blob: 994bb7bd7b700c8dbe37d6968f04101ab0b6190a [file] [log] [blame]
Jaegeuk Kim0a8165d2012-11-29 13:28:09 +09001/*
Jaegeuk Kim39a53e02012-11-28 13:37:31 +09002 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* constant macro */
12#define NULL_SEGNO ((unsigned int)(~0))
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +090013#define NULL_SECNO ((unsigned int)(~0))
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090014
15/* V: Logical segment # in volume, R: Relative segment # in main area */
16#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
17#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
18
19#define IS_DATASEG(t) \
20 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
21 (t == CURSEG_WARM_DATA))
22
23#define IS_NODESEG(t) \
24 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
25 (t == CURSEG_WARM_NODE))
26
Jaegeuk Kim5c773ba2013-03-31 12:30:04 +090027#define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090034
35#define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49#define START_BLOCK(sbi, segno) \
50 (SM_I(sbi)->seg0_blkaddr + \
51 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
52#define NEXT_FREE_BLKADDR(sbi, curseg) \
53 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
54
55#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
56
57#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
58 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
59#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
60 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
61#define GET_SEGNO(sbi, blk_addr) \
62 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
63 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
64 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
65#define GET_SECNO(sbi, segno) \
66 ((segno) / sbi->segs_per_sec)
67#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
68 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
69
70#define GET_SUM_BLOCK(sbi, segno) \
71 ((sbi->sm_info->ssa_blkaddr) + segno)
72
73#define GET_SUM_TYPE(footer) ((footer)->entry_type)
74#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
75
76#define SIT_ENTRY_OFFSET(sit_i, segno) \
77 (segno % sit_i->sents_per_block)
78#define SIT_BLOCK_OFFSET(sit_i, segno) \
79 (segno / SIT_ENTRY_PER_BLOCK)
80#define START_SEGNO(sit_i, segno) \
81 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
82#define f2fs_bitmap_size(nr) \
83 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
84#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
Jaegeuk Kim53cf9522013-03-31 12:39:49 +090085#define TOTAL_SECS(sbi) (sbi->total_sections)
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090086
Jaegeuk Kim3cd8a232012-12-10 09:26:05 +090087#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
88 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
89
Jaegeuk Kim39a53e02012-11-28 13:37:31 +090090/* during checkpoint, bio_private is used to synchronize the last bio */
91struct bio_private {
92 struct f2fs_sb_info *sbi;
93 bool is_sync;
94 void *wait;
95};
96
97/*
98 * indicate a block allocation direction: RIGHT and LEFT.
99 * RIGHT means allocating new sections towards the end of volume.
100 * LEFT means the opposite direction.
101 */
102enum {
103 ALLOC_RIGHT = 0,
104 ALLOC_LEFT
105};
106
107/*
108 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
109 * LFS writes data sequentially with cleaning operations.
110 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
111 */
112enum {
113 LFS = 0,
114 SSR
115};
116
117/*
118 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
119 * GC_CB is based on cost-benefit algorithm.
120 * GC_GREEDY is based on greedy algorithm.
121 */
122enum {
123 GC_CB = 0,
124 GC_GREEDY
125};
126
127/*
128 * BG_GC means the background cleaning job.
129 * FG_GC means the on-demand cleaning job.
130 */
131enum {
132 BG_GC = 0,
133 FG_GC
134};
135
136/* for a function parameter to select a victim segment */
137struct victim_sel_policy {
138 int alloc_mode; /* LFS or SSR */
139 int gc_mode; /* GC_CB or GC_GREEDY */
140 unsigned long *dirty_segmap; /* dirty segment bitmap */
141 unsigned int offset; /* last scanned bitmap offset */
142 unsigned int ofs_unit; /* bitmap search unit */
143 unsigned int min_cost; /* minimum cost */
144 unsigned int min_segno; /* segment # having min. cost */
145};
146
147struct seg_entry {
148 unsigned short valid_blocks; /* # of valid blocks */
149 unsigned char *cur_valid_map; /* validity bitmap of blocks */
150 /*
151 * # of valid blocks and the validity bitmap stored in the the last
152 * checkpoint pack. This information is used by the SSR mode.
153 */
154 unsigned short ckpt_valid_blocks;
155 unsigned char *ckpt_valid_map;
156 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
157 unsigned long long mtime; /* modification time of the segment */
158};
159
160struct sec_entry {
161 unsigned int valid_blocks; /* # of valid blocks in a section */
162};
163
164struct segment_allocation {
165 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
166};
167
168struct sit_info {
169 const struct segment_allocation *s_ops;
170
171 block_t sit_base_addr; /* start block address of SIT area */
172 block_t sit_blocks; /* # of blocks used by SIT area */
173 block_t written_valid_blocks; /* # of valid blocks in main area */
174 char *sit_bitmap; /* SIT bitmap pointer */
175 unsigned int bitmap_size; /* SIT bitmap size */
176
177 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
178 unsigned int dirty_sentries; /* # of dirty sentries */
179 unsigned int sents_per_block; /* # of SIT entries per block */
180 struct mutex sentry_lock; /* to protect SIT cache */
181 struct seg_entry *sentries; /* SIT segment-level cache */
182 struct sec_entry *sec_entries; /* SIT section-level cache */
183
184 /* for cost-benefit algorithm in cleaning procedure */
185 unsigned long long elapsed_time; /* elapsed time after mount */
186 unsigned long long mounted_time; /* mount time */
187 unsigned long long min_mtime; /* min. modification time */
188 unsigned long long max_mtime; /* max. modification time */
189};
190
191struct free_segmap_info {
192 unsigned int start_segno; /* start segment number logically */
193 unsigned int free_segments; /* # of free segments */
194 unsigned int free_sections; /* # of free sections */
195 rwlock_t segmap_lock; /* free segmap lock */
196 unsigned long *free_segmap; /* free segment bitmap */
197 unsigned long *free_secmap; /* free section bitmap */
198};
199
200/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
201enum dirty_type {
202 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
203 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
204 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
205 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
206 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
207 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
208 DIRTY, /* to count # of dirty segments */
209 PRE, /* to count # of entirely obsolete segments */
210 NR_DIRTY_TYPE
211};
212
213struct dirty_seglist_info {
214 const struct victim_selection *v_ops; /* victim selction operation */
215 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
216 struct mutex seglist_lock; /* lock for segment bitmaps */
217 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +0900218 unsigned long *victim_secmap; /* background GC victims */
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900219};
220
221/* victim selection function for cleaning and SSR */
222struct victim_selection {
223 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
224 int, int, char);
225};
226
227/* for active log information */
228struct curseg_info {
229 struct mutex curseg_mutex; /* lock for consistency */
230 struct f2fs_summary_block *sum_blk; /* cached summary block */
231 unsigned char alloc_type; /* current allocation type */
232 unsigned int segno; /* current segment number */
233 unsigned short next_blkoff; /* next block offset to write */
234 unsigned int zone; /* current zone number */
235 unsigned int next_segno; /* preallocated segment */
236};
237
238/*
239 * inline functions
240 */
241static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
242{
243 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
244}
245
246static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
247 unsigned int segno)
248{
249 struct sit_info *sit_i = SIT_I(sbi);
250 return &sit_i->sentries[segno];
251}
252
253static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
254 unsigned int segno)
255{
256 struct sit_info *sit_i = SIT_I(sbi);
257 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
258}
259
260static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
261 unsigned int segno, int section)
262{
263 /*
264 * In order to get # of valid blocks in a section instantly from many
265 * segments, f2fs manages two counting structures separately.
266 */
267 if (section > 1)
268 return get_sec_entry(sbi, segno)->valid_blocks;
269 else
270 return get_seg_entry(sbi, segno)->valid_blocks;
271}
272
273static inline void seg_info_from_raw_sit(struct seg_entry *se,
274 struct f2fs_sit_entry *rs)
275{
276 se->valid_blocks = GET_SIT_VBLOCKS(rs);
277 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
278 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
280 se->type = GET_SIT_TYPE(rs);
281 se->mtime = le64_to_cpu(rs->mtime);
282}
283
284static inline void seg_info_to_raw_sit(struct seg_entry *se,
285 struct f2fs_sit_entry *rs)
286{
287 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
288 se->valid_blocks;
289 rs->vblocks = cpu_to_le16(raw_vblocks);
290 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
291 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
292 se->ckpt_valid_blocks = se->valid_blocks;
293 rs->mtime = cpu_to_le64(se->mtime);
294}
295
296static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
297 unsigned int max, unsigned int segno)
298{
299 unsigned int ret;
300 read_lock(&free_i->segmap_lock);
301 ret = find_next_bit(free_i->free_segmap, max, segno);
302 read_unlock(&free_i->segmap_lock);
303 return ret;
304}
305
306static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
307{
308 struct free_segmap_info *free_i = FREE_I(sbi);
309 unsigned int secno = segno / sbi->segs_per_sec;
310 unsigned int start_segno = secno * sbi->segs_per_sec;
311 unsigned int next;
312
313 write_lock(&free_i->segmap_lock);
314 clear_bit(segno, free_i->free_segmap);
315 free_i->free_segments++;
316
317 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
318 if (next >= start_segno + sbi->segs_per_sec) {
319 clear_bit(secno, free_i->free_secmap);
320 free_i->free_sections++;
321 }
322 write_unlock(&free_i->segmap_lock);
323}
324
325static inline void __set_inuse(struct f2fs_sb_info *sbi,
326 unsigned int segno)
327{
328 struct free_segmap_info *free_i = FREE_I(sbi);
329 unsigned int secno = segno / sbi->segs_per_sec;
330 set_bit(segno, free_i->free_segmap);
331 free_i->free_segments--;
332 if (!test_and_set_bit(secno, free_i->free_secmap))
333 free_i->free_sections--;
334}
335
336static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
337 unsigned int segno)
338{
339 struct free_segmap_info *free_i = FREE_I(sbi);
340 unsigned int secno = segno / sbi->segs_per_sec;
341 unsigned int start_segno = secno * sbi->segs_per_sec;
342 unsigned int next;
343
344 write_lock(&free_i->segmap_lock);
345 if (test_and_clear_bit(segno, free_i->free_segmap)) {
346 free_i->free_segments++;
347
348 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
349 start_segno);
350 if (next >= start_segno + sbi->segs_per_sec) {
351 if (test_and_clear_bit(secno, free_i->free_secmap))
352 free_i->free_sections++;
353 }
354 }
355 write_unlock(&free_i->segmap_lock);
356}
357
358static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
359 unsigned int segno)
360{
361 struct free_segmap_info *free_i = FREE_I(sbi);
362 unsigned int secno = segno / sbi->segs_per_sec;
363 write_lock(&free_i->segmap_lock);
364 if (!test_and_set_bit(segno, free_i->free_segmap)) {
365 free_i->free_segments--;
366 if (!test_and_set_bit(secno, free_i->free_secmap))
367 free_i->free_sections--;
368 }
369 write_unlock(&free_i->segmap_lock);
370}
371
372static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
373 void *dst_addr)
374{
375 struct sit_info *sit_i = SIT_I(sbi);
376 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
377}
378
379static inline block_t written_block_count(struct f2fs_sb_info *sbi)
380{
381 struct sit_info *sit_i = SIT_I(sbi);
382 block_t vblocks;
383
384 mutex_lock(&sit_i->sentry_lock);
385 vblocks = sit_i->written_valid_blocks;
386 mutex_unlock(&sit_i->sentry_lock);
387
388 return vblocks;
389}
390
391static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
392{
393 struct free_segmap_info *free_i = FREE_I(sbi);
394 unsigned int free_segs;
395
396 read_lock(&free_i->segmap_lock);
397 free_segs = free_i->free_segments;
398 read_unlock(&free_i->segmap_lock);
399
400 return free_segs;
401}
402
403static inline int reserved_segments(struct f2fs_sb_info *sbi)
404{
405 return SM_I(sbi)->reserved_segments;
406}
407
408static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
409{
410 struct free_segmap_info *free_i = FREE_I(sbi);
411 unsigned int free_secs;
412
413 read_lock(&free_i->segmap_lock);
414 free_secs = free_i->free_sections;
415 read_unlock(&free_i->segmap_lock);
416
417 return free_secs;
418}
419
420static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
421{
422 return DIRTY_I(sbi)->nr_dirty[PRE];
423}
424
425static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
426{
427 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
428 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
429 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
433}
434
435static inline int overprovision_segments(struct f2fs_sb_info *sbi)
436{
437 return SM_I(sbi)->ovp_segments;
438}
439
440static inline int overprovision_sections(struct f2fs_sb_info *sbi)
441{
442 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
443}
444
445static inline int reserved_sections(struct f2fs_sb_info *sbi)
446{
447 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
448}
449
450static inline bool need_SSR(struct f2fs_sb_info *sbi)
451{
452 return (free_sections(sbi) < overprovision_sections(sbi));
453}
454
Jaegeuk Kim43727522013-02-04 15:11:17 +0900455static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900456{
Namjae Jeon5ac206c2013-02-02 23:52:59 +0900457 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
Jaegeuk Kim43727522013-02-04 15:11:17 +0900459
Jaegeuk Kim029cd282012-12-21 17:20:21 +0900460 if (sbi->por_doing)
461 return false;
462
Jaegeuk Kim43727522013-02-04 15:11:17 +0900463 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
Namjae Jeonb1f1daf2013-02-02 23:53:15 +0900464 reserved_sections(sbi)));
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900465}
466
467static inline int utilization(struct f2fs_sb_info *sbi)
468{
Changman Lee12fc7602013-02-25 17:38:02 +0900469 return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
Jaegeuk Kim39a53e02012-11-28 13:37:31 +0900470}
471
472/*
473 * Sometimes f2fs may be better to drop out-of-place update policy.
474 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
475 * data in the original place likewise other traditional file systems.
476 * But, currently set 100 in percentage, which means it is disabled.
477 * See below need_inplace_update().
478 */
479#define MIN_IPU_UTIL 100
480static inline bool need_inplace_update(struct inode *inode)
481{
482 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
483 if (S_ISDIR(inode->i_mode))
484 return false;
485 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
486 return true;
487 return false;
488}
489
490static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
491 int type)
492{
493 struct curseg_info *curseg = CURSEG_I(sbi, type);
494 return curseg->segno;
495}
496
497static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
498 int type)
499{
500 struct curseg_info *curseg = CURSEG_I(sbi, type);
501 return curseg->alloc_type;
502}
503
504static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
505{
506 struct curseg_info *curseg = CURSEG_I(sbi, type);
507 return curseg->next_blkoff;
508}
509
510static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
511{
512 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
513 BUG_ON(segno > end_segno);
514}
515
516/*
517 * This function is used for only debugging.
518 * NOTE: In future, we have to remove this function.
519 */
520static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
521{
522 struct f2fs_sm_info *sm_info = SM_I(sbi);
523 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
524 block_t start_addr = sm_info->seg0_blkaddr;
525 block_t end_addr = start_addr + total_blks - 1;
526 BUG_ON(blk_addr < start_addr);
527 BUG_ON(blk_addr > end_addr);
528}
529
530/*
531 * Summary block is always treated as invalid block
532 */
533static inline void check_block_count(struct f2fs_sb_info *sbi,
534 int segno, struct f2fs_sit_entry *raw_sit)
535{
536 struct f2fs_sm_info *sm_info = SM_I(sbi);
537 unsigned int end_segno = sm_info->segment_count - 1;
538 int valid_blocks = 0;
539 int i;
540
541 /* check segment usage */
542 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
543
544 /* check boundary of a given segment number */
545 BUG_ON(segno > end_segno);
546
547 /* check bitmap with valid block count */
548 for (i = 0; i < sbi->blocks_per_seg; i++)
549 if (f2fs_test_bit(i, raw_sit->valid_map))
550 valid_blocks++;
551 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
552}
553
554static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
555 unsigned int start)
556{
557 struct sit_info *sit_i = SIT_I(sbi);
558 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
559 block_t blk_addr = sit_i->sit_base_addr + offset;
560
561 check_seg_range(sbi, start);
562
563 /* calculate sit block address */
564 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
565 blk_addr += sit_i->sit_blocks;
566
567 return blk_addr;
568}
569
570static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
571 pgoff_t block_addr)
572{
573 struct sit_info *sit_i = SIT_I(sbi);
574 block_addr -= sit_i->sit_base_addr;
575 if (block_addr < sit_i->sit_blocks)
576 block_addr += sit_i->sit_blocks;
577 else
578 block_addr -= sit_i->sit_blocks;
579
580 return block_addr + sit_i->sit_base_addr;
581}
582
583static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
584{
585 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
586
587 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
588 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
589 else
590 f2fs_set_bit(block_off, sit_i->sit_bitmap);
591}
592
593static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
594{
595 struct sit_info *sit_i = SIT_I(sbi);
596 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
597 sit_i->mounted_time;
598}
599
600static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
601 unsigned int ofs_in_node, unsigned char version)
602{
603 sum->nid = cpu_to_le32(nid);
604 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
605 sum->version = version;
606}
607
608static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
609{
610 return __start_cp_addr(sbi) +
611 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
612}
613
614static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
615{
616 return __start_cp_addr(sbi) +
617 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
618 - (base + 1) + type;
619}
Jaegeuk Kim5ec4e492013-03-31 13:26:03 +0900620
621static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
622{
623 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
624 return true;
625 return false;
626}