blob: 2edaed6803ff79293bd16a16c8edb7ca74bd2573 [file] [log] [blame]
Dave Younga43cac02015-09-09 15:38:51 -07001/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
Minfei Huangde90a6b2015-11-06 16:32:45 -080012#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
Dave Younga43cac02015-09-09 15:38:51 -070014#include <linux/capability.h>
15#include <linux/mm.h>
16#include <linux/file.h>
17#include <linux/slab.h>
18#include <linux/kexec.h>
19#include <linux/mutex.h>
20#include <linux/list.h>
Mimi Zoharb804def2016-01-14 20:59:14 -050021#include <linux/fs.h>
Dave Younga43cac02015-09-09 15:38:51 -070022#include <crypto/hash.h>
23#include <crypto/sha.h>
24#include <linux/syscalls.h>
25#include <linux/vmalloc.h>
26#include "kexec_internal.h"
27
28/*
29 * Declare these symbols weak so that if architecture provides a purgatory,
30 * these will be overridden.
31 */
32char __weak kexec_purgatory[0];
33size_t __weak kexec_purgatory_size = 0;
34
35static int kexec_calculate_store_digests(struct kimage *image);
36
Dave Younga43cac02015-09-09 15:38:51 -070037/* Architectures can provide this probe function */
38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39 unsigned long buf_len)
40{
41 return -ENOEXEC;
42}
43
44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45{
46 return ERR_PTR(-ENOEXEC);
47}
48
49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50{
51 return -EINVAL;
52}
53
Xunlei Pang978e30c2016-01-20 15:00:36 -080054#ifdef CONFIG_KEXEC_VERIFY_SIG
Dave Younga43cac02015-09-09 15:38:51 -070055int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56 unsigned long buf_len)
57{
58 return -EKEYREJECTED;
59}
Xunlei Pang978e30c2016-01-20 15:00:36 -080060#endif
Dave Younga43cac02015-09-09 15:38:51 -070061
62/* Apply relocations of type RELA */
63int __weak
64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65 unsigned int relsec)
66{
67 pr_err("RELA relocation unsupported.\n");
68 return -ENOEXEC;
69}
70
71/* Apply relocations of type REL */
72int __weak
73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74 unsigned int relsec)
75{
76 pr_err("REL relocation unsupported.\n");
77 return -ENOEXEC;
78}
79
80/*
81 * Free up memory used by kernel, initrd, and command line. This is temporary
82 * memory allocation which is not needed any more after these buffers have
83 * been loaded into separate segments and have been copied elsewhere.
84 */
85void kimage_file_post_load_cleanup(struct kimage *image)
86{
87 struct purgatory_info *pi = &image->purgatory_info;
88
89 vfree(image->kernel_buf);
90 image->kernel_buf = NULL;
91
92 vfree(image->initrd_buf);
93 image->initrd_buf = NULL;
94
95 kfree(image->cmdline_buf);
96 image->cmdline_buf = NULL;
97
98 vfree(pi->purgatory_buf);
99 pi->purgatory_buf = NULL;
100
101 vfree(pi->sechdrs);
102 pi->sechdrs = NULL;
103
104 /* See if architecture has anything to cleanup post load */
105 arch_kimage_file_post_load_cleanup(image);
106
107 /*
108 * Above call should have called into bootloader to free up
109 * any data stored in kimage->image_loader_data. It should
110 * be ok now to free it up.
111 */
112 kfree(image->image_loader_data);
113 image->image_loader_data = NULL;
114}
115
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122 const char __user *cmdline_ptr,
123 unsigned long cmdline_len, unsigned flags)
124{
125 int ret = 0;
126 void *ldata;
Mimi Zoharb804def2016-01-14 20:59:14 -0500127 loff_t size;
Dave Younga43cac02015-09-09 15:38:51 -0700128
Mimi Zoharb804def2016-01-14 20:59:14 -0500129 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130 &size, INT_MAX, READING_KEXEC_IMAGE);
Dave Younga43cac02015-09-09 15:38:51 -0700131 if (ret)
132 return ret;
Mimi Zoharb804def2016-01-14 20:59:14 -0500133 image->kernel_buf_len = size;
Dave Younga43cac02015-09-09 15:38:51 -0700134
135 /* Call arch image probe handlers */
136 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137 image->kernel_buf_len);
Dave Younga43cac02015-09-09 15:38:51 -0700138 if (ret)
139 goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143 image->kernel_buf_len);
144 if (ret) {
145 pr_debug("kernel signature verification failed.\n");
146 goto out;
147 }
148 pr_debug("kernel signature verification successful.\n");
149#endif
150 /* It is possible that there no initramfs is being loaded */
151 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
Mimi Zoharb804def2016-01-14 20:59:14 -0500152 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153 &size, INT_MAX,
154 READING_KEXEC_INITRAMFS);
Dave Younga43cac02015-09-09 15:38:51 -0700155 if (ret)
156 goto out;
Mimi Zoharb804def2016-01-14 20:59:14 -0500157 image->initrd_buf_len = size;
Dave Younga43cac02015-09-09 15:38:51 -0700158 }
159
160 if (cmdline_len) {
161 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162 if (!image->cmdline_buf) {
163 ret = -ENOMEM;
164 goto out;
165 }
166
167 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168 cmdline_len);
169 if (ret) {
170 ret = -EFAULT;
171 goto out;
172 }
173
174 image->cmdline_buf_len = cmdline_len;
175
176 /* command line should be a string with last byte null */
177 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178 ret = -EINVAL;
179 goto out;
180 }
181 }
182
183 /* Call arch image load handlers */
184 ldata = arch_kexec_kernel_image_load(image);
185
186 if (IS_ERR(ldata)) {
187 ret = PTR_ERR(ldata);
188 goto out;
189 }
190
191 image->image_loader_data = ldata;
192out:
193 /* In case of error, free up all allocated memory in this function */
194 if (ret)
195 kimage_file_post_load_cleanup(image);
196 return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201 int initrd_fd, const char __user *cmdline_ptr,
202 unsigned long cmdline_len, unsigned long flags)
203{
204 int ret;
205 struct kimage *image;
206 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208 image = do_kimage_alloc_init();
209 if (!image)
210 return -ENOMEM;
211
212 image->file_mode = 1;
213
214 if (kexec_on_panic) {
215 /* Enable special crash kernel control page alloc policy. */
216 image->control_page = crashk_res.start;
217 image->type = KEXEC_TYPE_CRASH;
218 }
219
220 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221 cmdline_ptr, cmdline_len, flags);
222 if (ret)
223 goto out_free_image;
224
225 ret = sanity_check_segment_list(image);
226 if (ret)
227 goto out_free_post_load_bufs;
228
229 ret = -ENOMEM;
230 image->control_code_page = kimage_alloc_control_pages(image,
231 get_order(KEXEC_CONTROL_PAGE_SIZE));
232 if (!image->control_code_page) {
233 pr_err("Could not allocate control_code_buffer\n");
234 goto out_free_post_load_bufs;
235 }
236
237 if (!kexec_on_panic) {
238 image->swap_page = kimage_alloc_control_pages(image, 0);
239 if (!image->swap_page) {
240 pr_err("Could not allocate swap buffer\n");
241 goto out_free_control_pages;
242 }
243 }
244
245 *rimage = image;
246 return 0;
247out_free_control_pages:
248 kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250 kimage_file_post_load_cleanup(image);
251out_free_image:
252 kfree(image);
253 return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258 unsigned long, flags)
259{
260 int ret = 0, i;
261 struct kimage **dest_image, *image;
262
263 /* We only trust the superuser with rebooting the system. */
264 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265 return -EPERM;
266
267 /* Make sure we have a legal set of flags */
268 if (flags != (flags & KEXEC_FILE_FLAGS))
269 return -EINVAL;
270
271 image = NULL;
272
273 if (!mutex_trylock(&kexec_mutex))
274 return -EBUSY;
275
276 dest_image = &kexec_image;
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700277 if (flags & KEXEC_FILE_ON_CRASH) {
Dave Younga43cac02015-09-09 15:38:51 -0700278 dest_image = &kexec_crash_image;
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700279 if (kexec_crash_image)
280 arch_kexec_unprotect_crashkres();
281 }
Dave Younga43cac02015-09-09 15:38:51 -0700282
283 if (flags & KEXEC_FILE_UNLOAD)
284 goto exchange;
285
286 /*
287 * In case of crash, new kernel gets loaded in reserved region. It is
288 * same memory where old crash kernel might be loaded. Free any
289 * current crash dump kernel before we corrupt it.
290 */
291 if (flags & KEXEC_FILE_ON_CRASH)
292 kimage_free(xchg(&kexec_crash_image, NULL));
293
294 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
295 cmdline_len, flags);
296 if (ret)
297 goto out;
298
299 ret = machine_kexec_prepare(image);
300 if (ret)
301 goto out;
302
303 ret = kexec_calculate_store_digests(image);
304 if (ret)
305 goto out;
306
307 for (i = 0; i < image->nr_segments; i++) {
308 struct kexec_segment *ksegment;
309
310 ksegment = &image->segment[i];
311 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
312 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
313 ksegment->memsz);
314
315 ret = kimage_load_segment(image, &image->segment[i]);
316 if (ret)
317 goto out;
318 }
319
320 kimage_terminate(image);
321
322 /*
323 * Free up any temporary buffers allocated which are not needed
324 * after image has been loaded
325 */
326 kimage_file_post_load_cleanup(image);
327exchange:
328 image = xchg(dest_image, image);
329out:
Xunlei Pang9b492cf2016-05-23 16:24:10 -0700330 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
331 arch_kexec_protect_crashkres();
332
Dave Younga43cac02015-09-09 15:38:51 -0700333 mutex_unlock(&kexec_mutex);
334 kimage_free(image);
335 return ret;
336}
337
338static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
339 struct kexec_buf *kbuf)
340{
341 struct kimage *image = kbuf->image;
342 unsigned long temp_start, temp_end;
343
344 temp_end = min(end, kbuf->buf_max);
345 temp_start = temp_end - kbuf->memsz;
346
347 do {
348 /* align down start */
349 temp_start = temp_start & (~(kbuf->buf_align - 1));
350
351 if (temp_start < start || temp_start < kbuf->buf_min)
352 return 0;
353
354 temp_end = temp_start + kbuf->memsz - 1;
355
356 /*
357 * Make sure this does not conflict with any of existing
358 * segments
359 */
360 if (kimage_is_destination_range(image, temp_start, temp_end)) {
361 temp_start = temp_start - PAGE_SIZE;
362 continue;
363 }
364
365 /* We found a suitable memory range */
366 break;
367 } while (1);
368
369 /* If we are here, we found a suitable memory range */
370 kbuf->mem = temp_start;
371
372 /* Success, stop navigating through remaining System RAM ranges */
373 return 1;
374}
375
376static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
377 struct kexec_buf *kbuf)
378{
379 struct kimage *image = kbuf->image;
380 unsigned long temp_start, temp_end;
381
382 temp_start = max(start, kbuf->buf_min);
383
384 do {
385 temp_start = ALIGN(temp_start, kbuf->buf_align);
386 temp_end = temp_start + kbuf->memsz - 1;
387
388 if (temp_end > end || temp_end > kbuf->buf_max)
389 return 0;
390 /*
391 * Make sure this does not conflict with any of existing
392 * segments
393 */
394 if (kimage_is_destination_range(image, temp_start, temp_end)) {
395 temp_start = temp_start + PAGE_SIZE;
396 continue;
397 }
398
399 /* We found a suitable memory range */
400 break;
401 } while (1);
402
403 /* If we are here, we found a suitable memory range */
404 kbuf->mem = temp_start;
405
406 /* Success, stop navigating through remaining System RAM ranges */
407 return 1;
408}
409
410static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
411{
412 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
413 unsigned long sz = end - start + 1;
414
415 /* Returning 0 will take to next memory range */
416 if (sz < kbuf->memsz)
417 return 0;
418
419 if (end < kbuf->buf_min || start > kbuf->buf_max)
420 return 0;
421
422 /*
423 * Allocate memory top down with-in ram range. Otherwise bottom up
424 * allocation.
425 */
426 if (kbuf->top_down)
427 return locate_mem_hole_top_down(start, end, kbuf);
428 return locate_mem_hole_bottom_up(start, end, kbuf);
429}
430
431/*
432 * Helper function for placing a buffer in a kexec segment. This assumes
433 * that kexec_mutex is held.
434 */
435int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
436 unsigned long memsz, unsigned long buf_align,
437 unsigned long buf_min, unsigned long buf_max,
438 bool top_down, unsigned long *load_addr)
439{
440
441 struct kexec_segment *ksegment;
442 struct kexec_buf buf, *kbuf;
443 int ret;
444
445 /* Currently adding segment this way is allowed only in file mode */
446 if (!image->file_mode)
447 return -EINVAL;
448
449 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
450 return -EINVAL;
451
452 /*
453 * Make sure we are not trying to add buffer after allocating
454 * control pages. All segments need to be placed first before
455 * any control pages are allocated. As control page allocation
456 * logic goes through list of segments to make sure there are
457 * no destination overlaps.
458 */
459 if (!list_empty(&image->control_pages)) {
460 WARN_ON(1);
461 return -EINVAL;
462 }
463
464 memset(&buf, 0, sizeof(struct kexec_buf));
465 kbuf = &buf;
466 kbuf->image = image;
467 kbuf->buffer = buffer;
468 kbuf->bufsz = bufsz;
469
470 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
471 kbuf->buf_align = max(buf_align, PAGE_SIZE);
472 kbuf->buf_min = buf_min;
473 kbuf->buf_max = buf_max;
474 kbuf->top_down = top_down;
475
476 /* Walk the RAM ranges and allocate a suitable range for the buffer */
477 if (image->type == KEXEC_TYPE_CRASH)
Toshi Kanif0f47112016-01-26 21:57:30 +0100478 ret = walk_iomem_res_desc(crashk_res.desc,
479 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
480 crashk_res.start, crashk_res.end, kbuf,
481 locate_mem_hole_callback);
Dave Younga43cac02015-09-09 15:38:51 -0700482 else
483 ret = walk_system_ram_res(0, -1, kbuf,
484 locate_mem_hole_callback);
485 if (ret != 1) {
486 /* A suitable memory range could not be found for buffer */
487 return -EADDRNOTAVAIL;
488 }
489
490 /* Found a suitable memory range */
491 ksegment = &image->segment[image->nr_segments];
492 ksegment->kbuf = kbuf->buffer;
493 ksegment->bufsz = kbuf->bufsz;
494 ksegment->mem = kbuf->mem;
495 ksegment->memsz = kbuf->memsz;
496 image->nr_segments++;
497 *load_addr = ksegment->mem;
498 return 0;
499}
500
501/* Calculate and store the digest of segments */
502static int kexec_calculate_store_digests(struct kimage *image)
503{
504 struct crypto_shash *tfm;
505 struct shash_desc *desc;
506 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
507 size_t desc_size, nullsz;
508 char *digest;
509 void *zero_buf;
510 struct kexec_sha_region *sha_regions;
511 struct purgatory_info *pi = &image->purgatory_info;
512
513 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
514 zero_buf_sz = PAGE_SIZE;
515
516 tfm = crypto_alloc_shash("sha256", 0, 0);
517 if (IS_ERR(tfm)) {
518 ret = PTR_ERR(tfm);
519 goto out;
520 }
521
522 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
523 desc = kzalloc(desc_size, GFP_KERNEL);
524 if (!desc) {
525 ret = -ENOMEM;
526 goto out_free_tfm;
527 }
528
529 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
530 sha_regions = vzalloc(sha_region_sz);
Jia-Ju Bai9fe9bb12021-05-06 18:04:38 -0700531 if (!sha_regions) {
532 ret = -ENOMEM;
Dave Younga43cac02015-09-09 15:38:51 -0700533 goto out_free_desc;
Jia-Ju Bai9fe9bb12021-05-06 18:04:38 -0700534 }
Dave Younga43cac02015-09-09 15:38:51 -0700535
536 desc->tfm = tfm;
537 desc->flags = 0;
538
539 ret = crypto_shash_init(desc);
540 if (ret < 0)
541 goto out_free_sha_regions;
542
543 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
544 if (!digest) {
545 ret = -ENOMEM;
546 goto out_free_sha_regions;
547 }
548
549 for (j = i = 0; i < image->nr_segments; i++) {
550 struct kexec_segment *ksegment;
551
552 ksegment = &image->segment[i];
553 /*
554 * Skip purgatory as it will be modified once we put digest
555 * info in purgatory.
556 */
557 if (ksegment->kbuf == pi->purgatory_buf)
558 continue;
559
560 ret = crypto_shash_update(desc, ksegment->kbuf,
561 ksegment->bufsz);
562 if (ret)
563 break;
564
565 /*
566 * Assume rest of the buffer is filled with zero and
567 * update digest accordingly.
568 */
569 nullsz = ksegment->memsz - ksegment->bufsz;
570 while (nullsz) {
571 unsigned long bytes = nullsz;
572
573 if (bytes > zero_buf_sz)
574 bytes = zero_buf_sz;
575 ret = crypto_shash_update(desc, zero_buf, bytes);
576 if (ret)
577 break;
578 nullsz -= bytes;
579 }
580
581 if (ret)
582 break;
583
584 sha_regions[j].start = ksegment->mem;
585 sha_regions[j].len = ksegment->memsz;
586 j++;
587 }
588
589 if (!ret) {
590 ret = crypto_shash_final(desc, digest);
591 if (ret)
592 goto out_free_digest;
593 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
594 sha_regions, sha_region_sz, 0);
595 if (ret)
596 goto out_free_digest;
597
598 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
599 digest, SHA256_DIGEST_SIZE, 0);
600 if (ret)
601 goto out_free_digest;
602 }
603
604out_free_digest:
605 kfree(digest);
606out_free_sha_regions:
607 vfree(sha_regions);
608out_free_desc:
609 kfree(desc);
610out_free_tfm:
611 kfree(tfm);
612out:
613 return ret;
614}
615
616/* Actually load purgatory. Lot of code taken from kexec-tools */
617static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
618 unsigned long max, int top_down)
619{
620 struct purgatory_info *pi = &image->purgatory_info;
621 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
622 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
623 unsigned char *buf_addr, *src;
624 int i, ret = 0, entry_sidx = -1;
625 const Elf_Shdr *sechdrs_c;
626 Elf_Shdr *sechdrs = NULL;
627 void *purgatory_buf = NULL;
628
629 /*
630 * sechdrs_c points to section headers in purgatory and are read
631 * only. No modifications allowed.
632 */
633 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
634
635 /*
636 * We can not modify sechdrs_c[] and its fields. It is read only.
637 * Copy it over to a local copy where one can store some temporary
638 * data and free it at the end. We need to modify ->sh_addr and
639 * ->sh_offset fields to keep track of permanent and temporary
640 * locations of sections.
641 */
642 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
643 if (!sechdrs)
644 return -ENOMEM;
645
646 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
647
648 /*
649 * We seem to have multiple copies of sections. First copy is which
650 * is embedded in kernel in read only section. Some of these sections
651 * will be copied to a temporary buffer and relocated. And these
652 * sections will finally be copied to their final destination at
653 * segment load time.
654 *
655 * Use ->sh_offset to reflect section address in memory. It will
656 * point to original read only copy if section is not allocatable.
657 * Otherwise it will point to temporary copy which will be relocated.
658 *
659 * Use ->sh_addr to contain final address of the section where it
660 * will go during execution time.
661 */
662 for (i = 0; i < pi->ehdr->e_shnum; i++) {
663 if (sechdrs[i].sh_type == SHT_NOBITS)
664 continue;
665
666 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
667 sechdrs[i].sh_offset;
668 }
669
670 /*
671 * Identify entry point section and make entry relative to section
672 * start.
673 */
674 entry = pi->ehdr->e_entry;
675 for (i = 0; i < pi->ehdr->e_shnum; i++) {
676 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
677 continue;
678
679 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
680 continue;
681
682 /* Make entry section relative */
683 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
684 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
685 pi->ehdr->e_entry)) {
686 entry_sidx = i;
687 entry -= sechdrs[i].sh_addr;
688 break;
689 }
690 }
691
692 /* Determine how much memory is needed to load relocatable object. */
693 buf_align = 1;
694 bss_align = 1;
695 buf_sz = 0;
696 bss_sz = 0;
697
698 for (i = 0; i < pi->ehdr->e_shnum; i++) {
699 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
700 continue;
701
702 align = sechdrs[i].sh_addralign;
703 if (sechdrs[i].sh_type != SHT_NOBITS) {
704 if (buf_align < align)
705 buf_align = align;
706 buf_sz = ALIGN(buf_sz, align);
707 buf_sz += sechdrs[i].sh_size;
708 } else {
709 /* bss section */
710 if (bss_align < align)
711 bss_align = align;
712 bss_sz = ALIGN(bss_sz, align);
713 bss_sz += sechdrs[i].sh_size;
714 }
715 }
716
717 /* Determine the bss padding required to align bss properly */
718 bss_pad = 0;
719 if (buf_sz & (bss_align - 1))
720 bss_pad = bss_align - (buf_sz & (bss_align - 1));
721
722 memsz = buf_sz + bss_pad + bss_sz;
723
724 /* Allocate buffer for purgatory */
725 purgatory_buf = vzalloc(buf_sz);
726 if (!purgatory_buf) {
727 ret = -ENOMEM;
728 goto out;
729 }
730
731 if (buf_align < bss_align)
732 buf_align = bss_align;
733
734 /* Add buffer to segment list */
735 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
736 buf_align, min, max, top_down,
737 &pi->purgatory_load_addr);
738 if (ret)
739 goto out;
740
741 /* Load SHF_ALLOC sections */
742 buf_addr = purgatory_buf;
743 load_addr = curr_load_addr = pi->purgatory_load_addr;
744 bss_addr = load_addr + buf_sz + bss_pad;
745
746 for (i = 0; i < pi->ehdr->e_shnum; i++) {
747 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
748 continue;
749
750 align = sechdrs[i].sh_addralign;
751 if (sechdrs[i].sh_type != SHT_NOBITS) {
752 curr_load_addr = ALIGN(curr_load_addr, align);
753 offset = curr_load_addr - load_addr;
754 /* We already modifed ->sh_offset to keep src addr */
755 src = (char *) sechdrs[i].sh_offset;
756 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
757
758 /* Store load address and source address of section */
759 sechdrs[i].sh_addr = curr_load_addr;
760
761 /*
762 * This section got copied to temporary buffer. Update
763 * ->sh_offset accordingly.
764 */
765 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
766
767 /* Advance to the next address */
768 curr_load_addr += sechdrs[i].sh_size;
769 } else {
770 bss_addr = ALIGN(bss_addr, align);
771 sechdrs[i].sh_addr = bss_addr;
772 bss_addr += sechdrs[i].sh_size;
773 }
774 }
775
776 /* Update entry point based on load address of text section */
777 if (entry_sidx >= 0)
778 entry += sechdrs[entry_sidx].sh_addr;
779
780 /* Make kernel jump to purgatory after shutdown */
781 image->start = entry;
782
783 /* Used later to get/set symbol values */
784 pi->sechdrs = sechdrs;
785
786 /*
787 * Used later to identify which section is purgatory and skip it
788 * from checksumming.
789 */
790 pi->purgatory_buf = purgatory_buf;
791 return ret;
792out:
793 vfree(sechdrs);
794 vfree(purgatory_buf);
795 return ret;
796}
797
798static int kexec_apply_relocations(struct kimage *image)
799{
800 int i, ret;
801 struct purgatory_info *pi = &image->purgatory_info;
802 Elf_Shdr *sechdrs = pi->sechdrs;
803
804 /* Apply relocations */
805 for (i = 0; i < pi->ehdr->e_shnum; i++) {
806 Elf_Shdr *section, *symtab;
807
808 if (sechdrs[i].sh_type != SHT_RELA &&
809 sechdrs[i].sh_type != SHT_REL)
810 continue;
811
812 /*
813 * For section of type SHT_RELA/SHT_REL,
814 * ->sh_link contains section header index of associated
815 * symbol table. And ->sh_info contains section header
816 * index of section to which relocations apply.
817 */
818 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
819 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
820 return -ENOEXEC;
821
822 section = &sechdrs[sechdrs[i].sh_info];
823 symtab = &sechdrs[sechdrs[i].sh_link];
824
825 if (!(section->sh_flags & SHF_ALLOC))
826 continue;
827
828 /*
829 * symtab->sh_link contain section header index of associated
830 * string table.
831 */
832 if (symtab->sh_link >= pi->ehdr->e_shnum)
833 /* Invalid section number? */
834 continue;
835
836 /*
837 * Respective architecture needs to provide support for applying
838 * relocations of type SHT_RELA/SHT_REL.
839 */
840 if (sechdrs[i].sh_type == SHT_RELA)
841 ret = arch_kexec_apply_relocations_add(pi->ehdr,
842 sechdrs, i);
843 else if (sechdrs[i].sh_type == SHT_REL)
844 ret = arch_kexec_apply_relocations(pi->ehdr,
845 sechdrs, i);
846 if (ret)
847 return ret;
848 }
849
850 return 0;
851}
852
853/* Load relocatable purgatory object and relocate it appropriately */
854int kexec_load_purgatory(struct kimage *image, unsigned long min,
855 unsigned long max, int top_down,
856 unsigned long *load_addr)
857{
858 struct purgatory_info *pi = &image->purgatory_info;
859 int ret;
860
861 if (kexec_purgatory_size <= 0)
862 return -EINVAL;
863
864 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
865 return -ENOEXEC;
866
867 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
868
869 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
870 || pi->ehdr->e_type != ET_REL
871 || !elf_check_arch(pi->ehdr)
872 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
873 return -ENOEXEC;
874
875 if (pi->ehdr->e_shoff >= kexec_purgatory_size
876 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
877 kexec_purgatory_size - pi->ehdr->e_shoff))
878 return -ENOEXEC;
879
880 ret = __kexec_load_purgatory(image, min, max, top_down);
881 if (ret)
882 return ret;
883
884 ret = kexec_apply_relocations(image);
885 if (ret)
886 goto out;
887
888 *load_addr = pi->purgatory_load_addr;
889 return 0;
890out:
891 vfree(pi->sechdrs);
Thiago Jung Bauermann070c43e2016-09-01 16:14:44 -0700892 pi->sechdrs = NULL;
893
Dave Younga43cac02015-09-09 15:38:51 -0700894 vfree(pi->purgatory_buf);
Thiago Jung Bauermann070c43e2016-09-01 16:14:44 -0700895 pi->purgatory_buf = NULL;
Dave Younga43cac02015-09-09 15:38:51 -0700896 return ret;
897}
898
899static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
900 const char *name)
901{
902 Elf_Sym *syms;
903 Elf_Shdr *sechdrs;
904 Elf_Ehdr *ehdr;
905 int i, k;
906 const char *strtab;
907
908 if (!pi->sechdrs || !pi->ehdr)
909 return NULL;
910
911 sechdrs = pi->sechdrs;
912 ehdr = pi->ehdr;
913
914 for (i = 0; i < ehdr->e_shnum; i++) {
915 if (sechdrs[i].sh_type != SHT_SYMTAB)
916 continue;
917
918 if (sechdrs[i].sh_link >= ehdr->e_shnum)
919 /* Invalid strtab section number */
920 continue;
921 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
922 syms = (Elf_Sym *)sechdrs[i].sh_offset;
923
924 /* Go through symbols for a match */
925 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
926 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
927 continue;
928
929 if (strcmp(strtab + syms[k].st_name, name) != 0)
930 continue;
931
932 if (syms[k].st_shndx == SHN_UNDEF ||
933 syms[k].st_shndx >= ehdr->e_shnum) {
934 pr_debug("Symbol: %s has bad section index %d.\n",
935 name, syms[k].st_shndx);
936 return NULL;
937 }
938
939 /* Found the symbol we are looking for */
940 return &syms[k];
941 }
942 }
943
944 return NULL;
945}
946
947void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
948{
949 struct purgatory_info *pi = &image->purgatory_info;
950 Elf_Sym *sym;
951 Elf_Shdr *sechdr;
952
953 sym = kexec_purgatory_find_symbol(pi, name);
954 if (!sym)
955 return ERR_PTR(-EINVAL);
956
957 sechdr = &pi->sechdrs[sym->st_shndx];
958
959 /*
960 * Returns the address where symbol will finally be loaded after
961 * kexec_load_segment()
962 */
963 return (void *)(sechdr->sh_addr + sym->st_value);
964}
965
966/*
967 * Get or set value of a symbol. If "get_value" is true, symbol value is
968 * returned in buf otherwise symbol value is set based on value in buf.
969 */
970int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
971 void *buf, unsigned int size, bool get_value)
972{
973 Elf_Sym *sym;
974 Elf_Shdr *sechdrs;
975 struct purgatory_info *pi = &image->purgatory_info;
976 char *sym_buf;
977
978 sym = kexec_purgatory_find_symbol(pi, name);
979 if (!sym)
980 return -EINVAL;
981
982 if (sym->st_size != size) {
983 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
984 name, (unsigned long)sym->st_size, size);
985 return -EINVAL;
986 }
987
988 sechdrs = pi->sechdrs;
989
990 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
991 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
992 get_value ? "get" : "set");
993 return -EINVAL;
994 }
995
996 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
997 sym->st_value;
998
999 if (get_value)
1000 memcpy((void *)buf, sym_buf, size);
1001 else
1002 memcpy((void *)sym_buf, buf, size);
1003
1004 return 0;
1005}