Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/exit.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | #include <linux/config.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/interrupt.h> |
| 11 | #include <linux/smp_lock.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/completion.h> |
| 14 | #include <linux/personality.h> |
| 15 | #include <linux/tty.h> |
| 16 | #include <linux/namespace.h> |
| 17 | #include <linux/key.h> |
| 18 | #include <linux/security.h> |
| 19 | #include <linux/cpu.h> |
| 20 | #include <linux/acct.h> |
| 21 | #include <linux/file.h> |
| 22 | #include <linux/binfmts.h> |
| 23 | #include <linux/ptrace.h> |
| 24 | #include <linux/profile.h> |
| 25 | #include <linux/mount.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/mempolicy.h> |
| 28 | #include <linux/cpuset.h> |
| 29 | #include <linux/syscalls.h> |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 30 | #include <linux/signal.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 31 | |
| 32 | #include <asm/uaccess.h> |
| 33 | #include <asm/unistd.h> |
| 34 | #include <asm/pgtable.h> |
| 35 | #include <asm/mmu_context.h> |
| 36 | |
| 37 | extern void sem_exit (void); |
| 38 | extern struct task_struct *child_reaper; |
| 39 | |
| 40 | int getrusage(struct task_struct *, int, struct rusage __user *); |
| 41 | |
Adrian Bunk | 408b664 | 2005-05-01 08:59:29 -0700 | [diff] [blame] | 42 | static void exit_mm(struct task_struct * tsk); |
| 43 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 44 | static void __unhash_process(struct task_struct *p) |
| 45 | { |
| 46 | nr_threads--; |
| 47 | detach_pid(p, PIDTYPE_PID); |
| 48 | detach_pid(p, PIDTYPE_TGID); |
| 49 | if (thread_group_leader(p)) { |
| 50 | detach_pid(p, PIDTYPE_PGID); |
| 51 | detach_pid(p, PIDTYPE_SID); |
| 52 | if (p->pid) |
| 53 | __get_cpu_var(process_counts)--; |
| 54 | } |
| 55 | |
| 56 | REMOVE_LINKS(p); |
| 57 | } |
| 58 | |
| 59 | void release_task(struct task_struct * p) |
| 60 | { |
| 61 | int zap_leader; |
| 62 | task_t *leader; |
| 63 | struct dentry *proc_dentry; |
| 64 | |
| 65 | repeat: |
| 66 | atomic_dec(&p->user->processes); |
| 67 | spin_lock(&p->proc_lock); |
| 68 | proc_dentry = proc_pid_unhash(p); |
| 69 | write_lock_irq(&tasklist_lock); |
| 70 | if (unlikely(p->ptrace)) |
| 71 | __ptrace_unlink(p); |
| 72 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); |
| 73 | __exit_signal(p); |
| 74 | __exit_sighand(p); |
Christoph Lameter | 71a2224 | 2005-06-23 00:10:05 -0700 | [diff] [blame] | 75 | /* |
| 76 | * Note that the fastpath in sys_times depends on __exit_signal having |
| 77 | * updated the counters before a task is removed from the tasklist of |
| 78 | * the process by __unhash_process. |
| 79 | */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 80 | __unhash_process(p); |
| 81 | |
| 82 | /* |
| 83 | * If we are the last non-leader member of the thread |
| 84 | * group, and the leader is zombie, then notify the |
| 85 | * group leader's parent process. (if it wants notification.) |
| 86 | */ |
| 87 | zap_leader = 0; |
| 88 | leader = p->group_leader; |
| 89 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { |
| 90 | BUG_ON(leader->exit_signal == -1); |
| 91 | do_notify_parent(leader, leader->exit_signal); |
| 92 | /* |
| 93 | * If we were the last child thread and the leader has |
| 94 | * exited already, and the leader's parent ignores SIGCHLD, |
| 95 | * then we are the one who should release the leader. |
| 96 | * |
| 97 | * do_notify_parent() will have marked it self-reaping in |
| 98 | * that case. |
| 99 | */ |
| 100 | zap_leader = (leader->exit_signal == -1); |
| 101 | } |
| 102 | |
| 103 | sched_exit(p); |
| 104 | write_unlock_irq(&tasklist_lock); |
| 105 | spin_unlock(&p->proc_lock); |
| 106 | proc_pid_flush(proc_dentry); |
| 107 | release_thread(p); |
| 108 | put_task_struct(p); |
| 109 | |
| 110 | p = leader; |
| 111 | if (unlikely(zap_leader)) |
| 112 | goto repeat; |
| 113 | } |
| 114 | |
| 115 | /* we are using it only for SMP init */ |
| 116 | |
| 117 | void unhash_process(struct task_struct *p) |
| 118 | { |
| 119 | struct dentry *proc_dentry; |
| 120 | |
| 121 | spin_lock(&p->proc_lock); |
| 122 | proc_dentry = proc_pid_unhash(p); |
| 123 | write_lock_irq(&tasklist_lock); |
| 124 | __unhash_process(p); |
| 125 | write_unlock_irq(&tasklist_lock); |
| 126 | spin_unlock(&p->proc_lock); |
| 127 | proc_pid_flush(proc_dentry); |
| 128 | } |
| 129 | |
| 130 | /* |
| 131 | * This checks not only the pgrp, but falls back on the pid if no |
| 132 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly |
| 133 | * without this... |
| 134 | */ |
| 135 | int session_of_pgrp(int pgrp) |
| 136 | { |
| 137 | struct task_struct *p; |
| 138 | int sid = -1; |
| 139 | |
| 140 | read_lock(&tasklist_lock); |
| 141 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 142 | if (p->signal->session > 0) { |
| 143 | sid = p->signal->session; |
| 144 | goto out; |
| 145 | } |
| 146 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 147 | p = find_task_by_pid(pgrp); |
| 148 | if (p) |
| 149 | sid = p->signal->session; |
| 150 | out: |
| 151 | read_unlock(&tasklist_lock); |
| 152 | |
| 153 | return sid; |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | * Determine if a process group is "orphaned", according to the POSIX |
| 158 | * definition in 2.2.2.52. Orphaned process groups are not to be affected |
| 159 | * by terminal-generated stop signals. Newly orphaned process groups are |
| 160 | * to receive a SIGHUP and a SIGCONT. |
| 161 | * |
| 162 | * "I ask you, have you ever known what it is to be an orphan?" |
| 163 | */ |
| 164 | static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) |
| 165 | { |
| 166 | struct task_struct *p; |
| 167 | int ret = 1; |
| 168 | |
| 169 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 170 | if (p == ignored_task |
| 171 | || p->exit_state |
| 172 | || p->real_parent->pid == 1) |
| 173 | continue; |
| 174 | if (process_group(p->real_parent) != pgrp |
| 175 | && p->real_parent->signal->session == p->signal->session) { |
| 176 | ret = 0; |
| 177 | break; |
| 178 | } |
| 179 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 180 | return ret; /* (sighing) "Often!" */ |
| 181 | } |
| 182 | |
| 183 | int is_orphaned_pgrp(int pgrp) |
| 184 | { |
| 185 | int retval; |
| 186 | |
| 187 | read_lock(&tasklist_lock); |
| 188 | retval = will_become_orphaned_pgrp(pgrp, NULL); |
| 189 | read_unlock(&tasklist_lock); |
| 190 | |
| 191 | return retval; |
| 192 | } |
| 193 | |
| 194 | static inline int has_stopped_jobs(int pgrp) |
| 195 | { |
| 196 | int retval = 0; |
| 197 | struct task_struct *p; |
| 198 | |
| 199 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 200 | if (p->state != TASK_STOPPED) |
| 201 | continue; |
| 202 | |
| 203 | /* If p is stopped by a debugger on a signal that won't |
| 204 | stop it, then don't count p as stopped. This isn't |
| 205 | perfect but it's a good approximation. */ |
| 206 | if (unlikely (p->ptrace) |
| 207 | && p->exit_code != SIGSTOP |
| 208 | && p->exit_code != SIGTSTP |
| 209 | && p->exit_code != SIGTTOU |
| 210 | && p->exit_code != SIGTTIN) |
| 211 | continue; |
| 212 | |
| 213 | retval = 1; |
| 214 | break; |
| 215 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 216 | return retval; |
| 217 | } |
| 218 | |
| 219 | /** |
Pavel Pisa | 4dc3b16 | 2005-05-01 08:59:25 -0700 | [diff] [blame] | 220 | * reparent_to_init - Reparent the calling kernel thread to the init task. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 221 | * |
| 222 | * If a kernel thread is launched as a result of a system call, or if |
| 223 | * it ever exits, it should generally reparent itself to init so that |
| 224 | * it is correctly cleaned up on exit. |
| 225 | * |
| 226 | * The various task state such as scheduling policy and priority may have |
| 227 | * been inherited from a user process, so we reset them to sane values here. |
| 228 | * |
| 229 | * NOTE that reparent_to_init() gives the caller full capabilities. |
| 230 | */ |
Coywolf Qi Hunt | 6c46ada | 2005-04-16 15:26:01 -0700 | [diff] [blame] | 231 | static inline void reparent_to_init(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 232 | { |
| 233 | write_lock_irq(&tasklist_lock); |
| 234 | |
| 235 | ptrace_unlink(current); |
| 236 | /* Reparent to init */ |
| 237 | REMOVE_LINKS(current); |
| 238 | current->parent = child_reaper; |
| 239 | current->real_parent = child_reaper; |
| 240 | SET_LINKS(current); |
| 241 | |
| 242 | /* Set the exit signal to SIGCHLD so we signal init on exit */ |
| 243 | current->exit_signal = SIGCHLD; |
| 244 | |
| 245 | if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0)) |
| 246 | set_user_nice(current, 0); |
| 247 | /* cpus_allowed? */ |
| 248 | /* rt_priority? */ |
| 249 | /* signals? */ |
| 250 | security_task_reparent_to_init(current); |
| 251 | memcpy(current->signal->rlim, init_task.signal->rlim, |
| 252 | sizeof(current->signal->rlim)); |
| 253 | atomic_inc(&(INIT_USER->__count)); |
| 254 | write_unlock_irq(&tasklist_lock); |
| 255 | switch_uid(INIT_USER); |
| 256 | } |
| 257 | |
| 258 | void __set_special_pids(pid_t session, pid_t pgrp) |
| 259 | { |
| 260 | struct task_struct *curr = current; |
| 261 | |
| 262 | if (curr->signal->session != session) { |
| 263 | detach_pid(curr, PIDTYPE_SID); |
| 264 | curr->signal->session = session; |
| 265 | attach_pid(curr, PIDTYPE_SID, session); |
| 266 | } |
| 267 | if (process_group(curr) != pgrp) { |
| 268 | detach_pid(curr, PIDTYPE_PGID); |
| 269 | curr->signal->pgrp = pgrp; |
| 270 | attach_pid(curr, PIDTYPE_PGID, pgrp); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | void set_special_pids(pid_t session, pid_t pgrp) |
| 275 | { |
| 276 | write_lock_irq(&tasklist_lock); |
| 277 | __set_special_pids(session, pgrp); |
| 278 | write_unlock_irq(&tasklist_lock); |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * Let kernel threads use this to say that they |
| 283 | * allow a certain signal (since daemonize() will |
| 284 | * have disabled all of them by default). |
| 285 | */ |
| 286 | int allow_signal(int sig) |
| 287 | { |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 288 | if (!valid_signal(sig) || sig < 1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 289 | return -EINVAL; |
| 290 | |
| 291 | spin_lock_irq(¤t->sighand->siglock); |
| 292 | sigdelset(¤t->blocked, sig); |
| 293 | if (!current->mm) { |
| 294 | /* Kernel threads handle their own signals. |
| 295 | Let the signal code know it'll be handled, so |
| 296 | that they don't get converted to SIGKILL or |
| 297 | just silently dropped */ |
| 298 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; |
| 299 | } |
| 300 | recalc_sigpending(); |
| 301 | spin_unlock_irq(¤t->sighand->siglock); |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | EXPORT_SYMBOL(allow_signal); |
| 306 | |
| 307 | int disallow_signal(int sig) |
| 308 | { |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 309 | if (!valid_signal(sig) || sig < 1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 310 | return -EINVAL; |
| 311 | |
| 312 | spin_lock_irq(¤t->sighand->siglock); |
| 313 | sigaddset(¤t->blocked, sig); |
| 314 | recalc_sigpending(); |
| 315 | spin_unlock_irq(¤t->sighand->siglock); |
| 316 | return 0; |
| 317 | } |
| 318 | |
| 319 | EXPORT_SYMBOL(disallow_signal); |
| 320 | |
| 321 | /* |
| 322 | * Put all the gunge required to become a kernel thread without |
| 323 | * attached user resources in one place where it belongs. |
| 324 | */ |
| 325 | |
| 326 | void daemonize(const char *name, ...) |
| 327 | { |
| 328 | va_list args; |
| 329 | struct fs_struct *fs; |
| 330 | sigset_t blocked; |
| 331 | |
| 332 | va_start(args, name); |
| 333 | vsnprintf(current->comm, sizeof(current->comm), name, args); |
| 334 | va_end(args); |
| 335 | |
| 336 | /* |
| 337 | * If we were started as result of loading a module, close all of the |
| 338 | * user space pages. We don't need them, and if we didn't close them |
| 339 | * they would be locked into memory. |
| 340 | */ |
| 341 | exit_mm(current); |
| 342 | |
| 343 | set_special_pids(1, 1); |
| 344 | down(&tty_sem); |
| 345 | current->signal->tty = NULL; |
| 346 | up(&tty_sem); |
| 347 | |
| 348 | /* Block and flush all signals */ |
| 349 | sigfillset(&blocked); |
| 350 | sigprocmask(SIG_BLOCK, &blocked, NULL); |
| 351 | flush_signals(current); |
| 352 | |
| 353 | /* Become as one with the init task */ |
| 354 | |
| 355 | exit_fs(current); /* current->fs->count--; */ |
| 356 | fs = init_task.fs; |
| 357 | current->fs = fs; |
| 358 | atomic_inc(&fs->count); |
| 359 | exit_files(current); |
| 360 | current->files = init_task.files; |
| 361 | atomic_inc(¤t->files->count); |
| 362 | |
| 363 | reparent_to_init(); |
| 364 | } |
| 365 | |
| 366 | EXPORT_SYMBOL(daemonize); |
| 367 | |
| 368 | static inline void close_files(struct files_struct * files) |
| 369 | { |
| 370 | int i, j; |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 371 | struct fdtable *fdt; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 372 | |
| 373 | j = 0; |
Dipankar Sarma | 4fb3a53 | 2005-09-16 19:28:13 -0700 | [diff] [blame] | 374 | |
| 375 | /* |
| 376 | * It is safe to dereference the fd table without RCU or |
| 377 | * ->file_lock because this is the last reference to the |
| 378 | * files structure. |
| 379 | */ |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 380 | fdt = files_fdtable(files); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 381 | for (;;) { |
| 382 | unsigned long set; |
| 383 | i = j * __NFDBITS; |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 384 | if (i >= fdt->max_fdset || i >= fdt->max_fds) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 385 | break; |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 386 | set = fdt->open_fds->fds_bits[j++]; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 387 | while (set) { |
| 388 | if (set & 1) { |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 389 | struct file * file = xchg(&fdt->fd[i], NULL); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 390 | if (file) |
| 391 | filp_close(file, files); |
| 392 | } |
| 393 | i++; |
| 394 | set >>= 1; |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | struct files_struct *get_files_struct(struct task_struct *task) |
| 400 | { |
| 401 | struct files_struct *files; |
| 402 | |
| 403 | task_lock(task); |
| 404 | files = task->files; |
| 405 | if (files) |
| 406 | atomic_inc(&files->count); |
| 407 | task_unlock(task); |
| 408 | |
| 409 | return files; |
| 410 | } |
| 411 | |
| 412 | void fastcall put_files_struct(struct files_struct *files) |
| 413 | { |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 414 | struct fdtable *fdt; |
| 415 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 416 | if (atomic_dec_and_test(&files->count)) { |
| 417 | close_files(files); |
| 418 | /* |
| 419 | * Free the fd and fdset arrays if we expanded them. |
Dipankar Sarma | ab2af1f | 2005-09-09 13:04:13 -0700 | [diff] [blame] | 420 | * If the fdtable was embedded, pass files for freeing |
| 421 | * at the end of the RCU grace period. Otherwise, |
| 422 | * you can free files immediately. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 423 | */ |
Dipankar Sarma | badf166 | 2005-09-09 13:04:10 -0700 | [diff] [blame] | 424 | fdt = files_fdtable(files); |
Dipankar Sarma | ab2af1f | 2005-09-09 13:04:13 -0700 | [diff] [blame] | 425 | if (fdt == &files->fdtab) |
| 426 | fdt->free_files = files; |
| 427 | else |
| 428 | kmem_cache_free(files_cachep, files); |
| 429 | free_fdtable(fdt); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 430 | } |
| 431 | } |
| 432 | |
| 433 | EXPORT_SYMBOL(put_files_struct); |
| 434 | |
| 435 | static inline void __exit_files(struct task_struct *tsk) |
| 436 | { |
| 437 | struct files_struct * files = tsk->files; |
| 438 | |
| 439 | if (files) { |
| 440 | task_lock(tsk); |
| 441 | tsk->files = NULL; |
| 442 | task_unlock(tsk); |
| 443 | put_files_struct(files); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | void exit_files(struct task_struct *tsk) |
| 448 | { |
| 449 | __exit_files(tsk); |
| 450 | } |
| 451 | |
| 452 | static inline void __put_fs_struct(struct fs_struct *fs) |
| 453 | { |
| 454 | /* No need to hold fs->lock if we are killing it */ |
| 455 | if (atomic_dec_and_test(&fs->count)) { |
| 456 | dput(fs->root); |
| 457 | mntput(fs->rootmnt); |
| 458 | dput(fs->pwd); |
| 459 | mntput(fs->pwdmnt); |
| 460 | if (fs->altroot) { |
| 461 | dput(fs->altroot); |
| 462 | mntput(fs->altrootmnt); |
| 463 | } |
| 464 | kmem_cache_free(fs_cachep, fs); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | void put_fs_struct(struct fs_struct *fs) |
| 469 | { |
| 470 | __put_fs_struct(fs); |
| 471 | } |
| 472 | |
| 473 | static inline void __exit_fs(struct task_struct *tsk) |
| 474 | { |
| 475 | struct fs_struct * fs = tsk->fs; |
| 476 | |
| 477 | if (fs) { |
| 478 | task_lock(tsk); |
| 479 | tsk->fs = NULL; |
| 480 | task_unlock(tsk); |
| 481 | __put_fs_struct(fs); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | void exit_fs(struct task_struct *tsk) |
| 486 | { |
| 487 | __exit_fs(tsk); |
| 488 | } |
| 489 | |
| 490 | EXPORT_SYMBOL_GPL(exit_fs); |
| 491 | |
| 492 | /* |
| 493 | * Turn us into a lazy TLB process if we |
| 494 | * aren't already.. |
| 495 | */ |
Adrian Bunk | 408b664 | 2005-05-01 08:59:29 -0700 | [diff] [blame] | 496 | static void exit_mm(struct task_struct * tsk) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 497 | { |
| 498 | struct mm_struct *mm = tsk->mm; |
| 499 | |
| 500 | mm_release(tsk, mm); |
| 501 | if (!mm) |
| 502 | return; |
| 503 | /* |
| 504 | * Serialize with any possible pending coredump. |
| 505 | * We must hold mmap_sem around checking core_waiters |
| 506 | * and clearing tsk->mm. The core-inducing thread |
| 507 | * will increment core_waiters for each thread in the |
| 508 | * group with ->mm != NULL. |
| 509 | */ |
| 510 | down_read(&mm->mmap_sem); |
| 511 | if (mm->core_waiters) { |
| 512 | up_read(&mm->mmap_sem); |
| 513 | down_write(&mm->mmap_sem); |
| 514 | if (!--mm->core_waiters) |
| 515 | complete(mm->core_startup_done); |
| 516 | up_write(&mm->mmap_sem); |
| 517 | |
| 518 | wait_for_completion(&mm->core_done); |
| 519 | down_read(&mm->mmap_sem); |
| 520 | } |
| 521 | atomic_inc(&mm->mm_count); |
| 522 | if (mm != tsk->active_mm) BUG(); |
| 523 | /* more a memory barrier than a real lock */ |
| 524 | task_lock(tsk); |
| 525 | tsk->mm = NULL; |
| 526 | up_read(&mm->mmap_sem); |
| 527 | enter_lazy_tlb(mm, current); |
| 528 | task_unlock(tsk); |
| 529 | mmput(mm); |
| 530 | } |
| 531 | |
| 532 | static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) |
| 533 | { |
| 534 | /* |
| 535 | * Make sure we're not reparenting to ourselves and that |
| 536 | * the parent is not a zombie. |
| 537 | */ |
| 538 | BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); |
| 539 | p->real_parent = reaper; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 540 | } |
| 541 | |
| 542 | static inline void reparent_thread(task_t *p, task_t *father, int traced) |
| 543 | { |
| 544 | /* We don't want people slaying init. */ |
| 545 | if (p->exit_signal != -1) |
| 546 | p->exit_signal = SIGCHLD; |
| 547 | |
| 548 | if (p->pdeath_signal) |
| 549 | /* We already hold the tasklist_lock here. */ |
| 550 | group_send_sig_info(p->pdeath_signal, (void *) 0, p); |
| 551 | |
| 552 | /* Move the child from its dying parent to the new one. */ |
| 553 | if (unlikely(traced)) { |
| 554 | /* Preserve ptrace links if someone else is tracing this child. */ |
| 555 | list_del_init(&p->ptrace_list); |
| 556 | if (p->parent != p->real_parent) |
| 557 | list_add(&p->ptrace_list, &p->real_parent->ptrace_children); |
| 558 | } else { |
| 559 | /* If this child is being traced, then we're the one tracing it |
| 560 | * anyway, so let go of it. |
| 561 | */ |
| 562 | p->ptrace = 0; |
| 563 | list_del_init(&p->sibling); |
| 564 | p->parent = p->real_parent; |
| 565 | list_add_tail(&p->sibling, &p->parent->children); |
| 566 | |
| 567 | /* If we'd notified the old parent about this child's death, |
| 568 | * also notify the new parent. |
| 569 | */ |
| 570 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && |
| 571 | thread_group_empty(p)) |
| 572 | do_notify_parent(p, p->exit_signal); |
| 573 | else if (p->state == TASK_TRACED) { |
| 574 | /* |
| 575 | * If it was at a trace stop, turn it into |
| 576 | * a normal stop since it's no longer being |
| 577 | * traced. |
| 578 | */ |
| 579 | ptrace_untrace(p); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * process group orphan check |
| 585 | * Case ii: Our child is in a different pgrp |
| 586 | * than we are, and it was the only connection |
| 587 | * outside, so the child pgrp is now orphaned. |
| 588 | */ |
| 589 | if ((process_group(p) != process_group(father)) && |
| 590 | (p->signal->session == father->signal->session)) { |
| 591 | int pgrp = process_group(p); |
| 592 | |
| 593 | if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { |
| 594 | __kill_pg_info(SIGHUP, (void *)1, pgrp); |
| 595 | __kill_pg_info(SIGCONT, (void *)1, pgrp); |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * When we die, we re-parent all our children. |
| 602 | * Try to give them to another thread in our thread |
| 603 | * group, and if no such member exists, give it to |
| 604 | * the global child reaper process (ie "init") |
| 605 | */ |
| 606 | static inline void forget_original_parent(struct task_struct * father, |
| 607 | struct list_head *to_release) |
| 608 | { |
| 609 | struct task_struct *p, *reaper = father; |
| 610 | struct list_head *_p, *_n; |
| 611 | |
| 612 | do { |
| 613 | reaper = next_thread(reaper); |
| 614 | if (reaper == father) { |
| 615 | reaper = child_reaper; |
| 616 | break; |
| 617 | } |
| 618 | } while (reaper->exit_state); |
| 619 | |
| 620 | /* |
| 621 | * There are only two places where our children can be: |
| 622 | * |
| 623 | * - in our child list |
| 624 | * - in our ptraced child list |
| 625 | * |
| 626 | * Search them and reparent children. |
| 627 | */ |
| 628 | list_for_each_safe(_p, _n, &father->children) { |
| 629 | int ptrace; |
| 630 | p = list_entry(_p,struct task_struct,sibling); |
| 631 | |
| 632 | ptrace = p->ptrace; |
| 633 | |
| 634 | /* if father isn't the real parent, then ptrace must be enabled */ |
| 635 | BUG_ON(father != p->real_parent && !ptrace); |
| 636 | |
| 637 | if (father == p->real_parent) { |
| 638 | /* reparent with a reaper, real father it's us */ |
| 639 | choose_new_parent(p, reaper, child_reaper); |
| 640 | reparent_thread(p, father, 0); |
| 641 | } else { |
| 642 | /* reparent ptraced task to its real parent */ |
| 643 | __ptrace_unlink (p); |
| 644 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && |
| 645 | thread_group_empty(p)) |
| 646 | do_notify_parent(p, p->exit_signal); |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * if the ptraced child is a zombie with exit_signal == -1 |
| 651 | * we must collect it before we exit, or it will remain |
| 652 | * zombie forever since we prevented it from self-reap itself |
| 653 | * while it was being traced by us, to be able to see it in wait4. |
| 654 | */ |
| 655 | if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) |
| 656 | list_add(&p->ptrace_list, to_release); |
| 657 | } |
| 658 | list_for_each_safe(_p, _n, &father->ptrace_children) { |
| 659 | p = list_entry(_p,struct task_struct,ptrace_list); |
| 660 | choose_new_parent(p, reaper, child_reaper); |
| 661 | reparent_thread(p, father, 1); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Send signals to all our closest relatives so that they know |
| 667 | * to properly mourn us.. |
| 668 | */ |
| 669 | static void exit_notify(struct task_struct *tsk) |
| 670 | { |
| 671 | int state; |
| 672 | struct task_struct *t; |
| 673 | struct list_head ptrace_dead, *_p, *_n; |
| 674 | |
| 675 | if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) |
| 676 | && !thread_group_empty(tsk)) { |
| 677 | /* |
| 678 | * This occurs when there was a race between our exit |
| 679 | * syscall and a group signal choosing us as the one to |
| 680 | * wake up. It could be that we are the only thread |
| 681 | * alerted to check for pending signals, but another thread |
| 682 | * should be woken now to take the signal since we will not. |
| 683 | * Now we'll wake all the threads in the group just to make |
| 684 | * sure someone gets all the pending signals. |
| 685 | */ |
| 686 | read_lock(&tasklist_lock); |
| 687 | spin_lock_irq(&tsk->sighand->siglock); |
| 688 | for (t = next_thread(tsk); t != tsk; t = next_thread(t)) |
| 689 | if (!signal_pending(t) && !(t->flags & PF_EXITING)) { |
| 690 | recalc_sigpending_tsk(t); |
| 691 | if (signal_pending(t)) |
| 692 | signal_wake_up(t, 0); |
| 693 | } |
| 694 | spin_unlock_irq(&tsk->sighand->siglock); |
| 695 | read_unlock(&tasklist_lock); |
| 696 | } |
| 697 | |
| 698 | write_lock_irq(&tasklist_lock); |
| 699 | |
| 700 | /* |
| 701 | * This does two things: |
| 702 | * |
| 703 | * A. Make init inherit all the child processes |
| 704 | * B. Check to see if any process groups have become orphaned |
| 705 | * as a result of our exiting, and if they have any stopped |
| 706 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
| 707 | */ |
| 708 | |
| 709 | INIT_LIST_HEAD(&ptrace_dead); |
| 710 | forget_original_parent(tsk, &ptrace_dead); |
| 711 | BUG_ON(!list_empty(&tsk->children)); |
| 712 | BUG_ON(!list_empty(&tsk->ptrace_children)); |
| 713 | |
| 714 | /* |
| 715 | * Check to see if any process groups have become orphaned |
| 716 | * as a result of our exiting, and if they have any stopped |
| 717 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
| 718 | * |
| 719 | * Case i: Our father is in a different pgrp than we are |
| 720 | * and we were the only connection outside, so our pgrp |
| 721 | * is about to become orphaned. |
| 722 | */ |
| 723 | |
| 724 | t = tsk->real_parent; |
| 725 | |
| 726 | if ((process_group(t) != process_group(tsk)) && |
| 727 | (t->signal->session == tsk->signal->session) && |
| 728 | will_become_orphaned_pgrp(process_group(tsk), tsk) && |
| 729 | has_stopped_jobs(process_group(tsk))) { |
| 730 | __kill_pg_info(SIGHUP, (void *)1, process_group(tsk)); |
| 731 | __kill_pg_info(SIGCONT, (void *)1, process_group(tsk)); |
| 732 | } |
| 733 | |
| 734 | /* Let father know we died |
| 735 | * |
| 736 | * Thread signals are configurable, but you aren't going to use |
| 737 | * that to send signals to arbitary processes. |
| 738 | * That stops right now. |
| 739 | * |
| 740 | * If the parent exec id doesn't match the exec id we saved |
| 741 | * when we started then we know the parent has changed security |
| 742 | * domain. |
| 743 | * |
| 744 | * If our self_exec id doesn't match our parent_exec_id then |
| 745 | * we have changed execution domain as these two values started |
| 746 | * the same after a fork. |
| 747 | * |
| 748 | */ |
| 749 | |
| 750 | if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && |
| 751 | ( tsk->parent_exec_id != t->self_exec_id || |
| 752 | tsk->self_exec_id != tsk->parent_exec_id) |
| 753 | && !capable(CAP_KILL)) |
| 754 | tsk->exit_signal = SIGCHLD; |
| 755 | |
| 756 | |
| 757 | /* If something other than our normal parent is ptracing us, then |
| 758 | * send it a SIGCHLD instead of honoring exit_signal. exit_signal |
| 759 | * only has special meaning to our real parent. |
| 760 | */ |
| 761 | if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { |
| 762 | int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; |
| 763 | do_notify_parent(tsk, signal); |
| 764 | } else if (tsk->ptrace) { |
| 765 | do_notify_parent(tsk, SIGCHLD); |
| 766 | } |
| 767 | |
| 768 | state = EXIT_ZOMBIE; |
| 769 | if (tsk->exit_signal == -1 && |
| 770 | (likely(tsk->ptrace == 0) || |
| 771 | unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) |
| 772 | state = EXIT_DEAD; |
| 773 | tsk->exit_state = state; |
| 774 | |
| 775 | write_unlock_irq(&tasklist_lock); |
| 776 | |
| 777 | list_for_each_safe(_p, _n, &ptrace_dead) { |
| 778 | list_del_init(_p); |
| 779 | t = list_entry(_p,struct task_struct,ptrace_list); |
| 780 | release_task(t); |
| 781 | } |
| 782 | |
| 783 | /* If the process is dead, release it - nobody will wait for it */ |
| 784 | if (state == EXIT_DEAD) |
| 785 | release_task(tsk); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 786 | } |
| 787 | |
| 788 | fastcall NORET_TYPE void do_exit(long code) |
| 789 | { |
| 790 | struct task_struct *tsk = current; |
| 791 | int group_dead; |
| 792 | |
| 793 | profile_task_exit(tsk); |
| 794 | |
Jens Axboe | 22e2c50 | 2005-06-27 10:55:12 +0200 | [diff] [blame] | 795 | WARN_ON(atomic_read(&tsk->fs_excl)); |
| 796 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 797 | if (unlikely(in_interrupt())) |
| 798 | panic("Aiee, killing interrupt handler!"); |
| 799 | if (unlikely(!tsk->pid)) |
| 800 | panic("Attempted to kill the idle task!"); |
| 801 | if (unlikely(tsk->pid == 1)) |
| 802 | panic("Attempted to kill init!"); |
| 803 | if (tsk->io_context) |
| 804 | exit_io_context(); |
| 805 | |
| 806 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { |
| 807 | current->ptrace_message = code; |
| 808 | ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); |
| 809 | } |
| 810 | |
Alexander Nyberg | df164db | 2005-06-23 00:09:13 -0700 | [diff] [blame] | 811 | /* |
| 812 | * We're taking recursive faults here in do_exit. Safest is to just |
| 813 | * leave this task alone and wait for reboot. |
| 814 | */ |
| 815 | if (unlikely(tsk->flags & PF_EXITING)) { |
| 816 | printk(KERN_ALERT |
| 817 | "Fixing recursive fault but reboot is needed!\n"); |
| 818 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 819 | schedule(); |
| 820 | } |
| 821 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 822 | tsk->flags |= PF_EXITING; |
| 823 | |
Linus Torvalds | a362f46 | 2005-10-27 09:07:33 -0700 | [diff] [blame] | 824 | /* |
| 825 | * Make sure we don't try to process any timer firings |
| 826 | * while we are already exiting. |
| 827 | */ |
| 828 | tsk->it_virt_expires = cputime_zero; |
| 829 | tsk->it_prof_expires = cputime_zero; |
| 830 | tsk->it_sched_expires = 0; |
| 831 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 832 | if (unlikely(in_atomic())) |
| 833 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", |
| 834 | current->comm, current->pid, |
| 835 | preempt_count()); |
| 836 | |
| 837 | acct_update_integrals(tsk); |
Hugh Dickins | 365e9c87 | 2005-10-29 18:16:18 -0700 | [diff] [blame] | 838 | if (tsk->mm) { |
| 839 | update_hiwater_rss(tsk->mm); |
| 840 | update_hiwater_vm(tsk->mm); |
| 841 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 842 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
Andrew Morton | c306895 | 2005-08-04 16:49:32 -0700 | [diff] [blame] | 843 | if (group_dead) { |
| 844 | del_timer_sync(&tsk->signal->real_timer); |
Roland McGrath | 25f407f | 2005-10-21 15:03:29 -0700 | [diff] [blame] | 845 | exit_itimers(tsk->signal); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 846 | acct_process(code); |
Andrew Morton | c306895 | 2005-08-04 16:49:32 -0700 | [diff] [blame] | 847 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 848 | exit_mm(tsk); |
| 849 | |
| 850 | exit_sem(tsk); |
| 851 | __exit_files(tsk); |
| 852 | __exit_fs(tsk); |
| 853 | exit_namespace(tsk); |
| 854 | exit_thread(); |
| 855 | cpuset_exit(tsk); |
| 856 | exit_keys(tsk); |
| 857 | |
| 858 | if (group_dead && tsk->signal->leader) |
| 859 | disassociate_ctty(1); |
| 860 | |
| 861 | module_put(tsk->thread_info->exec_domain->module); |
| 862 | if (tsk->binfmt) |
| 863 | module_put(tsk->binfmt->module); |
| 864 | |
| 865 | tsk->exit_code = code; |
| 866 | exit_notify(tsk); |
| 867 | #ifdef CONFIG_NUMA |
| 868 | mpol_free(tsk->mempolicy); |
| 869 | tsk->mempolicy = NULL; |
| 870 | #endif |
| 871 | |
Coywolf Qi Hunt | 7407251 | 2005-10-30 15:02:47 -0800 | [diff] [blame] | 872 | /* PF_DEAD causes final put_task_struct after we schedule. */ |
| 873 | preempt_disable(); |
| 874 | BUG_ON(tsk->flags & PF_DEAD); |
| 875 | tsk->flags |= PF_DEAD; |
| 876 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 877 | schedule(); |
| 878 | BUG(); |
| 879 | /* Avoid "noreturn function does return". */ |
| 880 | for (;;) ; |
| 881 | } |
| 882 | |
Russ Anderson | 012914d | 2005-04-23 00:08:00 -0700 | [diff] [blame] | 883 | EXPORT_SYMBOL_GPL(do_exit); |
| 884 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 885 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
| 886 | { |
| 887 | if (comp) |
| 888 | complete(comp); |
| 889 | |
| 890 | do_exit(code); |
| 891 | } |
| 892 | |
| 893 | EXPORT_SYMBOL(complete_and_exit); |
| 894 | |
| 895 | asmlinkage long sys_exit(int error_code) |
| 896 | { |
| 897 | do_exit((error_code&0xff)<<8); |
| 898 | } |
| 899 | |
| 900 | task_t fastcall *next_thread(const task_t *p) |
| 901 | { |
| 902 | return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); |
| 903 | } |
| 904 | |
| 905 | EXPORT_SYMBOL(next_thread); |
| 906 | |
| 907 | /* |
| 908 | * Take down every thread in the group. This is called by fatal signals |
| 909 | * as well as by sys_exit_group (below). |
| 910 | */ |
| 911 | NORET_TYPE void |
| 912 | do_group_exit(int exit_code) |
| 913 | { |
| 914 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
| 915 | |
| 916 | if (current->signal->flags & SIGNAL_GROUP_EXIT) |
| 917 | exit_code = current->signal->group_exit_code; |
| 918 | else if (!thread_group_empty(current)) { |
| 919 | struct signal_struct *const sig = current->signal; |
| 920 | struct sighand_struct *const sighand = current->sighand; |
| 921 | read_lock(&tasklist_lock); |
| 922 | spin_lock_irq(&sighand->siglock); |
| 923 | if (sig->flags & SIGNAL_GROUP_EXIT) |
| 924 | /* Another thread got here before we took the lock. */ |
| 925 | exit_code = sig->group_exit_code; |
| 926 | else { |
| 927 | sig->flags = SIGNAL_GROUP_EXIT; |
| 928 | sig->group_exit_code = exit_code; |
| 929 | zap_other_threads(current); |
| 930 | } |
| 931 | spin_unlock_irq(&sighand->siglock); |
| 932 | read_unlock(&tasklist_lock); |
| 933 | } |
| 934 | |
| 935 | do_exit(exit_code); |
| 936 | /* NOTREACHED */ |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * this kills every thread in the thread group. Note that any externally |
| 941 | * wait4()-ing process will get the correct exit code - even if this |
| 942 | * thread is not the thread group leader. |
| 943 | */ |
| 944 | asmlinkage void sys_exit_group(int error_code) |
| 945 | { |
| 946 | do_group_exit((error_code & 0xff) << 8); |
| 947 | } |
| 948 | |
| 949 | static int eligible_child(pid_t pid, int options, task_t *p) |
| 950 | { |
| 951 | if (pid > 0) { |
| 952 | if (p->pid != pid) |
| 953 | return 0; |
| 954 | } else if (!pid) { |
| 955 | if (process_group(p) != process_group(current)) |
| 956 | return 0; |
| 957 | } else if (pid != -1) { |
| 958 | if (process_group(p) != -pid) |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | /* |
| 963 | * Do not consider detached threads that are |
| 964 | * not ptraced: |
| 965 | */ |
| 966 | if (p->exit_signal == -1 && !p->ptrace) |
| 967 | return 0; |
| 968 | |
| 969 | /* Wait for all children (clone and not) if __WALL is set; |
| 970 | * otherwise, wait for clone children *only* if __WCLONE is |
| 971 | * set; otherwise, wait for non-clone children *only*. (Note: |
| 972 | * A "clone" child here is one that reports to its parent |
| 973 | * using a signal other than SIGCHLD.) */ |
| 974 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) |
| 975 | && !(options & __WALL)) |
| 976 | return 0; |
| 977 | /* |
| 978 | * Do not consider thread group leaders that are |
| 979 | * in a non-empty thread group: |
| 980 | */ |
| 981 | if (current->tgid != p->tgid && delay_group_leader(p)) |
| 982 | return 2; |
| 983 | |
| 984 | if (security_task_wait(p)) |
| 985 | return 0; |
| 986 | |
| 987 | return 1; |
| 988 | } |
| 989 | |
| 990 | static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, |
| 991 | int why, int status, |
| 992 | struct siginfo __user *infop, |
| 993 | struct rusage __user *rusagep) |
| 994 | { |
| 995 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; |
| 996 | put_task_struct(p); |
| 997 | if (!retval) |
| 998 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 999 | if (!retval) |
| 1000 | retval = put_user(0, &infop->si_errno); |
| 1001 | if (!retval) |
| 1002 | retval = put_user((short)why, &infop->si_code); |
| 1003 | if (!retval) |
| 1004 | retval = put_user(pid, &infop->si_pid); |
| 1005 | if (!retval) |
| 1006 | retval = put_user(uid, &infop->si_uid); |
| 1007 | if (!retval) |
| 1008 | retval = put_user(status, &infop->si_status); |
| 1009 | if (!retval) |
| 1010 | retval = pid; |
| 1011 | return retval; |
| 1012 | } |
| 1013 | |
| 1014 | /* |
| 1015 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold |
| 1016 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 1017 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 1018 | * released the lock and the system call should return. |
| 1019 | */ |
| 1020 | static int wait_task_zombie(task_t *p, int noreap, |
| 1021 | struct siginfo __user *infop, |
| 1022 | int __user *stat_addr, struct rusage __user *ru) |
| 1023 | { |
| 1024 | unsigned long state; |
| 1025 | int retval; |
| 1026 | int status; |
| 1027 | |
| 1028 | if (unlikely(noreap)) { |
| 1029 | pid_t pid = p->pid; |
| 1030 | uid_t uid = p->uid; |
| 1031 | int exit_code = p->exit_code; |
| 1032 | int why, status; |
| 1033 | |
| 1034 | if (unlikely(p->exit_state != EXIT_ZOMBIE)) |
| 1035 | return 0; |
| 1036 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) |
| 1037 | return 0; |
| 1038 | get_task_struct(p); |
| 1039 | read_unlock(&tasklist_lock); |
| 1040 | if ((exit_code & 0x7f) == 0) { |
| 1041 | why = CLD_EXITED; |
| 1042 | status = exit_code >> 8; |
| 1043 | } else { |
| 1044 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; |
| 1045 | status = exit_code & 0x7f; |
| 1046 | } |
| 1047 | return wait_noreap_copyout(p, pid, uid, why, |
| 1048 | status, infop, ru); |
| 1049 | } |
| 1050 | |
| 1051 | /* |
| 1052 | * Try to move the task's state to DEAD |
| 1053 | * only one thread is allowed to do this: |
| 1054 | */ |
| 1055 | state = xchg(&p->exit_state, EXIT_DEAD); |
| 1056 | if (state != EXIT_ZOMBIE) { |
| 1057 | BUG_ON(state != EXIT_DEAD); |
| 1058 | return 0; |
| 1059 | } |
| 1060 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { |
| 1061 | /* |
| 1062 | * This can only happen in a race with a ptraced thread |
| 1063 | * dying on another processor. |
| 1064 | */ |
| 1065 | return 0; |
| 1066 | } |
| 1067 | |
| 1068 | if (likely(p->real_parent == p->parent) && likely(p->signal)) { |
| 1069 | /* |
| 1070 | * The resource counters for the group leader are in its |
| 1071 | * own task_struct. Those for dead threads in the group |
| 1072 | * are in its signal_struct, as are those for the child |
| 1073 | * processes it has previously reaped. All these |
| 1074 | * accumulate in the parent's signal_struct c* fields. |
| 1075 | * |
| 1076 | * We don't bother to take a lock here to protect these |
| 1077 | * p->signal fields, because they are only touched by |
| 1078 | * __exit_signal, which runs with tasklist_lock |
| 1079 | * write-locked anyway, and so is excluded here. We do |
| 1080 | * need to protect the access to p->parent->signal fields, |
| 1081 | * as other threads in the parent group can be right |
| 1082 | * here reaping other children at the same time. |
| 1083 | */ |
| 1084 | spin_lock_irq(&p->parent->sighand->siglock); |
| 1085 | p->parent->signal->cutime = |
| 1086 | cputime_add(p->parent->signal->cutime, |
| 1087 | cputime_add(p->utime, |
| 1088 | cputime_add(p->signal->utime, |
| 1089 | p->signal->cutime))); |
| 1090 | p->parent->signal->cstime = |
| 1091 | cputime_add(p->parent->signal->cstime, |
| 1092 | cputime_add(p->stime, |
| 1093 | cputime_add(p->signal->stime, |
| 1094 | p->signal->cstime))); |
| 1095 | p->parent->signal->cmin_flt += |
| 1096 | p->min_flt + p->signal->min_flt + p->signal->cmin_flt; |
| 1097 | p->parent->signal->cmaj_flt += |
| 1098 | p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt; |
| 1099 | p->parent->signal->cnvcsw += |
| 1100 | p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw; |
| 1101 | p->parent->signal->cnivcsw += |
| 1102 | p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw; |
| 1103 | spin_unlock_irq(&p->parent->sighand->siglock); |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * Now we are sure this task is interesting, and no other |
| 1108 | * thread can reap it because we set its state to EXIT_DEAD. |
| 1109 | */ |
| 1110 | read_unlock(&tasklist_lock); |
| 1111 | |
| 1112 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1113 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
| 1114 | ? p->signal->group_exit_code : p->exit_code; |
| 1115 | if (!retval && stat_addr) |
| 1116 | retval = put_user(status, stat_addr); |
| 1117 | if (!retval && infop) |
| 1118 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1119 | if (!retval && infop) |
| 1120 | retval = put_user(0, &infop->si_errno); |
| 1121 | if (!retval && infop) { |
| 1122 | int why; |
| 1123 | |
| 1124 | if ((status & 0x7f) == 0) { |
| 1125 | why = CLD_EXITED; |
| 1126 | status >>= 8; |
| 1127 | } else { |
| 1128 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; |
| 1129 | status &= 0x7f; |
| 1130 | } |
| 1131 | retval = put_user((short)why, &infop->si_code); |
| 1132 | if (!retval) |
| 1133 | retval = put_user(status, &infop->si_status); |
| 1134 | } |
| 1135 | if (!retval && infop) |
| 1136 | retval = put_user(p->pid, &infop->si_pid); |
| 1137 | if (!retval && infop) |
| 1138 | retval = put_user(p->uid, &infop->si_uid); |
| 1139 | if (retval) { |
| 1140 | // TODO: is this safe? |
| 1141 | p->exit_state = EXIT_ZOMBIE; |
| 1142 | return retval; |
| 1143 | } |
| 1144 | retval = p->pid; |
| 1145 | if (p->real_parent != p->parent) { |
| 1146 | write_lock_irq(&tasklist_lock); |
| 1147 | /* Double-check with lock held. */ |
| 1148 | if (p->real_parent != p->parent) { |
| 1149 | __ptrace_unlink(p); |
| 1150 | // TODO: is this safe? |
| 1151 | p->exit_state = EXIT_ZOMBIE; |
| 1152 | /* |
| 1153 | * If this is not a detached task, notify the parent. |
| 1154 | * If it's still not detached after that, don't release |
| 1155 | * it now. |
| 1156 | */ |
| 1157 | if (p->exit_signal != -1) { |
| 1158 | do_notify_parent(p, p->exit_signal); |
| 1159 | if (p->exit_signal != -1) |
| 1160 | p = NULL; |
| 1161 | } |
| 1162 | } |
| 1163 | write_unlock_irq(&tasklist_lock); |
| 1164 | } |
| 1165 | if (p != NULL) |
| 1166 | release_task(p); |
| 1167 | BUG_ON(!retval); |
| 1168 | return retval; |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold |
| 1173 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 1174 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 1175 | * released the lock and the system call should return. |
| 1176 | */ |
| 1177 | static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, |
| 1178 | struct siginfo __user *infop, |
| 1179 | int __user *stat_addr, struct rusage __user *ru) |
| 1180 | { |
| 1181 | int retval, exit_code; |
| 1182 | |
| 1183 | if (!p->exit_code) |
| 1184 | return 0; |
| 1185 | if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && |
| 1186 | p->signal && p->signal->group_stop_count > 0) |
| 1187 | /* |
| 1188 | * A group stop is in progress and this is the group leader. |
| 1189 | * We won't report until all threads have stopped. |
| 1190 | */ |
| 1191 | return 0; |
| 1192 | |
| 1193 | /* |
| 1194 | * Now we are pretty sure this task is interesting. |
| 1195 | * Make sure it doesn't get reaped out from under us while we |
| 1196 | * give up the lock and then examine it below. We don't want to |
| 1197 | * keep holding onto the tasklist_lock while we call getrusage and |
| 1198 | * possibly take page faults for user memory. |
| 1199 | */ |
| 1200 | get_task_struct(p); |
| 1201 | read_unlock(&tasklist_lock); |
| 1202 | |
| 1203 | if (unlikely(noreap)) { |
| 1204 | pid_t pid = p->pid; |
| 1205 | uid_t uid = p->uid; |
| 1206 | int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; |
| 1207 | |
| 1208 | exit_code = p->exit_code; |
| 1209 | if (unlikely(!exit_code) || |
Linus Torvalds | 14bf01b | 2005-10-01 11:04:18 -0700 | [diff] [blame] | 1210 | unlikely(p->state & TASK_TRACED)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1211 | goto bail_ref; |
| 1212 | return wait_noreap_copyout(p, pid, uid, |
| 1213 | why, (exit_code << 8) | 0x7f, |
| 1214 | infop, ru); |
| 1215 | } |
| 1216 | |
| 1217 | write_lock_irq(&tasklist_lock); |
| 1218 | |
| 1219 | /* |
| 1220 | * This uses xchg to be atomic with the thread resuming and setting |
| 1221 | * it. It must also be done with the write lock held to prevent a |
| 1222 | * race with the EXIT_ZOMBIE case. |
| 1223 | */ |
| 1224 | exit_code = xchg(&p->exit_code, 0); |
| 1225 | if (unlikely(p->exit_state)) { |
| 1226 | /* |
| 1227 | * The task resumed and then died. Let the next iteration |
| 1228 | * catch it in EXIT_ZOMBIE. Note that exit_code might |
| 1229 | * already be zero here if it resumed and did _exit(0). |
| 1230 | * The task itself is dead and won't touch exit_code again; |
| 1231 | * other processors in this function are locked out. |
| 1232 | */ |
| 1233 | p->exit_code = exit_code; |
| 1234 | exit_code = 0; |
| 1235 | } |
| 1236 | if (unlikely(exit_code == 0)) { |
| 1237 | /* |
| 1238 | * Another thread in this function got to it first, or it |
| 1239 | * resumed, or it resumed and then died. |
| 1240 | */ |
| 1241 | write_unlock_irq(&tasklist_lock); |
| 1242 | bail_ref: |
| 1243 | put_task_struct(p); |
| 1244 | /* |
| 1245 | * We are returning to the wait loop without having successfully |
| 1246 | * removed the process and having released the lock. We cannot |
| 1247 | * continue, since the "p" task pointer is potentially stale. |
| 1248 | * |
| 1249 | * Return -EAGAIN, and do_wait() will restart the loop from the |
| 1250 | * beginning. Do _not_ re-acquire the lock. |
| 1251 | */ |
| 1252 | return -EAGAIN; |
| 1253 | } |
| 1254 | |
| 1255 | /* move to end of parent's list to avoid starvation */ |
| 1256 | remove_parent(p); |
| 1257 | add_parent(p, p->parent); |
| 1258 | |
| 1259 | write_unlock_irq(&tasklist_lock); |
| 1260 | |
| 1261 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1262 | if (!retval && stat_addr) |
| 1263 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); |
| 1264 | if (!retval && infop) |
| 1265 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1266 | if (!retval && infop) |
| 1267 | retval = put_user(0, &infop->si_errno); |
| 1268 | if (!retval && infop) |
| 1269 | retval = put_user((short)((p->ptrace & PT_PTRACED) |
| 1270 | ? CLD_TRAPPED : CLD_STOPPED), |
| 1271 | &infop->si_code); |
| 1272 | if (!retval && infop) |
| 1273 | retval = put_user(exit_code, &infop->si_status); |
| 1274 | if (!retval && infop) |
| 1275 | retval = put_user(p->pid, &infop->si_pid); |
| 1276 | if (!retval && infop) |
| 1277 | retval = put_user(p->uid, &infop->si_uid); |
| 1278 | if (!retval) |
| 1279 | retval = p->pid; |
| 1280 | put_task_struct(p); |
| 1281 | |
| 1282 | BUG_ON(!retval); |
| 1283 | return retval; |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | * Handle do_wait work for one task in a live, non-stopped state. |
| 1288 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 1289 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 1290 | * released the lock and the system call should return. |
| 1291 | */ |
| 1292 | static int wait_task_continued(task_t *p, int noreap, |
| 1293 | struct siginfo __user *infop, |
| 1294 | int __user *stat_addr, struct rusage __user *ru) |
| 1295 | { |
| 1296 | int retval; |
| 1297 | pid_t pid; |
| 1298 | uid_t uid; |
| 1299 | |
| 1300 | if (unlikely(!p->signal)) |
| 1301 | return 0; |
| 1302 | |
| 1303 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
| 1304 | return 0; |
| 1305 | |
| 1306 | spin_lock_irq(&p->sighand->siglock); |
| 1307 | /* Re-check with the lock held. */ |
| 1308 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { |
| 1309 | spin_unlock_irq(&p->sighand->siglock); |
| 1310 | return 0; |
| 1311 | } |
| 1312 | if (!noreap) |
| 1313 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
| 1314 | spin_unlock_irq(&p->sighand->siglock); |
| 1315 | |
| 1316 | pid = p->pid; |
| 1317 | uid = p->uid; |
| 1318 | get_task_struct(p); |
| 1319 | read_unlock(&tasklist_lock); |
| 1320 | |
| 1321 | if (!infop) { |
| 1322 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1323 | put_task_struct(p); |
| 1324 | if (!retval && stat_addr) |
| 1325 | retval = put_user(0xffff, stat_addr); |
| 1326 | if (!retval) |
| 1327 | retval = p->pid; |
| 1328 | } else { |
| 1329 | retval = wait_noreap_copyout(p, pid, uid, |
| 1330 | CLD_CONTINUED, SIGCONT, |
| 1331 | infop, ru); |
| 1332 | BUG_ON(retval == 0); |
| 1333 | } |
| 1334 | |
| 1335 | return retval; |
| 1336 | } |
| 1337 | |
| 1338 | |
| 1339 | static inline int my_ptrace_child(struct task_struct *p) |
| 1340 | { |
| 1341 | if (!(p->ptrace & PT_PTRACED)) |
| 1342 | return 0; |
| 1343 | if (!(p->ptrace & PT_ATTACHED)) |
| 1344 | return 1; |
| 1345 | /* |
| 1346 | * This child was PTRACE_ATTACH'd. We should be seeing it only if |
| 1347 | * we are the attacher. If we are the real parent, this is a race |
| 1348 | * inside ptrace_attach. It is waiting for the tasklist_lock, |
| 1349 | * which we have to switch the parent links, but has already set |
| 1350 | * the flags in p->ptrace. |
| 1351 | */ |
| 1352 | return (p->parent != p->real_parent); |
| 1353 | } |
| 1354 | |
| 1355 | static long do_wait(pid_t pid, int options, struct siginfo __user *infop, |
| 1356 | int __user *stat_addr, struct rusage __user *ru) |
| 1357 | { |
| 1358 | DECLARE_WAITQUEUE(wait, current); |
| 1359 | struct task_struct *tsk; |
| 1360 | int flag, retval; |
| 1361 | |
| 1362 | add_wait_queue(¤t->signal->wait_chldexit,&wait); |
| 1363 | repeat: |
| 1364 | /* |
| 1365 | * We will set this flag if we see any child that might later |
| 1366 | * match our criteria, even if we are not able to reap it yet. |
| 1367 | */ |
| 1368 | flag = 0; |
| 1369 | current->state = TASK_INTERRUPTIBLE; |
| 1370 | read_lock(&tasklist_lock); |
| 1371 | tsk = current; |
| 1372 | do { |
| 1373 | struct task_struct *p; |
| 1374 | struct list_head *_p; |
| 1375 | int ret; |
| 1376 | |
| 1377 | list_for_each(_p,&tsk->children) { |
| 1378 | p = list_entry(_p,struct task_struct,sibling); |
| 1379 | |
| 1380 | ret = eligible_child(pid, options, p); |
| 1381 | if (!ret) |
| 1382 | continue; |
| 1383 | |
| 1384 | switch (p->state) { |
| 1385 | case TASK_TRACED: |
Roland McGrath | 7f2a525 | 2005-10-30 15:02:50 -0800 | [diff] [blame^] | 1386 | /* |
| 1387 | * When we hit the race with PTRACE_ATTACH, |
| 1388 | * we will not report this child. But the |
| 1389 | * race means it has not yet been moved to |
| 1390 | * our ptrace_children list, so we need to |
| 1391 | * set the flag here to avoid a spurious ECHILD |
| 1392 | * when the race happens with the only child. |
| 1393 | */ |
| 1394 | flag = 1; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1395 | if (!my_ptrace_child(p)) |
| 1396 | continue; |
| 1397 | /*FALLTHROUGH*/ |
| 1398 | case TASK_STOPPED: |
| 1399 | /* |
| 1400 | * It's stopped now, so it might later |
| 1401 | * continue, exit, or stop again. |
| 1402 | */ |
| 1403 | flag = 1; |
| 1404 | if (!(options & WUNTRACED) && |
| 1405 | !my_ptrace_child(p)) |
| 1406 | continue; |
| 1407 | retval = wait_task_stopped(p, ret == 2, |
| 1408 | (options & WNOWAIT), |
| 1409 | infop, |
| 1410 | stat_addr, ru); |
| 1411 | if (retval == -EAGAIN) |
| 1412 | goto repeat; |
| 1413 | if (retval != 0) /* He released the lock. */ |
| 1414 | goto end; |
| 1415 | break; |
| 1416 | default: |
| 1417 | // case EXIT_DEAD: |
| 1418 | if (p->exit_state == EXIT_DEAD) |
| 1419 | continue; |
| 1420 | // case EXIT_ZOMBIE: |
| 1421 | if (p->exit_state == EXIT_ZOMBIE) { |
| 1422 | /* |
| 1423 | * Eligible but we cannot release |
| 1424 | * it yet: |
| 1425 | */ |
| 1426 | if (ret == 2) |
| 1427 | goto check_continued; |
| 1428 | if (!likely(options & WEXITED)) |
| 1429 | continue; |
| 1430 | retval = wait_task_zombie( |
| 1431 | p, (options & WNOWAIT), |
| 1432 | infop, stat_addr, ru); |
| 1433 | /* He released the lock. */ |
| 1434 | if (retval != 0) |
| 1435 | goto end; |
| 1436 | break; |
| 1437 | } |
| 1438 | check_continued: |
| 1439 | /* |
| 1440 | * It's running now, so it might later |
| 1441 | * exit, stop, or stop and then continue. |
| 1442 | */ |
| 1443 | flag = 1; |
| 1444 | if (!unlikely(options & WCONTINUED)) |
| 1445 | continue; |
| 1446 | retval = wait_task_continued( |
| 1447 | p, (options & WNOWAIT), |
| 1448 | infop, stat_addr, ru); |
| 1449 | if (retval != 0) /* He released the lock. */ |
| 1450 | goto end; |
| 1451 | break; |
| 1452 | } |
| 1453 | } |
| 1454 | if (!flag) { |
| 1455 | list_for_each(_p, &tsk->ptrace_children) { |
| 1456 | p = list_entry(_p, struct task_struct, |
| 1457 | ptrace_list); |
| 1458 | if (!eligible_child(pid, options, p)) |
| 1459 | continue; |
| 1460 | flag = 1; |
| 1461 | break; |
| 1462 | } |
| 1463 | } |
| 1464 | if (options & __WNOTHREAD) |
| 1465 | break; |
| 1466 | tsk = next_thread(tsk); |
| 1467 | if (tsk->signal != current->signal) |
| 1468 | BUG(); |
| 1469 | } while (tsk != current); |
| 1470 | |
| 1471 | read_unlock(&tasklist_lock); |
| 1472 | if (flag) { |
| 1473 | retval = 0; |
| 1474 | if (options & WNOHANG) |
| 1475 | goto end; |
| 1476 | retval = -ERESTARTSYS; |
| 1477 | if (signal_pending(current)) |
| 1478 | goto end; |
| 1479 | schedule(); |
| 1480 | goto repeat; |
| 1481 | } |
| 1482 | retval = -ECHILD; |
| 1483 | end: |
| 1484 | current->state = TASK_RUNNING; |
| 1485 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); |
| 1486 | if (infop) { |
| 1487 | if (retval > 0) |
| 1488 | retval = 0; |
| 1489 | else { |
| 1490 | /* |
| 1491 | * For a WNOHANG return, clear out all the fields |
| 1492 | * we would set so the user can easily tell the |
| 1493 | * difference. |
| 1494 | */ |
| 1495 | if (!retval) |
| 1496 | retval = put_user(0, &infop->si_signo); |
| 1497 | if (!retval) |
| 1498 | retval = put_user(0, &infop->si_errno); |
| 1499 | if (!retval) |
| 1500 | retval = put_user(0, &infop->si_code); |
| 1501 | if (!retval) |
| 1502 | retval = put_user(0, &infop->si_pid); |
| 1503 | if (!retval) |
| 1504 | retval = put_user(0, &infop->si_uid); |
| 1505 | if (!retval) |
| 1506 | retval = put_user(0, &infop->si_status); |
| 1507 | } |
| 1508 | } |
| 1509 | return retval; |
| 1510 | } |
| 1511 | |
| 1512 | asmlinkage long sys_waitid(int which, pid_t pid, |
| 1513 | struct siginfo __user *infop, int options, |
| 1514 | struct rusage __user *ru) |
| 1515 | { |
| 1516 | long ret; |
| 1517 | |
| 1518 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) |
| 1519 | return -EINVAL; |
| 1520 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) |
| 1521 | return -EINVAL; |
| 1522 | |
| 1523 | switch (which) { |
| 1524 | case P_ALL: |
| 1525 | pid = -1; |
| 1526 | break; |
| 1527 | case P_PID: |
| 1528 | if (pid <= 0) |
| 1529 | return -EINVAL; |
| 1530 | break; |
| 1531 | case P_PGID: |
| 1532 | if (pid <= 0) |
| 1533 | return -EINVAL; |
| 1534 | pid = -pid; |
| 1535 | break; |
| 1536 | default: |
| 1537 | return -EINVAL; |
| 1538 | } |
| 1539 | |
| 1540 | ret = do_wait(pid, options, infop, NULL, ru); |
| 1541 | |
| 1542 | /* avoid REGPARM breakage on x86: */ |
| 1543 | prevent_tail_call(ret); |
| 1544 | return ret; |
| 1545 | } |
| 1546 | |
| 1547 | asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, |
| 1548 | int options, struct rusage __user *ru) |
| 1549 | { |
| 1550 | long ret; |
| 1551 | |
| 1552 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| |
| 1553 | __WNOTHREAD|__WCLONE|__WALL)) |
| 1554 | return -EINVAL; |
| 1555 | ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); |
| 1556 | |
| 1557 | /* avoid REGPARM breakage on x86: */ |
| 1558 | prevent_tail_call(ret); |
| 1559 | return ret; |
| 1560 | } |
| 1561 | |
| 1562 | #ifdef __ARCH_WANT_SYS_WAITPID |
| 1563 | |
| 1564 | /* |
| 1565 | * sys_waitpid() remains for compatibility. waitpid() should be |
| 1566 | * implemented by calling sys_wait4() from libc.a. |
| 1567 | */ |
| 1568 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) |
| 1569 | { |
| 1570 | return sys_wait4(pid, stat_addr, options, NULL); |
| 1571 | } |
| 1572 | |
| 1573 | #endif |