blob: c9325a1e30d054a3423daff60bfadebd8f9549a8 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/timer.c
3 *
Stephen Rothwell4a22f162013-04-30 15:27:37 -07004 * Kernel internal timers
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
Paul Gortmaker9984de12011-05-23 14:51:41 -040023#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070024#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
Pavel Emelyanovb4888932007-10-18 23:40:14 -070029#include <linux/pid_namespace.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
Adrian Bunk97a41e22006-01-08 01:02:17 -080037#include <linux/delay.h>
Thomas Gleixner79bf2bb2007-02-16 01:28:03 -080038#include <linux/tick.h>
Ingo Molnar82f67cd2007-02-16 01:28:13 -080039#include <linux/kallsyms.h>
Peter Zijlstrae360adb2010-10-14 14:01:34 +080040#include <linux/irq_work.h>
Arun R Bharadwajeea08f32009-04-16 12:16:41 +053041#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -060042#include <linux/sched/sysctl.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090043#include <linux/slab.h>
Stephen Rothwell1a0df592013-04-30 15:27:34 -070044#include <linux/compat.h>
Willy Tarreau5aa78392020-07-10 15:23:19 +020045#include <linux/random.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070046
47#include <asm/uaccess.h>
48#include <asm/unistd.h>
49#include <asm/div64.h>
50#include <asm/timex.h>
51#include <asm/io.h>
52
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +000053#include "tick-internal.h"
54
Xiao Guangrong2b022e32009-08-10 10:48:59 +080055#define CREATE_TRACE_POINTS
56#include <trace/events/timer.h>
57
Andi Kleen40747ff2014-02-08 08:51:59 +010058__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
Thomas Gleixnerecea8d12005-10-30 15:03:00 -080059
60EXPORT_SYMBOL(jiffies_64);
61
Linus Torvalds1da177e2005-04-16 15:20:36 -070062/*
Thomas Gleixner500462a2016-07-04 09:50:30 +000063 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65 * level has a different granularity.
66 *
67 * The level granularity is: LVL_CLK_DIV ^ lvl
68 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
69 *
70 * The array level of a newly armed timer depends on the relative expiry
71 * time. The farther the expiry time is away the higher the array level and
72 * therefor the granularity becomes.
73 *
74 * Contrary to the original timer wheel implementation, which aims for 'exact'
75 * expiry of the timers, this implementation removes the need for recascading
76 * the timers into the lower array levels. The previous 'classic' timer wheel
77 * implementation of the kernel already violated the 'exact' expiry by adding
78 * slack to the expiry time to provide batched expiration. The granularity
79 * levels provide implicit batching.
80 *
81 * This is an optimization of the original timer wheel implementation for the
82 * majority of the timer wheel use cases: timeouts. The vast majority of
83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84 * the timeout expires it indicates that normal operation is disturbed, so it
85 * does not matter much whether the timeout comes with a slight delay.
86 *
87 * The only exception to this are networking timers with a small expiry
88 * time. They rely on the granularity. Those fit into the first wheel level,
89 * which has HZ granularity.
90 *
91 * We don't have cascading anymore. timers with a expiry time above the
92 * capacity of the last wheel level are force expired at the maximum timeout
93 * value of the last wheel level. From data sampling we know that the maximum
94 * value observed is 5 days (network connection tracking), so this should not
95 * be an issue.
96 *
97 * The currently chosen array constants values are a good compromise between
98 * array size and granularity.
99 *
100 * This results in the following granularity and range levels:
101 *
102 * HZ 1000 steps
103 * Level Offset Granularity Range
104 * 0 0 1 ms 0 ms - 63 ms
105 * 1 64 8 ms 64 ms - 511 ms
106 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
107 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
108 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
109 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
110 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
111 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
112 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
113 *
114 * HZ 300
115 * Level Offset Granularity Range
116 * 0 0 3 ms 0 ms - 210 ms
117 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
118 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
119 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
120 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
121 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
122 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
123 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
124 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125 *
126 * HZ 250
127 * Level Offset Granularity Range
128 * 0 0 4 ms 0 ms - 255 ms
129 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
130 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
131 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
132 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
133 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
134 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
135 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
136 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137 *
138 * HZ 100
139 * Level Offset Granularity Range
140 * 0 0 10 ms 0 ms - 630 ms
141 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
142 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
143 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
144 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
145 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
146 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
147 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149
Thomas Gleixner500462a2016-07-04 09:50:30 +0000150/* Clock divisor for the next level */
151#define LVL_CLK_SHIFT 3
152#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
153#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
154#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
155#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156
Thomas Gleixner500462a2016-07-04 09:50:30 +0000157/*
158 * The time start value for each level to select the bucket at enqueue
159 * time.
160 */
161#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Thomas Gleixner500462a2016-07-04 09:50:30 +0000163/* Size of each clock level */
164#define LVL_BITS 6
165#define LVL_SIZE (1UL << LVL_BITS)
166#define LVL_MASK (LVL_SIZE - 1)
167#define LVL_OFFS(n) ((n) * LVL_SIZE)
168
169/* Level depth */
170#if HZ > 100
171# define LVL_DEPTH 9
172# else
173# define LVL_DEPTH 8
174#endif
175
176/* The cutoff (max. capacity of the wheel) */
177#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
178#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179
180/*
181 * The resulting wheel size. If NOHZ is configured we allocate two
182 * wheels so we have a separate storage for the deferrable timers.
183 */
184#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
185
186#ifdef CONFIG_NO_HZ_COMMON
187# define NR_BASES 2
188# define BASE_STD 0
189# define BASE_DEF 1
190#else
191# define NR_BASES 1
192# define BASE_STD 0
193# define BASE_DEF 0
194#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000196struct timer_base {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000197 spinlock_t lock;
198 struct timer_list *running_timer;
199 unsigned long clk;
Thomas Gleixnera683f392016-07-04 09:50:36 +0000200 unsigned long next_expiry;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000201 unsigned int cpu;
202 bool migration_enabled;
203 bool nohz_active;
Thomas Gleixnera683f392016-07-04 09:50:36 +0000204 bool is_idle;
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000205 bool must_forward_clk;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000206 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
207 struct hlist_head vectors[WHEEL_SIZE];
Venki Pallipadi6e453a62007-05-08 00:27:44 -0700208} ____cacheline_aligned;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209
Thomas Gleixner500462a2016-07-04 09:50:30 +0000210static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
Venki Pallipadi6e453a62007-05-08 00:27:44 -0700211
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000212#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
213unsigned int sysctl_timer_migration = 1;
214
Thomas Gleixner683be132015-05-26 22:50:35 +0000215void timers_update_migration(bool update_nohz)
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000216{
217 bool on = sysctl_timer_migration && tick_nohz_active;
218 unsigned int cpu;
219
220 /* Avoid the loop, if nothing to update */
Thomas Gleixner500462a2016-07-04 09:50:30 +0000221 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000222 return;
223
224 for_each_possible_cpu(cpu) {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000225 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
226 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000227 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
Thomas Gleixner683be132015-05-26 22:50:35 +0000228 if (!update_nohz)
229 continue;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000230 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
231 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
Thomas Gleixner683be132015-05-26 22:50:35 +0000232 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000233 }
234}
235
236int timer_migration_handler(struct ctl_table *table, int write,
237 void __user *buffer, size_t *lenp,
238 loff_t *ppos)
239{
240 static DEFINE_MUTEX(mutex);
241 int ret;
242
243 mutex_lock(&mutex);
Myungho Jung4c000152017-04-19 15:24:50 -0700244 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000245 if (!ret && write)
Thomas Gleixner683be132015-05-26 22:50:35 +0000246 timers_update_migration(false);
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000247 mutex_unlock(&mutex);
248 return ret;
249}
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000250#endif
251
Alan Stern9c133c42008-11-06 08:42:48 +0100252static unsigned long round_jiffies_common(unsigned long j, int cpu,
253 bool force_up)
254{
255 int rem;
256 unsigned long original = j;
257
258 /*
259 * We don't want all cpus firing their timers at once hitting the
260 * same lock or cachelines, so we skew each extra cpu with an extra
261 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
262 * already did this.
263 * The skew is done by adding 3*cpunr, then round, then subtract this
264 * extra offset again.
265 */
266 j += cpu * 3;
267
268 rem = j % HZ;
269
270 /*
271 * If the target jiffie is just after a whole second (which can happen
272 * due to delays of the timer irq, long irq off times etc etc) then
273 * we should round down to the whole second, not up. Use 1/4th second
274 * as cutoff for this rounding as an extreme upper bound for this.
275 * But never round down if @force_up is set.
276 */
277 if (rem < HZ/4 && !force_up) /* round down */
278 j = j - rem;
279 else /* round up */
280 j = j - rem + HZ;
281
282 /* now that we have rounded, subtract the extra skew again */
283 j -= cpu * 3;
284
Bart Van Assche9e04d382013-05-21 20:43:50 +0200285 /*
286 * Make sure j is still in the future. Otherwise return the
287 * unmodified value.
288 */
289 return time_is_after_jiffies(j) ? j : original;
Alan Stern9c133c42008-11-06 08:42:48 +0100290}
291
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800292/**
293 * __round_jiffies - function to round jiffies to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 * @cpu: the processor number on which the timeout will happen
296 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800297 * __round_jiffies() rounds an absolute time in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800298 * up or down to (approximately) full seconds. This is useful for timers
299 * for which the exact time they fire does not matter too much, as long as
300 * they fire approximately every X seconds.
301 *
302 * By rounding these timers to whole seconds, all such timers will fire
303 * at the same time, rather than at various times spread out. The goal
304 * of this is to have the CPU wake up less, which saves power.
305 *
306 * The exact rounding is skewed for each processor to avoid all
307 * processors firing at the exact same time, which could lead
308 * to lock contention or spurious cache line bouncing.
309 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800310 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800311 */
312unsigned long __round_jiffies(unsigned long j, int cpu)
313{
Alan Stern9c133c42008-11-06 08:42:48 +0100314 return round_jiffies_common(j, cpu, false);
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800315}
316EXPORT_SYMBOL_GPL(__round_jiffies);
317
318/**
319 * __round_jiffies_relative - function to round jiffies to a full second
320 * @j: the time in (relative) jiffies that should be rounded
321 * @cpu: the processor number on which the timeout will happen
322 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800323 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800324 * up or down to (approximately) full seconds. This is useful for timers
325 * for which the exact time they fire does not matter too much, as long as
326 * they fire approximately every X seconds.
327 *
328 * By rounding these timers to whole seconds, all such timers will fire
329 * at the same time, rather than at various times spread out. The goal
330 * of this is to have the CPU wake up less, which saves power.
331 *
332 * The exact rounding is skewed for each processor to avoid all
333 * processors firing at the exact same time, which could lead
334 * to lock contention or spurious cache line bouncing.
335 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800336 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800337 */
338unsigned long __round_jiffies_relative(unsigned long j, int cpu)
339{
Alan Stern9c133c42008-11-06 08:42:48 +0100340 unsigned long j0 = jiffies;
341
342 /* Use j0 because jiffies might change while we run */
343 return round_jiffies_common(j + j0, cpu, false) - j0;
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800344}
345EXPORT_SYMBOL_GPL(__round_jiffies_relative);
346
347/**
348 * round_jiffies - function to round jiffies to a full second
349 * @j: the time in (absolute) jiffies that should be rounded
350 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800351 * round_jiffies() rounds an absolute time in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800352 * up or down to (approximately) full seconds. This is useful for timers
353 * for which the exact time they fire does not matter too much, as long as
354 * they fire approximately every X seconds.
355 *
356 * By rounding these timers to whole seconds, all such timers will fire
357 * at the same time, rather than at various times spread out. The goal
358 * of this is to have the CPU wake up less, which saves power.
359 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800360 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800361 */
362unsigned long round_jiffies(unsigned long j)
363{
Alan Stern9c133c42008-11-06 08:42:48 +0100364 return round_jiffies_common(j, raw_smp_processor_id(), false);
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800365}
366EXPORT_SYMBOL_GPL(round_jiffies);
367
368/**
369 * round_jiffies_relative - function to round jiffies to a full second
370 * @j: the time in (relative) jiffies that should be rounded
371 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800372 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800373 * up or down to (approximately) full seconds. This is useful for timers
374 * for which the exact time they fire does not matter too much, as long as
375 * they fire approximately every X seconds.
376 *
377 * By rounding these timers to whole seconds, all such timers will fire
378 * at the same time, rather than at various times spread out. The goal
379 * of this is to have the CPU wake up less, which saves power.
380 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800381 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800382 */
383unsigned long round_jiffies_relative(unsigned long j)
384{
385 return __round_jiffies_relative(j, raw_smp_processor_id());
386}
387EXPORT_SYMBOL_GPL(round_jiffies_relative);
388
Alan Stern9c133c42008-11-06 08:42:48 +0100389/**
390 * __round_jiffies_up - function to round jiffies up to a full second
391 * @j: the time in (absolute) jiffies that should be rounded
392 * @cpu: the processor number on which the timeout will happen
393 *
394 * This is the same as __round_jiffies() except that it will never
395 * round down. This is useful for timeouts for which the exact time
396 * of firing does not matter too much, as long as they don't fire too
397 * early.
398 */
399unsigned long __round_jiffies_up(unsigned long j, int cpu)
400{
401 return round_jiffies_common(j, cpu, true);
402}
403EXPORT_SYMBOL_GPL(__round_jiffies_up);
404
405/**
406 * __round_jiffies_up_relative - function to round jiffies up to a full second
407 * @j: the time in (relative) jiffies that should be rounded
408 * @cpu: the processor number on which the timeout will happen
409 *
410 * This is the same as __round_jiffies_relative() except that it will never
411 * round down. This is useful for timeouts for which the exact time
412 * of firing does not matter too much, as long as they don't fire too
413 * early.
414 */
415unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
416{
417 unsigned long j0 = jiffies;
418
419 /* Use j0 because jiffies might change while we run */
420 return round_jiffies_common(j + j0, cpu, true) - j0;
421}
422EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
423
424/**
425 * round_jiffies_up - function to round jiffies up to a full second
426 * @j: the time in (absolute) jiffies that should be rounded
427 *
428 * This is the same as round_jiffies() except that it will never
429 * round down. This is useful for timeouts for which the exact time
430 * of firing does not matter too much, as long as they don't fire too
431 * early.
432 */
433unsigned long round_jiffies_up(unsigned long j)
434{
435 return round_jiffies_common(j, raw_smp_processor_id(), true);
436}
437EXPORT_SYMBOL_GPL(round_jiffies_up);
438
439/**
440 * round_jiffies_up_relative - function to round jiffies up to a full second
441 * @j: the time in (relative) jiffies that should be rounded
442 *
443 * This is the same as round_jiffies_relative() except that it will never
444 * round down. This is useful for timeouts for which the exact time
445 * of firing does not matter too much, as long as they don't fire too
446 * early.
447 */
448unsigned long round_jiffies_up_relative(unsigned long j)
449{
450 return __round_jiffies_up_relative(j, raw_smp_processor_id());
451}
452EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
453
Arjan van de Ven3bbb9ec2010-03-11 14:04:36 -0800454
Thomas Gleixner500462a2016-07-04 09:50:30 +0000455static inline unsigned int timer_get_idx(struct timer_list *timer)
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700456{
Thomas Gleixner500462a2016-07-04 09:50:30 +0000457 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700458}
Thomas Gleixner500462a2016-07-04 09:50:30 +0000459
460static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
461{
462 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
463 idx << TIMER_ARRAYSHIFT;
464}
465
466/*
467 * Helper function to calculate the array index for a given expiry
468 * time.
469 */
470static inline unsigned calc_index(unsigned expires, unsigned lvl)
471{
472 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
473 return LVL_OFFS(lvl) + (expires & LVL_MASK);
474}
475
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000476static int calc_wheel_index(unsigned long expires, unsigned long clk)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477{
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000478 unsigned long delta = expires - clk;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000479 unsigned int idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700480
Thomas Gleixner500462a2016-07-04 09:50:30 +0000481 if (delta < LVL_START(1)) {
482 idx = calc_index(expires, 0);
483 } else if (delta < LVL_START(2)) {
484 idx = calc_index(expires, 1);
485 } else if (delta < LVL_START(3)) {
486 idx = calc_index(expires, 2);
487 } else if (delta < LVL_START(4)) {
488 idx = calc_index(expires, 3);
489 } else if (delta < LVL_START(5)) {
490 idx = calc_index(expires, 4);
491 } else if (delta < LVL_START(6)) {
492 idx = calc_index(expires, 5);
493 } else if (delta < LVL_START(7)) {
494 idx = calc_index(expires, 6);
495 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
496 idx = calc_index(expires, 7);
497 } else if ((long) delta < 0) {
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000498 idx = clk & LVL_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499 } else {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000500 /*
501 * Force expire obscene large timeouts to expire at the
502 * capacity limit of the wheel.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503 */
Frederic Weisbeckerb1ba1292020-07-17 16:05:40 +0200504 if (delta >= WHEEL_TIMEOUT_CUTOFF)
505 expires = clk + WHEEL_TIMEOUT_MAX;
Thomas Gleixner1bd04bf2015-05-26 22:50:26 +0000506
Thomas Gleixner500462a2016-07-04 09:50:30 +0000507 idx = calc_index(expires, LVL_DEPTH - 1);
508 }
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000509 return idx;
510}
511
512/*
513 * Enqueue the timer into the hash bucket, mark it pending in
514 * the bitmap and store the index in the timer flags.
515 */
516static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
517 unsigned int idx)
518{
519 hlist_add_head(&timer->entry, base->vectors + idx);
Thomas Gleixner500462a2016-07-04 09:50:30 +0000520 __set_bit(idx, base->pending_map);
521 timer_set_idx(timer, idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523
524static void
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000525__internal_add_timer(struct timer_base *base, struct timer_list *timer)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526{
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000527 unsigned int idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000529 idx = calc_wheel_index(timer->expires, base->clk);
530 enqueue_timer(base, timer, idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531}
532
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000533static void
534trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
Thomas Gleixnerfacbb4a2012-05-25 22:08:57 +0000535{
Thomas Gleixnera683f392016-07-04 09:50:36 +0000536 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
537 return;
Viresh Kumar9f6d9ba2014-06-22 01:29:14 +0200538
539 /*
Thomas Gleixnera683f392016-07-04 09:50:36 +0000540 * TODO: This wants some optimizing similar to the code below, but we
541 * will do that when we switch from push to pull for deferrable timers.
Viresh Kumar9f6d9ba2014-06-22 01:29:14 +0200542 */
Thomas Gleixnera683f392016-07-04 09:50:36 +0000543 if (timer->flags & TIMER_DEFERRABLE) {
544 if (tick_nohz_full_cpu(base->cpu))
Thomas Gleixner683be132015-05-26 22:50:35 +0000545 wake_up_nohz_cpu(base->cpu);
Thomas Gleixnera683f392016-07-04 09:50:36 +0000546 return;
Thomas Gleixner683be132015-05-26 22:50:35 +0000547 }
Thomas Gleixnera683f392016-07-04 09:50:36 +0000548
549 /*
550 * We might have to IPI the remote CPU if the base is idle and the
551 * timer is not deferrable. If the other CPU is on the way to idle
552 * then it can't set base->is_idle as we hold the base lock:
553 */
554 if (!base->is_idle)
555 return;
556
557 /* Check whether this is the new first expiring timer: */
558 if (time_after_eq(timer->expires, base->next_expiry))
559 return;
560
561 /*
562 * Set the next expiry time and kick the CPU so it can reevaluate the
563 * wheel:
564 */
565 base->next_expiry = timer->expires;
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000566 wake_up_nohz_cpu(base->cpu);
567}
568
569static void
570internal_add_timer(struct timer_base *base, struct timer_list *timer)
571{
572 __internal_add_timer(base, timer);
573 trigger_dyntick_cpu(base, timer);
Thomas Gleixnerfacbb4a2012-05-25 22:08:57 +0000574}
575
Ingo Molnar82f67cd2007-02-16 01:28:13 -0800576#ifdef CONFIG_TIMER_STATS
577void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
578{
579 if (timer->start_site)
580 return;
581
582 timer->start_site = addr;
583 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
584 timer->start_pid = current->pid;
585}
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700586
587static void timer_stats_account_timer(struct timer_list *timer)
588{
Dmitry Vyukov3ed769b2015-09-18 15:54:23 +0200589 void *site;
590
591 /*
592 * start_site can be concurrently reset by
593 * timer_stats_timer_clear_start_info()
594 */
595 site = READ_ONCE(timer->start_site);
596 if (likely(!site))
Heiko Carstens507e1232009-06-23 17:38:15 +0200597 return;
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700598
Dmitry Vyukov3ed769b2015-09-18 15:54:23 +0200599 timer_stats_update_stats(timer, timer->start_pid, site,
Thomas Gleixnerc74441a2015-05-26 22:50:31 +0000600 timer->function, timer->start_comm,
601 timer->flags);
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700602}
603
604#else
605static void timer_stats_account_timer(struct timer_list *timer) {}
Ingo Molnar82f67cd2007-02-16 01:28:13 -0800606#endif
607
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700608#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
609
610static struct debug_obj_descr timer_debug_descr;
611
Stanislaw Gruszka99777282011-03-07 09:58:33 +0100612static void *timer_debug_hint(void *addr)
613{
614 return ((struct timer_list *) addr)->function;
615}
616
Du, Changbinb9fdac72016-05-19 17:09:41 -0700617static bool timer_is_static_object(void *addr)
618{
619 struct timer_list *timer = addr;
620
621 return (timer->entry.pprev == NULL &&
622 timer->entry.next == TIMER_ENTRY_STATIC);
623}
624
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700625/*
626 * fixup_init is called when:
627 * - an active object is initialized
628 */
Du, Changbine3252462016-05-19 17:09:29 -0700629static bool timer_fixup_init(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700630{
631 struct timer_list *timer = addr;
632
633 switch (state) {
634 case ODEBUG_STATE_ACTIVE:
635 del_timer_sync(timer);
636 debug_object_init(timer, &timer_debug_descr);
Du, Changbine3252462016-05-19 17:09:29 -0700637 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700638 default:
Du, Changbine3252462016-05-19 17:09:29 -0700639 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700640 }
641}
642
Stephen Boydfb16b8c2011-11-07 19:48:26 -0800643/* Stub timer callback for improperly used timers. */
644static void stub_timer(unsigned long data)
645{
646 WARN_ON(1);
647}
648
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700649/*
650 * fixup_activate is called when:
651 * - an active object is activated
Du, Changbinb9fdac72016-05-19 17:09:41 -0700652 * - an unknown non-static object is activated
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700653 */
Du, Changbine3252462016-05-19 17:09:29 -0700654static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700655{
656 struct timer_list *timer = addr;
657
658 switch (state) {
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700659 case ODEBUG_STATE_NOTAVAILABLE:
Du, Changbinb9fdac72016-05-19 17:09:41 -0700660 setup_timer(timer, stub_timer, 0);
661 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700662
663 case ODEBUG_STATE_ACTIVE:
664 WARN_ON(1);
665
666 default:
Du, Changbine3252462016-05-19 17:09:29 -0700667 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700668 }
669}
670
671/*
672 * fixup_free is called when:
673 * - an active object is freed
674 */
Du, Changbine3252462016-05-19 17:09:29 -0700675static bool timer_fixup_free(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700676{
677 struct timer_list *timer = addr;
678
679 switch (state) {
680 case ODEBUG_STATE_ACTIVE:
681 del_timer_sync(timer);
682 debug_object_free(timer, &timer_debug_descr);
Du, Changbine3252462016-05-19 17:09:29 -0700683 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700684 default:
Du, Changbine3252462016-05-19 17:09:29 -0700685 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700686 }
687}
688
Christine Chandc4218b2011-11-07 19:48:28 -0800689/*
690 * fixup_assert_init is called when:
691 * - an untracked/uninit-ed object is found
692 */
Du, Changbine3252462016-05-19 17:09:29 -0700693static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
Christine Chandc4218b2011-11-07 19:48:28 -0800694{
695 struct timer_list *timer = addr;
696
697 switch (state) {
698 case ODEBUG_STATE_NOTAVAILABLE:
Du, Changbinb9fdac72016-05-19 17:09:41 -0700699 setup_timer(timer, stub_timer, 0);
700 return true;
Christine Chandc4218b2011-11-07 19:48:28 -0800701 default:
Du, Changbine3252462016-05-19 17:09:29 -0700702 return false;
Christine Chandc4218b2011-11-07 19:48:28 -0800703 }
704}
705
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700706static struct debug_obj_descr timer_debug_descr = {
Christine Chandc4218b2011-11-07 19:48:28 -0800707 .name = "timer_list",
708 .debug_hint = timer_debug_hint,
Du, Changbinb9fdac72016-05-19 17:09:41 -0700709 .is_static_object = timer_is_static_object,
Christine Chandc4218b2011-11-07 19:48:28 -0800710 .fixup_init = timer_fixup_init,
711 .fixup_activate = timer_fixup_activate,
712 .fixup_free = timer_fixup_free,
713 .fixup_assert_init = timer_fixup_assert_init,
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700714};
715
716static inline void debug_timer_init(struct timer_list *timer)
717{
718 debug_object_init(timer, &timer_debug_descr);
719}
720
721static inline void debug_timer_activate(struct timer_list *timer)
722{
723 debug_object_activate(timer, &timer_debug_descr);
724}
725
726static inline void debug_timer_deactivate(struct timer_list *timer)
727{
728 debug_object_deactivate(timer, &timer_debug_descr);
729}
730
731static inline void debug_timer_free(struct timer_list *timer)
732{
733 debug_object_free(timer, &timer_debug_descr);
734}
735
Christine Chandc4218b2011-11-07 19:48:28 -0800736static inline void debug_timer_assert_init(struct timer_list *timer)
737{
738 debug_object_assert_init(timer, &timer_debug_descr);
739}
740
Tejun Heofc683992012-08-08 11:10:27 -0700741static void do_init_timer(struct timer_list *timer, unsigned int flags,
742 const char *name, struct lock_class_key *key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700743
Tejun Heofc683992012-08-08 11:10:27 -0700744void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
745 const char *name, struct lock_class_key *key)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700746{
747 debug_object_init_on_stack(timer, &timer_debug_descr);
Tejun Heofc683992012-08-08 11:10:27 -0700748 do_init_timer(timer, flags, name, key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700749}
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100750EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700751
752void destroy_timer_on_stack(struct timer_list *timer)
753{
754 debug_object_free(timer, &timer_debug_descr);
755}
756EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
757
758#else
759static inline void debug_timer_init(struct timer_list *timer) { }
760static inline void debug_timer_activate(struct timer_list *timer) { }
761static inline void debug_timer_deactivate(struct timer_list *timer) { }
Christine Chandc4218b2011-11-07 19:48:28 -0800762static inline void debug_timer_assert_init(struct timer_list *timer) { }
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700763#endif
764
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800765static inline void debug_init(struct timer_list *timer)
766{
767 debug_timer_init(timer);
768 trace_timer_init(timer);
769}
770
771static inline void
772debug_activate(struct timer_list *timer, unsigned long expires)
773{
774 debug_timer_activate(timer);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000775 trace_timer_start(timer, expires, timer->flags);
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800776}
777
778static inline void debug_deactivate(struct timer_list *timer)
779{
780 debug_timer_deactivate(timer);
781 trace_timer_cancel(timer);
782}
783
Christine Chandc4218b2011-11-07 19:48:28 -0800784static inline void debug_assert_init(struct timer_list *timer)
785{
786 debug_timer_assert_init(timer);
787}
788
Tejun Heofc683992012-08-08 11:10:27 -0700789static void do_init_timer(struct timer_list *timer, unsigned int flags,
790 const char *name, struct lock_class_key *key)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700791{
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000792 timer->entry.pprev = NULL;
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000793 timer->flags = flags | raw_smp_processor_id();
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700794#ifdef CONFIG_TIMER_STATS
795 timer->start_site = NULL;
796 timer->start_pid = -1;
797 memset(timer->start_comm, 0, TASK_COMM_LEN);
798#endif
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100799 lockdep_init_map(&timer->lockdep_map, name, key, 0);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700800}
801
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -0700802/**
Randy Dunlap633fe792009-04-01 17:47:23 -0700803 * init_timer_key - initialize a timer
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700804 * @timer: the timer to be initialized
Tejun Heofc683992012-08-08 11:10:27 -0700805 * @flags: timer flags
Randy Dunlap633fe792009-04-01 17:47:23 -0700806 * @name: name of the timer
807 * @key: lockdep class key of the fake lock used for tracking timer
808 * sync lock dependencies
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700809 *
Randy Dunlap633fe792009-04-01 17:47:23 -0700810 * init_timer_key() must be done to a timer prior calling *any* of the
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700811 * other timer functions.
812 */
Tejun Heofc683992012-08-08 11:10:27 -0700813void init_timer_key(struct timer_list *timer, unsigned int flags,
814 const char *name, struct lock_class_key *key)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700815{
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800816 debug_init(timer);
Tejun Heofc683992012-08-08 11:10:27 -0700817 do_init_timer(timer, flags, name, key);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700818}
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100819EXPORT_SYMBOL(init_timer_key);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700820
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000821static inline void detach_timer(struct timer_list *timer, bool clear_pending)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700822{
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000823 struct hlist_node *entry = &timer->entry;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700824
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800825 debug_deactivate(timer);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700826
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000827 __hlist_del(entry);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700828 if (clear_pending)
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000829 entry->pprev = NULL;
830 entry->next = LIST_POISON2;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700831}
832
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000833static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000834 bool clear_pending)
835{
Thomas Gleixner500462a2016-07-04 09:50:30 +0000836 unsigned idx = timer_get_idx(timer);
837
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000838 if (!timer_pending(timer))
839 return 0;
840
Thomas Gleixner500462a2016-07-04 09:50:30 +0000841 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
842 __clear_bit(idx, base->pending_map);
843
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000844 detach_timer(timer, clear_pending);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000845 return 1;
846}
847
Thomas Gleixner500462a2016-07-04 09:50:30 +0000848static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
849{
850 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
851
852 /*
Anna-Maria Gleixnerd8406872017-12-22 15:51:12 +0100853 * If the timer is deferrable and NO_HZ_COMMON is set then we need
854 * to use the deferrable base.
Thomas Gleixner500462a2016-07-04 09:50:30 +0000855 */
Anna-Maria Gleixnerd8406872017-12-22 15:51:12 +0100856 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
Thomas Gleixner500462a2016-07-04 09:50:30 +0000857 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
858 return base;
859}
860
861static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
862{
863 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
864
865 /*
Anna-Maria Gleixnerd8406872017-12-22 15:51:12 +0100866 * If the timer is deferrable and NO_HZ_COMMON is set then we need
867 * to use the deferrable base.
Thomas Gleixner500462a2016-07-04 09:50:30 +0000868 */
Anna-Maria Gleixnerd8406872017-12-22 15:51:12 +0100869 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
Thomas Gleixner500462a2016-07-04 09:50:30 +0000870 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 return base;
872}
873
874static inline struct timer_base *get_timer_base(u32 tflags)
875{
876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877}
878
Thomas Gleixnera683f392016-07-04 09:50:36 +0000879#ifdef CONFIG_NO_HZ_COMMON
880static inline struct timer_base *
Thomas Gleixner6bad6bc2016-10-22 11:07:37 +0000881get_target_base(struct timer_base *base, unsigned tflags)
Thomas Gleixner500462a2016-07-04 09:50:30 +0000882{
Thomas Gleixnera683f392016-07-04 09:50:36 +0000883#ifdef CONFIG_SMP
Thomas Gleixner500462a2016-07-04 09:50:30 +0000884 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
885 return get_timer_this_cpu_base(tflags);
886 return get_timer_cpu_base(tflags, get_nohz_timer_target());
887#else
888 return get_timer_this_cpu_base(tflags);
889#endif
890}
891
Thomas Gleixnera683f392016-07-04 09:50:36 +0000892static inline void forward_timer_base(struct timer_base *base)
893{
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000894 unsigned long jnow;
Thomas Gleixner6bad6bc2016-10-22 11:07:37 +0000895
Thomas Gleixnera683f392016-07-04 09:50:36 +0000896 /*
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000897 * We only forward the base when we are idle or have just come out of
898 * idle (must_forward_clk logic), and have a delta between base clock
899 * and jiffies. In the common case, run_timers will take care of it.
Thomas Gleixnera683f392016-07-04 09:50:36 +0000900 */
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000901 if (likely(!base->must_forward_clk))
902 return;
903
904 jnow = READ_ONCE(jiffies);
905 base->must_forward_clk = base->is_idle;
906 if ((long)(jnow - base->clk) < 2)
Thomas Gleixnera683f392016-07-04 09:50:36 +0000907 return;
908
909 /*
910 * If the next expiry value is > jiffies, then we fast forward to
911 * jiffies otherwise we forward to the next expiry value.
912 */
Thomas Gleixner6bad6bc2016-10-22 11:07:37 +0000913 if (time_after(base->next_expiry, jnow))
914 base->clk = jnow;
Thomas Gleixnera683f392016-07-04 09:50:36 +0000915 else
916 base->clk = base->next_expiry;
917}
918#else
919static inline struct timer_base *
Thomas Gleixner6bad6bc2016-10-22 11:07:37 +0000920get_target_base(struct timer_base *base, unsigned tflags)
Thomas Gleixnera683f392016-07-04 09:50:36 +0000921{
922 return get_timer_this_cpu_base(tflags);
923}
924
925static inline void forward_timer_base(struct timer_base *base) { }
926#endif
927
Thomas Gleixnera683f392016-07-04 09:50:36 +0000928
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700929/*
Thomas Gleixner500462a2016-07-04 09:50:30 +0000930 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
931 * that all timers which are tied to this base are locked, and the base itself
932 * is locked too.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700933 *
934 * So __run_timers/migrate_timers can safely modify all timers which could
Thomas Gleixner500462a2016-07-04 09:50:30 +0000935 * be found in the base->vectors array.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700936 *
Thomas Gleixner500462a2016-07-04 09:50:30 +0000937 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
938 * to wait until the migration is done.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700939 */
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000940static struct timer_base *lock_timer_base(struct timer_list *timer,
Thomas Gleixner500462a2016-07-04 09:50:30 +0000941 unsigned long *flags)
Josh Triplett89e7e3742006-09-29 01:59:36 -0700942 __acquires(timer->base->lock)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700943{
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700944 for (;;) {
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000945 struct timer_base *base;
Thomas Gleixnerb8312752016-10-24 11:41:56 +0200946 u32 tf;
947
948 /*
949 * We need to use READ_ONCE() here, otherwise the compiler
950 * might re-read @tf between the check for TIMER_MIGRATING
951 * and spin_lock().
952 */
953 tf = READ_ONCE(timer->flags);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000954
955 if (!(tf & TIMER_MIGRATING)) {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000956 base = get_timer_base(tf);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700957 spin_lock_irqsave(&base->lock, *flags);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000958 if (timer->flags == tf)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700959 return base;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700960 spin_unlock_irqrestore(&base->lock, *flags);
961 }
962 cpu_relax();
963 }
964}
965
Ingo Molnar74019222009-02-18 12:23:29 +0100966static inline int
Thomas Gleixner177ec0a2016-07-04 09:50:24 +0000967__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968{
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000969 struct timer_base *base, *new_base;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000970 unsigned int idx = UINT_MAX;
971 unsigned long clk = 0, flags;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000972 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973
Thomas Gleixner4da91522016-10-24 11:55:10 +0200974 BUG_ON(!timer->function);
975
Thomas Gleixner500462a2016-07-04 09:50:30 +0000976 /*
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000977 * This is a common optimization triggered by the networking code - if
978 * the timer is re-modified to have the same timeout or ends up in the
979 * same array bucket then just return:
Thomas Gleixner500462a2016-07-04 09:50:30 +0000980 */
981 if (timer_pending(timer)) {
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000982 /*
983 * The downside of this optimization is that it can result in
984 * larger granularity than you would get from adding a new
985 * timer with this expiry.
986 */
Thomas Gleixner500462a2016-07-04 09:50:30 +0000987 if (timer->expires == expires)
988 return 1;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000989
Thomas Gleixner4da91522016-10-24 11:55:10 +0200990 /*
991 * We lock timer base and calculate the bucket index right
992 * here. If the timer ends up in the same bucket, then we
993 * just update the expiry time and avoid the whole
994 * dequeue/enqueue dance.
995 */
996 base = lock_timer_base(timer, &flags);
Nicholas Piggin70b3fd52017-08-22 18:43:48 +1000997 forward_timer_base(base);
Thomas Gleixner4da91522016-10-24 11:55:10 +0200998
999 clk = base->clk;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001000 idx = calc_wheel_index(expires, clk);
1001
1002 /*
1003 * Retrieve and compare the array index of the pending
1004 * timer. If it matches set the expiry to the new value so a
1005 * subsequent call will exit in the expires check above.
1006 */
1007 if (idx == timer_get_idx(timer)) {
1008 timer->expires = expires;
Thomas Gleixner4da91522016-10-24 11:55:10 +02001009 ret = 1;
1010 goto out_unlock;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001011 }
Thomas Gleixner4da91522016-10-24 11:55:10 +02001012 } else {
1013 base = lock_timer_base(timer, &flags);
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001014 forward_timer_base(base);
Thomas Gleixner500462a2016-07-04 09:50:30 +00001015 }
1016
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001017 timer_stats_timer_set_start_info(timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001019 ret = detach_if_pending(timer, base, false);
1020 if (!ret && pending_only)
1021 goto out_unlock;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001022
Thomas Gleixner500462a2016-07-04 09:50:30 +00001023 new_base = get_target_base(base, timer->flags);
Arun R Bharadwajeea08f32009-04-16 12:16:41 +05301024
Oleg Nesterov3691c512006-03-31 02:30:30 -08001025 if (base != new_base) {
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001026 /*
Thomas Gleixner500462a2016-07-04 09:50:30 +00001027 * We are trying to schedule the timer on the new base.
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001028 * However we can't change timer's base while it is running,
1029 * otherwise del_timer_sync() can't detect that the timer's
Thomas Gleixner500462a2016-07-04 09:50:30 +00001030 * handler yet has not finished. This also guarantees that the
1031 * timer is serialized wrt itself.
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001032 */
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001033 if (likely(base->running_timer != timer)) {
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001034 /* See the comment in lock_timer_base() */
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001035 timer->flags |= TIMER_MIGRATING;
1036
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001037 spin_unlock(&base->lock);
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001038 base = new_base;
1039 spin_lock(&base->lock);
Eric Dumazetd0023a12015-08-17 10:18:48 -07001040 WRITE_ONCE(timer->flags,
1041 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001042 forward_timer_base(base);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001043 }
1044 }
1045
Thomas Gleixner574e5432017-12-22 15:51:14 +01001046 debug_activate(timer, expires);
1047
Linus Torvalds1da177e2005-04-16 15:20:36 -07001048 timer->expires = expires;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001049 /*
1050 * If 'idx' was calculated above and the base time did not advance
Thomas Gleixner4da91522016-10-24 11:55:10 +02001051 * between calculating 'idx' and possibly switching the base, only
1052 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1053 * we need to (re)calculate the wheel index via
1054 * internal_add_timer().
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001055 */
1056 if (idx != UINT_MAX && clk == base->clk) {
1057 enqueue_timer(base, timer, idx);
1058 trigger_dyntick_cpu(base, timer);
1059 } else {
1060 internal_add_timer(base, timer);
1061 }
Ingo Molnar74019222009-02-18 12:23:29 +01001062
1063out_unlock:
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001064 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
1066 return ret;
1067}
1068
Ingo Molnar74019222009-02-18 12:23:29 +01001069/**
1070 * mod_timer_pending - modify a pending timer's timeout
1071 * @timer: the pending timer to be modified
1072 * @expires: new timeout in jiffies
1073 *
1074 * mod_timer_pending() is the same for pending timers as mod_timer(),
1075 * but will not re-activate and modify already deleted timers.
1076 *
1077 * It is useful for unserialized use of timers.
1078 */
1079int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1080{
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001081 return __mod_timer(timer, expires, true);
Ingo Molnar74019222009-02-18 12:23:29 +01001082}
1083EXPORT_SYMBOL(mod_timer_pending);
1084
1085/**
1086 * mod_timer - modify a timer's timeout
1087 * @timer: the timer to be modified
1088 * @expires: new timeout in jiffies
1089 *
1090 * mod_timer() is a more efficient way to update the expire field of an
1091 * active timer (if the timer is inactive it will be activated)
1092 *
1093 * mod_timer(timer, expires) is equivalent to:
1094 *
1095 * del_timer(timer); timer->expires = expires; add_timer(timer);
1096 *
1097 * Note that if there are multiple unserialized concurrent users of the
1098 * same timer, then mod_timer() is the only safe way to modify the timeout,
1099 * since add_timer() cannot modify an already running timer.
1100 *
1101 * The function returns whether it has modified a pending timer or not.
1102 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1103 * active timer returns 1.)
1104 */
1105int mod_timer(struct timer_list *timer, unsigned long expires)
1106{
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001107 return __mod_timer(timer, expires, false);
Ingo Molnar74019222009-02-18 12:23:29 +01001108}
1109EXPORT_SYMBOL(mod_timer);
1110
1111/**
1112 * add_timer - start a timer
1113 * @timer: the timer to be added
1114 *
1115 * The kernel will do a ->function(->data) callback from the
1116 * timer interrupt at the ->expires point in the future. The
1117 * current time is 'jiffies'.
1118 *
1119 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1120 * fields must be set prior calling this function.
1121 *
1122 * Timers with an ->expires field in the past will be executed in the next
1123 * timer tick.
1124 */
1125void add_timer(struct timer_list *timer)
1126{
1127 BUG_ON(timer_pending(timer));
1128 mod_timer(timer, timer->expires);
1129}
1130EXPORT_SYMBOL(add_timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001132/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133 * add_timer_on - start a timer on a particular CPU
1134 * @timer: the timer to be added
1135 * @cpu: the CPU to start it on
1136 *
1137 * This is not very scalable on SMP. Double adds are not possible.
1138 */
1139void add_timer_on(struct timer_list *timer, int cpu)
1140{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001141 struct timer_base *new_base, *base;
Thomas Gleixner68194572007-07-19 01:49:16 -07001142 unsigned long flags;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001143
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001144 timer_stats_timer_set_start_info(timer);
Thomas Gleixner68194572007-07-19 01:49:16 -07001145 BUG_ON(timer_pending(timer) || !timer->function);
Tejun Heo22b886d2015-11-04 12:15:33 -05001146
Thomas Gleixner500462a2016-07-04 09:50:30 +00001147 new_base = get_timer_cpu_base(timer->flags, cpu);
1148
Tejun Heo22b886d2015-11-04 12:15:33 -05001149 /*
1150 * If @timer was on a different CPU, it should be migrated with the
1151 * old base locked to prevent other operations proceeding with the
1152 * wrong base locked. See lock_timer_base().
1153 */
1154 base = lock_timer_base(timer, &flags);
1155 if (base != new_base) {
1156 timer->flags |= TIMER_MIGRATING;
1157
1158 spin_unlock(&base->lock);
1159 base = new_base;
1160 spin_lock(&base->lock);
1161 WRITE_ONCE(timer->flags,
1162 (timer->flags & ~TIMER_BASEMASK) | cpu);
1163 }
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001164 forward_timer_base(base);
Tejun Heo22b886d2015-11-04 12:15:33 -05001165
Xiao Guangrong2b022e32009-08-10 10:48:59 +08001166 debug_activate(timer, timer->expires);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 internal_add_timer(base, timer);
Oleg Nesterov3691c512006-03-31 02:30:30 -08001168 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169}
Andi Kleena9862e02009-05-19 22:49:07 +02001170EXPORT_SYMBOL_GPL(add_timer_on);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001172/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001173 * del_timer - deactive a timer.
1174 * @timer: the timer to be deactivated
1175 *
1176 * del_timer() deactivates a timer - this works on both active and inactive
1177 * timers.
1178 *
1179 * The function returns whether it has deactivated a pending timer or not.
1180 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1181 * active timer returns 1.)
1182 */
1183int del_timer(struct timer_list *timer)
1184{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001185 struct timer_base *base;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186 unsigned long flags;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001187 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001188
Christine Chandc4218b2011-11-07 19:48:28 -08001189 debug_assert_init(timer);
1190
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001191 timer_stats_timer_clear_start_info(timer);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001192 if (timer_pending(timer)) {
1193 base = lock_timer_base(timer, &flags);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001194 ret = detach_if_pending(timer, base, true);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001196 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001198 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001199}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200EXPORT_SYMBOL(del_timer);
1201
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001202/**
1203 * try_to_del_timer_sync - Try to deactivate a timer
1204 * @timer: timer do del
1205 *
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001206 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1207 * exit the timer is not queued and the handler is not running on any CPU.
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001208 */
1209int try_to_del_timer_sync(struct timer_list *timer)
1210{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001211 struct timer_base *base;
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001212 unsigned long flags;
1213 int ret = -1;
1214
Christine Chandc4218b2011-11-07 19:48:28 -08001215 debug_assert_init(timer);
1216
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001217 base = lock_timer_base(timer, &flags);
1218
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001219 if (base->running_timer != timer) {
1220 timer_stats_timer_clear_start_info(timer);
1221 ret = detach_if_pending(timer, base, true);
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001222 }
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001223 spin_unlock_irqrestore(&base->lock, flags);
1224
1225 return ret;
1226}
David Howellse19dff12007-04-26 15:46:56 -07001227EXPORT_SYMBOL(try_to_del_timer_sync);
1228
Yong Zhang6f1bc452010-10-20 15:57:31 -07001229#ifdef CONFIG_SMP
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001230/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1232 * @timer: the timer to be deactivated
1233 *
1234 * This function only differs from del_timer() on SMP: besides deactivating
1235 * the timer it also makes sure the handler has finished executing on other
1236 * CPUs.
1237 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08001238 * Synchronization rules: Callers must prevent restarting of the timer,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001239 * otherwise this function is meaningless. It must not be called from
Tejun Heoc5f66e92012-08-08 11:10:28 -07001240 * interrupt contexts unless the timer is an irqsafe one. The caller must
1241 * not hold locks which would prevent completion of the timer's
1242 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1243 * timer is not queued and the handler is not running on any CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 *
Tejun Heoc5f66e92012-08-08 11:10:28 -07001245 * Note: For !irqsafe timers, you must not hold locks that are held in
1246 * interrupt context while calling this function. Even if the lock has
1247 * nothing to do with the timer in question. Here's why:
Steven Rostedt48228f72011-02-08 12:39:54 -05001248 *
1249 * CPU0 CPU1
1250 * ---- ----
1251 * <SOFTIRQ>
1252 * call_timer_fn();
1253 * base->running_timer = mytimer;
1254 * spin_lock_irq(somelock);
1255 * <IRQ>
1256 * spin_lock(somelock);
1257 * del_timer_sync(mytimer);
1258 * while (base->running_timer == mytimer);
1259 *
1260 * Now del_timer_sync() will never return and never release somelock.
1261 * The interrupt on the other CPU is waiting to grab somelock but
1262 * it has interrupted the softirq that CPU0 is waiting to finish.
1263 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 * The function returns whether it has deactivated a pending timer or not.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265 */
1266int del_timer_sync(struct timer_list *timer)
1267{
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001268#ifdef CONFIG_LOCKDEP
Peter Zijlstraf266a512011-02-03 15:09:41 +01001269 unsigned long flags;
1270
Steven Rostedt48228f72011-02-08 12:39:54 -05001271 /*
1272 * If lockdep gives a backtrace here, please reference
1273 * the synchronization rules above.
1274 */
Peter Zijlstra7ff20792011-02-08 15:18:00 +01001275 local_irq_save(flags);
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001276 lock_map_acquire(&timer->lockdep_map);
1277 lock_map_release(&timer->lockdep_map);
Peter Zijlstra7ff20792011-02-08 15:18:00 +01001278 local_irq_restore(flags);
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001279#endif
Yong Zhang466bd302010-10-20 15:57:33 -07001280 /*
1281 * don't use it in hardirq context, because it
1282 * could lead to deadlock.
1283 */
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001284 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001285 for (;;) {
1286 int ret = try_to_del_timer_sync(timer);
1287 if (ret >= 0)
1288 return ret;
Andrew Mortona0009652006-07-14 00:24:06 -07001289 cpu_relax();
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001290 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291}
1292EXPORT_SYMBOL(del_timer_sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293#endif
1294
Thomas Gleixner576da122010-03-12 21:10:29 +01001295static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1296 unsigned long data)
1297{
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001298 int count = preempt_count();
Thomas Gleixner576da122010-03-12 21:10:29 +01001299
1300#ifdef CONFIG_LOCKDEP
1301 /*
1302 * It is permissible to free the timer from inside the
1303 * function that is called from it, this we need to take into
1304 * account for lockdep too. To avoid bogus "held lock freed"
1305 * warnings as well as problems when looking into
1306 * timer->lockdep_map, make a copy and use that here.
1307 */
Peter Zijlstra4d82a1d2012-05-15 08:06:19 -07001308 struct lockdep_map lockdep_map;
1309
1310 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
Thomas Gleixner576da122010-03-12 21:10:29 +01001311#endif
1312 /*
1313 * Couple the lock chain with the lock chain at
1314 * del_timer_sync() by acquiring the lock_map around the fn()
1315 * call here and in del_timer_sync().
1316 */
1317 lock_map_acquire(&lockdep_map);
1318
1319 trace_timer_expire_entry(timer);
1320 fn(data);
1321 trace_timer_expire_exit(timer);
1322
1323 lock_map_release(&lockdep_map);
1324
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001325 if (count != preempt_count()) {
Thomas Gleixner802702e2010-03-12 20:13:23 +01001326 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001327 fn, count, preempt_count());
Thomas Gleixner802702e2010-03-12 20:13:23 +01001328 /*
1329 * Restore the preempt count. That gives us a decent
1330 * chance to survive and extract information. If the
1331 * callback kept a lock held, bad luck, but not worse
1332 * than the BUG() we had.
1333 */
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001334 preempt_count_set(count);
Thomas Gleixner576da122010-03-12 21:10:29 +01001335 }
1336}
1337
Thomas Gleixner500462a2016-07-04 09:50:30 +00001338static void expire_timers(struct timer_base *base, struct hlist_head *head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001340 while (!hlist_empty(head)) {
1341 struct timer_list *timer;
1342 void (*fn)(unsigned long);
1343 unsigned long data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344
Thomas Gleixner500462a2016-07-04 09:50:30 +00001345 timer = hlist_entry(head->first, struct timer_list, entry);
1346 timer_stats_account_timer(timer);
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001347
Thomas Gleixner500462a2016-07-04 09:50:30 +00001348 base->running_timer = timer;
1349 detach_timer(timer, true);
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001350
Thomas Gleixner500462a2016-07-04 09:50:30 +00001351 fn = timer->function;
1352 data = timer->data;
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001353
Thomas Gleixner500462a2016-07-04 09:50:30 +00001354 if (timer->flags & TIMER_IRQSAFE) {
1355 spin_unlock(&base->lock);
1356 call_timer_fn(timer, fn, data);
1357 spin_lock(&base->lock);
1358 } else {
1359 spin_unlock_irq(&base->lock);
1360 call_timer_fn(timer, fn, data);
1361 spin_lock_irq(&base->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362 }
1363 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001364}
1365
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001366static int __collect_expired_timers(struct timer_base *base,
1367 struct hlist_head *heads)
Thomas Gleixner500462a2016-07-04 09:50:30 +00001368{
1369 unsigned long clk = base->clk;
1370 struct hlist_head *vec;
1371 int i, levels = 0;
1372 unsigned int idx;
1373
1374 for (i = 0; i < LVL_DEPTH; i++) {
1375 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1376
1377 if (__test_and_clear_bit(idx, base->pending_map)) {
1378 vec = base->vectors + idx;
1379 hlist_move_list(vec, heads++);
1380 levels++;
1381 }
1382 /* Is it time to look at the next level? */
1383 if (clk & LVL_CLK_MASK)
1384 break;
1385 /* Shift clock for the next level granularity */
1386 clk >>= LVL_CLK_SHIFT;
1387 }
1388 return levels;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389}
1390
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001391#ifdef CONFIG_NO_HZ_COMMON
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392/*
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001393 * Find the next pending bucket of a level. Search from level start (@offset)
1394 * + @clk upwards and if nothing there, search from start of the level
1395 * (@offset) up to @offset + clk.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001396 */
Thomas Gleixner500462a2016-07-04 09:50:30 +00001397static int next_pending_bucket(struct timer_base *base, unsigned offset,
1398 unsigned clk)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001400 unsigned pos, start = offset + clk;
1401 unsigned end = offset + LVL_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402
Thomas Gleixner500462a2016-07-04 09:50:30 +00001403 pos = find_next_bit(base->pending_map, end, start);
1404 if (pos < end)
1405 return pos - start;
Venki Pallipadi6e453a62007-05-08 00:27:44 -07001406
Thomas Gleixner500462a2016-07-04 09:50:30 +00001407 pos = find_next_bit(base->pending_map, start, offset);
1408 return pos < start ? pos + LVL_SIZE - start : -1;
1409}
1410
1411/*
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001412 * Search the first expiring timer in the various clock levels. Caller must
1413 * hold base->lock.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001414 */
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001415static unsigned long __next_timer_interrupt(struct timer_base *base)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001417 unsigned long clk, next, adj;
1418 unsigned lvl, offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419
Thomas Gleixner500462a2016-07-04 09:50:30 +00001420 next = base->clk + NEXT_TIMER_MAX_DELTA;
1421 clk = base->clk;
1422 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1423 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001424
Thomas Gleixner500462a2016-07-04 09:50:30 +00001425 if (pos >= 0) {
1426 unsigned long tmp = clk + (unsigned long) pos;
1427
1428 tmp <<= LVL_SHIFT(lvl);
1429 if (time_before(tmp, next))
1430 next = tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001432 /*
1433 * Clock for the next level. If the current level clock lower
1434 * bits are zero, we look at the next level as is. If not we
1435 * need to advance it by one because that's going to be the
1436 * next expiring bucket in that level. base->clk is the next
1437 * expiring jiffie. So in case of:
1438 *
1439 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1440 * 0 0 0 0 0 0
1441 *
1442 * we have to look at all levels @index 0. With
1443 *
1444 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1445 * 0 0 0 0 0 2
1446 *
1447 * LVL0 has the next expiring bucket @index 2. The upper
1448 * levels have the next expiring bucket @index 1.
1449 *
1450 * In case that the propagation wraps the next level the same
1451 * rules apply:
1452 *
1453 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1454 * 0 0 0 0 F 2
1455 *
1456 * So after looking at LVL0 we get:
1457 *
1458 * LVL5 LVL4 LVL3 LVL2 LVL1
1459 * 0 0 0 1 0
1460 *
1461 * So no propagation from LVL1 to LVL2 because that happened
1462 * with the add already, but then we need to propagate further
1463 * from LVL2 to LVL3.
1464 *
1465 * So the simple check whether the lower bits of the current
1466 * level are 0 or not is sufficient for all cases.
1467 */
1468 adj = clk & LVL_CLK_MASK ? 1 : 0;
1469 clk >>= LVL_CLK_SHIFT;
1470 clk += adj;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001472 return next;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001473}
1474
1475/*
1476 * Check, if the next hrtimer event is before the next timer wheel
1477 * event:
1478 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001479static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001480{
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001481 u64 nextevt = hrtimer_get_next_event();
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001482
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001483 /*
1484 * If high resolution timers are enabled
1485 * hrtimer_get_next_event() returns KTIME_MAX.
1486 */
1487 if (expires <= nextevt)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001488 return expires;
1489
Thomas Gleixner9501b6c2007-03-25 14:31:17 +02001490 /*
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001491 * If the next timer is already expired, return the tick base
1492 * time so the tick is fired immediately.
Thomas Gleixner9501b6c2007-03-25 14:31:17 +02001493 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001494 if (nextevt <= basem)
1495 return basem;
Thomas Gleixnereaad0842007-05-29 23:47:39 +02001496
1497 /*
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001498 * Round up to the next jiffie. High resolution timers are
1499 * off, so the hrtimers are expired in the tick and we need to
1500 * make sure that this tick really expires the timer to avoid
1501 * a ping pong of the nohz stop code.
1502 *
1503 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
Thomas Gleixnereaad0842007-05-29 23:47:39 +02001504 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001505 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001506}
1507
1508/**
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001509 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1510 * @basej: base time jiffies
1511 * @basem: base time clock monotonic
1512 *
1513 * Returns the tick aligned clock monotonic time of the next pending
1514 * timer or KTIME_MAX if no timer is pending.
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001515 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001516u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001517{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001518 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001519 u64 expires = KTIME_MAX;
1520 unsigned long nextevt;
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001521 bool is_max_delta;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001522
Heiko Carstensdbd87b52010-12-01 10:11:09 +01001523 /*
1524 * Pretend that there is no timer pending if the cpu is offline.
1525 * Possible pending timers will be migrated later to an active cpu.
1526 */
1527 if (cpu_is_offline(smp_processor_id()))
Thomas Gleixnere40468a2012-05-25 22:08:59 +00001528 return expires;
1529
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001530 spin_lock(&base->lock);
Thomas Gleixner500462a2016-07-04 09:50:30 +00001531 nextevt = __next_timer_interrupt(base);
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001532 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
Thomas Gleixnera683f392016-07-04 09:50:36 +00001533 base->next_expiry = nextevt;
1534 /*
Thomas Gleixner041ad7b2016-10-22 11:07:35 +00001535 * We have a fresh next event. Check whether we can forward the
1536 * base. We can only do that when @basej is past base->clk
1537 * otherwise we might rewind base->clk.
Thomas Gleixnera683f392016-07-04 09:50:36 +00001538 */
Thomas Gleixner041ad7b2016-10-22 11:07:35 +00001539 if (time_after(basej, base->clk)) {
1540 if (time_after(nextevt, basej))
1541 base->clk = basej;
1542 else if (time_after(nextevt, base->clk))
1543 base->clk = nextevt;
1544 }
Thomas Gleixnera683f392016-07-04 09:50:36 +00001545
1546 if (time_before_eq(nextevt, basej)) {
1547 expires = basem;
1548 base->is_idle = false;
1549 } else {
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001550 if (!is_max_delta)
Matija Glavinic Pecotic9ef8b232017-08-01 09:11:52 +02001551 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
Thomas Gleixnera683f392016-07-04 09:50:36 +00001552 /*
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001553 * If we expect to sleep more than a tick, mark the base idle.
1554 * Also the tick is stopped so any added timer must forward
1555 * the base clk itself to keep granularity small. This idle
1556 * logic is only maintained for the BASE_STD base, deferrable
1557 * timers may still see large granularity skew (by design).
Thomas Gleixnera683f392016-07-04 09:50:36 +00001558 */
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001559 if ((expires - basem) > TICK_NSEC) {
1560 base->must_forward_clk = true;
Thomas Gleixnera683f392016-07-04 09:50:36 +00001561 base->is_idle = true;
Nicholas Piggin70b3fd52017-08-22 18:43:48 +10001562 }
Thomas Gleixnere40468a2012-05-25 22:08:59 +00001563 }
Oleg Nesterov3691c512006-03-31 02:30:30 -08001564 spin_unlock(&base->lock);
Tony Lindgren69239742006-03-06 15:42:45 -08001565
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001566 return cmp_next_hrtimer_event(basem, expires);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567}
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001568
Thomas Gleixnera683f392016-07-04 09:50:36 +00001569/**
1570 * timer_clear_idle - Clear the idle state of the timer base
1571 *
1572 * Called with interrupts disabled
1573 */
1574void timer_clear_idle(void)
1575{
1576 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1577
1578 /*
1579 * We do this unlocked. The worst outcome is a remote enqueue sending
1580 * a pointless IPI, but taking the lock would just make the window for
1581 * sending the IPI a few instructions smaller for the cost of taking
1582 * the lock in the exit from idle path.
1583 */
1584 base->is_idle = false;
1585}
1586
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001587static int collect_expired_timers(struct timer_base *base,
1588 struct hlist_head *heads)
1589{
Li RongQing75be6122019-09-19 20:04:47 +08001590 unsigned long now = READ_ONCE(jiffies);
1591
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001592 /*
1593 * NOHZ optimization. After a long idle sleep we need to forward the
1594 * base to current jiffies. Avoid a loop by searching the bitfield for
1595 * the next expiring timer.
1596 */
Li RongQing75be6122019-09-19 20:04:47 +08001597 if ((long)(now - base->clk) > 2) {
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001598 unsigned long next = __next_timer_interrupt(base);
1599
1600 /*
1601 * If the next timer is ahead of time forward to current
Thomas Gleixnera683f392016-07-04 09:50:36 +00001602 * jiffies, otherwise forward to the next expiry time:
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001603 */
Li RongQing75be6122019-09-19 20:04:47 +08001604 if (time_after(next, now)) {
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001605 /* The call site will increment clock! */
Li RongQing75be6122019-09-19 20:04:47 +08001606 base->clk = now - 1;
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001607 return 0;
1608 }
1609 base->clk = next;
1610 }
1611 return __collect_expired_timers(base, heads);
1612}
1613#else
1614static inline int collect_expired_timers(struct timer_base *base,
1615 struct hlist_head *heads)
1616{
1617 return __collect_expired_timers(base, heads);
1618}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619#endif
1620
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621/*
Daniel Walker5b4db0c2007-10-18 03:06:11 -07001622 * Called from the timer interrupt handler to charge one tick to the current
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623 * process. user_tick is 1 if the tick is user time, 0 for system.
1624 */
1625void update_process_times(int user_tick)
1626{
1627 struct task_struct *p = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001628
1629 /* Note: this timer irq context must be accounted for as well. */
Paul Mackerrasfa13a5a2007-11-09 22:39:38 +01001630 account_process_tick(p, user_tick);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631 run_local_timers();
Paul E. McKenneyc3377c2d2014-10-21 07:53:02 -07001632 rcu_check_callbacks(user_tick);
Peter Zijlstrae360adb2010-10-14 14:01:34 +08001633#ifdef CONFIG_IRQ_WORK
1634 if (in_irq())
Frederic Weisbecker76a33062014-08-16 18:37:19 +02001635 irq_work_tick();
Peter Zijlstrae360adb2010-10-14 14:01:34 +08001636#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 scheduler_tick();
Thomas Gleixner68194572007-07-19 01:49:16 -07001638 run_posix_cpu_timers(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639}
1640
Anna-Maria Gleixner73420fe2016-07-04 09:50:33 +00001641/**
1642 * __run_timers - run all expired timers (if any) on this CPU.
1643 * @base: the timer vector to be processed.
1644 */
1645static inline void __run_timers(struct timer_base *base)
1646{
1647 struct hlist_head heads[LVL_DEPTH];
1648 int levels;
1649
1650 if (!time_after_eq(jiffies, base->clk))
1651 return;
1652
1653 spin_lock_irq(&base->lock);
1654
Gaurav Kohli05cb3852018-08-02 14:21:03 +05301655 /*
1656 * timer_base::must_forward_clk must be cleared before running
1657 * timers so that any timer functions that call mod_timer() will
1658 * not try to forward the base. Idle tracking / clock forwarding
1659 * logic is only used with BASE_STD timers.
1660 *
1661 * The must_forward_clk flag is cleared unconditionally also for
1662 * the deferrable base. The deferrable base is not affected by idle
1663 * tracking and never forwarded, so clearing the flag is a NOOP.
1664 *
1665 * The fact that the deferrable base is never forwarded can cause
1666 * large variations in granularity for deferrable timers, but they
1667 * can be deferred for long periods due to idle anyway.
1668 */
1669 base->must_forward_clk = false;
1670
Anna-Maria Gleixner73420fe2016-07-04 09:50:33 +00001671 while (time_after_eq(jiffies, base->clk)) {
1672
1673 levels = collect_expired_timers(base, heads);
1674 base->clk++;
1675
1676 while (levels--)
1677 expire_timers(base, heads + levels);
1678 }
1679 base->running_timer = NULL;
1680 spin_unlock_irq(&base->lock);
1681}
1682
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 * This function runs timers and the timer-tq in bottom half context.
1685 */
Emese Revfy0766f782016-06-20 20:42:34 +02001686static __latent_entropy void run_timer_softirq(struct softirq_action *h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001688 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689
Thomas Gleixner500462a2016-07-04 09:50:30 +00001690 __run_timers(base);
Anna-Maria Gleixnerd8406872017-12-22 15:51:12 +01001691 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
Thomas Gleixner500462a2016-07-04 09:50:30 +00001692 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693}
1694
1695/*
1696 * Called by the local, per-CPU timer interrupt on SMP.
1697 */
1698void run_local_timers(void)
1699{
Thomas Gleixner4e858762016-07-04 09:50:37 +00001700 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1701
Peter Zijlstrad3d74452008-01-25 21:08:31 +01001702 hrtimer_run_queues();
Thomas Gleixner4e858762016-07-04 09:50:37 +00001703 /* Raise the softirq only if required. */
1704 if (time_before(jiffies, base->clk)) {
Thomas Gleixner676109b2018-01-14 23:19:49 +01001705 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
Thomas Gleixner4e858762016-07-04 09:50:37 +00001706 return;
1707 /* CPU is awake, so check the deferrable base. */
1708 base++;
1709 if (time_before(jiffies, base->clk))
1710 return;
1711 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712 raise_softirq(TIMER_SOFTIRQ);
1713}
1714
Linus Torvalds1da177e2005-04-16 15:20:36 -07001715#ifdef __ARCH_WANT_SYS_ALARM
1716
1717/*
1718 * For backwards compatibility? This can be done in libc so Alpha
1719 * and all newer ports shouldn't need it.
1720 */
Heiko Carstens58fd3aa2009-01-14 14:14:03 +01001721SYSCALL_DEFINE1(alarm, unsigned int, seconds)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722{
Thomas Gleixnerc08b8a42006-03-25 03:06:33 -08001723 return alarm_setitimer(seconds);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724}
1725
1726#endif
1727
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728static void process_timeout(unsigned long __data)
1729{
Ingo Molnar36c8b582006-07-03 00:25:41 -07001730 wake_up_process((struct task_struct *)__data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731}
1732
1733/**
1734 * schedule_timeout - sleep until timeout
1735 * @timeout: timeout value in jiffies
1736 *
1737 * Make the current task sleep until @timeout jiffies have
1738 * elapsed. The routine will return immediately unless
1739 * the current task state has been set (see set_current_state()).
1740 *
1741 * You can set the task state as follows -
1742 *
1743 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1744 * pass before the routine returns. The routine will return 0
1745 *
1746 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1747 * delivered to the current task. In this case the remaining time
1748 * in jiffies will be returned, or 0 if the timer expired in time
1749 *
1750 * The current task state is guaranteed to be TASK_RUNNING when this
1751 * routine returns.
1752 *
1753 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1754 * the CPU away without a bound on the timeout. In this case the return
1755 * value will be %MAX_SCHEDULE_TIMEOUT.
1756 *
1757 * In all cases the return value is guaranteed to be non-negative.
1758 */
Harvey Harrison7ad5b3a2008-02-08 04:19:53 -08001759signed long __sched schedule_timeout(signed long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760{
1761 struct timer_list timer;
1762 unsigned long expire;
1763
1764 switch (timeout)
1765 {
1766 case MAX_SCHEDULE_TIMEOUT:
1767 /*
1768 * These two special cases are useful to be comfortable
1769 * in the caller. Nothing more. We could take
1770 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1771 * but I' d like to return a valid offset (>=0) to allow
1772 * the caller to do everything it want with the retval.
1773 */
1774 schedule();
1775 goto out;
1776 default:
1777 /*
1778 * Another bit of PARANOID. Note that the retval will be
1779 * 0 since no piece of kernel is supposed to do a check
1780 * for a negative retval of schedule_timeout() (since it
1781 * should never happens anyway). You just have the printk()
1782 * that will tell you if something is gone wrong and where.
1783 */
Andrew Morton5b149bc2006-12-22 01:10:14 -08001784 if (timeout < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785 printk(KERN_ERR "schedule_timeout: wrong timeout "
Andrew Morton5b149bc2006-12-22 01:10:14 -08001786 "value %lx\n", timeout);
1787 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 current->state = TASK_RUNNING;
1789 goto out;
1790 }
1791 }
1792
1793 expire = timeout + jiffies;
1794
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -07001795 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001796 __mod_timer(&timer, expire, false);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 schedule();
1798 del_singleshot_timer_sync(&timer);
1799
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -07001800 /* Remove the timer from the object tracker */
1801 destroy_timer_on_stack(&timer);
1802
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 timeout = expire - jiffies;
1804
1805 out:
1806 return timeout < 0 ? 0 : timeout;
1807}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001808EXPORT_SYMBOL(schedule_timeout);
1809
Andrew Morton8a1c1752005-09-13 01:25:15 -07001810/*
1811 * We can use __set_current_state() here because schedule_timeout() calls
1812 * schedule() unconditionally.
1813 */
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001814signed long __sched schedule_timeout_interruptible(signed long timeout)
1815{
Andrew Mortona5a0d522005-10-30 15:01:42 -08001816 __set_current_state(TASK_INTERRUPTIBLE);
1817 return schedule_timeout(timeout);
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001818}
1819EXPORT_SYMBOL(schedule_timeout_interruptible);
1820
Matthew Wilcox294d5cc2007-12-06 11:59:46 -05001821signed long __sched schedule_timeout_killable(signed long timeout)
1822{
1823 __set_current_state(TASK_KILLABLE);
1824 return schedule_timeout(timeout);
1825}
1826EXPORT_SYMBOL(schedule_timeout_killable);
1827
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001828signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1829{
Andrew Mortona5a0d522005-10-30 15:01:42 -08001830 __set_current_state(TASK_UNINTERRUPTIBLE);
1831 return schedule_timeout(timeout);
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001832}
1833EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1834
Andrew Morton69b27ba2016-03-25 14:20:21 -07001835/*
1836 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1837 * to load average.
1838 */
1839signed long __sched schedule_timeout_idle(signed long timeout)
1840{
1841 __set_current_state(TASK_IDLE);
1842 return schedule_timeout(timeout);
1843}
1844EXPORT_SYMBOL(schedule_timeout_idle);
1845
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846#ifdef CONFIG_HOTPLUG_CPU
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001847static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848{
1849 struct timer_list *timer;
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001850 int cpu = new_base->cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851
Thomas Gleixner1dabbce2015-05-26 22:50:28 +00001852 while (!hlist_empty(head)) {
1853 timer = hlist_entry(head->first, struct timer_list, entry);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001854 detach_timer(timer, false);
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001855 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001856 internal_add_timer(new_base, timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858}
1859
Thomas Gleixner249d4a92017-12-27 21:37:25 +01001860int timers_prepare_cpu(unsigned int cpu)
1861{
1862 struct timer_base *base;
1863 int b;
1864
1865 for (b = 0; b < NR_BASES; b++) {
1866 base = per_cpu_ptr(&timer_bases[b], cpu);
1867 base->clk = jiffies;
1868 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1869 base->is_idle = false;
1870 base->must_forward_clk = true;
1871 }
1872 return 0;
1873}
1874
Richard Cochran24f73b92016-07-13 17:16:59 +00001875int timers_dead_cpu(unsigned int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001876{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001877 struct timer_base *old_base;
1878 struct timer_base *new_base;
Thomas Gleixner500462a2016-07-04 09:50:30 +00001879 int b, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001880
1881 BUG_ON(cpu_online(cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882
Thomas Gleixner500462a2016-07-04 09:50:30 +00001883 for (b = 0; b < NR_BASES; b++) {
1884 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1885 new_base = get_cpu_ptr(&timer_bases[b]);
1886 /*
1887 * The caller is globally serialized and nobody else
1888 * takes two locks at once, deadlock is not possible.
1889 */
1890 spin_lock_irq(&new_base->lock);
1891 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
Oleg Nesterov3691c512006-03-31 02:30:30 -08001892
Lingutla Chandrasekhar13e75c72018-01-18 17:20:22 +05301893 /*
1894 * The current CPUs base clock might be stale. Update it
1895 * before moving the timers over.
1896 */
1897 forward_timer_base(new_base);
1898
Thomas Gleixner500462a2016-07-04 09:50:30 +00001899 BUG_ON(old_base->running_timer);
1900
1901 for (i = 0; i < WHEEL_SIZE; i++)
1902 migrate_timer_list(new_base, old_base->vectors + i);
1903
1904 spin_unlock(&old_base->lock);
1905 spin_unlock_irq(&new_base->lock);
1906 put_cpu_ptr(&timer_bases);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001907 }
Richard Cochran24f73b92016-07-13 17:16:59 +00001908 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001910
Peter Zijlstra3650b572015-03-31 20:49:02 +05301911#endif /* CONFIG_HOTPLUG_CPU */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001913static void __init init_timer_cpu(int cpu)
Viresh Kumar8def9062015-03-31 20:49:01 +05301914{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001915 struct timer_base *base;
1916 int i;
Peter Zijlstra3650b572015-03-31 20:49:02 +05301917
Thomas Gleixner500462a2016-07-04 09:50:30 +00001918 for (i = 0; i < NR_BASES; i++) {
1919 base = per_cpu_ptr(&timer_bases[i], cpu);
1920 base->cpu = cpu;
1921 spin_lock_init(&base->lock);
1922 base->clk = jiffies;
1923 }
Viresh Kumar8def9062015-03-31 20:49:01 +05301924}
1925
1926static void __init init_timer_cpus(void)
1927{
Viresh Kumar8def9062015-03-31 20:49:01 +05301928 int cpu;
1929
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001930 for_each_possible_cpu(cpu)
1931 init_timer_cpu(cpu);
Viresh Kumar8def9062015-03-31 20:49:01 +05301932}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933
1934void __init init_timers(void)
1935{
Viresh Kumar8def9062015-03-31 20:49:01 +05301936 init_timer_cpus();
Viresh Kumarc24a4a32014-02-28 14:15:21 +05301937 init_timer_stats();
Carlos R. Mafra962cf362008-05-15 11:15:37 -03001938 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939}
1940
Linus Torvalds1da177e2005-04-16 15:20:36 -07001941/**
1942 * msleep - sleep safely even with waitqueue interruptions
1943 * @msecs: Time in milliseconds to sleep for
1944 */
1945void msleep(unsigned int msecs)
1946{
1947 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1948
Nishanth Aravamudan75bcc8c2005-09-10 00:27:24 -07001949 while (timeout)
1950 timeout = schedule_timeout_uninterruptible(timeout);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951}
1952
1953EXPORT_SYMBOL(msleep);
1954
1955/**
Domen Puncer96ec3ef2005-06-25 14:58:43 -07001956 * msleep_interruptible - sleep waiting for signals
Linus Torvalds1da177e2005-04-16 15:20:36 -07001957 * @msecs: Time in milliseconds to sleep for
1958 */
1959unsigned long msleep_interruptible(unsigned int msecs)
1960{
1961 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1962
Nishanth Aravamudan75bcc8c2005-09-10 00:27:24 -07001963 while (timeout && !signal_pending(current))
1964 timeout = schedule_timeout_interruptible(timeout);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 return jiffies_to_msecs(timeout);
1966}
1967
1968EXPORT_SYMBOL(msleep_interruptible);
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001969
Thomas Gleixner6deba082015-04-14 21:09:28 +00001970static void __sched do_usleep_range(unsigned long min, unsigned long max)
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001971{
1972 ktime_t kmin;
John Stultzda8b44d2016-03-17 14:20:51 -07001973 u64 delta;
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001974
1975 kmin = ktime_set(0, min * NSEC_PER_USEC);
John Stultzda8b44d2016-03-17 14:20:51 -07001976 delta = (u64)(max - min) * NSEC_PER_USEC;
Thomas Gleixner6deba082015-04-14 21:09:28 +00001977 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001978}
1979
1980/**
Bjorn Helgaasb5227d02016-05-31 16:23:02 -05001981 * usleep_range - Sleep for an approximate time
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001982 * @min: Minimum time in usecs to sleep
1983 * @max: Maximum time in usecs to sleep
Bjorn Helgaasb5227d02016-05-31 16:23:02 -05001984 *
1985 * In non-atomic context where the exact wakeup time is flexible, use
1986 * usleep_range() instead of udelay(). The sleep improves responsiveness
1987 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1988 * power usage by allowing hrtimers to take advantage of an already-
1989 * scheduled interrupt instead of scheduling a new one just for this sleep.
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001990 */
Thomas Gleixner2ad5d322015-04-14 21:09:30 +00001991void __sched usleep_range(unsigned long min, unsigned long max)
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001992{
1993 __set_current_state(TASK_UNINTERRUPTIBLE);
1994 do_usleep_range(min, max);
1995}
1996EXPORT_SYMBOL(usleep_range);