Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/kernel/timer.c |
| 3 | * |
| 4 | * Kernel internal timers, kernel timekeeping, basic process system calls |
| 5 | * |
| 6 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 7 | * |
| 8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. |
| 9 | * |
| 10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
| 13 | * serialize accesses to xtime/lost_ticks). |
| 14 | * Copyright (C) 1998 Andrea Arcangeli |
| 15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl |
| 16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love |
| 17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. |
| 18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar |
| 19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar |
| 20 | */ |
| 21 | |
| 22 | #include <linux/kernel_stat.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/percpu.h> |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/swap.h> |
| 29 | #include <linux/notifier.h> |
| 30 | #include <linux/thread_info.h> |
| 31 | #include <linux/time.h> |
| 32 | #include <linux/jiffies.h> |
| 33 | #include <linux/posix-timers.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/syscalls.h> |
| 36 | |
| 37 | #include <asm/uaccess.h> |
| 38 | #include <asm/unistd.h> |
| 39 | #include <asm/div64.h> |
| 40 | #include <asm/timex.h> |
| 41 | #include <asm/io.h> |
| 42 | |
| 43 | #ifdef CONFIG_TIME_INTERPOLATION |
| 44 | static void time_interpolator_update(long delta_nsec); |
| 45 | #else |
| 46 | #define time_interpolator_update(x) |
| 47 | #endif |
| 48 | |
| 49 | /* |
| 50 | * per-CPU timer vector definitions: |
| 51 | */ |
| 52 | |
| 53 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
| 54 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) |
| 55 | #define TVN_SIZE (1 << TVN_BITS) |
| 56 | #define TVR_SIZE (1 << TVR_BITS) |
| 57 | #define TVN_MASK (TVN_SIZE - 1) |
| 58 | #define TVR_MASK (TVR_SIZE - 1) |
| 59 | |
| 60 | typedef struct tvec_s { |
| 61 | struct list_head vec[TVN_SIZE]; |
| 62 | } tvec_t; |
| 63 | |
| 64 | typedef struct tvec_root_s { |
| 65 | struct list_head vec[TVR_SIZE]; |
| 66 | } tvec_root_t; |
| 67 | |
| 68 | struct tvec_t_base_s { |
| 69 | spinlock_t lock; |
| 70 | unsigned long timer_jiffies; |
| 71 | struct timer_list *running_timer; |
| 72 | tvec_root_t tv1; |
| 73 | tvec_t tv2; |
| 74 | tvec_t tv3; |
| 75 | tvec_t tv4; |
| 76 | tvec_t tv5; |
| 77 | } ____cacheline_aligned_in_smp; |
| 78 | |
| 79 | typedef struct tvec_t_base_s tvec_base_t; |
| 80 | |
| 81 | static inline void set_running_timer(tvec_base_t *base, |
| 82 | struct timer_list *timer) |
| 83 | { |
| 84 | #ifdef CONFIG_SMP |
| 85 | base->running_timer = timer; |
| 86 | #endif |
| 87 | } |
| 88 | |
| 89 | /* Fake initialization */ |
| 90 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases) = { SPIN_LOCK_UNLOCKED }; |
| 91 | |
| 92 | static void check_timer_failed(struct timer_list *timer) |
| 93 | { |
| 94 | static int whine_count; |
| 95 | if (whine_count < 16) { |
| 96 | whine_count++; |
| 97 | printk("Uninitialised timer!\n"); |
| 98 | printk("This is just a warning. Your computer is OK\n"); |
| 99 | printk("function=0x%p, data=0x%lx\n", |
| 100 | timer->function, timer->data); |
| 101 | dump_stack(); |
| 102 | } |
| 103 | /* |
| 104 | * Now fix it up |
| 105 | */ |
| 106 | spin_lock_init(&timer->lock); |
| 107 | timer->magic = TIMER_MAGIC; |
| 108 | } |
| 109 | |
| 110 | static inline void check_timer(struct timer_list *timer) |
| 111 | { |
| 112 | if (timer->magic != TIMER_MAGIC) |
| 113 | check_timer_failed(timer); |
| 114 | } |
| 115 | |
| 116 | |
| 117 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) |
| 118 | { |
| 119 | unsigned long expires = timer->expires; |
| 120 | unsigned long idx = expires - base->timer_jiffies; |
| 121 | struct list_head *vec; |
| 122 | |
| 123 | if (idx < TVR_SIZE) { |
| 124 | int i = expires & TVR_MASK; |
| 125 | vec = base->tv1.vec + i; |
| 126 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { |
| 127 | int i = (expires >> TVR_BITS) & TVN_MASK; |
| 128 | vec = base->tv2.vec + i; |
| 129 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { |
| 130 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; |
| 131 | vec = base->tv3.vec + i; |
| 132 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { |
| 133 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; |
| 134 | vec = base->tv4.vec + i; |
| 135 | } else if ((signed long) idx < 0) { |
| 136 | /* |
| 137 | * Can happen if you add a timer with expires == jiffies, |
| 138 | * or you set a timer to go off in the past |
| 139 | */ |
| 140 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); |
| 141 | } else { |
| 142 | int i; |
| 143 | /* If the timeout is larger than 0xffffffff on 64-bit |
| 144 | * architectures then we use the maximum timeout: |
| 145 | */ |
| 146 | if (idx > 0xffffffffUL) { |
| 147 | idx = 0xffffffffUL; |
| 148 | expires = idx + base->timer_jiffies; |
| 149 | } |
| 150 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; |
| 151 | vec = base->tv5.vec + i; |
| 152 | } |
| 153 | /* |
| 154 | * Timers are FIFO: |
| 155 | */ |
| 156 | list_add_tail(&timer->entry, vec); |
| 157 | } |
| 158 | |
| 159 | int __mod_timer(struct timer_list *timer, unsigned long expires) |
| 160 | { |
| 161 | tvec_base_t *old_base, *new_base; |
| 162 | unsigned long flags; |
| 163 | int ret = 0; |
| 164 | |
| 165 | BUG_ON(!timer->function); |
| 166 | |
| 167 | check_timer(timer); |
| 168 | |
| 169 | spin_lock_irqsave(&timer->lock, flags); |
| 170 | new_base = &__get_cpu_var(tvec_bases); |
| 171 | repeat: |
| 172 | old_base = timer->base; |
| 173 | |
| 174 | /* |
| 175 | * Prevent deadlocks via ordering by old_base < new_base. |
| 176 | */ |
| 177 | if (old_base && (new_base != old_base)) { |
| 178 | if (old_base < new_base) { |
| 179 | spin_lock(&new_base->lock); |
| 180 | spin_lock(&old_base->lock); |
| 181 | } else { |
| 182 | spin_lock(&old_base->lock); |
| 183 | spin_lock(&new_base->lock); |
| 184 | } |
| 185 | /* |
| 186 | * The timer base might have been cancelled while we were |
| 187 | * trying to take the lock(s): |
| 188 | */ |
| 189 | if (timer->base != old_base) { |
| 190 | spin_unlock(&new_base->lock); |
| 191 | spin_unlock(&old_base->lock); |
| 192 | goto repeat; |
| 193 | } |
| 194 | } else { |
| 195 | spin_lock(&new_base->lock); |
| 196 | if (timer->base != old_base) { |
| 197 | spin_unlock(&new_base->lock); |
| 198 | goto repeat; |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Delete the previous timeout (if there was any), and install |
| 204 | * the new one: |
| 205 | */ |
| 206 | if (old_base) { |
| 207 | list_del(&timer->entry); |
| 208 | ret = 1; |
| 209 | } |
| 210 | timer->expires = expires; |
| 211 | internal_add_timer(new_base, timer); |
| 212 | timer->base = new_base; |
| 213 | |
| 214 | if (old_base && (new_base != old_base)) |
| 215 | spin_unlock(&old_base->lock); |
| 216 | spin_unlock(&new_base->lock); |
| 217 | spin_unlock_irqrestore(&timer->lock, flags); |
| 218 | |
| 219 | return ret; |
| 220 | } |
| 221 | |
| 222 | EXPORT_SYMBOL(__mod_timer); |
| 223 | |
| 224 | /*** |
| 225 | * add_timer_on - start a timer on a particular CPU |
| 226 | * @timer: the timer to be added |
| 227 | * @cpu: the CPU to start it on |
| 228 | * |
| 229 | * This is not very scalable on SMP. Double adds are not possible. |
| 230 | */ |
| 231 | void add_timer_on(struct timer_list *timer, int cpu) |
| 232 | { |
| 233 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); |
| 234 | unsigned long flags; |
| 235 | |
| 236 | BUG_ON(timer_pending(timer) || !timer->function); |
| 237 | |
| 238 | check_timer(timer); |
| 239 | |
| 240 | spin_lock_irqsave(&base->lock, flags); |
| 241 | internal_add_timer(base, timer); |
| 242 | timer->base = base; |
| 243 | spin_unlock_irqrestore(&base->lock, flags); |
| 244 | } |
| 245 | |
| 246 | |
| 247 | /*** |
| 248 | * mod_timer - modify a timer's timeout |
| 249 | * @timer: the timer to be modified |
| 250 | * |
| 251 | * mod_timer is a more efficient way to update the expire field of an |
| 252 | * active timer (if the timer is inactive it will be activated) |
| 253 | * |
| 254 | * mod_timer(timer, expires) is equivalent to: |
| 255 | * |
| 256 | * del_timer(timer); timer->expires = expires; add_timer(timer); |
| 257 | * |
| 258 | * Note that if there are multiple unserialized concurrent users of the |
| 259 | * same timer, then mod_timer() is the only safe way to modify the timeout, |
| 260 | * since add_timer() cannot modify an already running timer. |
| 261 | * |
| 262 | * The function returns whether it has modified a pending timer or not. |
| 263 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an |
| 264 | * active timer returns 1.) |
| 265 | */ |
| 266 | int mod_timer(struct timer_list *timer, unsigned long expires) |
| 267 | { |
| 268 | BUG_ON(!timer->function); |
| 269 | |
| 270 | check_timer(timer); |
| 271 | |
| 272 | /* |
| 273 | * This is a common optimization triggered by the |
| 274 | * networking code - if the timer is re-modified |
| 275 | * to be the same thing then just return: |
| 276 | */ |
| 277 | if (timer->expires == expires && timer_pending(timer)) |
| 278 | return 1; |
| 279 | |
| 280 | return __mod_timer(timer, expires); |
| 281 | } |
| 282 | |
| 283 | EXPORT_SYMBOL(mod_timer); |
| 284 | |
| 285 | /*** |
| 286 | * del_timer - deactive a timer. |
| 287 | * @timer: the timer to be deactivated |
| 288 | * |
| 289 | * del_timer() deactivates a timer - this works on both active and inactive |
| 290 | * timers. |
| 291 | * |
| 292 | * The function returns whether it has deactivated a pending timer or not. |
| 293 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an |
| 294 | * active timer returns 1.) |
| 295 | */ |
| 296 | int del_timer(struct timer_list *timer) |
| 297 | { |
| 298 | unsigned long flags; |
| 299 | tvec_base_t *base; |
| 300 | |
| 301 | check_timer(timer); |
| 302 | |
| 303 | repeat: |
| 304 | base = timer->base; |
| 305 | if (!base) |
| 306 | return 0; |
| 307 | spin_lock_irqsave(&base->lock, flags); |
| 308 | if (base != timer->base) { |
| 309 | spin_unlock_irqrestore(&base->lock, flags); |
| 310 | goto repeat; |
| 311 | } |
| 312 | list_del(&timer->entry); |
| 313 | /* Need to make sure that anybody who sees a NULL base also sees the list ops */ |
| 314 | smp_wmb(); |
| 315 | timer->base = NULL; |
| 316 | spin_unlock_irqrestore(&base->lock, flags); |
| 317 | |
| 318 | return 1; |
| 319 | } |
| 320 | |
| 321 | EXPORT_SYMBOL(del_timer); |
| 322 | |
| 323 | #ifdef CONFIG_SMP |
| 324 | /*** |
| 325 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
| 326 | * @timer: the timer to be deactivated |
| 327 | * |
| 328 | * This function only differs from del_timer() on SMP: besides deactivating |
| 329 | * the timer it also makes sure the handler has finished executing on other |
| 330 | * CPUs. |
| 331 | * |
| 332 | * Synchronization rules: callers must prevent restarting of the timer, |
| 333 | * otherwise this function is meaningless. It must not be called from |
| 334 | * interrupt contexts. The caller must not hold locks which would prevent |
| 335 | * completion of the timer's handler. Upon exit the timer is not queued and |
| 336 | * the handler is not running on any CPU. |
| 337 | * |
| 338 | * The function returns whether it has deactivated a pending timer or not. |
| 339 | * |
| 340 | * del_timer_sync() is slow and complicated because it copes with timer |
| 341 | * handlers which re-arm the timer (periodic timers). If the timer handler |
| 342 | * is known to not do this (a single shot timer) then use |
| 343 | * del_singleshot_timer_sync() instead. |
| 344 | */ |
| 345 | int del_timer_sync(struct timer_list *timer) |
| 346 | { |
| 347 | tvec_base_t *base; |
| 348 | int i, ret = 0; |
| 349 | |
| 350 | check_timer(timer); |
| 351 | |
| 352 | del_again: |
| 353 | ret += del_timer(timer); |
| 354 | |
| 355 | for_each_online_cpu(i) { |
| 356 | base = &per_cpu(tvec_bases, i); |
| 357 | if (base->running_timer == timer) { |
| 358 | while (base->running_timer == timer) { |
| 359 | cpu_relax(); |
| 360 | preempt_check_resched(); |
| 361 | } |
| 362 | break; |
| 363 | } |
| 364 | } |
| 365 | smp_rmb(); |
| 366 | if (timer_pending(timer)) |
| 367 | goto del_again; |
| 368 | |
| 369 | return ret; |
| 370 | } |
| 371 | EXPORT_SYMBOL(del_timer_sync); |
| 372 | |
| 373 | /*** |
| 374 | * del_singleshot_timer_sync - deactivate a non-recursive timer |
| 375 | * @timer: the timer to be deactivated |
| 376 | * |
| 377 | * This function is an optimization of del_timer_sync for the case where the |
| 378 | * caller can guarantee the timer does not reschedule itself in its timer |
| 379 | * function. |
| 380 | * |
| 381 | * Synchronization rules: callers must prevent restarting of the timer, |
| 382 | * otherwise this function is meaningless. It must not be called from |
| 383 | * interrupt contexts. The caller must not hold locks which wold prevent |
| 384 | * completion of the timer's handler. Upon exit the timer is not queued and |
| 385 | * the handler is not running on any CPU. |
| 386 | * |
| 387 | * The function returns whether it has deactivated a pending timer or not. |
| 388 | */ |
| 389 | int del_singleshot_timer_sync(struct timer_list *timer) |
| 390 | { |
| 391 | int ret = del_timer(timer); |
| 392 | |
| 393 | if (!ret) { |
| 394 | ret = del_timer_sync(timer); |
| 395 | BUG_ON(ret); |
| 396 | } |
| 397 | |
| 398 | return ret; |
| 399 | } |
| 400 | EXPORT_SYMBOL(del_singleshot_timer_sync); |
| 401 | #endif |
| 402 | |
| 403 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) |
| 404 | { |
| 405 | /* cascade all the timers from tv up one level */ |
| 406 | struct list_head *head, *curr; |
| 407 | |
| 408 | head = tv->vec + index; |
| 409 | curr = head->next; |
| 410 | /* |
| 411 | * We are removing _all_ timers from the list, so we don't have to |
| 412 | * detach them individually, just clear the list afterwards. |
| 413 | */ |
| 414 | while (curr != head) { |
| 415 | struct timer_list *tmp; |
| 416 | |
| 417 | tmp = list_entry(curr, struct timer_list, entry); |
| 418 | BUG_ON(tmp->base != base); |
| 419 | curr = curr->next; |
| 420 | internal_add_timer(base, tmp); |
| 421 | } |
| 422 | INIT_LIST_HEAD(head); |
| 423 | |
| 424 | return index; |
| 425 | } |
| 426 | |
| 427 | /*** |
| 428 | * __run_timers - run all expired timers (if any) on this CPU. |
| 429 | * @base: the timer vector to be processed. |
| 430 | * |
| 431 | * This function cascades all vectors and executes all expired timer |
| 432 | * vectors. |
| 433 | */ |
| 434 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK |
| 435 | |
| 436 | static inline void __run_timers(tvec_base_t *base) |
| 437 | { |
| 438 | struct timer_list *timer; |
| 439 | |
| 440 | spin_lock_irq(&base->lock); |
| 441 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
| 442 | struct list_head work_list = LIST_HEAD_INIT(work_list); |
| 443 | struct list_head *head = &work_list; |
| 444 | int index = base->timer_jiffies & TVR_MASK; |
| 445 | |
| 446 | /* |
| 447 | * Cascade timers: |
| 448 | */ |
| 449 | if (!index && |
| 450 | (!cascade(base, &base->tv2, INDEX(0))) && |
| 451 | (!cascade(base, &base->tv3, INDEX(1))) && |
| 452 | !cascade(base, &base->tv4, INDEX(2))) |
| 453 | cascade(base, &base->tv5, INDEX(3)); |
| 454 | ++base->timer_jiffies; |
| 455 | list_splice_init(base->tv1.vec + index, &work_list); |
| 456 | repeat: |
| 457 | if (!list_empty(head)) { |
| 458 | void (*fn)(unsigned long); |
| 459 | unsigned long data; |
| 460 | |
| 461 | timer = list_entry(head->next,struct timer_list,entry); |
| 462 | fn = timer->function; |
| 463 | data = timer->data; |
| 464 | |
| 465 | list_del(&timer->entry); |
| 466 | set_running_timer(base, timer); |
| 467 | smp_wmb(); |
| 468 | timer->base = NULL; |
| 469 | spin_unlock_irq(&base->lock); |
| 470 | { |
| 471 | u32 preempt_count = preempt_count(); |
| 472 | fn(data); |
| 473 | if (preempt_count != preempt_count()) { |
| 474 | printk("huh, entered %p with %08x, exited with %08x?\n", fn, preempt_count, preempt_count()); |
| 475 | BUG(); |
| 476 | } |
| 477 | } |
| 478 | spin_lock_irq(&base->lock); |
| 479 | goto repeat; |
| 480 | } |
| 481 | } |
| 482 | set_running_timer(base, NULL); |
| 483 | spin_unlock_irq(&base->lock); |
| 484 | } |
| 485 | |
| 486 | #ifdef CONFIG_NO_IDLE_HZ |
| 487 | /* |
| 488 | * Find out when the next timer event is due to happen. This |
| 489 | * is used on S/390 to stop all activity when a cpus is idle. |
| 490 | * This functions needs to be called disabled. |
| 491 | */ |
| 492 | unsigned long next_timer_interrupt(void) |
| 493 | { |
| 494 | tvec_base_t *base; |
| 495 | struct list_head *list; |
| 496 | struct timer_list *nte; |
| 497 | unsigned long expires; |
| 498 | tvec_t *varray[4]; |
| 499 | int i, j; |
| 500 | |
| 501 | base = &__get_cpu_var(tvec_bases); |
| 502 | spin_lock(&base->lock); |
| 503 | expires = base->timer_jiffies + (LONG_MAX >> 1); |
| 504 | list = 0; |
| 505 | |
| 506 | /* Look for timer events in tv1. */ |
| 507 | j = base->timer_jiffies & TVR_MASK; |
| 508 | do { |
| 509 | list_for_each_entry(nte, base->tv1.vec + j, entry) { |
| 510 | expires = nte->expires; |
| 511 | if (j < (base->timer_jiffies & TVR_MASK)) |
| 512 | list = base->tv2.vec + (INDEX(0)); |
| 513 | goto found; |
| 514 | } |
| 515 | j = (j + 1) & TVR_MASK; |
| 516 | } while (j != (base->timer_jiffies & TVR_MASK)); |
| 517 | |
| 518 | /* Check tv2-tv5. */ |
| 519 | varray[0] = &base->tv2; |
| 520 | varray[1] = &base->tv3; |
| 521 | varray[2] = &base->tv4; |
| 522 | varray[3] = &base->tv5; |
| 523 | for (i = 0; i < 4; i++) { |
| 524 | j = INDEX(i); |
| 525 | do { |
| 526 | if (list_empty(varray[i]->vec + j)) { |
| 527 | j = (j + 1) & TVN_MASK; |
| 528 | continue; |
| 529 | } |
| 530 | list_for_each_entry(nte, varray[i]->vec + j, entry) |
| 531 | if (time_before(nte->expires, expires)) |
| 532 | expires = nte->expires; |
| 533 | if (j < (INDEX(i)) && i < 3) |
| 534 | list = varray[i + 1]->vec + (INDEX(i + 1)); |
| 535 | goto found; |
| 536 | } while (j != (INDEX(i))); |
| 537 | } |
| 538 | found: |
| 539 | if (list) { |
| 540 | /* |
| 541 | * The search wrapped. We need to look at the next list |
| 542 | * from next tv element that would cascade into tv element |
| 543 | * where we found the timer element. |
| 544 | */ |
| 545 | list_for_each_entry(nte, list, entry) { |
| 546 | if (time_before(nte->expires, expires)) |
| 547 | expires = nte->expires; |
| 548 | } |
| 549 | } |
| 550 | spin_unlock(&base->lock); |
| 551 | return expires; |
| 552 | } |
| 553 | #endif |
| 554 | |
| 555 | /******************************************************************/ |
| 556 | |
| 557 | /* |
| 558 | * Timekeeping variables |
| 559 | */ |
| 560 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ |
| 561 | unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ |
| 562 | |
| 563 | /* |
| 564 | * The current time |
| 565 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected |
| 566 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged |
| 567 | * at zero at system boot time, so wall_to_monotonic will be negative, |
| 568 | * however, we will ALWAYS keep the tv_nsec part positive so we can use |
| 569 | * the usual normalization. |
| 570 | */ |
| 571 | struct timespec xtime __attribute__ ((aligned (16))); |
| 572 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
| 573 | |
| 574 | EXPORT_SYMBOL(xtime); |
| 575 | |
| 576 | /* Don't completely fail for HZ > 500. */ |
| 577 | int tickadj = 500/HZ ? : 1; /* microsecs */ |
| 578 | |
| 579 | |
| 580 | /* |
| 581 | * phase-lock loop variables |
| 582 | */ |
| 583 | /* TIME_ERROR prevents overwriting the CMOS clock */ |
| 584 | int time_state = TIME_OK; /* clock synchronization status */ |
| 585 | int time_status = STA_UNSYNC; /* clock status bits */ |
| 586 | long time_offset; /* time adjustment (us) */ |
| 587 | long time_constant = 2; /* pll time constant */ |
| 588 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ |
| 589 | long time_precision = 1; /* clock precision (us) */ |
| 590 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
| 591 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
| 592 | static long time_phase; /* phase offset (scaled us) */ |
| 593 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; |
| 594 | /* frequency offset (scaled ppm)*/ |
| 595 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ |
| 596 | long time_reftime; /* time at last adjustment (s) */ |
| 597 | long time_adjust; |
| 598 | long time_next_adjust; |
| 599 | |
| 600 | /* |
| 601 | * this routine handles the overflow of the microsecond field |
| 602 | * |
| 603 | * The tricky bits of code to handle the accurate clock support |
| 604 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
| 605 | * They were originally developed for SUN and DEC kernels. |
| 606 | * All the kudos should go to Dave for this stuff. |
| 607 | * |
| 608 | */ |
| 609 | static void second_overflow(void) |
| 610 | { |
| 611 | long ltemp; |
| 612 | |
| 613 | /* Bump the maxerror field */ |
| 614 | time_maxerror += time_tolerance >> SHIFT_USEC; |
| 615 | if ( time_maxerror > NTP_PHASE_LIMIT ) { |
| 616 | time_maxerror = NTP_PHASE_LIMIT; |
| 617 | time_status |= STA_UNSYNC; |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * Leap second processing. If in leap-insert state at |
| 622 | * the end of the day, the system clock is set back one |
| 623 | * second; if in leap-delete state, the system clock is |
| 624 | * set ahead one second. The microtime() routine or |
| 625 | * external clock driver will insure that reported time |
| 626 | * is always monotonic. The ugly divides should be |
| 627 | * replaced. |
| 628 | */ |
| 629 | switch (time_state) { |
| 630 | |
| 631 | case TIME_OK: |
| 632 | if (time_status & STA_INS) |
| 633 | time_state = TIME_INS; |
| 634 | else if (time_status & STA_DEL) |
| 635 | time_state = TIME_DEL; |
| 636 | break; |
| 637 | |
| 638 | case TIME_INS: |
| 639 | if (xtime.tv_sec % 86400 == 0) { |
| 640 | xtime.tv_sec--; |
| 641 | wall_to_monotonic.tv_sec++; |
| 642 | /* The timer interpolator will make time change gradually instead |
| 643 | * of an immediate jump by one second. |
| 644 | */ |
| 645 | time_interpolator_update(-NSEC_PER_SEC); |
| 646 | time_state = TIME_OOP; |
| 647 | clock_was_set(); |
| 648 | printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); |
| 649 | } |
| 650 | break; |
| 651 | |
| 652 | case TIME_DEL: |
| 653 | if ((xtime.tv_sec + 1) % 86400 == 0) { |
| 654 | xtime.tv_sec++; |
| 655 | wall_to_monotonic.tv_sec--; |
| 656 | /* Use of time interpolator for a gradual change of time */ |
| 657 | time_interpolator_update(NSEC_PER_SEC); |
| 658 | time_state = TIME_WAIT; |
| 659 | clock_was_set(); |
| 660 | printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); |
| 661 | } |
| 662 | break; |
| 663 | |
| 664 | case TIME_OOP: |
| 665 | time_state = TIME_WAIT; |
| 666 | break; |
| 667 | |
| 668 | case TIME_WAIT: |
| 669 | if (!(time_status & (STA_INS | STA_DEL))) |
| 670 | time_state = TIME_OK; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * Compute the phase adjustment for the next second. In |
| 675 | * PLL mode, the offset is reduced by a fixed factor |
| 676 | * times the time constant. In FLL mode the offset is |
| 677 | * used directly. In either mode, the maximum phase |
| 678 | * adjustment for each second is clamped so as to spread |
| 679 | * the adjustment over not more than the number of |
| 680 | * seconds between updates. |
| 681 | */ |
| 682 | if (time_offset < 0) { |
| 683 | ltemp = -time_offset; |
| 684 | if (!(time_status & STA_FLL)) |
| 685 | ltemp >>= SHIFT_KG + time_constant; |
| 686 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) |
| 687 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; |
| 688 | time_offset += ltemp; |
| 689 | time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); |
| 690 | } else { |
| 691 | ltemp = time_offset; |
| 692 | if (!(time_status & STA_FLL)) |
| 693 | ltemp >>= SHIFT_KG + time_constant; |
| 694 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) |
| 695 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; |
| 696 | time_offset -= ltemp; |
| 697 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); |
| 698 | } |
| 699 | |
| 700 | /* |
| 701 | * Compute the frequency estimate and additional phase |
| 702 | * adjustment due to frequency error for the next |
| 703 | * second. When the PPS signal is engaged, gnaw on the |
| 704 | * watchdog counter and update the frequency computed by |
| 705 | * the pll and the PPS signal. |
| 706 | */ |
| 707 | pps_valid++; |
| 708 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ |
| 709 | pps_jitter = MAXTIME; |
| 710 | pps_stabil = MAXFREQ; |
| 711 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | |
| 712 | STA_PPSWANDER | STA_PPSERROR); |
| 713 | } |
| 714 | ltemp = time_freq + pps_freq; |
| 715 | if (ltemp < 0) |
| 716 | time_adj -= -ltemp >> |
| 717 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); |
| 718 | else |
| 719 | time_adj += ltemp >> |
| 720 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); |
| 721 | |
| 722 | #if HZ == 100 |
| 723 | /* Compensate for (HZ==100) != (1 << SHIFT_HZ). |
| 724 | * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) |
| 725 | */ |
| 726 | if (time_adj < 0) |
| 727 | time_adj -= (-time_adj >> 2) + (-time_adj >> 5); |
| 728 | else |
| 729 | time_adj += (time_adj >> 2) + (time_adj >> 5); |
| 730 | #endif |
| 731 | #if HZ == 1000 |
| 732 | /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). |
| 733 | * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) |
| 734 | */ |
| 735 | if (time_adj < 0) |
| 736 | time_adj -= (-time_adj >> 6) + (-time_adj >> 7); |
| 737 | else |
| 738 | time_adj += (time_adj >> 6) + (time_adj >> 7); |
| 739 | #endif |
| 740 | } |
| 741 | |
| 742 | /* in the NTP reference this is called "hardclock()" */ |
| 743 | static void update_wall_time_one_tick(void) |
| 744 | { |
| 745 | long time_adjust_step, delta_nsec; |
| 746 | |
| 747 | if ( (time_adjust_step = time_adjust) != 0 ) { |
| 748 | /* We are doing an adjtime thing. |
| 749 | * |
| 750 | * Prepare time_adjust_step to be within bounds. |
| 751 | * Note that a positive time_adjust means we want the clock |
| 752 | * to run faster. |
| 753 | * |
| 754 | * Limit the amount of the step to be in the range |
| 755 | * -tickadj .. +tickadj |
| 756 | */ |
| 757 | if (time_adjust > tickadj) |
| 758 | time_adjust_step = tickadj; |
| 759 | else if (time_adjust < -tickadj) |
| 760 | time_adjust_step = -tickadj; |
| 761 | |
| 762 | /* Reduce by this step the amount of time left */ |
| 763 | time_adjust -= time_adjust_step; |
| 764 | } |
| 765 | delta_nsec = tick_nsec + time_adjust_step * 1000; |
| 766 | /* |
| 767 | * Advance the phase, once it gets to one microsecond, then |
| 768 | * advance the tick more. |
| 769 | */ |
| 770 | time_phase += time_adj; |
| 771 | if (time_phase <= -FINENSEC) { |
| 772 | long ltemp = -time_phase >> (SHIFT_SCALE - 10); |
| 773 | time_phase += ltemp << (SHIFT_SCALE - 10); |
| 774 | delta_nsec -= ltemp; |
| 775 | } |
| 776 | else if (time_phase >= FINENSEC) { |
| 777 | long ltemp = time_phase >> (SHIFT_SCALE - 10); |
| 778 | time_phase -= ltemp << (SHIFT_SCALE - 10); |
| 779 | delta_nsec += ltemp; |
| 780 | } |
| 781 | xtime.tv_nsec += delta_nsec; |
| 782 | time_interpolator_update(delta_nsec); |
| 783 | |
| 784 | /* Changes by adjtime() do not take effect till next tick. */ |
| 785 | if (time_next_adjust != 0) { |
| 786 | time_adjust = time_next_adjust; |
| 787 | time_next_adjust = 0; |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * Using a loop looks inefficient, but "ticks" is |
| 793 | * usually just one (we shouldn't be losing ticks, |
| 794 | * we're doing this this way mainly for interrupt |
| 795 | * latency reasons, not because we think we'll |
| 796 | * have lots of lost timer ticks |
| 797 | */ |
| 798 | static void update_wall_time(unsigned long ticks) |
| 799 | { |
| 800 | do { |
| 801 | ticks--; |
| 802 | update_wall_time_one_tick(); |
| 803 | if (xtime.tv_nsec >= 1000000000) { |
| 804 | xtime.tv_nsec -= 1000000000; |
| 805 | xtime.tv_sec++; |
| 806 | second_overflow(); |
| 807 | } |
| 808 | } while (ticks); |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * Called from the timer interrupt handler to charge one tick to the current |
| 813 | * process. user_tick is 1 if the tick is user time, 0 for system. |
| 814 | */ |
| 815 | void update_process_times(int user_tick) |
| 816 | { |
| 817 | struct task_struct *p = current; |
| 818 | int cpu = smp_processor_id(); |
| 819 | |
| 820 | /* Note: this timer irq context must be accounted for as well. */ |
| 821 | if (user_tick) |
| 822 | account_user_time(p, jiffies_to_cputime(1)); |
| 823 | else |
| 824 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); |
| 825 | run_local_timers(); |
| 826 | if (rcu_pending(cpu)) |
| 827 | rcu_check_callbacks(cpu, user_tick); |
| 828 | scheduler_tick(); |
| 829 | run_posix_cpu_timers(p); |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * Nr of active tasks - counted in fixed-point numbers |
| 834 | */ |
| 835 | static unsigned long count_active_tasks(void) |
| 836 | { |
| 837 | return (nr_running() + nr_uninterruptible()) * FIXED_1; |
| 838 | } |
| 839 | |
| 840 | /* |
| 841 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to |
| 842 | * imply that avenrun[] is the standard name for this kind of thing. |
| 843 | * Nothing else seems to be standardized: the fractional size etc |
| 844 | * all seem to differ on different machines. |
| 845 | * |
| 846 | * Requires xtime_lock to access. |
| 847 | */ |
| 848 | unsigned long avenrun[3]; |
| 849 | |
| 850 | EXPORT_SYMBOL(avenrun); |
| 851 | |
| 852 | /* |
| 853 | * calc_load - given tick count, update the avenrun load estimates. |
| 854 | * This is called while holding a write_lock on xtime_lock. |
| 855 | */ |
| 856 | static inline void calc_load(unsigned long ticks) |
| 857 | { |
| 858 | unsigned long active_tasks; /* fixed-point */ |
| 859 | static int count = LOAD_FREQ; |
| 860 | |
| 861 | count -= ticks; |
| 862 | if (count < 0) { |
| 863 | count += LOAD_FREQ; |
| 864 | active_tasks = count_active_tasks(); |
| 865 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); |
| 866 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); |
| 867 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /* jiffies at the most recent update of wall time */ |
| 872 | unsigned long wall_jiffies = INITIAL_JIFFIES; |
| 873 | |
| 874 | /* |
| 875 | * This read-write spinlock protects us from races in SMP while |
| 876 | * playing with xtime and avenrun. |
| 877 | */ |
| 878 | #ifndef ARCH_HAVE_XTIME_LOCK |
| 879 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; |
| 880 | |
| 881 | EXPORT_SYMBOL(xtime_lock); |
| 882 | #endif |
| 883 | |
| 884 | /* |
| 885 | * This function runs timers and the timer-tq in bottom half context. |
| 886 | */ |
| 887 | static void run_timer_softirq(struct softirq_action *h) |
| 888 | { |
| 889 | tvec_base_t *base = &__get_cpu_var(tvec_bases); |
| 890 | |
| 891 | if (time_after_eq(jiffies, base->timer_jiffies)) |
| 892 | __run_timers(base); |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Called by the local, per-CPU timer interrupt on SMP. |
| 897 | */ |
| 898 | void run_local_timers(void) |
| 899 | { |
| 900 | raise_softirq(TIMER_SOFTIRQ); |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * Called by the timer interrupt. xtime_lock must already be taken |
| 905 | * by the timer IRQ! |
| 906 | */ |
| 907 | static inline void update_times(void) |
| 908 | { |
| 909 | unsigned long ticks; |
| 910 | |
| 911 | ticks = jiffies - wall_jiffies; |
| 912 | if (ticks) { |
| 913 | wall_jiffies += ticks; |
| 914 | update_wall_time(ticks); |
| 915 | } |
| 916 | calc_load(ticks); |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * The 64-bit jiffies value is not atomic - you MUST NOT read it |
| 921 | * without sampling the sequence number in xtime_lock. |
| 922 | * jiffies is defined in the linker script... |
| 923 | */ |
| 924 | |
| 925 | void do_timer(struct pt_regs *regs) |
| 926 | { |
| 927 | jiffies_64++; |
| 928 | update_times(); |
| 929 | } |
| 930 | |
| 931 | #ifdef __ARCH_WANT_SYS_ALARM |
| 932 | |
| 933 | /* |
| 934 | * For backwards compatibility? This can be done in libc so Alpha |
| 935 | * and all newer ports shouldn't need it. |
| 936 | */ |
| 937 | asmlinkage unsigned long sys_alarm(unsigned int seconds) |
| 938 | { |
| 939 | struct itimerval it_new, it_old; |
| 940 | unsigned int oldalarm; |
| 941 | |
| 942 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; |
| 943 | it_new.it_value.tv_sec = seconds; |
| 944 | it_new.it_value.tv_usec = 0; |
| 945 | do_setitimer(ITIMER_REAL, &it_new, &it_old); |
| 946 | oldalarm = it_old.it_value.tv_sec; |
| 947 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ |
| 948 | /* And we'd better return too much than too little anyway */ |
| 949 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) |
| 950 | oldalarm++; |
| 951 | return oldalarm; |
| 952 | } |
| 953 | |
| 954 | #endif |
| 955 | |
| 956 | #ifndef __alpha__ |
| 957 | |
| 958 | /* |
| 959 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this |
| 960 | * should be moved into arch/i386 instead? |
| 961 | */ |
| 962 | |
| 963 | /** |
| 964 | * sys_getpid - return the thread group id of the current process |
| 965 | * |
| 966 | * Note, despite the name, this returns the tgid not the pid. The tgid and |
| 967 | * the pid are identical unless CLONE_THREAD was specified on clone() in |
| 968 | * which case the tgid is the same in all threads of the same group. |
| 969 | * |
| 970 | * This is SMP safe as current->tgid does not change. |
| 971 | */ |
| 972 | asmlinkage long sys_getpid(void) |
| 973 | { |
| 974 | return current->tgid; |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * Accessing ->group_leader->real_parent is not SMP-safe, it could |
| 979 | * change from under us. However, rather than getting any lock |
| 980 | * we can use an optimistic algorithm: get the parent |
| 981 | * pid, and go back and check that the parent is still |
| 982 | * the same. If it has changed (which is extremely unlikely |
| 983 | * indeed), we just try again.. |
| 984 | * |
| 985 | * NOTE! This depends on the fact that even if we _do_ |
| 986 | * get an old value of "parent", we can happily dereference |
| 987 | * the pointer (it was and remains a dereferencable kernel pointer |
| 988 | * no matter what): we just can't necessarily trust the result |
| 989 | * until we know that the parent pointer is valid. |
| 990 | * |
| 991 | * NOTE2: ->group_leader never changes from under us. |
| 992 | */ |
| 993 | asmlinkage long sys_getppid(void) |
| 994 | { |
| 995 | int pid; |
| 996 | struct task_struct *me = current; |
| 997 | struct task_struct *parent; |
| 998 | |
| 999 | parent = me->group_leader->real_parent; |
| 1000 | for (;;) { |
| 1001 | pid = parent->tgid; |
| 1002 | #ifdef CONFIG_SMP |
| 1003 | { |
| 1004 | struct task_struct *old = parent; |
| 1005 | |
| 1006 | /* |
| 1007 | * Make sure we read the pid before re-reading the |
| 1008 | * parent pointer: |
| 1009 | */ |
| 1010 | rmb(); |
| 1011 | parent = me->group_leader->real_parent; |
| 1012 | if (old != parent) |
| 1013 | continue; |
| 1014 | } |
| 1015 | #endif |
| 1016 | break; |
| 1017 | } |
| 1018 | return pid; |
| 1019 | } |
| 1020 | |
| 1021 | asmlinkage long sys_getuid(void) |
| 1022 | { |
| 1023 | /* Only we change this so SMP safe */ |
| 1024 | return current->uid; |
| 1025 | } |
| 1026 | |
| 1027 | asmlinkage long sys_geteuid(void) |
| 1028 | { |
| 1029 | /* Only we change this so SMP safe */ |
| 1030 | return current->euid; |
| 1031 | } |
| 1032 | |
| 1033 | asmlinkage long sys_getgid(void) |
| 1034 | { |
| 1035 | /* Only we change this so SMP safe */ |
| 1036 | return current->gid; |
| 1037 | } |
| 1038 | |
| 1039 | asmlinkage long sys_getegid(void) |
| 1040 | { |
| 1041 | /* Only we change this so SMP safe */ |
| 1042 | return current->egid; |
| 1043 | } |
| 1044 | |
| 1045 | #endif |
| 1046 | |
| 1047 | static void process_timeout(unsigned long __data) |
| 1048 | { |
| 1049 | wake_up_process((task_t *)__data); |
| 1050 | } |
| 1051 | |
| 1052 | /** |
| 1053 | * schedule_timeout - sleep until timeout |
| 1054 | * @timeout: timeout value in jiffies |
| 1055 | * |
| 1056 | * Make the current task sleep until @timeout jiffies have |
| 1057 | * elapsed. The routine will return immediately unless |
| 1058 | * the current task state has been set (see set_current_state()). |
| 1059 | * |
| 1060 | * You can set the task state as follows - |
| 1061 | * |
| 1062 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to |
| 1063 | * pass before the routine returns. The routine will return 0 |
| 1064 | * |
| 1065 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 1066 | * delivered to the current task. In this case the remaining time |
| 1067 | * in jiffies will be returned, or 0 if the timer expired in time |
| 1068 | * |
| 1069 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 1070 | * routine returns. |
| 1071 | * |
| 1072 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule |
| 1073 | * the CPU away without a bound on the timeout. In this case the return |
| 1074 | * value will be %MAX_SCHEDULE_TIMEOUT. |
| 1075 | * |
| 1076 | * In all cases the return value is guaranteed to be non-negative. |
| 1077 | */ |
| 1078 | fastcall signed long __sched schedule_timeout(signed long timeout) |
| 1079 | { |
| 1080 | struct timer_list timer; |
| 1081 | unsigned long expire; |
| 1082 | |
| 1083 | switch (timeout) |
| 1084 | { |
| 1085 | case MAX_SCHEDULE_TIMEOUT: |
| 1086 | /* |
| 1087 | * These two special cases are useful to be comfortable |
| 1088 | * in the caller. Nothing more. We could take |
| 1089 | * MAX_SCHEDULE_TIMEOUT from one of the negative value |
| 1090 | * but I' d like to return a valid offset (>=0) to allow |
| 1091 | * the caller to do everything it want with the retval. |
| 1092 | */ |
| 1093 | schedule(); |
| 1094 | goto out; |
| 1095 | default: |
| 1096 | /* |
| 1097 | * Another bit of PARANOID. Note that the retval will be |
| 1098 | * 0 since no piece of kernel is supposed to do a check |
| 1099 | * for a negative retval of schedule_timeout() (since it |
| 1100 | * should never happens anyway). You just have the printk() |
| 1101 | * that will tell you if something is gone wrong and where. |
| 1102 | */ |
| 1103 | if (timeout < 0) |
| 1104 | { |
| 1105 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
| 1106 | "value %lx from %p\n", timeout, |
| 1107 | __builtin_return_address(0)); |
| 1108 | current->state = TASK_RUNNING; |
| 1109 | goto out; |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | expire = timeout + jiffies; |
| 1114 | |
| 1115 | init_timer(&timer); |
| 1116 | timer.expires = expire; |
| 1117 | timer.data = (unsigned long) current; |
| 1118 | timer.function = process_timeout; |
| 1119 | |
| 1120 | add_timer(&timer); |
| 1121 | schedule(); |
| 1122 | del_singleshot_timer_sync(&timer); |
| 1123 | |
| 1124 | timeout = expire - jiffies; |
| 1125 | |
| 1126 | out: |
| 1127 | return timeout < 0 ? 0 : timeout; |
| 1128 | } |
| 1129 | |
| 1130 | EXPORT_SYMBOL(schedule_timeout); |
| 1131 | |
| 1132 | /* Thread ID - the internal kernel "pid" */ |
| 1133 | asmlinkage long sys_gettid(void) |
| 1134 | { |
| 1135 | return current->pid; |
| 1136 | } |
| 1137 | |
| 1138 | static long __sched nanosleep_restart(struct restart_block *restart) |
| 1139 | { |
| 1140 | unsigned long expire = restart->arg0, now = jiffies; |
| 1141 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; |
| 1142 | long ret; |
| 1143 | |
| 1144 | /* Did it expire while we handled signals? */ |
| 1145 | if (!time_after(expire, now)) |
| 1146 | return 0; |
| 1147 | |
| 1148 | current->state = TASK_INTERRUPTIBLE; |
| 1149 | expire = schedule_timeout(expire - now); |
| 1150 | |
| 1151 | ret = 0; |
| 1152 | if (expire) { |
| 1153 | struct timespec t; |
| 1154 | jiffies_to_timespec(expire, &t); |
| 1155 | |
| 1156 | ret = -ERESTART_RESTARTBLOCK; |
| 1157 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) |
| 1158 | ret = -EFAULT; |
| 1159 | /* The 'restart' block is already filled in */ |
| 1160 | } |
| 1161 | return ret; |
| 1162 | } |
| 1163 | |
| 1164 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) |
| 1165 | { |
| 1166 | struct timespec t; |
| 1167 | unsigned long expire; |
| 1168 | long ret; |
| 1169 | |
| 1170 | if (copy_from_user(&t, rqtp, sizeof(t))) |
| 1171 | return -EFAULT; |
| 1172 | |
| 1173 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) |
| 1174 | return -EINVAL; |
| 1175 | |
| 1176 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); |
| 1177 | current->state = TASK_INTERRUPTIBLE; |
| 1178 | expire = schedule_timeout(expire); |
| 1179 | |
| 1180 | ret = 0; |
| 1181 | if (expire) { |
| 1182 | struct restart_block *restart; |
| 1183 | jiffies_to_timespec(expire, &t); |
| 1184 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) |
| 1185 | return -EFAULT; |
| 1186 | |
| 1187 | restart = ¤t_thread_info()->restart_block; |
| 1188 | restart->fn = nanosleep_restart; |
| 1189 | restart->arg0 = jiffies + expire; |
| 1190 | restart->arg1 = (unsigned long) rmtp; |
| 1191 | ret = -ERESTART_RESTARTBLOCK; |
| 1192 | } |
| 1193 | return ret; |
| 1194 | } |
| 1195 | |
| 1196 | /* |
| 1197 | * sys_sysinfo - fill in sysinfo struct |
| 1198 | */ |
| 1199 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) |
| 1200 | { |
| 1201 | struct sysinfo val; |
| 1202 | unsigned long mem_total, sav_total; |
| 1203 | unsigned int mem_unit, bitcount; |
| 1204 | unsigned long seq; |
| 1205 | |
| 1206 | memset((char *)&val, 0, sizeof(struct sysinfo)); |
| 1207 | |
| 1208 | do { |
| 1209 | struct timespec tp; |
| 1210 | seq = read_seqbegin(&xtime_lock); |
| 1211 | |
| 1212 | /* |
| 1213 | * This is annoying. The below is the same thing |
| 1214 | * posix_get_clock_monotonic() does, but it wants to |
| 1215 | * take the lock which we want to cover the loads stuff |
| 1216 | * too. |
| 1217 | */ |
| 1218 | |
| 1219 | getnstimeofday(&tp); |
| 1220 | tp.tv_sec += wall_to_monotonic.tv_sec; |
| 1221 | tp.tv_nsec += wall_to_monotonic.tv_nsec; |
| 1222 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { |
| 1223 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; |
| 1224 | tp.tv_sec++; |
| 1225 | } |
| 1226 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); |
| 1227 | |
| 1228 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); |
| 1229 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); |
| 1230 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); |
| 1231 | |
| 1232 | val.procs = nr_threads; |
| 1233 | } while (read_seqretry(&xtime_lock, seq)); |
| 1234 | |
| 1235 | si_meminfo(&val); |
| 1236 | si_swapinfo(&val); |
| 1237 | |
| 1238 | /* |
| 1239 | * If the sum of all the available memory (i.e. ram + swap) |
| 1240 | * is less than can be stored in a 32 bit unsigned long then |
| 1241 | * we can be binary compatible with 2.2.x kernels. If not, |
| 1242 | * well, in that case 2.2.x was broken anyways... |
| 1243 | * |
| 1244 | * -Erik Andersen <andersee@debian.org> |
| 1245 | */ |
| 1246 | |
| 1247 | mem_total = val.totalram + val.totalswap; |
| 1248 | if (mem_total < val.totalram || mem_total < val.totalswap) |
| 1249 | goto out; |
| 1250 | bitcount = 0; |
| 1251 | mem_unit = val.mem_unit; |
| 1252 | while (mem_unit > 1) { |
| 1253 | bitcount++; |
| 1254 | mem_unit >>= 1; |
| 1255 | sav_total = mem_total; |
| 1256 | mem_total <<= 1; |
| 1257 | if (mem_total < sav_total) |
| 1258 | goto out; |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * If mem_total did not overflow, multiply all memory values by |
| 1263 | * val.mem_unit and set it to 1. This leaves things compatible |
| 1264 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
| 1265 | * kernels... |
| 1266 | */ |
| 1267 | |
| 1268 | val.mem_unit = 1; |
| 1269 | val.totalram <<= bitcount; |
| 1270 | val.freeram <<= bitcount; |
| 1271 | val.sharedram <<= bitcount; |
| 1272 | val.bufferram <<= bitcount; |
| 1273 | val.totalswap <<= bitcount; |
| 1274 | val.freeswap <<= bitcount; |
| 1275 | val.totalhigh <<= bitcount; |
| 1276 | val.freehigh <<= bitcount; |
| 1277 | |
| 1278 | out: |
| 1279 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
| 1280 | return -EFAULT; |
| 1281 | |
| 1282 | return 0; |
| 1283 | } |
| 1284 | |
| 1285 | static void __devinit init_timers_cpu(int cpu) |
| 1286 | { |
| 1287 | int j; |
| 1288 | tvec_base_t *base; |
| 1289 | |
| 1290 | base = &per_cpu(tvec_bases, cpu); |
| 1291 | spin_lock_init(&base->lock); |
| 1292 | for (j = 0; j < TVN_SIZE; j++) { |
| 1293 | INIT_LIST_HEAD(base->tv5.vec + j); |
| 1294 | INIT_LIST_HEAD(base->tv4.vec + j); |
| 1295 | INIT_LIST_HEAD(base->tv3.vec + j); |
| 1296 | INIT_LIST_HEAD(base->tv2.vec + j); |
| 1297 | } |
| 1298 | for (j = 0; j < TVR_SIZE; j++) |
| 1299 | INIT_LIST_HEAD(base->tv1.vec + j); |
| 1300 | |
| 1301 | base->timer_jiffies = jiffies; |
| 1302 | } |
| 1303 | |
| 1304 | #ifdef CONFIG_HOTPLUG_CPU |
| 1305 | static int migrate_timer_list(tvec_base_t *new_base, struct list_head *head) |
| 1306 | { |
| 1307 | struct timer_list *timer; |
| 1308 | |
| 1309 | while (!list_empty(head)) { |
| 1310 | timer = list_entry(head->next, struct timer_list, entry); |
| 1311 | /* We're locking backwards from __mod_timer order here, |
| 1312 | beware deadlock. */ |
| 1313 | if (!spin_trylock(&timer->lock)) |
| 1314 | return 0; |
| 1315 | list_del(&timer->entry); |
| 1316 | internal_add_timer(new_base, timer); |
| 1317 | timer->base = new_base; |
| 1318 | spin_unlock(&timer->lock); |
| 1319 | } |
| 1320 | return 1; |
| 1321 | } |
| 1322 | |
| 1323 | static void __devinit migrate_timers(int cpu) |
| 1324 | { |
| 1325 | tvec_base_t *old_base; |
| 1326 | tvec_base_t *new_base; |
| 1327 | int i; |
| 1328 | |
| 1329 | BUG_ON(cpu_online(cpu)); |
| 1330 | old_base = &per_cpu(tvec_bases, cpu); |
| 1331 | new_base = &get_cpu_var(tvec_bases); |
| 1332 | |
| 1333 | local_irq_disable(); |
| 1334 | again: |
| 1335 | /* Prevent deadlocks via ordering by old_base < new_base. */ |
| 1336 | if (old_base < new_base) { |
| 1337 | spin_lock(&new_base->lock); |
| 1338 | spin_lock(&old_base->lock); |
| 1339 | } else { |
| 1340 | spin_lock(&old_base->lock); |
| 1341 | spin_lock(&new_base->lock); |
| 1342 | } |
| 1343 | |
| 1344 | if (old_base->running_timer) |
| 1345 | BUG(); |
| 1346 | for (i = 0; i < TVR_SIZE; i++) |
| 1347 | if (!migrate_timer_list(new_base, old_base->tv1.vec + i)) |
| 1348 | goto unlock_again; |
| 1349 | for (i = 0; i < TVN_SIZE; i++) |
| 1350 | if (!migrate_timer_list(new_base, old_base->tv2.vec + i) |
| 1351 | || !migrate_timer_list(new_base, old_base->tv3.vec + i) |
| 1352 | || !migrate_timer_list(new_base, old_base->tv4.vec + i) |
| 1353 | || !migrate_timer_list(new_base, old_base->tv5.vec + i)) |
| 1354 | goto unlock_again; |
| 1355 | spin_unlock(&old_base->lock); |
| 1356 | spin_unlock(&new_base->lock); |
| 1357 | local_irq_enable(); |
| 1358 | put_cpu_var(tvec_bases); |
| 1359 | return; |
| 1360 | |
| 1361 | unlock_again: |
| 1362 | /* Avoid deadlock with __mod_timer, by backing off. */ |
| 1363 | spin_unlock(&old_base->lock); |
| 1364 | spin_unlock(&new_base->lock); |
| 1365 | cpu_relax(); |
| 1366 | goto again; |
| 1367 | } |
| 1368 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1369 | |
| 1370 | static int __devinit timer_cpu_notify(struct notifier_block *self, |
| 1371 | unsigned long action, void *hcpu) |
| 1372 | { |
| 1373 | long cpu = (long)hcpu; |
| 1374 | switch(action) { |
| 1375 | case CPU_UP_PREPARE: |
| 1376 | init_timers_cpu(cpu); |
| 1377 | break; |
| 1378 | #ifdef CONFIG_HOTPLUG_CPU |
| 1379 | case CPU_DEAD: |
| 1380 | migrate_timers(cpu); |
| 1381 | break; |
| 1382 | #endif |
| 1383 | default: |
| 1384 | break; |
| 1385 | } |
| 1386 | return NOTIFY_OK; |
| 1387 | } |
| 1388 | |
| 1389 | static struct notifier_block __devinitdata timers_nb = { |
| 1390 | .notifier_call = timer_cpu_notify, |
| 1391 | }; |
| 1392 | |
| 1393 | |
| 1394 | void __init init_timers(void) |
| 1395 | { |
| 1396 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
| 1397 | (void *)(long)smp_processor_id()); |
| 1398 | register_cpu_notifier(&timers_nb); |
| 1399 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); |
| 1400 | } |
| 1401 | |
| 1402 | #ifdef CONFIG_TIME_INTERPOLATION |
| 1403 | |
| 1404 | struct time_interpolator *time_interpolator; |
| 1405 | static struct time_interpolator *time_interpolator_list; |
| 1406 | static DEFINE_SPINLOCK(time_interpolator_lock); |
| 1407 | |
| 1408 | static inline u64 time_interpolator_get_cycles(unsigned int src) |
| 1409 | { |
| 1410 | unsigned long (*x)(void); |
| 1411 | |
| 1412 | switch (src) |
| 1413 | { |
| 1414 | case TIME_SOURCE_FUNCTION: |
| 1415 | x = time_interpolator->addr; |
| 1416 | return x(); |
| 1417 | |
| 1418 | case TIME_SOURCE_MMIO64 : |
| 1419 | return readq((void __iomem *) time_interpolator->addr); |
| 1420 | |
| 1421 | case TIME_SOURCE_MMIO32 : |
| 1422 | return readl((void __iomem *) time_interpolator->addr); |
| 1423 | |
| 1424 | default: return get_cycles(); |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | static inline u64 time_interpolator_get_counter(void) |
| 1429 | { |
| 1430 | unsigned int src = time_interpolator->source; |
| 1431 | |
| 1432 | if (time_interpolator->jitter) |
| 1433 | { |
| 1434 | u64 lcycle; |
| 1435 | u64 now; |
| 1436 | |
| 1437 | do { |
| 1438 | lcycle = time_interpolator->last_cycle; |
| 1439 | now = time_interpolator_get_cycles(src); |
| 1440 | if (lcycle && time_after(lcycle, now)) |
| 1441 | return lcycle; |
| 1442 | /* Keep track of the last timer value returned. The use of cmpxchg here |
| 1443 | * will cause contention in an SMP environment. |
| 1444 | */ |
| 1445 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); |
| 1446 | return now; |
| 1447 | } |
| 1448 | else |
| 1449 | return time_interpolator_get_cycles(src); |
| 1450 | } |
| 1451 | |
| 1452 | void time_interpolator_reset(void) |
| 1453 | { |
| 1454 | time_interpolator->offset = 0; |
| 1455 | time_interpolator->last_counter = time_interpolator_get_counter(); |
| 1456 | } |
| 1457 | |
| 1458 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) |
| 1459 | |
| 1460 | unsigned long time_interpolator_get_offset(void) |
| 1461 | { |
| 1462 | /* If we do not have a time interpolator set up then just return zero */ |
| 1463 | if (!time_interpolator) |
| 1464 | return 0; |
| 1465 | |
| 1466 | return time_interpolator->offset + |
| 1467 | GET_TI_NSECS(time_interpolator_get_counter(), time_interpolator); |
| 1468 | } |
| 1469 | |
| 1470 | #define INTERPOLATOR_ADJUST 65536 |
| 1471 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST |
| 1472 | |
| 1473 | static void time_interpolator_update(long delta_nsec) |
| 1474 | { |
| 1475 | u64 counter; |
| 1476 | unsigned long offset; |
| 1477 | |
| 1478 | /* If there is no time interpolator set up then do nothing */ |
| 1479 | if (!time_interpolator) |
| 1480 | return; |
| 1481 | |
| 1482 | /* The interpolator compensates for late ticks by accumulating |
| 1483 | * the late time in time_interpolator->offset. A tick earlier than |
| 1484 | * expected will lead to a reset of the offset and a corresponding |
| 1485 | * jump of the clock forward. Again this only works if the |
| 1486 | * interpolator clock is running slightly slower than the regular clock |
| 1487 | * and the tuning logic insures that. |
| 1488 | */ |
| 1489 | |
| 1490 | counter = time_interpolator_get_counter(); |
| 1491 | offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); |
| 1492 | |
| 1493 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) |
| 1494 | time_interpolator->offset = offset - delta_nsec; |
| 1495 | else { |
| 1496 | time_interpolator->skips++; |
| 1497 | time_interpolator->ns_skipped += delta_nsec - offset; |
| 1498 | time_interpolator->offset = 0; |
| 1499 | } |
| 1500 | time_interpolator->last_counter = counter; |
| 1501 | |
| 1502 | /* Tuning logic for time interpolator invoked every minute or so. |
| 1503 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. |
| 1504 | * Increase interpolator clock speed if we skip too much time. |
| 1505 | */ |
| 1506 | if (jiffies % INTERPOLATOR_ADJUST == 0) |
| 1507 | { |
| 1508 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) |
| 1509 | time_interpolator->nsec_per_cyc--; |
| 1510 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) |
| 1511 | time_interpolator->nsec_per_cyc++; |
| 1512 | time_interpolator->skips = 0; |
| 1513 | time_interpolator->ns_skipped = 0; |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | static inline int |
| 1518 | is_better_time_interpolator(struct time_interpolator *new) |
| 1519 | { |
| 1520 | if (!time_interpolator) |
| 1521 | return 1; |
| 1522 | return new->frequency > 2*time_interpolator->frequency || |
| 1523 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; |
| 1524 | } |
| 1525 | |
| 1526 | void |
| 1527 | register_time_interpolator(struct time_interpolator *ti) |
| 1528 | { |
| 1529 | unsigned long flags; |
| 1530 | |
| 1531 | /* Sanity check */ |
| 1532 | if (ti->frequency == 0 || ti->mask == 0) |
| 1533 | BUG(); |
| 1534 | |
| 1535 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; |
| 1536 | spin_lock(&time_interpolator_lock); |
| 1537 | write_seqlock_irqsave(&xtime_lock, flags); |
| 1538 | if (is_better_time_interpolator(ti)) { |
| 1539 | time_interpolator = ti; |
| 1540 | time_interpolator_reset(); |
| 1541 | } |
| 1542 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 1543 | |
| 1544 | ti->next = time_interpolator_list; |
| 1545 | time_interpolator_list = ti; |
| 1546 | spin_unlock(&time_interpolator_lock); |
| 1547 | } |
| 1548 | |
| 1549 | void |
| 1550 | unregister_time_interpolator(struct time_interpolator *ti) |
| 1551 | { |
| 1552 | struct time_interpolator *curr, **prev; |
| 1553 | unsigned long flags; |
| 1554 | |
| 1555 | spin_lock(&time_interpolator_lock); |
| 1556 | prev = &time_interpolator_list; |
| 1557 | for (curr = *prev; curr; curr = curr->next) { |
| 1558 | if (curr == ti) { |
| 1559 | *prev = curr->next; |
| 1560 | break; |
| 1561 | } |
| 1562 | prev = &curr->next; |
| 1563 | } |
| 1564 | |
| 1565 | write_seqlock_irqsave(&xtime_lock, flags); |
| 1566 | if (ti == time_interpolator) { |
| 1567 | /* we lost the best time-interpolator: */ |
| 1568 | time_interpolator = NULL; |
| 1569 | /* find the next-best interpolator */ |
| 1570 | for (curr = time_interpolator_list; curr; curr = curr->next) |
| 1571 | if (is_better_time_interpolator(curr)) |
| 1572 | time_interpolator = curr; |
| 1573 | time_interpolator_reset(); |
| 1574 | } |
| 1575 | write_sequnlock_irqrestore(&xtime_lock, flags); |
| 1576 | spin_unlock(&time_interpolator_lock); |
| 1577 | } |
| 1578 | #endif /* CONFIG_TIME_INTERPOLATION */ |
| 1579 | |
| 1580 | /** |
| 1581 | * msleep - sleep safely even with waitqueue interruptions |
| 1582 | * @msecs: Time in milliseconds to sleep for |
| 1583 | */ |
| 1584 | void msleep(unsigned int msecs) |
| 1585 | { |
| 1586 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
| 1587 | |
| 1588 | while (timeout) { |
| 1589 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1590 | timeout = schedule_timeout(timeout); |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | EXPORT_SYMBOL(msleep); |
| 1595 | |
| 1596 | /** |
| 1597 | * msleep_interruptible - sleep waiting for waitqueue interruptions |
| 1598 | * @msecs: Time in milliseconds to sleep for |
| 1599 | */ |
| 1600 | unsigned long msleep_interruptible(unsigned int msecs) |
| 1601 | { |
| 1602 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
| 1603 | |
| 1604 | while (timeout && !signal_pending(current)) { |
| 1605 | set_current_state(TASK_INTERRUPTIBLE); |
| 1606 | timeout = schedule_timeout(timeout); |
| 1607 | } |
| 1608 | return jiffies_to_msecs(timeout); |
| 1609 | } |
| 1610 | |
| 1611 | EXPORT_SYMBOL(msleep_interruptible); |