting the system.
6959 *
6960 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6961 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006962void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006963{
6964 cpu_curr(cpu) = p;
6965}
6966
6967#endif