blob: 269f690b4e2492c65bf1a59e9d10302d87725a4e [file] [log] [blame]
Jaegeuk Kim0a8165d2012-11-29 13:28:09 +09001/*
Jaegeuk Kim39a53e02012-11-28 13:37:31 +09002 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
Jaegeuk Kimac5d1562013-04-29 16:58:39 +090011#include <linux/blkdev.h>
12
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090013/* constant macro */
14#define NULL_SEGNO ((unsigned int)(~0))
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +090015#define NULL_SECNO ((unsigned int)(~0))
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090016
Jaegeuk Kim81eb8d62013-10-24 13:31:34 +090017#define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
18
Namjae Jeon6224da82013-04-06 14:44:32 +090019/* L: Logical segment # in volume, R: Relative segment # in main area */
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090020#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
23#define IS_DATASEG(t) \
24 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
25 (t == CURSEG_WARM_DATA))
26
27#define IS_NODESEG(t) \
28 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
29 (t == CURSEG_WARM_NODE))
30
Jaegeuk Kim5c773ba2013-03-31 12:30:04 +090031#define IS_CURSEG(sbi, seg) \
32 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
37 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090038
39#define IS_CURSEC(sbi, secno) \
40 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
47 sbi->segs_per_sec) || \
48 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
49 sbi->segs_per_sec) || \
50 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
51 sbi->segs_per_sec)) \
52
53#define START_BLOCK(sbi, segno) \
54 (SM_I(sbi)->seg0_blkaddr + \
55 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
56#define NEXT_FREE_BLKADDR(sbi, curseg) \
57 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
58
59#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
60
61#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
62 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
63#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
64 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
65#define GET_SEGNO(sbi, blk_addr) \
66 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
67 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
68 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
69#define GET_SECNO(sbi, segno) \
70 ((segno) / sbi->segs_per_sec)
71#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
72 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
73
74#define GET_SUM_BLOCK(sbi, segno) \
75 ((sbi->sm_info->ssa_blkaddr) + segno)
76
77#define GET_SUM_TYPE(footer) ((footer)->entry_type)
78#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
79
80#define SIT_ENTRY_OFFSET(sit_i, segno) \
81 (segno % sit_i->sents_per_block)
82#define SIT_BLOCK_OFFSET(sit_i, segno) \
83 (segno / SIT_ENTRY_PER_BLOCK)
84#define START_SEGNO(sit_i, segno) \
85 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
86#define f2fs_bitmap_size(nr) \
87 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
Jaegeuk Kim53cf9522013-03-31 12:39:49 +090089#define TOTAL_SECS(sbi) (sbi->total_sections)
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090090
Jaegeuk Kim3cd8a232012-12-10 09:26:05 +090091#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
92 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
Jaegeuk Kimac5d1562013-04-29 16:58:39 +090093#define SECTOR_TO_BLOCK(sbi, sectors) \
94 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
Chao Yucc7b1bb2013-09-22 15:50:50 +080095#define MAX_BIO_BLOCKS(max_hw_blocks) \
96 (min((int)max_hw_blocks, BIO_MAX_PAGES))
Jaegeuk Kim3cd8a232012-12-10 09:26:05 +090097
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090098/* during checkpoint, bio_private is used to synchronize the last bio */
99struct bio_private {
100 struct f2fs_sb_info *sbi;
101 bool is_sync;
102 void *wait;
103};
104
105/*
106 * indicate a block allocation direction: RIGHT and LEFT.
107 * RIGHT means allocating new sections towards the end of volume.
108 * LEFT means the opposite direction.
109 */
110enum {
111 ALLOC_RIGHT = 0,
112 ALLOC_LEFT
113};
114
115/*
116 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
117 * LFS writes data sequentially with cleaning operations.
118 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
119 */
120enum {
121 LFS = 0,
122 SSR
123};
124
125/*
126 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
127 * GC_CB is based on cost-benefit algorithm.
128 * GC_GREEDY is based on greedy algorithm.
129 */
130enum {
131 GC_CB = 0,
132 GC_GREEDY
133};
134
135/*
136 * BG_GC means the background cleaning job.
137 * FG_GC means the on-demand cleaning job.
138 */
139enum {
140 BG_GC = 0,
141 FG_GC
142};
143
144/* for a function parameter to select a victim segment */
145struct victim_sel_policy {
146 int alloc_mode; /* LFS or SSR */
147 int gc_mode; /* GC_CB or GC_GREEDY */
148 unsigned long *dirty_segmap; /* dirty segment bitmap */
Jin Xua26b7c82013-09-05 12:45:26 +0800149 unsigned int max_search; /* maximum # of segments to search */
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900150 unsigned int offset; /* last scanned bitmap offset */
151 unsigned int ofs_unit; /* bitmap search unit */
152 unsigned int min_cost; /* minimum cost */
153 unsigned int min_segno; /* segment # having min. cost */
154};
155
156struct seg_entry {
157 unsigned short valid_blocks; /* # of valid blocks */
158 unsigned char *cur_valid_map; /* validity bitmap of blocks */
159 /*
160 * # of valid blocks and the validity bitmap stored in the the last
161 * checkpoint pack. This information is used by the SSR mode.
162 */
163 unsigned short ckpt_valid_blocks;
164 unsigned char *ckpt_valid_map;
165 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
166 unsigned long long mtime; /* modification time of the segment */
167};
168
169struct sec_entry {
170 unsigned int valid_blocks; /* # of valid blocks in a section */
171};
172
173struct segment_allocation {
174 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
175};
176
177struct sit_info {
178 const struct segment_allocation *s_ops;
179
180 block_t sit_base_addr; /* start block address of SIT area */
181 block_t sit_blocks; /* # of blocks used by SIT area */
182 block_t written_valid_blocks; /* # of valid blocks in main area */
183 char *sit_bitmap; /* SIT bitmap pointer */
184 unsigned int bitmap_size; /* SIT bitmap size */
185
186 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
187 unsigned int dirty_sentries; /* # of dirty sentries */
188 unsigned int sents_per_block; /* # of SIT entries per block */
189 struct mutex sentry_lock; /* to protect SIT cache */
190 struct seg_entry *sentries; /* SIT segment-level cache */
191 struct sec_entry *sec_entries; /* SIT section-level cache */
192
193 /* for cost-benefit algorithm in cleaning procedure */
194 unsigned long long elapsed_time; /* elapsed time after mount */
195 unsigned long long mounted_time; /* mount time */
196 unsigned long long min_mtime; /* min. modification time */
197 unsigned long long max_mtime; /* max. modification time */
198};
199
200struct free_segmap_info {
201 unsigned int start_segno; /* start segment number logically */
202 unsigned int free_segments; /* # of free segments */
203 unsigned int free_sections; /* # of free sections */
204 rwlock_t segmap_lock; /* free segmap lock */
205 unsigned long *free_segmap; /* free segment bitmap */
206 unsigned long *free_secmap; /* free section bitmap */
207};
208
209/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
210enum dirty_type {
211 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
212 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
213 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
214 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
215 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
216 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
217 DIRTY, /* to count # of dirty segments */
218 PRE, /* to count # of entirely obsolete segments */
219 NR_DIRTY_TYPE
220};
221
222struct dirty_seglist_info {
223 const struct victim_selection *v_ops; /* victim selction operation */
224 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
225 struct mutex seglist_lock; /* lock for segment bitmaps */
226 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +0900227 unsigned long *victim_secmap; /* background GC victims */
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900228};
229
230/* victim selection function for cleaning and SSR */
231struct victim_selection {
232 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
233 int, int, char);
234};
235
236/* for active log information */
237struct curseg_info {
238 struct mutex curseg_mutex; /* lock for consistency */
239 struct f2fs_summary_block *sum_blk; /* cached summary block */
240 unsigned char alloc_type; /* current allocation type */
241 unsigned int segno; /* current segment number */
242 unsigned short next_blkoff; /* next block offset to write */
243 unsigned int zone; /* current zone number */
244 unsigned int next_segno; /* preallocated segment */
245};
246
247/*
248 * inline functions
249 */
250static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
251{
252 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
253}
254
255static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
256 unsigned int segno)
257{
258 struct sit_info *sit_i = SIT_I(sbi);
259 return &sit_i->sentries[segno];
260}
261
262static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
263 unsigned int segno)
264{
265 struct sit_info *sit_i = SIT_I(sbi);
266 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
267}
268
269static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
270 unsigned int segno, int section)
271{
272 /*
273 * In order to get # of valid blocks in a section instantly from many
274 * segments, f2fs manages two counting structures separately.
275 */
276 if (section > 1)
277 return get_sec_entry(sbi, segno)->valid_blocks;
278 else
279 return get_seg_entry(sbi, segno)->valid_blocks;
280}
281
282static inline void seg_info_from_raw_sit(struct seg_entry *se,
283 struct f2fs_sit_entry *rs)
284{
285 se->valid_blocks = GET_SIT_VBLOCKS(rs);
286 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
287 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
289 se->type = GET_SIT_TYPE(rs);
290 se->mtime = le64_to_cpu(rs->mtime);
291}
292
293static inline void seg_info_to_raw_sit(struct seg_entry *se,
294 struct f2fs_sit_entry *rs)
295{
296 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
297 se->valid_blocks;
298 rs->vblocks = cpu_to_le16(raw_vblocks);
299 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 se->ckpt_valid_blocks = se->valid_blocks;
302 rs->mtime = cpu_to_le64(se->mtime);
303}
304
305static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
306 unsigned int max, unsigned int segno)
307{
308 unsigned int ret;
309 read_lock(&free_i->segmap_lock);
310 ret = find_next_bit(free_i->free_segmap, max, segno);
311 read_unlock(&free_i->segmap_lock);
312 return ret;
313}
314
315static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
316{
317 struct free_segmap_info *free_i = FREE_I(sbi);
318 unsigned int secno = segno / sbi->segs_per_sec;
319 unsigned int start_segno = secno * sbi->segs_per_sec;
320 unsigned int next;
321
322 write_lock(&free_i->segmap_lock);
323 clear_bit(segno, free_i->free_segmap);
324 free_i->free_segments++;
325
326 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
327 if (next >= start_segno + sbi->segs_per_sec) {
328 clear_bit(secno, free_i->free_secmap);
329 free_i->free_sections++;
330 }
331 write_unlock(&free_i->segmap_lock);
332}
333
334static inline void __set_inuse(struct f2fs_sb_info *sbi,
335 unsigned int segno)
336{
337 struct free_segmap_info *free_i = FREE_I(sbi);
338 unsigned int secno = segno / sbi->segs_per_sec;
339 set_bit(segno, free_i->free_segmap);
340 free_i->free_segments--;
341 if (!test_and_set_bit(secno, free_i->free_secmap))
342 free_i->free_sections--;
343}
344
345static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
346 unsigned int segno)
347{
348 struct free_segmap_info *free_i = FREE_I(sbi);
349 unsigned int secno = segno / sbi->segs_per_sec;
350 unsigned int start_segno = secno * sbi->segs_per_sec;
351 unsigned int next;
352
353 write_lock(&free_i->segmap_lock);
354 if (test_and_clear_bit(segno, free_i->free_segmap)) {
355 free_i->free_segments++;
356
357 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
358 start_segno);
359 if (next >= start_segno + sbi->segs_per_sec) {
360 if (test_and_clear_bit(secno, free_i->free_secmap))
361 free_i->free_sections++;
362 }
363 }
364 write_unlock(&free_i->segmap_lock);
365}
366
367static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
368 unsigned int segno)
369{
370 struct free_segmap_info *free_i = FREE_I(sbi);
371 unsigned int secno = segno / sbi->segs_per_sec;
372 write_lock(&free_i->segmap_lock);
373 if (!test_and_set_bit(segno, free_i->free_segmap)) {
374 free_i->free_segments--;
375 if (!test_and_set_bit(secno, free_i->free_secmap))
376 free_i->free_sections--;
377 }
378 write_unlock(&free_i->segmap_lock);
379}
380
381static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
382 void *dst_addr)
383{
384 struct sit_info *sit_i = SIT_I(sbi);
385 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
386}
387
388static inline block_t written_block_count(struct f2fs_sb_info *sbi)
389{
390 struct sit_info *sit_i = SIT_I(sbi);
391 block_t vblocks;
392
393 mutex_lock(&sit_i->sentry_lock);
394 vblocks = sit_i->written_valid_blocks;
395 mutex_unlock(&sit_i->sentry_lock);
396
397 return vblocks;
398}
399
400static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
401{
402 struct free_segmap_info *free_i = FREE_I(sbi);
403 unsigned int free_segs;
404
405 read_lock(&free_i->segmap_lock);
406 free_segs = free_i->free_segments;
407 read_unlock(&free_i->segmap_lock);
408
409 return free_segs;
410}
411
412static inline int reserved_segments(struct f2fs_sb_info *sbi)
413{
414 return SM_I(sbi)->reserved_segments;
415}
416
417static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
418{
419 struct free_segmap_info *free_i = FREE_I(sbi);
420 unsigned int free_secs;
421
422 read_lock(&free_i->segmap_lock);
423 free_secs = free_i->free_sections;
424 read_unlock(&free_i->segmap_lock);
425
426 return free_secs;
427}
428
429static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
430{
431 return DIRTY_I(sbi)->nr_dirty[PRE];
432}
433
434static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
435{
436 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
437 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
438 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
439 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
440 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
441 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
442}
443
444static inline int overprovision_segments(struct f2fs_sb_info *sbi)
445{
446 return SM_I(sbi)->ovp_segments;
447}
448
449static inline int overprovision_sections(struct f2fs_sb_info *sbi)
450{
451 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
452}
453
454static inline int reserved_sections(struct f2fs_sb_info *sbi)
455{
456 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
457}
458
459static inline bool need_SSR(struct f2fs_sb_info *sbi)
460{
Jaegeuk Kimc34e3332013-09-03 09:46:45 +0900461 return ((prefree_segments(sbi) / sbi->segs_per_sec)
462 + free_sections(sbi) < overprovision_sections(sbi));
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900463}
464
Jaegeuk Kim43727522013-02-04 15:11:17 +0900465static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900466{
Namjae Jeon5ac206c2013-02-02 23:52:59 +0900467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
Jaegeuk Kim43727522013-02-04 15:11:17 +0900469
Jaegeuk Kim029cd282012-12-21 17:20:21 +0900470 if (sbi->por_doing)
471 return false;
472
Jaegeuk Kim43727522013-02-04 15:11:17 +0900473 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
Namjae Jeonb1f1daf2013-02-02 23:53:15 +0900474 reserved_sections(sbi)));
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900475}
476
Jaegeuk Kim81eb8d62013-10-24 13:31:34 +0900477static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
478{
479 return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
480}
481
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900482static inline int utilization(struct f2fs_sb_info *sbi)
483{
Jaegeuk Kim222cbdc2013-09-03 13:41:37 +0900484 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900485}
486
487/*
488 * Sometimes f2fs may be better to drop out-of-place update policy.
489 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
490 * data in the original place likewise other traditional file systems.
491 * But, currently set 100 in percentage, which means it is disabled.
492 * See below need_inplace_update().
493 */
494#define MIN_IPU_UTIL 100
495static inline bool need_inplace_update(struct inode *inode)
496{
497 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
498 if (S_ISDIR(inode->i_mode))
499 return false;
500 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
501 return true;
502 return false;
503}
504
505static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
506 int type)
507{
508 struct curseg_info *curseg = CURSEG_I(sbi, type);
509 return curseg->segno;
510}
511
512static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
513 int type)
514{
515 struct curseg_info *curseg = CURSEG_I(sbi, type);
516 return curseg->alloc_type;
517}
518
519static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
520{
521 struct curseg_info *curseg = CURSEG_I(sbi, type);
522 return curseg->next_blkoff;
523}
524
Jaegeuk Kim5d56b672013-10-29 15:14:54 +0900525#ifdef CONFIG_F2FS_CHECK_FS
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900526static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
527{
528 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
529 BUG_ON(segno > end_segno);
530}
531
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900532static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
533{
534 struct f2fs_sm_info *sm_info = SM_I(sbi);
535 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
536 block_t start_addr = sm_info->seg0_blkaddr;
537 block_t end_addr = start_addr + total_blks - 1;
538 BUG_ON(blk_addr < start_addr);
539 BUG_ON(blk_addr > end_addr);
540}
541
542/*
543 * Summary block is always treated as invalid block
544 */
545static inline void check_block_count(struct f2fs_sb_info *sbi,
546 int segno, struct f2fs_sit_entry *raw_sit)
547{
548 struct f2fs_sm_info *sm_info = SM_I(sbi);
549 unsigned int end_segno = sm_info->segment_count - 1;
Chao Yu44c60bf2013-10-29 14:50:40 +0800550 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900551 int valid_blocks = 0;
Chao Yu44c60bf2013-10-29 14:50:40 +0800552 int cur_pos = 0, next_pos;
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900553
554 /* check segment usage */
555 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
556
557 /* check boundary of a given segment number */
558 BUG_ON(segno > end_segno);
559
560 /* check bitmap with valid block count */
Chao Yu44c60bf2013-10-29 14:50:40 +0800561 do {
562 if (is_valid) {
563 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
564 sbi->blocks_per_seg,
565 cur_pos);
566 valid_blocks += next_pos - cur_pos;
567 } else
568 next_pos = find_next_bit_le(&raw_sit->valid_map,
569 sbi->blocks_per_seg,
570 cur_pos);
571 cur_pos = next_pos;
572 is_valid = !is_valid;
573 } while (cur_pos < sbi->blocks_per_seg);
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900574 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
575}
Jaegeuk Kim5d56b672013-10-29 15:14:54 +0900576#else
577#define check_seg_range(sbi, segno)
578#define verify_block_addr(sbi, blk_addr)
579#define check_block_count(sbi, segno, raw_sit)
580#endif
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900581
582static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
583 unsigned int start)
584{
585 struct sit_info *sit_i = SIT_I(sbi);
586 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
587 block_t blk_addr = sit_i->sit_base_addr + offset;
588
589 check_seg_range(sbi, start);
590
591 /* calculate sit block address */
592 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
593 blk_addr += sit_i->sit_blocks;
594
595 return blk_addr;
596}
597
598static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
599 pgoff_t block_addr)
600{
601 struct sit_info *sit_i = SIT_I(sbi);
602 block_addr -= sit_i->sit_base_addr;
603 if (block_addr < sit_i->sit_blocks)
604 block_addr += sit_i->sit_blocks;
605 else
606 block_addr -= sit_i->sit_blocks;
607
608 return block_addr + sit_i->sit_base_addr;
609}
610
611static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
612{
613 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
614
615 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
616 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
617 else
618 f2fs_set_bit(block_off, sit_i->sit_bitmap);
619}
620
621static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
622{
623 struct sit_info *sit_i = SIT_I(sbi);
624 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
625 sit_i->mounted_time;
626}
627
628static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
629 unsigned int ofs_in_node, unsigned char version)
630{
631 sum->nid = cpu_to_le32(nid);
632 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
633 sum->version = version;
634}
635
636static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
637{
638 return __start_cp_addr(sbi) +
639 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
640}
641
642static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
643{
644 return __start_cp_addr(sbi) +
645 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
646 - (base + 1) + type;
647}
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +0900648
649static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
650{
651 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
652 return true;
653 return false;
654}
Jaegeuk Kimac5d1562013-04-29 16:58:39 +0900655
656static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
657{
658 struct block_device *bdev = sbi->sb->s_bdev;
659 struct request_queue *q = bdev_get_queue(bdev);
660 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
661}