Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/exit.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | #include <linux/config.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/interrupt.h> |
| 11 | #include <linux/smp_lock.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/completion.h> |
| 14 | #include <linux/personality.h> |
| 15 | #include <linux/tty.h> |
| 16 | #include <linux/namespace.h> |
| 17 | #include <linux/key.h> |
| 18 | #include <linux/security.h> |
| 19 | #include <linux/cpu.h> |
| 20 | #include <linux/acct.h> |
| 21 | #include <linux/file.h> |
| 22 | #include <linux/binfmts.h> |
| 23 | #include <linux/ptrace.h> |
| 24 | #include <linux/profile.h> |
| 25 | #include <linux/mount.h> |
| 26 | #include <linux/proc_fs.h> |
| 27 | #include <linux/mempolicy.h> |
| 28 | #include <linux/cpuset.h> |
| 29 | #include <linux/syscalls.h> |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 30 | #include <linux/signal.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 31 | |
| 32 | #include <asm/uaccess.h> |
| 33 | #include <asm/unistd.h> |
| 34 | #include <asm/pgtable.h> |
| 35 | #include <asm/mmu_context.h> |
| 36 | |
| 37 | extern void sem_exit (void); |
| 38 | extern struct task_struct *child_reaper; |
| 39 | |
| 40 | int getrusage(struct task_struct *, int, struct rusage __user *); |
| 41 | |
| 42 | static void __unhash_process(struct task_struct *p) |
| 43 | { |
| 44 | nr_threads--; |
| 45 | detach_pid(p, PIDTYPE_PID); |
| 46 | detach_pid(p, PIDTYPE_TGID); |
| 47 | if (thread_group_leader(p)) { |
| 48 | detach_pid(p, PIDTYPE_PGID); |
| 49 | detach_pid(p, PIDTYPE_SID); |
| 50 | if (p->pid) |
| 51 | __get_cpu_var(process_counts)--; |
| 52 | } |
| 53 | |
| 54 | REMOVE_LINKS(p); |
| 55 | } |
| 56 | |
| 57 | void release_task(struct task_struct * p) |
| 58 | { |
| 59 | int zap_leader; |
| 60 | task_t *leader; |
| 61 | struct dentry *proc_dentry; |
| 62 | |
| 63 | repeat: |
| 64 | atomic_dec(&p->user->processes); |
| 65 | spin_lock(&p->proc_lock); |
| 66 | proc_dentry = proc_pid_unhash(p); |
| 67 | write_lock_irq(&tasklist_lock); |
| 68 | if (unlikely(p->ptrace)) |
| 69 | __ptrace_unlink(p); |
| 70 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); |
| 71 | __exit_signal(p); |
| 72 | __exit_sighand(p); |
| 73 | __unhash_process(p); |
| 74 | |
| 75 | /* |
| 76 | * If we are the last non-leader member of the thread |
| 77 | * group, and the leader is zombie, then notify the |
| 78 | * group leader's parent process. (if it wants notification.) |
| 79 | */ |
| 80 | zap_leader = 0; |
| 81 | leader = p->group_leader; |
| 82 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { |
| 83 | BUG_ON(leader->exit_signal == -1); |
| 84 | do_notify_parent(leader, leader->exit_signal); |
| 85 | /* |
| 86 | * If we were the last child thread and the leader has |
| 87 | * exited already, and the leader's parent ignores SIGCHLD, |
| 88 | * then we are the one who should release the leader. |
| 89 | * |
| 90 | * do_notify_parent() will have marked it self-reaping in |
| 91 | * that case. |
| 92 | */ |
| 93 | zap_leader = (leader->exit_signal == -1); |
| 94 | } |
| 95 | |
| 96 | sched_exit(p); |
| 97 | write_unlock_irq(&tasklist_lock); |
| 98 | spin_unlock(&p->proc_lock); |
| 99 | proc_pid_flush(proc_dentry); |
| 100 | release_thread(p); |
| 101 | put_task_struct(p); |
| 102 | |
| 103 | p = leader; |
| 104 | if (unlikely(zap_leader)) |
| 105 | goto repeat; |
| 106 | } |
| 107 | |
| 108 | /* we are using it only for SMP init */ |
| 109 | |
| 110 | void unhash_process(struct task_struct *p) |
| 111 | { |
| 112 | struct dentry *proc_dentry; |
| 113 | |
| 114 | spin_lock(&p->proc_lock); |
| 115 | proc_dentry = proc_pid_unhash(p); |
| 116 | write_lock_irq(&tasklist_lock); |
| 117 | __unhash_process(p); |
| 118 | write_unlock_irq(&tasklist_lock); |
| 119 | spin_unlock(&p->proc_lock); |
| 120 | proc_pid_flush(proc_dentry); |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * This checks not only the pgrp, but falls back on the pid if no |
| 125 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly |
| 126 | * without this... |
| 127 | */ |
| 128 | int session_of_pgrp(int pgrp) |
| 129 | { |
| 130 | struct task_struct *p; |
| 131 | int sid = -1; |
| 132 | |
| 133 | read_lock(&tasklist_lock); |
| 134 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 135 | if (p->signal->session > 0) { |
| 136 | sid = p->signal->session; |
| 137 | goto out; |
| 138 | } |
| 139 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 140 | p = find_task_by_pid(pgrp); |
| 141 | if (p) |
| 142 | sid = p->signal->session; |
| 143 | out: |
| 144 | read_unlock(&tasklist_lock); |
| 145 | |
| 146 | return sid; |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | * Determine if a process group is "orphaned", according to the POSIX |
| 151 | * definition in 2.2.2.52. Orphaned process groups are not to be affected |
| 152 | * by terminal-generated stop signals. Newly orphaned process groups are |
| 153 | * to receive a SIGHUP and a SIGCONT. |
| 154 | * |
| 155 | * "I ask you, have you ever known what it is to be an orphan?" |
| 156 | */ |
| 157 | static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) |
| 158 | { |
| 159 | struct task_struct *p; |
| 160 | int ret = 1; |
| 161 | |
| 162 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 163 | if (p == ignored_task |
| 164 | || p->exit_state |
| 165 | || p->real_parent->pid == 1) |
| 166 | continue; |
| 167 | if (process_group(p->real_parent) != pgrp |
| 168 | && p->real_parent->signal->session == p->signal->session) { |
| 169 | ret = 0; |
| 170 | break; |
| 171 | } |
| 172 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 173 | return ret; /* (sighing) "Often!" */ |
| 174 | } |
| 175 | |
| 176 | int is_orphaned_pgrp(int pgrp) |
| 177 | { |
| 178 | int retval; |
| 179 | |
| 180 | read_lock(&tasklist_lock); |
| 181 | retval = will_become_orphaned_pgrp(pgrp, NULL); |
| 182 | read_unlock(&tasklist_lock); |
| 183 | |
| 184 | return retval; |
| 185 | } |
| 186 | |
| 187 | static inline int has_stopped_jobs(int pgrp) |
| 188 | { |
| 189 | int retval = 0; |
| 190 | struct task_struct *p; |
| 191 | |
| 192 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { |
| 193 | if (p->state != TASK_STOPPED) |
| 194 | continue; |
| 195 | |
| 196 | /* If p is stopped by a debugger on a signal that won't |
| 197 | stop it, then don't count p as stopped. This isn't |
| 198 | perfect but it's a good approximation. */ |
| 199 | if (unlikely (p->ptrace) |
| 200 | && p->exit_code != SIGSTOP |
| 201 | && p->exit_code != SIGTSTP |
| 202 | && p->exit_code != SIGTTOU |
| 203 | && p->exit_code != SIGTTIN) |
| 204 | continue; |
| 205 | |
| 206 | retval = 1; |
| 207 | break; |
| 208 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); |
| 209 | return retval; |
| 210 | } |
| 211 | |
| 212 | /** |
Pavel Pisa | 4dc3b16 | 2005-05-01 08:59:25 -0700 | [diff] [blame^] | 213 | * reparent_to_init - Reparent the calling kernel thread to the init task. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 214 | * |
| 215 | * If a kernel thread is launched as a result of a system call, or if |
| 216 | * it ever exits, it should generally reparent itself to init so that |
| 217 | * it is correctly cleaned up on exit. |
| 218 | * |
| 219 | * The various task state such as scheduling policy and priority may have |
| 220 | * been inherited from a user process, so we reset them to sane values here. |
| 221 | * |
| 222 | * NOTE that reparent_to_init() gives the caller full capabilities. |
| 223 | */ |
Coywolf Qi Hunt | 6c46ada | 2005-04-16 15:26:01 -0700 | [diff] [blame] | 224 | static inline void reparent_to_init(void) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 225 | { |
| 226 | write_lock_irq(&tasklist_lock); |
| 227 | |
| 228 | ptrace_unlink(current); |
| 229 | /* Reparent to init */ |
| 230 | REMOVE_LINKS(current); |
| 231 | current->parent = child_reaper; |
| 232 | current->real_parent = child_reaper; |
| 233 | SET_LINKS(current); |
| 234 | |
| 235 | /* Set the exit signal to SIGCHLD so we signal init on exit */ |
| 236 | current->exit_signal = SIGCHLD; |
| 237 | |
| 238 | if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0)) |
| 239 | set_user_nice(current, 0); |
| 240 | /* cpus_allowed? */ |
| 241 | /* rt_priority? */ |
| 242 | /* signals? */ |
| 243 | security_task_reparent_to_init(current); |
| 244 | memcpy(current->signal->rlim, init_task.signal->rlim, |
| 245 | sizeof(current->signal->rlim)); |
| 246 | atomic_inc(&(INIT_USER->__count)); |
| 247 | write_unlock_irq(&tasklist_lock); |
| 248 | switch_uid(INIT_USER); |
| 249 | } |
| 250 | |
| 251 | void __set_special_pids(pid_t session, pid_t pgrp) |
| 252 | { |
| 253 | struct task_struct *curr = current; |
| 254 | |
| 255 | if (curr->signal->session != session) { |
| 256 | detach_pid(curr, PIDTYPE_SID); |
| 257 | curr->signal->session = session; |
| 258 | attach_pid(curr, PIDTYPE_SID, session); |
| 259 | } |
| 260 | if (process_group(curr) != pgrp) { |
| 261 | detach_pid(curr, PIDTYPE_PGID); |
| 262 | curr->signal->pgrp = pgrp; |
| 263 | attach_pid(curr, PIDTYPE_PGID, pgrp); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | void set_special_pids(pid_t session, pid_t pgrp) |
| 268 | { |
| 269 | write_lock_irq(&tasklist_lock); |
| 270 | __set_special_pids(session, pgrp); |
| 271 | write_unlock_irq(&tasklist_lock); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Let kernel threads use this to say that they |
| 276 | * allow a certain signal (since daemonize() will |
| 277 | * have disabled all of them by default). |
| 278 | */ |
| 279 | int allow_signal(int sig) |
| 280 | { |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 281 | if (!valid_signal(sig) || sig < 1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 282 | return -EINVAL; |
| 283 | |
| 284 | spin_lock_irq(¤t->sighand->siglock); |
| 285 | sigdelset(¤t->blocked, sig); |
| 286 | if (!current->mm) { |
| 287 | /* Kernel threads handle their own signals. |
| 288 | Let the signal code know it'll be handled, so |
| 289 | that they don't get converted to SIGKILL or |
| 290 | just silently dropped */ |
| 291 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; |
| 292 | } |
| 293 | recalc_sigpending(); |
| 294 | spin_unlock_irq(¤t->sighand->siglock); |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | EXPORT_SYMBOL(allow_signal); |
| 299 | |
| 300 | int disallow_signal(int sig) |
| 301 | { |
Jesper Juhl | 7ed20e1 | 2005-05-01 08:59:14 -0700 | [diff] [blame] | 302 | if (!valid_signal(sig) || sig < 1) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 303 | return -EINVAL; |
| 304 | |
| 305 | spin_lock_irq(¤t->sighand->siglock); |
| 306 | sigaddset(¤t->blocked, sig); |
| 307 | recalc_sigpending(); |
| 308 | spin_unlock_irq(¤t->sighand->siglock); |
| 309 | return 0; |
| 310 | } |
| 311 | |
| 312 | EXPORT_SYMBOL(disallow_signal); |
| 313 | |
| 314 | /* |
| 315 | * Put all the gunge required to become a kernel thread without |
| 316 | * attached user resources in one place where it belongs. |
| 317 | */ |
| 318 | |
| 319 | void daemonize(const char *name, ...) |
| 320 | { |
| 321 | va_list args; |
| 322 | struct fs_struct *fs; |
| 323 | sigset_t blocked; |
| 324 | |
| 325 | va_start(args, name); |
| 326 | vsnprintf(current->comm, sizeof(current->comm), name, args); |
| 327 | va_end(args); |
| 328 | |
| 329 | /* |
| 330 | * If we were started as result of loading a module, close all of the |
| 331 | * user space pages. We don't need them, and if we didn't close them |
| 332 | * they would be locked into memory. |
| 333 | */ |
| 334 | exit_mm(current); |
| 335 | |
| 336 | set_special_pids(1, 1); |
| 337 | down(&tty_sem); |
| 338 | current->signal->tty = NULL; |
| 339 | up(&tty_sem); |
| 340 | |
| 341 | /* Block and flush all signals */ |
| 342 | sigfillset(&blocked); |
| 343 | sigprocmask(SIG_BLOCK, &blocked, NULL); |
| 344 | flush_signals(current); |
| 345 | |
| 346 | /* Become as one with the init task */ |
| 347 | |
| 348 | exit_fs(current); /* current->fs->count--; */ |
| 349 | fs = init_task.fs; |
| 350 | current->fs = fs; |
| 351 | atomic_inc(&fs->count); |
| 352 | exit_files(current); |
| 353 | current->files = init_task.files; |
| 354 | atomic_inc(¤t->files->count); |
| 355 | |
| 356 | reparent_to_init(); |
| 357 | } |
| 358 | |
| 359 | EXPORT_SYMBOL(daemonize); |
| 360 | |
| 361 | static inline void close_files(struct files_struct * files) |
| 362 | { |
| 363 | int i, j; |
| 364 | |
| 365 | j = 0; |
| 366 | for (;;) { |
| 367 | unsigned long set; |
| 368 | i = j * __NFDBITS; |
| 369 | if (i >= files->max_fdset || i >= files->max_fds) |
| 370 | break; |
| 371 | set = files->open_fds->fds_bits[j++]; |
| 372 | while (set) { |
| 373 | if (set & 1) { |
| 374 | struct file * file = xchg(&files->fd[i], NULL); |
| 375 | if (file) |
| 376 | filp_close(file, files); |
| 377 | } |
| 378 | i++; |
| 379 | set >>= 1; |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | struct files_struct *get_files_struct(struct task_struct *task) |
| 385 | { |
| 386 | struct files_struct *files; |
| 387 | |
| 388 | task_lock(task); |
| 389 | files = task->files; |
| 390 | if (files) |
| 391 | atomic_inc(&files->count); |
| 392 | task_unlock(task); |
| 393 | |
| 394 | return files; |
| 395 | } |
| 396 | |
| 397 | void fastcall put_files_struct(struct files_struct *files) |
| 398 | { |
| 399 | if (atomic_dec_and_test(&files->count)) { |
| 400 | close_files(files); |
| 401 | /* |
| 402 | * Free the fd and fdset arrays if we expanded them. |
| 403 | */ |
| 404 | if (files->fd != &files->fd_array[0]) |
| 405 | free_fd_array(files->fd, files->max_fds); |
| 406 | if (files->max_fdset > __FD_SETSIZE) { |
| 407 | free_fdset(files->open_fds, files->max_fdset); |
| 408 | free_fdset(files->close_on_exec, files->max_fdset); |
| 409 | } |
| 410 | kmem_cache_free(files_cachep, files); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | EXPORT_SYMBOL(put_files_struct); |
| 415 | |
| 416 | static inline void __exit_files(struct task_struct *tsk) |
| 417 | { |
| 418 | struct files_struct * files = tsk->files; |
| 419 | |
| 420 | if (files) { |
| 421 | task_lock(tsk); |
| 422 | tsk->files = NULL; |
| 423 | task_unlock(tsk); |
| 424 | put_files_struct(files); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | void exit_files(struct task_struct *tsk) |
| 429 | { |
| 430 | __exit_files(tsk); |
| 431 | } |
| 432 | |
| 433 | static inline void __put_fs_struct(struct fs_struct *fs) |
| 434 | { |
| 435 | /* No need to hold fs->lock if we are killing it */ |
| 436 | if (atomic_dec_and_test(&fs->count)) { |
| 437 | dput(fs->root); |
| 438 | mntput(fs->rootmnt); |
| 439 | dput(fs->pwd); |
| 440 | mntput(fs->pwdmnt); |
| 441 | if (fs->altroot) { |
| 442 | dput(fs->altroot); |
| 443 | mntput(fs->altrootmnt); |
| 444 | } |
| 445 | kmem_cache_free(fs_cachep, fs); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | void put_fs_struct(struct fs_struct *fs) |
| 450 | { |
| 451 | __put_fs_struct(fs); |
| 452 | } |
| 453 | |
| 454 | static inline void __exit_fs(struct task_struct *tsk) |
| 455 | { |
| 456 | struct fs_struct * fs = tsk->fs; |
| 457 | |
| 458 | if (fs) { |
| 459 | task_lock(tsk); |
| 460 | tsk->fs = NULL; |
| 461 | task_unlock(tsk); |
| 462 | __put_fs_struct(fs); |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | void exit_fs(struct task_struct *tsk) |
| 467 | { |
| 468 | __exit_fs(tsk); |
| 469 | } |
| 470 | |
| 471 | EXPORT_SYMBOL_GPL(exit_fs); |
| 472 | |
| 473 | /* |
| 474 | * Turn us into a lazy TLB process if we |
| 475 | * aren't already.. |
| 476 | */ |
| 477 | void exit_mm(struct task_struct * tsk) |
| 478 | { |
| 479 | struct mm_struct *mm = tsk->mm; |
| 480 | |
| 481 | mm_release(tsk, mm); |
| 482 | if (!mm) |
| 483 | return; |
| 484 | /* |
| 485 | * Serialize with any possible pending coredump. |
| 486 | * We must hold mmap_sem around checking core_waiters |
| 487 | * and clearing tsk->mm. The core-inducing thread |
| 488 | * will increment core_waiters for each thread in the |
| 489 | * group with ->mm != NULL. |
| 490 | */ |
| 491 | down_read(&mm->mmap_sem); |
| 492 | if (mm->core_waiters) { |
| 493 | up_read(&mm->mmap_sem); |
| 494 | down_write(&mm->mmap_sem); |
| 495 | if (!--mm->core_waiters) |
| 496 | complete(mm->core_startup_done); |
| 497 | up_write(&mm->mmap_sem); |
| 498 | |
| 499 | wait_for_completion(&mm->core_done); |
| 500 | down_read(&mm->mmap_sem); |
| 501 | } |
| 502 | atomic_inc(&mm->mm_count); |
| 503 | if (mm != tsk->active_mm) BUG(); |
| 504 | /* more a memory barrier than a real lock */ |
| 505 | task_lock(tsk); |
| 506 | tsk->mm = NULL; |
| 507 | up_read(&mm->mmap_sem); |
| 508 | enter_lazy_tlb(mm, current); |
| 509 | task_unlock(tsk); |
| 510 | mmput(mm); |
| 511 | } |
| 512 | |
| 513 | static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper) |
| 514 | { |
| 515 | /* |
| 516 | * Make sure we're not reparenting to ourselves and that |
| 517 | * the parent is not a zombie. |
| 518 | */ |
| 519 | BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE); |
| 520 | p->real_parent = reaper; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 521 | } |
| 522 | |
| 523 | static inline void reparent_thread(task_t *p, task_t *father, int traced) |
| 524 | { |
| 525 | /* We don't want people slaying init. */ |
| 526 | if (p->exit_signal != -1) |
| 527 | p->exit_signal = SIGCHLD; |
| 528 | |
| 529 | if (p->pdeath_signal) |
| 530 | /* We already hold the tasklist_lock here. */ |
| 531 | group_send_sig_info(p->pdeath_signal, (void *) 0, p); |
| 532 | |
| 533 | /* Move the child from its dying parent to the new one. */ |
| 534 | if (unlikely(traced)) { |
| 535 | /* Preserve ptrace links if someone else is tracing this child. */ |
| 536 | list_del_init(&p->ptrace_list); |
| 537 | if (p->parent != p->real_parent) |
| 538 | list_add(&p->ptrace_list, &p->real_parent->ptrace_children); |
| 539 | } else { |
| 540 | /* If this child is being traced, then we're the one tracing it |
| 541 | * anyway, so let go of it. |
| 542 | */ |
| 543 | p->ptrace = 0; |
| 544 | list_del_init(&p->sibling); |
| 545 | p->parent = p->real_parent; |
| 546 | list_add_tail(&p->sibling, &p->parent->children); |
| 547 | |
| 548 | /* If we'd notified the old parent about this child's death, |
| 549 | * also notify the new parent. |
| 550 | */ |
| 551 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && |
| 552 | thread_group_empty(p)) |
| 553 | do_notify_parent(p, p->exit_signal); |
| 554 | else if (p->state == TASK_TRACED) { |
| 555 | /* |
| 556 | * If it was at a trace stop, turn it into |
| 557 | * a normal stop since it's no longer being |
| 558 | * traced. |
| 559 | */ |
| 560 | ptrace_untrace(p); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * process group orphan check |
| 566 | * Case ii: Our child is in a different pgrp |
| 567 | * than we are, and it was the only connection |
| 568 | * outside, so the child pgrp is now orphaned. |
| 569 | */ |
| 570 | if ((process_group(p) != process_group(father)) && |
| 571 | (p->signal->session == father->signal->session)) { |
| 572 | int pgrp = process_group(p); |
| 573 | |
| 574 | if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { |
| 575 | __kill_pg_info(SIGHUP, (void *)1, pgrp); |
| 576 | __kill_pg_info(SIGCONT, (void *)1, pgrp); |
| 577 | } |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | /* |
| 582 | * When we die, we re-parent all our children. |
| 583 | * Try to give them to another thread in our thread |
| 584 | * group, and if no such member exists, give it to |
| 585 | * the global child reaper process (ie "init") |
| 586 | */ |
| 587 | static inline void forget_original_parent(struct task_struct * father, |
| 588 | struct list_head *to_release) |
| 589 | { |
| 590 | struct task_struct *p, *reaper = father; |
| 591 | struct list_head *_p, *_n; |
| 592 | |
| 593 | do { |
| 594 | reaper = next_thread(reaper); |
| 595 | if (reaper == father) { |
| 596 | reaper = child_reaper; |
| 597 | break; |
| 598 | } |
| 599 | } while (reaper->exit_state); |
| 600 | |
| 601 | /* |
| 602 | * There are only two places where our children can be: |
| 603 | * |
| 604 | * - in our child list |
| 605 | * - in our ptraced child list |
| 606 | * |
| 607 | * Search them and reparent children. |
| 608 | */ |
| 609 | list_for_each_safe(_p, _n, &father->children) { |
| 610 | int ptrace; |
| 611 | p = list_entry(_p,struct task_struct,sibling); |
| 612 | |
| 613 | ptrace = p->ptrace; |
| 614 | |
| 615 | /* if father isn't the real parent, then ptrace must be enabled */ |
| 616 | BUG_ON(father != p->real_parent && !ptrace); |
| 617 | |
| 618 | if (father == p->real_parent) { |
| 619 | /* reparent with a reaper, real father it's us */ |
| 620 | choose_new_parent(p, reaper, child_reaper); |
| 621 | reparent_thread(p, father, 0); |
| 622 | } else { |
| 623 | /* reparent ptraced task to its real parent */ |
| 624 | __ptrace_unlink (p); |
| 625 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && |
| 626 | thread_group_empty(p)) |
| 627 | do_notify_parent(p, p->exit_signal); |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * if the ptraced child is a zombie with exit_signal == -1 |
| 632 | * we must collect it before we exit, or it will remain |
| 633 | * zombie forever since we prevented it from self-reap itself |
| 634 | * while it was being traced by us, to be able to see it in wait4. |
| 635 | */ |
| 636 | if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) |
| 637 | list_add(&p->ptrace_list, to_release); |
| 638 | } |
| 639 | list_for_each_safe(_p, _n, &father->ptrace_children) { |
| 640 | p = list_entry(_p,struct task_struct,ptrace_list); |
| 641 | choose_new_parent(p, reaper, child_reaper); |
| 642 | reparent_thread(p, father, 1); |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Send signals to all our closest relatives so that they know |
| 648 | * to properly mourn us.. |
| 649 | */ |
| 650 | static void exit_notify(struct task_struct *tsk) |
| 651 | { |
| 652 | int state; |
| 653 | struct task_struct *t; |
| 654 | struct list_head ptrace_dead, *_p, *_n; |
| 655 | |
| 656 | if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) |
| 657 | && !thread_group_empty(tsk)) { |
| 658 | /* |
| 659 | * This occurs when there was a race between our exit |
| 660 | * syscall and a group signal choosing us as the one to |
| 661 | * wake up. It could be that we are the only thread |
| 662 | * alerted to check for pending signals, but another thread |
| 663 | * should be woken now to take the signal since we will not. |
| 664 | * Now we'll wake all the threads in the group just to make |
| 665 | * sure someone gets all the pending signals. |
| 666 | */ |
| 667 | read_lock(&tasklist_lock); |
| 668 | spin_lock_irq(&tsk->sighand->siglock); |
| 669 | for (t = next_thread(tsk); t != tsk; t = next_thread(t)) |
| 670 | if (!signal_pending(t) && !(t->flags & PF_EXITING)) { |
| 671 | recalc_sigpending_tsk(t); |
| 672 | if (signal_pending(t)) |
| 673 | signal_wake_up(t, 0); |
| 674 | } |
| 675 | spin_unlock_irq(&tsk->sighand->siglock); |
| 676 | read_unlock(&tasklist_lock); |
| 677 | } |
| 678 | |
| 679 | write_lock_irq(&tasklist_lock); |
| 680 | |
| 681 | /* |
| 682 | * This does two things: |
| 683 | * |
| 684 | * A. Make init inherit all the child processes |
| 685 | * B. Check to see if any process groups have become orphaned |
| 686 | * as a result of our exiting, and if they have any stopped |
| 687 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
| 688 | */ |
| 689 | |
| 690 | INIT_LIST_HEAD(&ptrace_dead); |
| 691 | forget_original_parent(tsk, &ptrace_dead); |
| 692 | BUG_ON(!list_empty(&tsk->children)); |
| 693 | BUG_ON(!list_empty(&tsk->ptrace_children)); |
| 694 | |
| 695 | /* |
| 696 | * Check to see if any process groups have become orphaned |
| 697 | * as a result of our exiting, and if they have any stopped |
| 698 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) |
| 699 | * |
| 700 | * Case i: Our father is in a different pgrp than we are |
| 701 | * and we were the only connection outside, so our pgrp |
| 702 | * is about to become orphaned. |
| 703 | */ |
| 704 | |
| 705 | t = tsk->real_parent; |
| 706 | |
| 707 | if ((process_group(t) != process_group(tsk)) && |
| 708 | (t->signal->session == tsk->signal->session) && |
| 709 | will_become_orphaned_pgrp(process_group(tsk), tsk) && |
| 710 | has_stopped_jobs(process_group(tsk))) { |
| 711 | __kill_pg_info(SIGHUP, (void *)1, process_group(tsk)); |
| 712 | __kill_pg_info(SIGCONT, (void *)1, process_group(tsk)); |
| 713 | } |
| 714 | |
| 715 | /* Let father know we died |
| 716 | * |
| 717 | * Thread signals are configurable, but you aren't going to use |
| 718 | * that to send signals to arbitary processes. |
| 719 | * That stops right now. |
| 720 | * |
| 721 | * If the parent exec id doesn't match the exec id we saved |
| 722 | * when we started then we know the parent has changed security |
| 723 | * domain. |
| 724 | * |
| 725 | * If our self_exec id doesn't match our parent_exec_id then |
| 726 | * we have changed execution domain as these two values started |
| 727 | * the same after a fork. |
| 728 | * |
| 729 | */ |
| 730 | |
| 731 | if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && |
| 732 | ( tsk->parent_exec_id != t->self_exec_id || |
| 733 | tsk->self_exec_id != tsk->parent_exec_id) |
| 734 | && !capable(CAP_KILL)) |
| 735 | tsk->exit_signal = SIGCHLD; |
| 736 | |
| 737 | |
| 738 | /* If something other than our normal parent is ptracing us, then |
| 739 | * send it a SIGCHLD instead of honoring exit_signal. exit_signal |
| 740 | * only has special meaning to our real parent. |
| 741 | */ |
| 742 | if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { |
| 743 | int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; |
| 744 | do_notify_parent(tsk, signal); |
| 745 | } else if (tsk->ptrace) { |
| 746 | do_notify_parent(tsk, SIGCHLD); |
| 747 | } |
| 748 | |
| 749 | state = EXIT_ZOMBIE; |
| 750 | if (tsk->exit_signal == -1 && |
| 751 | (likely(tsk->ptrace == 0) || |
| 752 | unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) |
| 753 | state = EXIT_DEAD; |
| 754 | tsk->exit_state = state; |
| 755 | |
| 756 | write_unlock_irq(&tasklist_lock); |
| 757 | |
| 758 | list_for_each_safe(_p, _n, &ptrace_dead) { |
| 759 | list_del_init(_p); |
| 760 | t = list_entry(_p,struct task_struct,ptrace_list); |
| 761 | release_task(t); |
| 762 | } |
| 763 | |
| 764 | /* If the process is dead, release it - nobody will wait for it */ |
| 765 | if (state == EXIT_DEAD) |
| 766 | release_task(tsk); |
| 767 | |
| 768 | /* PF_DEAD causes final put_task_struct after we schedule. */ |
| 769 | preempt_disable(); |
| 770 | tsk->flags |= PF_DEAD; |
| 771 | } |
| 772 | |
| 773 | fastcall NORET_TYPE void do_exit(long code) |
| 774 | { |
| 775 | struct task_struct *tsk = current; |
| 776 | int group_dead; |
| 777 | |
| 778 | profile_task_exit(tsk); |
| 779 | |
| 780 | if (unlikely(in_interrupt())) |
| 781 | panic("Aiee, killing interrupt handler!"); |
| 782 | if (unlikely(!tsk->pid)) |
| 783 | panic("Attempted to kill the idle task!"); |
| 784 | if (unlikely(tsk->pid == 1)) |
| 785 | panic("Attempted to kill init!"); |
| 786 | if (tsk->io_context) |
| 787 | exit_io_context(); |
| 788 | |
| 789 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { |
| 790 | current->ptrace_message = code; |
| 791 | ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); |
| 792 | } |
| 793 | |
| 794 | tsk->flags |= PF_EXITING; |
| 795 | |
| 796 | /* |
| 797 | * Make sure we don't try to process any timer firings |
| 798 | * while we are already exiting. |
| 799 | */ |
| 800 | tsk->it_virt_expires = cputime_zero; |
| 801 | tsk->it_prof_expires = cputime_zero; |
| 802 | tsk->it_sched_expires = 0; |
| 803 | |
| 804 | if (unlikely(in_atomic())) |
| 805 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", |
| 806 | current->comm, current->pid, |
| 807 | preempt_count()); |
| 808 | |
| 809 | acct_update_integrals(tsk); |
| 810 | update_mem_hiwater(tsk); |
| 811 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
| 812 | if (group_dead) { |
| 813 | del_timer_sync(&tsk->signal->real_timer); |
| 814 | acct_process(code); |
| 815 | } |
| 816 | exit_mm(tsk); |
| 817 | |
| 818 | exit_sem(tsk); |
| 819 | __exit_files(tsk); |
| 820 | __exit_fs(tsk); |
| 821 | exit_namespace(tsk); |
| 822 | exit_thread(); |
| 823 | cpuset_exit(tsk); |
| 824 | exit_keys(tsk); |
| 825 | |
| 826 | if (group_dead && tsk->signal->leader) |
| 827 | disassociate_ctty(1); |
| 828 | |
| 829 | module_put(tsk->thread_info->exec_domain->module); |
| 830 | if (tsk->binfmt) |
| 831 | module_put(tsk->binfmt->module); |
| 832 | |
| 833 | tsk->exit_code = code; |
| 834 | exit_notify(tsk); |
| 835 | #ifdef CONFIG_NUMA |
| 836 | mpol_free(tsk->mempolicy); |
| 837 | tsk->mempolicy = NULL; |
| 838 | #endif |
| 839 | |
| 840 | BUG_ON(!(current->flags & PF_DEAD)); |
| 841 | schedule(); |
| 842 | BUG(); |
| 843 | /* Avoid "noreturn function does return". */ |
| 844 | for (;;) ; |
| 845 | } |
| 846 | |
| 847 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
| 848 | { |
| 849 | if (comp) |
| 850 | complete(comp); |
| 851 | |
| 852 | do_exit(code); |
| 853 | } |
| 854 | |
| 855 | EXPORT_SYMBOL(complete_and_exit); |
| 856 | |
| 857 | asmlinkage long sys_exit(int error_code) |
| 858 | { |
| 859 | do_exit((error_code&0xff)<<8); |
| 860 | } |
| 861 | |
| 862 | task_t fastcall *next_thread(const task_t *p) |
| 863 | { |
| 864 | return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); |
| 865 | } |
| 866 | |
| 867 | EXPORT_SYMBOL(next_thread); |
| 868 | |
| 869 | /* |
| 870 | * Take down every thread in the group. This is called by fatal signals |
| 871 | * as well as by sys_exit_group (below). |
| 872 | */ |
| 873 | NORET_TYPE void |
| 874 | do_group_exit(int exit_code) |
| 875 | { |
| 876 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
| 877 | |
| 878 | if (current->signal->flags & SIGNAL_GROUP_EXIT) |
| 879 | exit_code = current->signal->group_exit_code; |
| 880 | else if (!thread_group_empty(current)) { |
| 881 | struct signal_struct *const sig = current->signal; |
| 882 | struct sighand_struct *const sighand = current->sighand; |
| 883 | read_lock(&tasklist_lock); |
| 884 | spin_lock_irq(&sighand->siglock); |
| 885 | if (sig->flags & SIGNAL_GROUP_EXIT) |
| 886 | /* Another thread got here before we took the lock. */ |
| 887 | exit_code = sig->group_exit_code; |
| 888 | else { |
| 889 | sig->flags = SIGNAL_GROUP_EXIT; |
| 890 | sig->group_exit_code = exit_code; |
| 891 | zap_other_threads(current); |
| 892 | } |
| 893 | spin_unlock_irq(&sighand->siglock); |
| 894 | read_unlock(&tasklist_lock); |
| 895 | } |
| 896 | |
| 897 | do_exit(exit_code); |
| 898 | /* NOTREACHED */ |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * this kills every thread in the thread group. Note that any externally |
| 903 | * wait4()-ing process will get the correct exit code - even if this |
| 904 | * thread is not the thread group leader. |
| 905 | */ |
| 906 | asmlinkage void sys_exit_group(int error_code) |
| 907 | { |
| 908 | do_group_exit((error_code & 0xff) << 8); |
| 909 | } |
| 910 | |
| 911 | static int eligible_child(pid_t pid, int options, task_t *p) |
| 912 | { |
| 913 | if (pid > 0) { |
| 914 | if (p->pid != pid) |
| 915 | return 0; |
| 916 | } else if (!pid) { |
| 917 | if (process_group(p) != process_group(current)) |
| 918 | return 0; |
| 919 | } else if (pid != -1) { |
| 920 | if (process_group(p) != -pid) |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * Do not consider detached threads that are |
| 926 | * not ptraced: |
| 927 | */ |
| 928 | if (p->exit_signal == -1 && !p->ptrace) |
| 929 | return 0; |
| 930 | |
| 931 | /* Wait for all children (clone and not) if __WALL is set; |
| 932 | * otherwise, wait for clone children *only* if __WCLONE is |
| 933 | * set; otherwise, wait for non-clone children *only*. (Note: |
| 934 | * A "clone" child here is one that reports to its parent |
| 935 | * using a signal other than SIGCHLD.) */ |
| 936 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) |
| 937 | && !(options & __WALL)) |
| 938 | return 0; |
| 939 | /* |
| 940 | * Do not consider thread group leaders that are |
| 941 | * in a non-empty thread group: |
| 942 | */ |
| 943 | if (current->tgid != p->tgid && delay_group_leader(p)) |
| 944 | return 2; |
| 945 | |
| 946 | if (security_task_wait(p)) |
| 947 | return 0; |
| 948 | |
| 949 | return 1; |
| 950 | } |
| 951 | |
| 952 | static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, |
| 953 | int why, int status, |
| 954 | struct siginfo __user *infop, |
| 955 | struct rusage __user *rusagep) |
| 956 | { |
| 957 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; |
| 958 | put_task_struct(p); |
| 959 | if (!retval) |
| 960 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 961 | if (!retval) |
| 962 | retval = put_user(0, &infop->si_errno); |
| 963 | if (!retval) |
| 964 | retval = put_user((short)why, &infop->si_code); |
| 965 | if (!retval) |
| 966 | retval = put_user(pid, &infop->si_pid); |
| 967 | if (!retval) |
| 968 | retval = put_user(uid, &infop->si_uid); |
| 969 | if (!retval) |
| 970 | retval = put_user(status, &infop->si_status); |
| 971 | if (!retval) |
| 972 | retval = pid; |
| 973 | return retval; |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold |
| 978 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 979 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 980 | * released the lock and the system call should return. |
| 981 | */ |
| 982 | static int wait_task_zombie(task_t *p, int noreap, |
| 983 | struct siginfo __user *infop, |
| 984 | int __user *stat_addr, struct rusage __user *ru) |
| 985 | { |
| 986 | unsigned long state; |
| 987 | int retval; |
| 988 | int status; |
| 989 | |
| 990 | if (unlikely(noreap)) { |
| 991 | pid_t pid = p->pid; |
| 992 | uid_t uid = p->uid; |
| 993 | int exit_code = p->exit_code; |
| 994 | int why, status; |
| 995 | |
| 996 | if (unlikely(p->exit_state != EXIT_ZOMBIE)) |
| 997 | return 0; |
| 998 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) |
| 999 | return 0; |
| 1000 | get_task_struct(p); |
| 1001 | read_unlock(&tasklist_lock); |
| 1002 | if ((exit_code & 0x7f) == 0) { |
| 1003 | why = CLD_EXITED; |
| 1004 | status = exit_code >> 8; |
| 1005 | } else { |
| 1006 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; |
| 1007 | status = exit_code & 0x7f; |
| 1008 | } |
| 1009 | return wait_noreap_copyout(p, pid, uid, why, |
| 1010 | status, infop, ru); |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * Try to move the task's state to DEAD |
| 1015 | * only one thread is allowed to do this: |
| 1016 | */ |
| 1017 | state = xchg(&p->exit_state, EXIT_DEAD); |
| 1018 | if (state != EXIT_ZOMBIE) { |
| 1019 | BUG_ON(state != EXIT_DEAD); |
| 1020 | return 0; |
| 1021 | } |
| 1022 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { |
| 1023 | /* |
| 1024 | * This can only happen in a race with a ptraced thread |
| 1025 | * dying on another processor. |
| 1026 | */ |
| 1027 | return 0; |
| 1028 | } |
| 1029 | |
| 1030 | if (likely(p->real_parent == p->parent) && likely(p->signal)) { |
| 1031 | /* |
| 1032 | * The resource counters for the group leader are in its |
| 1033 | * own task_struct. Those for dead threads in the group |
| 1034 | * are in its signal_struct, as are those for the child |
| 1035 | * processes it has previously reaped. All these |
| 1036 | * accumulate in the parent's signal_struct c* fields. |
| 1037 | * |
| 1038 | * We don't bother to take a lock here to protect these |
| 1039 | * p->signal fields, because they are only touched by |
| 1040 | * __exit_signal, which runs with tasklist_lock |
| 1041 | * write-locked anyway, and so is excluded here. We do |
| 1042 | * need to protect the access to p->parent->signal fields, |
| 1043 | * as other threads in the parent group can be right |
| 1044 | * here reaping other children at the same time. |
| 1045 | */ |
| 1046 | spin_lock_irq(&p->parent->sighand->siglock); |
| 1047 | p->parent->signal->cutime = |
| 1048 | cputime_add(p->parent->signal->cutime, |
| 1049 | cputime_add(p->utime, |
| 1050 | cputime_add(p->signal->utime, |
| 1051 | p->signal->cutime))); |
| 1052 | p->parent->signal->cstime = |
| 1053 | cputime_add(p->parent->signal->cstime, |
| 1054 | cputime_add(p->stime, |
| 1055 | cputime_add(p->signal->stime, |
| 1056 | p->signal->cstime))); |
| 1057 | p->parent->signal->cmin_flt += |
| 1058 | p->min_flt + p->signal->min_flt + p->signal->cmin_flt; |
| 1059 | p->parent->signal->cmaj_flt += |
| 1060 | p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt; |
| 1061 | p->parent->signal->cnvcsw += |
| 1062 | p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw; |
| 1063 | p->parent->signal->cnivcsw += |
| 1064 | p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw; |
| 1065 | spin_unlock_irq(&p->parent->sighand->siglock); |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * Now we are sure this task is interesting, and no other |
| 1070 | * thread can reap it because we set its state to EXIT_DEAD. |
| 1071 | */ |
| 1072 | read_unlock(&tasklist_lock); |
| 1073 | |
| 1074 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1075 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
| 1076 | ? p->signal->group_exit_code : p->exit_code; |
| 1077 | if (!retval && stat_addr) |
| 1078 | retval = put_user(status, stat_addr); |
| 1079 | if (!retval && infop) |
| 1080 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1081 | if (!retval && infop) |
| 1082 | retval = put_user(0, &infop->si_errno); |
| 1083 | if (!retval && infop) { |
| 1084 | int why; |
| 1085 | |
| 1086 | if ((status & 0x7f) == 0) { |
| 1087 | why = CLD_EXITED; |
| 1088 | status >>= 8; |
| 1089 | } else { |
| 1090 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; |
| 1091 | status &= 0x7f; |
| 1092 | } |
| 1093 | retval = put_user((short)why, &infop->si_code); |
| 1094 | if (!retval) |
| 1095 | retval = put_user(status, &infop->si_status); |
| 1096 | } |
| 1097 | if (!retval && infop) |
| 1098 | retval = put_user(p->pid, &infop->si_pid); |
| 1099 | if (!retval && infop) |
| 1100 | retval = put_user(p->uid, &infop->si_uid); |
| 1101 | if (retval) { |
| 1102 | // TODO: is this safe? |
| 1103 | p->exit_state = EXIT_ZOMBIE; |
| 1104 | return retval; |
| 1105 | } |
| 1106 | retval = p->pid; |
| 1107 | if (p->real_parent != p->parent) { |
| 1108 | write_lock_irq(&tasklist_lock); |
| 1109 | /* Double-check with lock held. */ |
| 1110 | if (p->real_parent != p->parent) { |
| 1111 | __ptrace_unlink(p); |
| 1112 | // TODO: is this safe? |
| 1113 | p->exit_state = EXIT_ZOMBIE; |
| 1114 | /* |
| 1115 | * If this is not a detached task, notify the parent. |
| 1116 | * If it's still not detached after that, don't release |
| 1117 | * it now. |
| 1118 | */ |
| 1119 | if (p->exit_signal != -1) { |
| 1120 | do_notify_parent(p, p->exit_signal); |
| 1121 | if (p->exit_signal != -1) |
| 1122 | p = NULL; |
| 1123 | } |
| 1124 | } |
| 1125 | write_unlock_irq(&tasklist_lock); |
| 1126 | } |
| 1127 | if (p != NULL) |
| 1128 | release_task(p); |
| 1129 | BUG_ON(!retval); |
| 1130 | return retval; |
| 1131 | } |
| 1132 | |
| 1133 | /* |
| 1134 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold |
| 1135 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 1136 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 1137 | * released the lock and the system call should return. |
| 1138 | */ |
| 1139 | static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, |
| 1140 | struct siginfo __user *infop, |
| 1141 | int __user *stat_addr, struct rusage __user *ru) |
| 1142 | { |
| 1143 | int retval, exit_code; |
| 1144 | |
| 1145 | if (!p->exit_code) |
| 1146 | return 0; |
| 1147 | if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && |
| 1148 | p->signal && p->signal->group_stop_count > 0) |
| 1149 | /* |
| 1150 | * A group stop is in progress and this is the group leader. |
| 1151 | * We won't report until all threads have stopped. |
| 1152 | */ |
| 1153 | return 0; |
| 1154 | |
| 1155 | /* |
| 1156 | * Now we are pretty sure this task is interesting. |
| 1157 | * Make sure it doesn't get reaped out from under us while we |
| 1158 | * give up the lock and then examine it below. We don't want to |
| 1159 | * keep holding onto the tasklist_lock while we call getrusage and |
| 1160 | * possibly take page faults for user memory. |
| 1161 | */ |
| 1162 | get_task_struct(p); |
| 1163 | read_unlock(&tasklist_lock); |
| 1164 | |
| 1165 | if (unlikely(noreap)) { |
| 1166 | pid_t pid = p->pid; |
| 1167 | uid_t uid = p->uid; |
| 1168 | int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; |
| 1169 | |
| 1170 | exit_code = p->exit_code; |
| 1171 | if (unlikely(!exit_code) || |
| 1172 | unlikely(p->state > TASK_STOPPED)) |
| 1173 | goto bail_ref; |
| 1174 | return wait_noreap_copyout(p, pid, uid, |
| 1175 | why, (exit_code << 8) | 0x7f, |
| 1176 | infop, ru); |
| 1177 | } |
| 1178 | |
| 1179 | write_lock_irq(&tasklist_lock); |
| 1180 | |
| 1181 | /* |
| 1182 | * This uses xchg to be atomic with the thread resuming and setting |
| 1183 | * it. It must also be done with the write lock held to prevent a |
| 1184 | * race with the EXIT_ZOMBIE case. |
| 1185 | */ |
| 1186 | exit_code = xchg(&p->exit_code, 0); |
| 1187 | if (unlikely(p->exit_state)) { |
| 1188 | /* |
| 1189 | * The task resumed and then died. Let the next iteration |
| 1190 | * catch it in EXIT_ZOMBIE. Note that exit_code might |
| 1191 | * already be zero here if it resumed and did _exit(0). |
| 1192 | * The task itself is dead and won't touch exit_code again; |
| 1193 | * other processors in this function are locked out. |
| 1194 | */ |
| 1195 | p->exit_code = exit_code; |
| 1196 | exit_code = 0; |
| 1197 | } |
| 1198 | if (unlikely(exit_code == 0)) { |
| 1199 | /* |
| 1200 | * Another thread in this function got to it first, or it |
| 1201 | * resumed, or it resumed and then died. |
| 1202 | */ |
| 1203 | write_unlock_irq(&tasklist_lock); |
| 1204 | bail_ref: |
| 1205 | put_task_struct(p); |
| 1206 | /* |
| 1207 | * We are returning to the wait loop without having successfully |
| 1208 | * removed the process and having released the lock. We cannot |
| 1209 | * continue, since the "p" task pointer is potentially stale. |
| 1210 | * |
| 1211 | * Return -EAGAIN, and do_wait() will restart the loop from the |
| 1212 | * beginning. Do _not_ re-acquire the lock. |
| 1213 | */ |
| 1214 | return -EAGAIN; |
| 1215 | } |
| 1216 | |
| 1217 | /* move to end of parent's list to avoid starvation */ |
| 1218 | remove_parent(p); |
| 1219 | add_parent(p, p->parent); |
| 1220 | |
| 1221 | write_unlock_irq(&tasklist_lock); |
| 1222 | |
| 1223 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1224 | if (!retval && stat_addr) |
| 1225 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); |
| 1226 | if (!retval && infop) |
| 1227 | retval = put_user(SIGCHLD, &infop->si_signo); |
| 1228 | if (!retval && infop) |
| 1229 | retval = put_user(0, &infop->si_errno); |
| 1230 | if (!retval && infop) |
| 1231 | retval = put_user((short)((p->ptrace & PT_PTRACED) |
| 1232 | ? CLD_TRAPPED : CLD_STOPPED), |
| 1233 | &infop->si_code); |
| 1234 | if (!retval && infop) |
| 1235 | retval = put_user(exit_code, &infop->si_status); |
| 1236 | if (!retval && infop) |
| 1237 | retval = put_user(p->pid, &infop->si_pid); |
| 1238 | if (!retval && infop) |
| 1239 | retval = put_user(p->uid, &infop->si_uid); |
| 1240 | if (!retval) |
| 1241 | retval = p->pid; |
| 1242 | put_task_struct(p); |
| 1243 | |
| 1244 | BUG_ON(!retval); |
| 1245 | return retval; |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * Handle do_wait work for one task in a live, non-stopped state. |
| 1250 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold |
| 1251 | * the lock and this task is uninteresting. If we return nonzero, we have |
| 1252 | * released the lock and the system call should return. |
| 1253 | */ |
| 1254 | static int wait_task_continued(task_t *p, int noreap, |
| 1255 | struct siginfo __user *infop, |
| 1256 | int __user *stat_addr, struct rusage __user *ru) |
| 1257 | { |
| 1258 | int retval; |
| 1259 | pid_t pid; |
| 1260 | uid_t uid; |
| 1261 | |
| 1262 | if (unlikely(!p->signal)) |
| 1263 | return 0; |
| 1264 | |
| 1265 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
| 1266 | return 0; |
| 1267 | |
| 1268 | spin_lock_irq(&p->sighand->siglock); |
| 1269 | /* Re-check with the lock held. */ |
| 1270 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { |
| 1271 | spin_unlock_irq(&p->sighand->siglock); |
| 1272 | return 0; |
| 1273 | } |
| 1274 | if (!noreap) |
| 1275 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
| 1276 | spin_unlock_irq(&p->sighand->siglock); |
| 1277 | |
| 1278 | pid = p->pid; |
| 1279 | uid = p->uid; |
| 1280 | get_task_struct(p); |
| 1281 | read_unlock(&tasklist_lock); |
| 1282 | |
| 1283 | if (!infop) { |
| 1284 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; |
| 1285 | put_task_struct(p); |
| 1286 | if (!retval && stat_addr) |
| 1287 | retval = put_user(0xffff, stat_addr); |
| 1288 | if (!retval) |
| 1289 | retval = p->pid; |
| 1290 | } else { |
| 1291 | retval = wait_noreap_copyout(p, pid, uid, |
| 1292 | CLD_CONTINUED, SIGCONT, |
| 1293 | infop, ru); |
| 1294 | BUG_ON(retval == 0); |
| 1295 | } |
| 1296 | |
| 1297 | return retval; |
| 1298 | } |
| 1299 | |
| 1300 | |
| 1301 | static inline int my_ptrace_child(struct task_struct *p) |
| 1302 | { |
| 1303 | if (!(p->ptrace & PT_PTRACED)) |
| 1304 | return 0; |
| 1305 | if (!(p->ptrace & PT_ATTACHED)) |
| 1306 | return 1; |
| 1307 | /* |
| 1308 | * This child was PTRACE_ATTACH'd. We should be seeing it only if |
| 1309 | * we are the attacher. If we are the real parent, this is a race |
| 1310 | * inside ptrace_attach. It is waiting for the tasklist_lock, |
| 1311 | * which we have to switch the parent links, but has already set |
| 1312 | * the flags in p->ptrace. |
| 1313 | */ |
| 1314 | return (p->parent != p->real_parent); |
| 1315 | } |
| 1316 | |
| 1317 | static long do_wait(pid_t pid, int options, struct siginfo __user *infop, |
| 1318 | int __user *stat_addr, struct rusage __user *ru) |
| 1319 | { |
| 1320 | DECLARE_WAITQUEUE(wait, current); |
| 1321 | struct task_struct *tsk; |
| 1322 | int flag, retval; |
| 1323 | |
| 1324 | add_wait_queue(¤t->signal->wait_chldexit,&wait); |
| 1325 | repeat: |
| 1326 | /* |
| 1327 | * We will set this flag if we see any child that might later |
| 1328 | * match our criteria, even if we are not able to reap it yet. |
| 1329 | */ |
| 1330 | flag = 0; |
| 1331 | current->state = TASK_INTERRUPTIBLE; |
| 1332 | read_lock(&tasklist_lock); |
| 1333 | tsk = current; |
| 1334 | do { |
| 1335 | struct task_struct *p; |
| 1336 | struct list_head *_p; |
| 1337 | int ret; |
| 1338 | |
| 1339 | list_for_each(_p,&tsk->children) { |
| 1340 | p = list_entry(_p,struct task_struct,sibling); |
| 1341 | |
| 1342 | ret = eligible_child(pid, options, p); |
| 1343 | if (!ret) |
| 1344 | continue; |
| 1345 | |
| 1346 | switch (p->state) { |
| 1347 | case TASK_TRACED: |
| 1348 | if (!my_ptrace_child(p)) |
| 1349 | continue; |
| 1350 | /*FALLTHROUGH*/ |
| 1351 | case TASK_STOPPED: |
| 1352 | /* |
| 1353 | * It's stopped now, so it might later |
| 1354 | * continue, exit, or stop again. |
| 1355 | */ |
| 1356 | flag = 1; |
| 1357 | if (!(options & WUNTRACED) && |
| 1358 | !my_ptrace_child(p)) |
| 1359 | continue; |
| 1360 | retval = wait_task_stopped(p, ret == 2, |
| 1361 | (options & WNOWAIT), |
| 1362 | infop, |
| 1363 | stat_addr, ru); |
| 1364 | if (retval == -EAGAIN) |
| 1365 | goto repeat; |
| 1366 | if (retval != 0) /* He released the lock. */ |
| 1367 | goto end; |
| 1368 | break; |
| 1369 | default: |
| 1370 | // case EXIT_DEAD: |
| 1371 | if (p->exit_state == EXIT_DEAD) |
| 1372 | continue; |
| 1373 | // case EXIT_ZOMBIE: |
| 1374 | if (p->exit_state == EXIT_ZOMBIE) { |
| 1375 | /* |
| 1376 | * Eligible but we cannot release |
| 1377 | * it yet: |
| 1378 | */ |
| 1379 | if (ret == 2) |
| 1380 | goto check_continued; |
| 1381 | if (!likely(options & WEXITED)) |
| 1382 | continue; |
| 1383 | retval = wait_task_zombie( |
| 1384 | p, (options & WNOWAIT), |
| 1385 | infop, stat_addr, ru); |
| 1386 | /* He released the lock. */ |
| 1387 | if (retval != 0) |
| 1388 | goto end; |
| 1389 | break; |
| 1390 | } |
| 1391 | check_continued: |
| 1392 | /* |
| 1393 | * It's running now, so it might later |
| 1394 | * exit, stop, or stop and then continue. |
| 1395 | */ |
| 1396 | flag = 1; |
| 1397 | if (!unlikely(options & WCONTINUED)) |
| 1398 | continue; |
| 1399 | retval = wait_task_continued( |
| 1400 | p, (options & WNOWAIT), |
| 1401 | infop, stat_addr, ru); |
| 1402 | if (retval != 0) /* He released the lock. */ |
| 1403 | goto end; |
| 1404 | break; |
| 1405 | } |
| 1406 | } |
| 1407 | if (!flag) { |
| 1408 | list_for_each(_p, &tsk->ptrace_children) { |
| 1409 | p = list_entry(_p, struct task_struct, |
| 1410 | ptrace_list); |
| 1411 | if (!eligible_child(pid, options, p)) |
| 1412 | continue; |
| 1413 | flag = 1; |
| 1414 | break; |
| 1415 | } |
| 1416 | } |
| 1417 | if (options & __WNOTHREAD) |
| 1418 | break; |
| 1419 | tsk = next_thread(tsk); |
| 1420 | if (tsk->signal != current->signal) |
| 1421 | BUG(); |
| 1422 | } while (tsk != current); |
| 1423 | |
| 1424 | read_unlock(&tasklist_lock); |
| 1425 | if (flag) { |
| 1426 | retval = 0; |
| 1427 | if (options & WNOHANG) |
| 1428 | goto end; |
| 1429 | retval = -ERESTARTSYS; |
| 1430 | if (signal_pending(current)) |
| 1431 | goto end; |
| 1432 | schedule(); |
| 1433 | goto repeat; |
| 1434 | } |
| 1435 | retval = -ECHILD; |
| 1436 | end: |
| 1437 | current->state = TASK_RUNNING; |
| 1438 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); |
| 1439 | if (infop) { |
| 1440 | if (retval > 0) |
| 1441 | retval = 0; |
| 1442 | else { |
| 1443 | /* |
| 1444 | * For a WNOHANG return, clear out all the fields |
| 1445 | * we would set so the user can easily tell the |
| 1446 | * difference. |
| 1447 | */ |
| 1448 | if (!retval) |
| 1449 | retval = put_user(0, &infop->si_signo); |
| 1450 | if (!retval) |
| 1451 | retval = put_user(0, &infop->si_errno); |
| 1452 | if (!retval) |
| 1453 | retval = put_user(0, &infop->si_code); |
| 1454 | if (!retval) |
| 1455 | retval = put_user(0, &infop->si_pid); |
| 1456 | if (!retval) |
| 1457 | retval = put_user(0, &infop->si_uid); |
| 1458 | if (!retval) |
| 1459 | retval = put_user(0, &infop->si_status); |
| 1460 | } |
| 1461 | } |
| 1462 | return retval; |
| 1463 | } |
| 1464 | |
| 1465 | asmlinkage long sys_waitid(int which, pid_t pid, |
| 1466 | struct siginfo __user *infop, int options, |
| 1467 | struct rusage __user *ru) |
| 1468 | { |
| 1469 | long ret; |
| 1470 | |
| 1471 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) |
| 1472 | return -EINVAL; |
| 1473 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) |
| 1474 | return -EINVAL; |
| 1475 | |
| 1476 | switch (which) { |
| 1477 | case P_ALL: |
| 1478 | pid = -1; |
| 1479 | break; |
| 1480 | case P_PID: |
| 1481 | if (pid <= 0) |
| 1482 | return -EINVAL; |
| 1483 | break; |
| 1484 | case P_PGID: |
| 1485 | if (pid <= 0) |
| 1486 | return -EINVAL; |
| 1487 | pid = -pid; |
| 1488 | break; |
| 1489 | default: |
| 1490 | return -EINVAL; |
| 1491 | } |
| 1492 | |
| 1493 | ret = do_wait(pid, options, infop, NULL, ru); |
| 1494 | |
| 1495 | /* avoid REGPARM breakage on x86: */ |
| 1496 | prevent_tail_call(ret); |
| 1497 | return ret; |
| 1498 | } |
| 1499 | |
| 1500 | asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, |
| 1501 | int options, struct rusage __user *ru) |
| 1502 | { |
| 1503 | long ret; |
| 1504 | |
| 1505 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| |
| 1506 | __WNOTHREAD|__WCLONE|__WALL)) |
| 1507 | return -EINVAL; |
| 1508 | ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); |
| 1509 | |
| 1510 | /* avoid REGPARM breakage on x86: */ |
| 1511 | prevent_tail_call(ret); |
| 1512 | return ret; |
| 1513 | } |
| 1514 | |
| 1515 | #ifdef __ARCH_WANT_SYS_WAITPID |
| 1516 | |
| 1517 | /* |
| 1518 | * sys_waitpid() remains for compatibility. waitpid() should be |
| 1519 | * implemented by calling sys_wait4() from libc.a. |
| 1520 | */ |
| 1521 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) |
| 1522 | { |
| 1523 | return sys_wait4(pid, stat_addr, options, NULL); |
| 1524 | } |
| 1525 | |
| 1526 | #endif |