Dave Young | a43cac0 | 2015-09-09 15:38:51 -0700 | [diff] [blame] | 1 | /* |
| 2 | * kexec: kexec_file_load system call |
| 3 | * |
| 4 | * Copyright (C) 2014 Red Hat Inc. |
| 5 | * Authors: |
| 6 | * Vivek Goyal <vgoyal@redhat.com> |
| 7 | * |
| 8 | * This source code is licensed under the GNU General Public License, |
| 9 | * Version 2. See the file COPYING for more details. |
| 10 | */ |
| 11 | |
Minfei Huang | de90a6b | 2015-11-06 16:32:45 -0800 | [diff] [blame] | 12 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 13 | |
Dave Young | a43cac0 | 2015-09-09 15:38:51 -0700 | [diff] [blame] | 14 | #include <linux/capability.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/file.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/kexec.h> |
| 19 | #include <linux/mutex.h> |
| 20 | #include <linux/list.h> |
| 21 | #include <crypto/hash.h> |
| 22 | #include <crypto/sha.h> |
| 23 | #include <linux/syscalls.h> |
| 24 | #include <linux/vmalloc.h> |
| 25 | #include "kexec_internal.h" |
| 26 | |
| 27 | /* |
| 28 | * Declare these symbols weak so that if architecture provides a purgatory, |
| 29 | * these will be overridden. |
| 30 | */ |
| 31 | char __weak kexec_purgatory[0]; |
| 32 | size_t __weak kexec_purgatory_size = 0; |
| 33 | |
| 34 | static int kexec_calculate_store_digests(struct kimage *image); |
| 35 | |
| 36 | static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) |
| 37 | { |
| 38 | struct fd f = fdget(fd); |
| 39 | int ret; |
| 40 | struct kstat stat; |
| 41 | loff_t pos; |
| 42 | ssize_t bytes = 0; |
| 43 | |
| 44 | if (!f.file) |
| 45 | return -EBADF; |
| 46 | |
| 47 | ret = vfs_getattr(&f.file->f_path, &stat); |
| 48 | if (ret) |
| 49 | goto out; |
| 50 | |
| 51 | if (stat.size > INT_MAX) { |
| 52 | ret = -EFBIG; |
| 53 | goto out; |
| 54 | } |
| 55 | |
| 56 | /* Don't hand 0 to vmalloc, it whines. */ |
| 57 | if (stat.size == 0) { |
| 58 | ret = -EINVAL; |
| 59 | goto out; |
| 60 | } |
| 61 | |
| 62 | *buf = vmalloc(stat.size); |
| 63 | if (!*buf) { |
| 64 | ret = -ENOMEM; |
| 65 | goto out; |
| 66 | } |
| 67 | |
| 68 | pos = 0; |
| 69 | while (pos < stat.size) { |
| 70 | bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, |
| 71 | stat.size - pos); |
| 72 | if (bytes < 0) { |
| 73 | vfree(*buf); |
| 74 | ret = bytes; |
| 75 | goto out; |
| 76 | } |
| 77 | |
| 78 | if (bytes == 0) |
| 79 | break; |
| 80 | pos += bytes; |
| 81 | } |
| 82 | |
| 83 | if (pos != stat.size) { |
| 84 | ret = -EBADF; |
| 85 | vfree(*buf); |
| 86 | goto out; |
| 87 | } |
| 88 | |
| 89 | *buf_len = pos; |
| 90 | out: |
| 91 | fdput(f); |
| 92 | return ret; |
| 93 | } |
| 94 | |
| 95 | /* Architectures can provide this probe function */ |
| 96 | int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, |
| 97 | unsigned long buf_len) |
| 98 | { |
| 99 | return -ENOEXEC; |
| 100 | } |
| 101 | |
| 102 | void * __weak arch_kexec_kernel_image_load(struct kimage *image) |
| 103 | { |
| 104 | return ERR_PTR(-ENOEXEC); |
| 105 | } |
| 106 | |
| 107 | int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) |
| 108 | { |
| 109 | return -EINVAL; |
| 110 | } |
| 111 | |
Xunlei Pang | 978e30c | 2016-01-20 15:00:36 -0800 | [diff] [blame^] | 112 | #ifdef CONFIG_KEXEC_VERIFY_SIG |
Dave Young | a43cac0 | 2015-09-09 15:38:51 -0700 | [diff] [blame] | 113 | int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, |
| 114 | unsigned long buf_len) |
| 115 | { |
| 116 | return -EKEYREJECTED; |
| 117 | } |
Xunlei Pang | 978e30c | 2016-01-20 15:00:36 -0800 | [diff] [blame^] | 118 | #endif |
Dave Young | a43cac0 | 2015-09-09 15:38:51 -0700 | [diff] [blame] | 119 | |
| 120 | /* Apply relocations of type RELA */ |
| 121 | int __weak |
| 122 | arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, |
| 123 | unsigned int relsec) |
| 124 | { |
| 125 | pr_err("RELA relocation unsupported.\n"); |
| 126 | return -ENOEXEC; |
| 127 | } |
| 128 | |
| 129 | /* Apply relocations of type REL */ |
| 130 | int __weak |
| 131 | arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, |
| 132 | unsigned int relsec) |
| 133 | { |
| 134 | pr_err("REL relocation unsupported.\n"); |
| 135 | return -ENOEXEC; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * Free up memory used by kernel, initrd, and command line. This is temporary |
| 140 | * memory allocation which is not needed any more after these buffers have |
| 141 | * been loaded into separate segments and have been copied elsewhere. |
| 142 | */ |
| 143 | void kimage_file_post_load_cleanup(struct kimage *image) |
| 144 | { |
| 145 | struct purgatory_info *pi = &image->purgatory_info; |
| 146 | |
| 147 | vfree(image->kernel_buf); |
| 148 | image->kernel_buf = NULL; |
| 149 | |
| 150 | vfree(image->initrd_buf); |
| 151 | image->initrd_buf = NULL; |
| 152 | |
| 153 | kfree(image->cmdline_buf); |
| 154 | image->cmdline_buf = NULL; |
| 155 | |
| 156 | vfree(pi->purgatory_buf); |
| 157 | pi->purgatory_buf = NULL; |
| 158 | |
| 159 | vfree(pi->sechdrs); |
| 160 | pi->sechdrs = NULL; |
| 161 | |
| 162 | /* See if architecture has anything to cleanup post load */ |
| 163 | arch_kimage_file_post_load_cleanup(image); |
| 164 | |
| 165 | /* |
| 166 | * Above call should have called into bootloader to free up |
| 167 | * any data stored in kimage->image_loader_data. It should |
| 168 | * be ok now to free it up. |
| 169 | */ |
| 170 | kfree(image->image_loader_data); |
| 171 | image->image_loader_data = NULL; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * In file mode list of segments is prepared by kernel. Copy relevant |
| 176 | * data from user space, do error checking, prepare segment list |
| 177 | */ |
| 178 | static int |
| 179 | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, |
| 180 | const char __user *cmdline_ptr, |
| 181 | unsigned long cmdline_len, unsigned flags) |
| 182 | { |
| 183 | int ret = 0; |
| 184 | void *ldata; |
| 185 | |
| 186 | ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, |
| 187 | &image->kernel_buf_len); |
| 188 | if (ret) |
| 189 | return ret; |
| 190 | |
| 191 | /* Call arch image probe handlers */ |
| 192 | ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, |
| 193 | image->kernel_buf_len); |
| 194 | |
| 195 | if (ret) |
| 196 | goto out; |
| 197 | |
| 198 | #ifdef CONFIG_KEXEC_VERIFY_SIG |
| 199 | ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, |
| 200 | image->kernel_buf_len); |
| 201 | if (ret) { |
| 202 | pr_debug("kernel signature verification failed.\n"); |
| 203 | goto out; |
| 204 | } |
| 205 | pr_debug("kernel signature verification successful.\n"); |
| 206 | #endif |
| 207 | /* It is possible that there no initramfs is being loaded */ |
| 208 | if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { |
| 209 | ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, |
| 210 | &image->initrd_buf_len); |
| 211 | if (ret) |
| 212 | goto out; |
| 213 | } |
| 214 | |
| 215 | if (cmdline_len) { |
| 216 | image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); |
| 217 | if (!image->cmdline_buf) { |
| 218 | ret = -ENOMEM; |
| 219 | goto out; |
| 220 | } |
| 221 | |
| 222 | ret = copy_from_user(image->cmdline_buf, cmdline_ptr, |
| 223 | cmdline_len); |
| 224 | if (ret) { |
| 225 | ret = -EFAULT; |
| 226 | goto out; |
| 227 | } |
| 228 | |
| 229 | image->cmdline_buf_len = cmdline_len; |
| 230 | |
| 231 | /* command line should be a string with last byte null */ |
| 232 | if (image->cmdline_buf[cmdline_len - 1] != '\0') { |
| 233 | ret = -EINVAL; |
| 234 | goto out; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | /* Call arch image load handlers */ |
| 239 | ldata = arch_kexec_kernel_image_load(image); |
| 240 | |
| 241 | if (IS_ERR(ldata)) { |
| 242 | ret = PTR_ERR(ldata); |
| 243 | goto out; |
| 244 | } |
| 245 | |
| 246 | image->image_loader_data = ldata; |
| 247 | out: |
| 248 | /* In case of error, free up all allocated memory in this function */ |
| 249 | if (ret) |
| 250 | kimage_file_post_load_cleanup(image); |
| 251 | return ret; |
| 252 | } |
| 253 | |
| 254 | static int |
| 255 | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, |
| 256 | int initrd_fd, const char __user *cmdline_ptr, |
| 257 | unsigned long cmdline_len, unsigned long flags) |
| 258 | { |
| 259 | int ret; |
| 260 | struct kimage *image; |
| 261 | bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; |
| 262 | |
| 263 | image = do_kimage_alloc_init(); |
| 264 | if (!image) |
| 265 | return -ENOMEM; |
| 266 | |
| 267 | image->file_mode = 1; |
| 268 | |
| 269 | if (kexec_on_panic) { |
| 270 | /* Enable special crash kernel control page alloc policy. */ |
| 271 | image->control_page = crashk_res.start; |
| 272 | image->type = KEXEC_TYPE_CRASH; |
| 273 | } |
| 274 | |
| 275 | ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, |
| 276 | cmdline_ptr, cmdline_len, flags); |
| 277 | if (ret) |
| 278 | goto out_free_image; |
| 279 | |
| 280 | ret = sanity_check_segment_list(image); |
| 281 | if (ret) |
| 282 | goto out_free_post_load_bufs; |
| 283 | |
| 284 | ret = -ENOMEM; |
| 285 | image->control_code_page = kimage_alloc_control_pages(image, |
| 286 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
| 287 | if (!image->control_code_page) { |
| 288 | pr_err("Could not allocate control_code_buffer\n"); |
| 289 | goto out_free_post_load_bufs; |
| 290 | } |
| 291 | |
| 292 | if (!kexec_on_panic) { |
| 293 | image->swap_page = kimage_alloc_control_pages(image, 0); |
| 294 | if (!image->swap_page) { |
| 295 | pr_err("Could not allocate swap buffer\n"); |
| 296 | goto out_free_control_pages; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | *rimage = image; |
| 301 | return 0; |
| 302 | out_free_control_pages: |
| 303 | kimage_free_page_list(&image->control_pages); |
| 304 | out_free_post_load_bufs: |
| 305 | kimage_file_post_load_cleanup(image); |
| 306 | out_free_image: |
| 307 | kfree(image); |
| 308 | return ret; |
| 309 | } |
| 310 | |
| 311 | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, |
| 312 | unsigned long, cmdline_len, const char __user *, cmdline_ptr, |
| 313 | unsigned long, flags) |
| 314 | { |
| 315 | int ret = 0, i; |
| 316 | struct kimage **dest_image, *image; |
| 317 | |
| 318 | /* We only trust the superuser with rebooting the system. */ |
| 319 | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) |
| 320 | return -EPERM; |
| 321 | |
| 322 | /* Make sure we have a legal set of flags */ |
| 323 | if (flags != (flags & KEXEC_FILE_FLAGS)) |
| 324 | return -EINVAL; |
| 325 | |
| 326 | image = NULL; |
| 327 | |
| 328 | if (!mutex_trylock(&kexec_mutex)) |
| 329 | return -EBUSY; |
| 330 | |
| 331 | dest_image = &kexec_image; |
| 332 | if (flags & KEXEC_FILE_ON_CRASH) |
| 333 | dest_image = &kexec_crash_image; |
| 334 | |
| 335 | if (flags & KEXEC_FILE_UNLOAD) |
| 336 | goto exchange; |
| 337 | |
| 338 | /* |
| 339 | * In case of crash, new kernel gets loaded in reserved region. It is |
| 340 | * same memory where old crash kernel might be loaded. Free any |
| 341 | * current crash dump kernel before we corrupt it. |
| 342 | */ |
| 343 | if (flags & KEXEC_FILE_ON_CRASH) |
| 344 | kimage_free(xchg(&kexec_crash_image, NULL)); |
| 345 | |
| 346 | ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, |
| 347 | cmdline_len, flags); |
| 348 | if (ret) |
| 349 | goto out; |
| 350 | |
| 351 | ret = machine_kexec_prepare(image); |
| 352 | if (ret) |
| 353 | goto out; |
| 354 | |
| 355 | ret = kexec_calculate_store_digests(image); |
| 356 | if (ret) |
| 357 | goto out; |
| 358 | |
| 359 | for (i = 0; i < image->nr_segments; i++) { |
| 360 | struct kexec_segment *ksegment; |
| 361 | |
| 362 | ksegment = &image->segment[i]; |
| 363 | pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", |
| 364 | i, ksegment->buf, ksegment->bufsz, ksegment->mem, |
| 365 | ksegment->memsz); |
| 366 | |
| 367 | ret = kimage_load_segment(image, &image->segment[i]); |
| 368 | if (ret) |
| 369 | goto out; |
| 370 | } |
| 371 | |
| 372 | kimage_terminate(image); |
| 373 | |
| 374 | /* |
| 375 | * Free up any temporary buffers allocated which are not needed |
| 376 | * after image has been loaded |
| 377 | */ |
| 378 | kimage_file_post_load_cleanup(image); |
| 379 | exchange: |
| 380 | image = xchg(dest_image, image); |
| 381 | out: |
| 382 | mutex_unlock(&kexec_mutex); |
| 383 | kimage_free(image); |
| 384 | return ret; |
| 385 | } |
| 386 | |
| 387 | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, |
| 388 | struct kexec_buf *kbuf) |
| 389 | { |
| 390 | struct kimage *image = kbuf->image; |
| 391 | unsigned long temp_start, temp_end; |
| 392 | |
| 393 | temp_end = min(end, kbuf->buf_max); |
| 394 | temp_start = temp_end - kbuf->memsz; |
| 395 | |
| 396 | do { |
| 397 | /* align down start */ |
| 398 | temp_start = temp_start & (~(kbuf->buf_align - 1)); |
| 399 | |
| 400 | if (temp_start < start || temp_start < kbuf->buf_min) |
| 401 | return 0; |
| 402 | |
| 403 | temp_end = temp_start + kbuf->memsz - 1; |
| 404 | |
| 405 | /* |
| 406 | * Make sure this does not conflict with any of existing |
| 407 | * segments |
| 408 | */ |
| 409 | if (kimage_is_destination_range(image, temp_start, temp_end)) { |
| 410 | temp_start = temp_start - PAGE_SIZE; |
| 411 | continue; |
| 412 | } |
| 413 | |
| 414 | /* We found a suitable memory range */ |
| 415 | break; |
| 416 | } while (1); |
| 417 | |
| 418 | /* If we are here, we found a suitable memory range */ |
| 419 | kbuf->mem = temp_start; |
| 420 | |
| 421 | /* Success, stop navigating through remaining System RAM ranges */ |
| 422 | return 1; |
| 423 | } |
| 424 | |
| 425 | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, |
| 426 | struct kexec_buf *kbuf) |
| 427 | { |
| 428 | struct kimage *image = kbuf->image; |
| 429 | unsigned long temp_start, temp_end; |
| 430 | |
| 431 | temp_start = max(start, kbuf->buf_min); |
| 432 | |
| 433 | do { |
| 434 | temp_start = ALIGN(temp_start, kbuf->buf_align); |
| 435 | temp_end = temp_start + kbuf->memsz - 1; |
| 436 | |
| 437 | if (temp_end > end || temp_end > kbuf->buf_max) |
| 438 | return 0; |
| 439 | /* |
| 440 | * Make sure this does not conflict with any of existing |
| 441 | * segments |
| 442 | */ |
| 443 | if (kimage_is_destination_range(image, temp_start, temp_end)) { |
| 444 | temp_start = temp_start + PAGE_SIZE; |
| 445 | continue; |
| 446 | } |
| 447 | |
| 448 | /* We found a suitable memory range */ |
| 449 | break; |
| 450 | } while (1); |
| 451 | |
| 452 | /* If we are here, we found a suitable memory range */ |
| 453 | kbuf->mem = temp_start; |
| 454 | |
| 455 | /* Success, stop navigating through remaining System RAM ranges */ |
| 456 | return 1; |
| 457 | } |
| 458 | |
| 459 | static int locate_mem_hole_callback(u64 start, u64 end, void *arg) |
| 460 | { |
| 461 | struct kexec_buf *kbuf = (struct kexec_buf *)arg; |
| 462 | unsigned long sz = end - start + 1; |
| 463 | |
| 464 | /* Returning 0 will take to next memory range */ |
| 465 | if (sz < kbuf->memsz) |
| 466 | return 0; |
| 467 | |
| 468 | if (end < kbuf->buf_min || start > kbuf->buf_max) |
| 469 | return 0; |
| 470 | |
| 471 | /* |
| 472 | * Allocate memory top down with-in ram range. Otherwise bottom up |
| 473 | * allocation. |
| 474 | */ |
| 475 | if (kbuf->top_down) |
| 476 | return locate_mem_hole_top_down(start, end, kbuf); |
| 477 | return locate_mem_hole_bottom_up(start, end, kbuf); |
| 478 | } |
| 479 | |
| 480 | /* |
| 481 | * Helper function for placing a buffer in a kexec segment. This assumes |
| 482 | * that kexec_mutex is held. |
| 483 | */ |
| 484 | int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, |
| 485 | unsigned long memsz, unsigned long buf_align, |
| 486 | unsigned long buf_min, unsigned long buf_max, |
| 487 | bool top_down, unsigned long *load_addr) |
| 488 | { |
| 489 | |
| 490 | struct kexec_segment *ksegment; |
| 491 | struct kexec_buf buf, *kbuf; |
| 492 | int ret; |
| 493 | |
| 494 | /* Currently adding segment this way is allowed only in file mode */ |
| 495 | if (!image->file_mode) |
| 496 | return -EINVAL; |
| 497 | |
| 498 | if (image->nr_segments >= KEXEC_SEGMENT_MAX) |
| 499 | return -EINVAL; |
| 500 | |
| 501 | /* |
| 502 | * Make sure we are not trying to add buffer after allocating |
| 503 | * control pages. All segments need to be placed first before |
| 504 | * any control pages are allocated. As control page allocation |
| 505 | * logic goes through list of segments to make sure there are |
| 506 | * no destination overlaps. |
| 507 | */ |
| 508 | if (!list_empty(&image->control_pages)) { |
| 509 | WARN_ON(1); |
| 510 | return -EINVAL; |
| 511 | } |
| 512 | |
| 513 | memset(&buf, 0, sizeof(struct kexec_buf)); |
| 514 | kbuf = &buf; |
| 515 | kbuf->image = image; |
| 516 | kbuf->buffer = buffer; |
| 517 | kbuf->bufsz = bufsz; |
| 518 | |
| 519 | kbuf->memsz = ALIGN(memsz, PAGE_SIZE); |
| 520 | kbuf->buf_align = max(buf_align, PAGE_SIZE); |
| 521 | kbuf->buf_min = buf_min; |
| 522 | kbuf->buf_max = buf_max; |
| 523 | kbuf->top_down = top_down; |
| 524 | |
| 525 | /* Walk the RAM ranges and allocate a suitable range for the buffer */ |
| 526 | if (image->type == KEXEC_TYPE_CRASH) |
| 527 | ret = walk_iomem_res("Crash kernel", |
| 528 | IORESOURCE_MEM | IORESOURCE_BUSY, |
| 529 | crashk_res.start, crashk_res.end, kbuf, |
| 530 | locate_mem_hole_callback); |
| 531 | else |
| 532 | ret = walk_system_ram_res(0, -1, kbuf, |
| 533 | locate_mem_hole_callback); |
| 534 | if (ret != 1) { |
| 535 | /* A suitable memory range could not be found for buffer */ |
| 536 | return -EADDRNOTAVAIL; |
| 537 | } |
| 538 | |
| 539 | /* Found a suitable memory range */ |
| 540 | ksegment = &image->segment[image->nr_segments]; |
| 541 | ksegment->kbuf = kbuf->buffer; |
| 542 | ksegment->bufsz = kbuf->bufsz; |
| 543 | ksegment->mem = kbuf->mem; |
| 544 | ksegment->memsz = kbuf->memsz; |
| 545 | image->nr_segments++; |
| 546 | *load_addr = ksegment->mem; |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | /* Calculate and store the digest of segments */ |
| 551 | static int kexec_calculate_store_digests(struct kimage *image) |
| 552 | { |
| 553 | struct crypto_shash *tfm; |
| 554 | struct shash_desc *desc; |
| 555 | int ret = 0, i, j, zero_buf_sz, sha_region_sz; |
| 556 | size_t desc_size, nullsz; |
| 557 | char *digest; |
| 558 | void *zero_buf; |
| 559 | struct kexec_sha_region *sha_regions; |
| 560 | struct purgatory_info *pi = &image->purgatory_info; |
| 561 | |
| 562 | zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); |
| 563 | zero_buf_sz = PAGE_SIZE; |
| 564 | |
| 565 | tfm = crypto_alloc_shash("sha256", 0, 0); |
| 566 | if (IS_ERR(tfm)) { |
| 567 | ret = PTR_ERR(tfm); |
| 568 | goto out; |
| 569 | } |
| 570 | |
| 571 | desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); |
| 572 | desc = kzalloc(desc_size, GFP_KERNEL); |
| 573 | if (!desc) { |
| 574 | ret = -ENOMEM; |
| 575 | goto out_free_tfm; |
| 576 | } |
| 577 | |
| 578 | sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); |
| 579 | sha_regions = vzalloc(sha_region_sz); |
| 580 | if (!sha_regions) |
| 581 | goto out_free_desc; |
| 582 | |
| 583 | desc->tfm = tfm; |
| 584 | desc->flags = 0; |
| 585 | |
| 586 | ret = crypto_shash_init(desc); |
| 587 | if (ret < 0) |
| 588 | goto out_free_sha_regions; |
| 589 | |
| 590 | digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); |
| 591 | if (!digest) { |
| 592 | ret = -ENOMEM; |
| 593 | goto out_free_sha_regions; |
| 594 | } |
| 595 | |
| 596 | for (j = i = 0; i < image->nr_segments; i++) { |
| 597 | struct kexec_segment *ksegment; |
| 598 | |
| 599 | ksegment = &image->segment[i]; |
| 600 | /* |
| 601 | * Skip purgatory as it will be modified once we put digest |
| 602 | * info in purgatory. |
| 603 | */ |
| 604 | if (ksegment->kbuf == pi->purgatory_buf) |
| 605 | continue; |
| 606 | |
| 607 | ret = crypto_shash_update(desc, ksegment->kbuf, |
| 608 | ksegment->bufsz); |
| 609 | if (ret) |
| 610 | break; |
| 611 | |
| 612 | /* |
| 613 | * Assume rest of the buffer is filled with zero and |
| 614 | * update digest accordingly. |
| 615 | */ |
| 616 | nullsz = ksegment->memsz - ksegment->bufsz; |
| 617 | while (nullsz) { |
| 618 | unsigned long bytes = nullsz; |
| 619 | |
| 620 | if (bytes > zero_buf_sz) |
| 621 | bytes = zero_buf_sz; |
| 622 | ret = crypto_shash_update(desc, zero_buf, bytes); |
| 623 | if (ret) |
| 624 | break; |
| 625 | nullsz -= bytes; |
| 626 | } |
| 627 | |
| 628 | if (ret) |
| 629 | break; |
| 630 | |
| 631 | sha_regions[j].start = ksegment->mem; |
| 632 | sha_regions[j].len = ksegment->memsz; |
| 633 | j++; |
| 634 | } |
| 635 | |
| 636 | if (!ret) { |
| 637 | ret = crypto_shash_final(desc, digest); |
| 638 | if (ret) |
| 639 | goto out_free_digest; |
| 640 | ret = kexec_purgatory_get_set_symbol(image, "sha_regions", |
| 641 | sha_regions, sha_region_sz, 0); |
| 642 | if (ret) |
| 643 | goto out_free_digest; |
| 644 | |
| 645 | ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", |
| 646 | digest, SHA256_DIGEST_SIZE, 0); |
| 647 | if (ret) |
| 648 | goto out_free_digest; |
| 649 | } |
| 650 | |
| 651 | out_free_digest: |
| 652 | kfree(digest); |
| 653 | out_free_sha_regions: |
| 654 | vfree(sha_regions); |
| 655 | out_free_desc: |
| 656 | kfree(desc); |
| 657 | out_free_tfm: |
| 658 | kfree(tfm); |
| 659 | out: |
| 660 | return ret; |
| 661 | } |
| 662 | |
| 663 | /* Actually load purgatory. Lot of code taken from kexec-tools */ |
| 664 | static int __kexec_load_purgatory(struct kimage *image, unsigned long min, |
| 665 | unsigned long max, int top_down) |
| 666 | { |
| 667 | struct purgatory_info *pi = &image->purgatory_info; |
| 668 | unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; |
| 669 | unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; |
| 670 | unsigned char *buf_addr, *src; |
| 671 | int i, ret = 0, entry_sidx = -1; |
| 672 | const Elf_Shdr *sechdrs_c; |
| 673 | Elf_Shdr *sechdrs = NULL; |
| 674 | void *purgatory_buf = NULL; |
| 675 | |
| 676 | /* |
| 677 | * sechdrs_c points to section headers in purgatory and are read |
| 678 | * only. No modifications allowed. |
| 679 | */ |
| 680 | sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; |
| 681 | |
| 682 | /* |
| 683 | * We can not modify sechdrs_c[] and its fields. It is read only. |
| 684 | * Copy it over to a local copy where one can store some temporary |
| 685 | * data and free it at the end. We need to modify ->sh_addr and |
| 686 | * ->sh_offset fields to keep track of permanent and temporary |
| 687 | * locations of sections. |
| 688 | */ |
| 689 | sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); |
| 690 | if (!sechdrs) |
| 691 | return -ENOMEM; |
| 692 | |
| 693 | memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); |
| 694 | |
| 695 | /* |
| 696 | * We seem to have multiple copies of sections. First copy is which |
| 697 | * is embedded in kernel in read only section. Some of these sections |
| 698 | * will be copied to a temporary buffer and relocated. And these |
| 699 | * sections will finally be copied to their final destination at |
| 700 | * segment load time. |
| 701 | * |
| 702 | * Use ->sh_offset to reflect section address in memory. It will |
| 703 | * point to original read only copy if section is not allocatable. |
| 704 | * Otherwise it will point to temporary copy which will be relocated. |
| 705 | * |
| 706 | * Use ->sh_addr to contain final address of the section where it |
| 707 | * will go during execution time. |
| 708 | */ |
| 709 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
| 710 | if (sechdrs[i].sh_type == SHT_NOBITS) |
| 711 | continue; |
| 712 | |
| 713 | sechdrs[i].sh_offset = (unsigned long)pi->ehdr + |
| 714 | sechdrs[i].sh_offset; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * Identify entry point section and make entry relative to section |
| 719 | * start. |
| 720 | */ |
| 721 | entry = pi->ehdr->e_entry; |
| 722 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
| 723 | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) |
| 724 | continue; |
| 725 | |
| 726 | if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) |
| 727 | continue; |
| 728 | |
| 729 | /* Make entry section relative */ |
| 730 | if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && |
| 731 | ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > |
| 732 | pi->ehdr->e_entry)) { |
| 733 | entry_sidx = i; |
| 734 | entry -= sechdrs[i].sh_addr; |
| 735 | break; |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | /* Determine how much memory is needed to load relocatable object. */ |
| 740 | buf_align = 1; |
| 741 | bss_align = 1; |
| 742 | buf_sz = 0; |
| 743 | bss_sz = 0; |
| 744 | |
| 745 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
| 746 | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) |
| 747 | continue; |
| 748 | |
| 749 | align = sechdrs[i].sh_addralign; |
| 750 | if (sechdrs[i].sh_type != SHT_NOBITS) { |
| 751 | if (buf_align < align) |
| 752 | buf_align = align; |
| 753 | buf_sz = ALIGN(buf_sz, align); |
| 754 | buf_sz += sechdrs[i].sh_size; |
| 755 | } else { |
| 756 | /* bss section */ |
| 757 | if (bss_align < align) |
| 758 | bss_align = align; |
| 759 | bss_sz = ALIGN(bss_sz, align); |
| 760 | bss_sz += sechdrs[i].sh_size; |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | /* Determine the bss padding required to align bss properly */ |
| 765 | bss_pad = 0; |
| 766 | if (buf_sz & (bss_align - 1)) |
| 767 | bss_pad = bss_align - (buf_sz & (bss_align - 1)); |
| 768 | |
| 769 | memsz = buf_sz + bss_pad + bss_sz; |
| 770 | |
| 771 | /* Allocate buffer for purgatory */ |
| 772 | purgatory_buf = vzalloc(buf_sz); |
| 773 | if (!purgatory_buf) { |
| 774 | ret = -ENOMEM; |
| 775 | goto out; |
| 776 | } |
| 777 | |
| 778 | if (buf_align < bss_align) |
| 779 | buf_align = bss_align; |
| 780 | |
| 781 | /* Add buffer to segment list */ |
| 782 | ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, |
| 783 | buf_align, min, max, top_down, |
| 784 | &pi->purgatory_load_addr); |
| 785 | if (ret) |
| 786 | goto out; |
| 787 | |
| 788 | /* Load SHF_ALLOC sections */ |
| 789 | buf_addr = purgatory_buf; |
| 790 | load_addr = curr_load_addr = pi->purgatory_load_addr; |
| 791 | bss_addr = load_addr + buf_sz + bss_pad; |
| 792 | |
| 793 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
| 794 | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) |
| 795 | continue; |
| 796 | |
| 797 | align = sechdrs[i].sh_addralign; |
| 798 | if (sechdrs[i].sh_type != SHT_NOBITS) { |
| 799 | curr_load_addr = ALIGN(curr_load_addr, align); |
| 800 | offset = curr_load_addr - load_addr; |
| 801 | /* We already modifed ->sh_offset to keep src addr */ |
| 802 | src = (char *) sechdrs[i].sh_offset; |
| 803 | memcpy(buf_addr + offset, src, sechdrs[i].sh_size); |
| 804 | |
| 805 | /* Store load address and source address of section */ |
| 806 | sechdrs[i].sh_addr = curr_load_addr; |
| 807 | |
| 808 | /* |
| 809 | * This section got copied to temporary buffer. Update |
| 810 | * ->sh_offset accordingly. |
| 811 | */ |
| 812 | sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); |
| 813 | |
| 814 | /* Advance to the next address */ |
| 815 | curr_load_addr += sechdrs[i].sh_size; |
| 816 | } else { |
| 817 | bss_addr = ALIGN(bss_addr, align); |
| 818 | sechdrs[i].sh_addr = bss_addr; |
| 819 | bss_addr += sechdrs[i].sh_size; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | /* Update entry point based on load address of text section */ |
| 824 | if (entry_sidx >= 0) |
| 825 | entry += sechdrs[entry_sidx].sh_addr; |
| 826 | |
| 827 | /* Make kernel jump to purgatory after shutdown */ |
| 828 | image->start = entry; |
| 829 | |
| 830 | /* Used later to get/set symbol values */ |
| 831 | pi->sechdrs = sechdrs; |
| 832 | |
| 833 | /* |
| 834 | * Used later to identify which section is purgatory and skip it |
| 835 | * from checksumming. |
| 836 | */ |
| 837 | pi->purgatory_buf = purgatory_buf; |
| 838 | return ret; |
| 839 | out: |
| 840 | vfree(sechdrs); |
| 841 | vfree(purgatory_buf); |
| 842 | return ret; |
| 843 | } |
| 844 | |
| 845 | static int kexec_apply_relocations(struct kimage *image) |
| 846 | { |
| 847 | int i, ret; |
| 848 | struct purgatory_info *pi = &image->purgatory_info; |
| 849 | Elf_Shdr *sechdrs = pi->sechdrs; |
| 850 | |
| 851 | /* Apply relocations */ |
| 852 | for (i = 0; i < pi->ehdr->e_shnum; i++) { |
| 853 | Elf_Shdr *section, *symtab; |
| 854 | |
| 855 | if (sechdrs[i].sh_type != SHT_RELA && |
| 856 | sechdrs[i].sh_type != SHT_REL) |
| 857 | continue; |
| 858 | |
| 859 | /* |
| 860 | * For section of type SHT_RELA/SHT_REL, |
| 861 | * ->sh_link contains section header index of associated |
| 862 | * symbol table. And ->sh_info contains section header |
| 863 | * index of section to which relocations apply. |
| 864 | */ |
| 865 | if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || |
| 866 | sechdrs[i].sh_link >= pi->ehdr->e_shnum) |
| 867 | return -ENOEXEC; |
| 868 | |
| 869 | section = &sechdrs[sechdrs[i].sh_info]; |
| 870 | symtab = &sechdrs[sechdrs[i].sh_link]; |
| 871 | |
| 872 | if (!(section->sh_flags & SHF_ALLOC)) |
| 873 | continue; |
| 874 | |
| 875 | /* |
| 876 | * symtab->sh_link contain section header index of associated |
| 877 | * string table. |
| 878 | */ |
| 879 | if (symtab->sh_link >= pi->ehdr->e_shnum) |
| 880 | /* Invalid section number? */ |
| 881 | continue; |
| 882 | |
| 883 | /* |
| 884 | * Respective architecture needs to provide support for applying |
| 885 | * relocations of type SHT_RELA/SHT_REL. |
| 886 | */ |
| 887 | if (sechdrs[i].sh_type == SHT_RELA) |
| 888 | ret = arch_kexec_apply_relocations_add(pi->ehdr, |
| 889 | sechdrs, i); |
| 890 | else if (sechdrs[i].sh_type == SHT_REL) |
| 891 | ret = arch_kexec_apply_relocations(pi->ehdr, |
| 892 | sechdrs, i); |
| 893 | if (ret) |
| 894 | return ret; |
| 895 | } |
| 896 | |
| 897 | return 0; |
| 898 | } |
| 899 | |
| 900 | /* Load relocatable purgatory object and relocate it appropriately */ |
| 901 | int kexec_load_purgatory(struct kimage *image, unsigned long min, |
| 902 | unsigned long max, int top_down, |
| 903 | unsigned long *load_addr) |
| 904 | { |
| 905 | struct purgatory_info *pi = &image->purgatory_info; |
| 906 | int ret; |
| 907 | |
| 908 | if (kexec_purgatory_size <= 0) |
| 909 | return -EINVAL; |
| 910 | |
| 911 | if (kexec_purgatory_size < sizeof(Elf_Ehdr)) |
| 912 | return -ENOEXEC; |
| 913 | |
| 914 | pi->ehdr = (Elf_Ehdr *)kexec_purgatory; |
| 915 | |
| 916 | if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 |
| 917 | || pi->ehdr->e_type != ET_REL |
| 918 | || !elf_check_arch(pi->ehdr) |
| 919 | || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) |
| 920 | return -ENOEXEC; |
| 921 | |
| 922 | if (pi->ehdr->e_shoff >= kexec_purgatory_size |
| 923 | || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > |
| 924 | kexec_purgatory_size - pi->ehdr->e_shoff)) |
| 925 | return -ENOEXEC; |
| 926 | |
| 927 | ret = __kexec_load_purgatory(image, min, max, top_down); |
| 928 | if (ret) |
| 929 | return ret; |
| 930 | |
| 931 | ret = kexec_apply_relocations(image); |
| 932 | if (ret) |
| 933 | goto out; |
| 934 | |
| 935 | *load_addr = pi->purgatory_load_addr; |
| 936 | return 0; |
| 937 | out: |
| 938 | vfree(pi->sechdrs); |
| 939 | vfree(pi->purgatory_buf); |
| 940 | return ret; |
| 941 | } |
| 942 | |
| 943 | static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, |
| 944 | const char *name) |
| 945 | { |
| 946 | Elf_Sym *syms; |
| 947 | Elf_Shdr *sechdrs; |
| 948 | Elf_Ehdr *ehdr; |
| 949 | int i, k; |
| 950 | const char *strtab; |
| 951 | |
| 952 | if (!pi->sechdrs || !pi->ehdr) |
| 953 | return NULL; |
| 954 | |
| 955 | sechdrs = pi->sechdrs; |
| 956 | ehdr = pi->ehdr; |
| 957 | |
| 958 | for (i = 0; i < ehdr->e_shnum; i++) { |
| 959 | if (sechdrs[i].sh_type != SHT_SYMTAB) |
| 960 | continue; |
| 961 | |
| 962 | if (sechdrs[i].sh_link >= ehdr->e_shnum) |
| 963 | /* Invalid strtab section number */ |
| 964 | continue; |
| 965 | strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; |
| 966 | syms = (Elf_Sym *)sechdrs[i].sh_offset; |
| 967 | |
| 968 | /* Go through symbols for a match */ |
| 969 | for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { |
| 970 | if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) |
| 971 | continue; |
| 972 | |
| 973 | if (strcmp(strtab + syms[k].st_name, name) != 0) |
| 974 | continue; |
| 975 | |
| 976 | if (syms[k].st_shndx == SHN_UNDEF || |
| 977 | syms[k].st_shndx >= ehdr->e_shnum) { |
| 978 | pr_debug("Symbol: %s has bad section index %d.\n", |
| 979 | name, syms[k].st_shndx); |
| 980 | return NULL; |
| 981 | } |
| 982 | |
| 983 | /* Found the symbol we are looking for */ |
| 984 | return &syms[k]; |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | return NULL; |
| 989 | } |
| 990 | |
| 991 | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) |
| 992 | { |
| 993 | struct purgatory_info *pi = &image->purgatory_info; |
| 994 | Elf_Sym *sym; |
| 995 | Elf_Shdr *sechdr; |
| 996 | |
| 997 | sym = kexec_purgatory_find_symbol(pi, name); |
| 998 | if (!sym) |
| 999 | return ERR_PTR(-EINVAL); |
| 1000 | |
| 1001 | sechdr = &pi->sechdrs[sym->st_shndx]; |
| 1002 | |
| 1003 | /* |
| 1004 | * Returns the address where symbol will finally be loaded after |
| 1005 | * kexec_load_segment() |
| 1006 | */ |
| 1007 | return (void *)(sechdr->sh_addr + sym->st_value); |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * Get or set value of a symbol. If "get_value" is true, symbol value is |
| 1012 | * returned in buf otherwise symbol value is set based on value in buf. |
| 1013 | */ |
| 1014 | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, |
| 1015 | void *buf, unsigned int size, bool get_value) |
| 1016 | { |
| 1017 | Elf_Sym *sym; |
| 1018 | Elf_Shdr *sechdrs; |
| 1019 | struct purgatory_info *pi = &image->purgatory_info; |
| 1020 | char *sym_buf; |
| 1021 | |
| 1022 | sym = kexec_purgatory_find_symbol(pi, name); |
| 1023 | if (!sym) |
| 1024 | return -EINVAL; |
| 1025 | |
| 1026 | if (sym->st_size != size) { |
| 1027 | pr_err("symbol %s size mismatch: expected %lu actual %u\n", |
| 1028 | name, (unsigned long)sym->st_size, size); |
| 1029 | return -EINVAL; |
| 1030 | } |
| 1031 | |
| 1032 | sechdrs = pi->sechdrs; |
| 1033 | |
| 1034 | if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { |
| 1035 | pr_err("symbol %s is in a bss section. Cannot %s\n", name, |
| 1036 | get_value ? "get" : "set"); |
| 1037 | return -EINVAL; |
| 1038 | } |
| 1039 | |
| 1040 | sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + |
| 1041 | sym->st_value; |
| 1042 | |
| 1043 | if (get_value) |
| 1044 | memcpy((void *)buf, sym_buf, size); |
| 1045 | else |
| 1046 | memcpy((void *)sym_buf, buf, size); |
| 1047 | |
| 1048 | return 0; |
| 1049 | } |