blob: 238a76957e86cc6c9ae982ba85db87159662fea5 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
Ingo Molnarc31f2e82007-07-09 18:52:01 +020019 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020031#include <linux/uaccess.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080036#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/completion.h>
38#include <linux/kernel_stat.h>
Ingo Molnar9a11b49a2006-07-03 00:24:33 -070039#include <linux/debug_locks.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
Nigel Cunningham7dfb7102006-12-06 20:34:23 -080043#include <linux/freezer.h>
akpm@osdl.org198e2f12006-01-12 01:05:30 -080044#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
Nick Piggine692ab52007-07-26 13:40:43 +020056#include <linux/sysctl.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070057#include <linux/syscalls.h>
58#include <linux/times.h>
Jay Lan8f0ab512006-09-30 23:28:59 -070059#include <linux/tsacct_kern.h>
bibo maoc6fd91f2006-03-26 01:38:20 -080060#include <linux/kprobes.h>
Shailabh Nagar0ff92242006-07-14 00:24:37 -070061#include <linux/delayacct.h>
Eric Dumazet5517d862007-05-08 00:32:57 -070062#include <linux/reciprocal_div.h>
Ingo Molnardff06c12007-07-09 18:52:00 +020063#include <linux/unistd.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
Eric Dumazet5517d862007-05-08 00:32:57 -070065#include <asm/tlb.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070066
67/*
Alexey Dobriyanb035b6d2007-02-10 01:45:10 -080068 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
77/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070078 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
Peter Williams2dd73a42006-06-27 02:54:34 -0700113
Eric Dumazet5517d862007-05-08 00:32:57 -0700114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
Borislav Petkov91fcdd42006-10-19 23:28:29 -0700137
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200138/*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142static unsigned int static_prio_timeslice(int static_prio)
Peter Williams2dd73a42006-06-27 02:54:34 -0700143{
Ingo Molnar634fa8c2007-07-09 18:52:00 +0200144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
Peter Williams2dd73a42006-06-27 02:54:34 -0700151}
152
Ingo Molnare05606d2007-07-09 18:51:59 +0200153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165/*
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200166 * This is the priority-queue data structure of the RT scheduling class:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 */
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
210
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
218/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700225struct rq {
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200226 spinlock_t lock; /* runqueue lock */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
Siddha, Suresh Bbdecea32007-05-08 00:32:48 -0700235 unsigned char idle_at_tick;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -0700236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246#endif
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200247 struct rt_rq rt;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
Ingo Molnar36c8b582006-07-03 00:25:41 -0700257 struct task_struct *curr, *idle;
Christoph Lameterc9819f42006-12-10 02:20:25 -0800258 unsigned long next_balance;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 struct mm_struct *prev_mm;
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200260
Ingo Molnar6aa645e2007-07-09 18:51:58 +0200261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700275 int cpu; /* cpu of this runqueue */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
Ingo Molnar36c8b582006-07-03 00:25:41 -0700277 struct task_struct *migration_thread;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
Ingo Molnarfcb99372006-07-03 00:25:10 -0700300 struct lock_class_key rq_lock_key;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Fenghua Yuf34e3b62007-07-19 01:48:13 -0700303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Gautham R Shenoy5be93612007-05-09 02:34:04 -0700304static DEFINE_MUTEX(sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700305
Ingo Molnardd41f592007-07-09 18:51:59 +0200306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
Christoph Lameter0a2966b2006-09-25 23:30:51 -0700311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
Nick Piggin674311d2005-06-25 14:57:27 -0700320/*
Ingo Molnar20d315d2007-07-09 18:51:58 +0200321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323static unsigned long long __rq_clock(struct rq *rq)
324{
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354}
355
356static inline unsigned long long rq_clock(struct rq *rq)
357{
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364}
365
366/*
Nick Piggin674311d2005-06-25 14:57:27 -0700367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -0700368 * See detach_destroy_domains: synchronize_sched for details.
Nick Piggin674311d2005-06-25 14:57:27 -0700369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
Ingo Molnar48f24c42006-07-03 00:25:40 -0700373#define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375
376#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377#define this_rq() (&__get_cpu_var(runqueues))
378#define task_rq(p) cpu_rq(task_cpu(p))
379#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
Ingo Molnare436d802007-07-19 21:28:35 +0200381/*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385unsigned long long cpu_clock(int cpu)
386{
Ingo Molnare436d802007-07-19 21:28:35 +0200387 unsigned long long now;
388 unsigned long flags;
389
Ingo Molnar2cd4d0e2007-07-26 13:40:43 +0200390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
Ingo Molnare436d802007-07-19 21:28:35 +0200393
394 return now;
395}
396
Ingo Molnar138a8ae2007-07-09 18:51:58 +0200397#ifdef CONFIG_FAIR_GROUP_SCHED
398/* Change a task's ->cfs_rq if it moves across CPUs */
399static inline void set_task_cfs_rq(struct task_struct *p)
400{
401 p->se.cfs_rq = &task_rq(p)->cfs;
402}
403#else
404static inline void set_task_cfs_rq(struct task_struct *p)
405{
406}
407#endif
408
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409#ifndef prepare_arch_switch
Nick Piggin4866cde2005-06-25 14:57:23 -0700410# define prepare_arch_switch(next) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411#endif
Nick Piggin4866cde2005-06-25 14:57:23 -0700412#ifndef finish_arch_switch
413# define finish_arch_switch(prev) do { } while (0)
414#endif
415
416#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar70b97a72006-07-03 00:25:42 -0700417static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700418{
419 return rq->curr == p;
420}
421
Ingo Molnar70b97a72006-07-03 00:25:42 -0700422static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700423{
424}
425
Ingo Molnar70b97a72006-07-03 00:25:42 -0700426static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700427{
Ingo Molnarda04c032005-09-13 11:17:59 +0200428#ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431#endif
Ingo Molnar8a25d5d2006-07-03 00:24:54 -0700432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
Nick Piggin4866cde2005-06-25 14:57:23 -0700439 spin_unlock_irq(&rq->lock);
440}
441
442#else /* __ARCH_WANT_UNLOCKED_CTXSW */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700443static inline int task_running(struct rq *rq, struct task_struct *p)
Nick Piggin4866cde2005-06-25 14:57:23 -0700444{
445#ifdef CONFIG_SMP
446 return p->oncpu;
447#else
448 return rq->curr == p;
449#endif
450}
451
Ingo Molnar70b97a72006-07-03 00:25:42 -0700452static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -0700453{
454#ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461#endif
462#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464#else
465 spin_unlock(&rq->lock);
466#endif
467}
468
Ingo Molnar70b97a72006-07-03 00:25:42 -0700469static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
Nick Piggin4866cde2005-06-25 14:57:23 -0700470{
471#ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479#endif
480#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
482#endif
483}
484#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700485
486/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700490static inline struct rq *__task_rq_lock(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700491 __acquires(rq->lock)
492{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700493 struct rq *rq;
Ingo Molnarb29739f2006-06-27 02:54:51 -0700494
495repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503}
504
505/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700510static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 __acquires(rq->lock)
512{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700513 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514
515repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524}
525
Ingo Molnar70b97a72006-07-03 00:25:42 -0700526static inline void __task_rq_unlock(struct rq *rq)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700527 __releases(rq->lock)
528{
529 spin_unlock(&rq->lock);
530}
531
Ingo Molnar70b97a72006-07-03 00:25:42 -0700532static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 __releases(rq->lock)
534{
535 spin_unlock_irqrestore(&rq->lock, *flags);
536}
537
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538/*
Robert P. J. Daycc2a73b2006-12-10 02:20:00 -0800539 * this_rq_lock - lock this runqueue and disable interrupts.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540 */
Ingo Molnar70b97a72006-07-03 00:25:42 -0700541static inline struct rq *this_rq_lock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542 __acquires(rq->lock)
543{
Ingo Molnar70b97a72006-07-03 00:25:42 -0700544 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551}
552
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200553/*
Ingo Molnar1b9f19c2007-07-09 18:51:59 +0200554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556void sched_clock_unstable_event(void)
557{
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565}
566
567/*
Ingo Molnarc24d20d2007-07-09 18:51:59 +0200568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574#ifdef CONFIG_SMP
575
576#ifndef tsk_is_polling
577#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578#endif
579
580static void resched_task(struct task_struct *p)
581{
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599}
600
601static void resched_cpu(int cpu)
602{
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610}
611#else
612static inline void resched_task(struct task_struct *p)
613{
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616}
617#endif
618
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200619static u64 div64_likely32(u64 divident, unsigned long divisor)
620{
621#if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627#else
628 return divident / divisor;
629#endif
630}
631
632#if BITS_PER_LONG == 32
633# define WMULT_CONST (~0UL)
634#else
635# define WMULT_CONST (1UL << 32)
636#endif
637
638#define WMULT_SHIFT 32
639
640static inline unsigned long
641calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643{
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
660 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
661}
662
663static inline unsigned long
664calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665{
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667}
668
669static void update_load_add(struct load_weight *lw, unsigned long inc)
670{
671 lw->weight += inc;
672 lw->inv_weight = 0;
673}
674
675static void update_load_sub(struct load_weight *lw, unsigned long dec)
676{
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679}
680
681static void __update_curr_load(struct rq *rq, struct load_stat *ls)
682{
683 if (rq->curr != rq->idle && ls->load.weight) {
684 ls->delta_exec += ls->delta_stat;
685 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
686 ls->delta_stat = 0;
687 }
688}
689
690/*
691 * Update delta_exec, delta_fair fields for rq.
692 *
693 * delta_fair clock advances at a rate inversely proportional to
694 * total load (rq->ls.load.weight) on the runqueue, while
695 * delta_exec advances at the same rate as wall-clock (provided
696 * cpu is not idle).
697 *
698 * delta_exec / delta_fair is a measure of the (smoothened) load on this
699 * runqueue over any given interval. This (smoothened) load is used
700 * during load balance.
701 *
702 * This function is called /before/ updating rq->ls.load
703 * and when switching tasks.
704 */
705static void update_curr_load(struct rq *rq, u64 now)
706{
707 struct load_stat *ls = &rq->ls;
708 u64 start;
709
710 start = ls->load_update_start;
711 ls->load_update_start = now;
712 ls->delta_stat += now - start;
713 /*
714 * Stagger updates to ls->delta_fair. Very frequent updates
715 * can be expensive.
716 */
717 if (ls->delta_stat >= sysctl_sched_stat_granularity)
718 __update_curr_load(rq, ls);
719}
720
Linus Torvalds1da177e2005-04-16 15:20:36 -0700721/*
Peter Williams2dd73a42006-06-27 02:54:34 -0700722 * To aid in avoiding the subversion of "niceness" due to uneven distribution
723 * of tasks with abnormal "nice" values across CPUs the contribution that
724 * each task makes to its run queue's load is weighted according to its
725 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
726 * scaled version of the new time slice allocation that they receive on time
727 * slice expiry etc.
728 */
729
730/*
731 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
732 * If static_prio_timeslice() is ever changed to break this assumption then
733 * this code will need modification
734 */
735#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
Ingo Molnardd41f592007-07-09 18:51:59 +0200736#define load_weight(lp) \
Peter Williams2dd73a42006-06-27 02:54:34 -0700737 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
738#define PRIO_TO_LOAD_WEIGHT(prio) \
Ingo Molnardd41f592007-07-09 18:51:59 +0200739 load_weight(static_prio_timeslice(prio))
Peter Williams2dd73a42006-06-27 02:54:34 -0700740#define RTPRIO_TO_LOAD_WEIGHT(rp) \
Ingo Molnardd41f592007-07-09 18:51:59 +0200741 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
742
743#define WEIGHT_IDLEPRIO 2
744#define WMULT_IDLEPRIO (1 << 31)
745
746/*
747 * Nice levels are multiplicative, with a gentle 10% change for every
748 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
749 * nice 1, it will get ~10% less CPU time than another CPU-bound task
750 * that remained on nice 0.
751 *
752 * The "10% effect" is relative and cumulative: from _any_ nice level,
753 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
Ingo Molnarf9153ee2007-07-16 09:46:30 +0200754 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
755 * If a task goes up by ~10% and another task goes down by ~10% then
756 * the relative distance between them is ~25%.)
Ingo Molnardd41f592007-07-09 18:51:59 +0200757 */
758static const int prio_to_weight[40] = {
759/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
760/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
761/* 0 */ NICE_0_LOAD /* 1024 */,
762/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
763/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
764};
765
Ingo Molnar5714d2d2007-07-16 09:46:31 +0200766/*
767 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
768 *
769 * In cases where the weight does not change often, we can use the
770 * precalculated inverse to speed up arithmetics by turning divisions
771 * into multiplications:
772 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200773static const u32 prio_to_wmult[40] = {
Ingo Molnare4af30b2007-07-16 09:46:31 +0200774/* -20 */ 48356, 60446, 75558, 94446, 118058,
775/* -15 */ 147573, 184467, 230589, 288233, 360285,
776/* -10 */ 450347, 562979, 703746, 879575, 1099582,
777/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
778/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
779/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
780/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
781/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
Ingo Molnardd41f592007-07-09 18:51:59 +0200782};
Peter Williams2dd73a42006-06-27 02:54:34 -0700783
Ingo Molnar36c8b582006-07-03 00:25:41 -0700784static inline void
Ingo Molnardd41f592007-07-09 18:51:59 +0200785inc_load(struct rq *rq, const struct task_struct *p, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700786{
Ingo Molnardd41f592007-07-09 18:51:59 +0200787 update_curr_load(rq, now);
788 update_load_add(&rq->ls.load, p->se.load.weight);
Peter Williams2dd73a42006-06-27 02:54:34 -0700789}
790
Ingo Molnar36c8b582006-07-03 00:25:41 -0700791static inline void
Ingo Molnardd41f592007-07-09 18:51:59 +0200792dec_load(struct rq *rq, const struct task_struct *p, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700793{
Ingo Molnardd41f592007-07-09 18:51:59 +0200794 update_curr_load(rq, now);
795 update_load_sub(&rq->ls.load, p->se.load.weight);
Peter Williams2dd73a42006-06-27 02:54:34 -0700796}
797
Ingo Molnardd41f592007-07-09 18:51:59 +0200798static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700799{
800 rq->nr_running++;
Ingo Molnardd41f592007-07-09 18:51:59 +0200801 inc_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -0700802}
803
Ingo Molnardd41f592007-07-09 18:51:59 +0200804static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
Peter Williams2dd73a42006-06-27 02:54:34 -0700805{
806 rq->nr_running--;
Ingo Molnardd41f592007-07-09 18:51:59 +0200807 dec_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -0700808}
809
Ingo Molnardd41f592007-07-09 18:51:59 +0200810static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
811
812/*
813 * runqueue iterator, to support SMP load-balancing between different
814 * scheduling classes, without having to expose their internal data
815 * structures to the load-balancing proper:
816 */
817struct rq_iterator {
818 void *arg;
819 struct task_struct *(*start)(void *);
820 struct task_struct *(*next)(void *);
821};
822
823static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
824 unsigned long max_nr_move, unsigned long max_load_move,
825 struct sched_domain *sd, enum cpu_idle_type idle,
826 int *all_pinned, unsigned long *load_moved,
827 int this_best_prio, int best_prio, int best_prio_seen,
828 struct rq_iterator *iterator);
829
830#include "sched_stats.h"
831#include "sched_rt.c"
832#include "sched_fair.c"
833#include "sched_idletask.c"
834#ifdef CONFIG_SCHED_DEBUG
835# include "sched_debug.c"
836#endif
837
838#define sched_class_highest (&rt_sched_class)
839
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200840static void set_load_weight(struct task_struct *p)
841{
Ingo Molnardd41f592007-07-09 18:51:59 +0200842 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
843 p->se.wait_runtime = 0;
844
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200845 if (task_has_rt_policy(p)) {
Ingo Molnardd41f592007-07-09 18:51:59 +0200846 p->se.load.weight = prio_to_weight[0] * 2;
847 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
848 return;
849 }
850
851 /*
852 * SCHED_IDLE tasks get minimal weight:
853 */
854 if (p->policy == SCHED_IDLE) {
855 p->se.load.weight = WEIGHT_IDLEPRIO;
856 p->se.load.inv_weight = WMULT_IDLEPRIO;
857 return;
858 }
859
860 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
861 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
Ingo Molnar45bf76d2007-07-09 18:51:59 +0200862}
863
Ingo Molnardd41f592007-07-09 18:51:59 +0200864static void
865enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200866{
867 sched_info_queued(p);
Ingo Molnardd41f592007-07-09 18:51:59 +0200868 p->sched_class->enqueue_task(rq, p, wakeup, now);
869 p->se.on_rq = 1;
870}
871
872static void
873dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
874{
875 p->sched_class->dequeue_task(rq, p, sleep, now);
876 p->se.on_rq = 0;
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200877}
878
879/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200880 * __normal_prio - return the priority that is based on the static prio
Ingo Molnar71f8bd42007-07-09 18:51:59 +0200881 */
Ingo Molnar14531182007-07-09 18:51:59 +0200882static inline int __normal_prio(struct task_struct *p)
883{
Ingo Molnardd41f592007-07-09 18:51:59 +0200884 return p->static_prio;
Ingo Molnar14531182007-07-09 18:51:59 +0200885}
886
887/*
Ingo Molnarb29739f2006-06-27 02:54:51 -0700888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700894static inline int normal_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700895{
896 int prio;
897
Ingo Molnare05606d2007-07-09 18:51:59 +0200898 if (task_has_rt_policy(p))
Ingo Molnarb29739f2006-06-27 02:54:51 -0700899 prio = MAX_RT_PRIO-1 - p->rt_priority;
900 else
901 prio = __normal_prio(p);
902 return prio;
903}
904
905/*
906 * Calculate the current priority, i.e. the priority
907 * taken into account by the scheduler. This value might
908 * be boosted by RT tasks, or might be boosted by
909 * interactivity modifiers. Will be RT if the task got
910 * RT-boosted. If not then it returns p->normal_prio.
911 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700912static int effective_prio(struct task_struct *p)
Ingo Molnarb29739f2006-06-27 02:54:51 -0700913{
914 p->normal_prio = normal_prio(p);
915 /*
916 * If we are RT tasks or we were boosted to RT priority,
917 * keep the priority unchanged. Otherwise, update priority
918 * to the normal priority:
919 */
920 if (!rt_prio(p->prio))
921 return p->normal_prio;
922 return p->prio;
923}
924
925/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200926 * activate_task - move a task to the runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200928static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929{
Ingo Molnardd41f592007-07-09 18:51:59 +0200930 u64 now = rq_clock(rq);
Con Kolivasd425b272006-03-31 02:31:29 -0800931
Ingo Molnardd41f592007-07-09 18:51:59 +0200932 if (p->state == TASK_UNINTERRUPTIBLE)
933 rq->nr_uninterruptible--;
934
935 enqueue_task(rq, p, wakeup, now);
936 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937}
938
939/*
Ingo Molnardd41f592007-07-09 18:51:59 +0200940 * activate_idle_task - move idle task to the _front_ of runqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200942static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943{
Ingo Molnardd41f592007-07-09 18:51:59 +0200944 u64 now = rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945
Ingo Molnardd41f592007-07-09 18:51:59 +0200946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948
Ingo Molnardd41f592007-07-09 18:51:59 +0200949 enqueue_task(rq, p, 0, now);
950 inc_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951}
952
953/*
954 * deactivate_task - remove a task from the runqueue.
955 */
Ingo Molnardd41f592007-07-09 18:51:59 +0200956static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957{
Ingo Molnardd41f592007-07-09 18:51:59 +0200958 u64 now = rq_clock(rq);
959
960 if (p->state == TASK_UNINTERRUPTIBLE)
961 rq->nr_uninterruptible++;
962
963 dequeue_task(rq, p, sleep, now);
964 dec_nr_running(p, rq, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965}
966
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967/**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
970 */
Ingo Molnar36c8b582006-07-03 00:25:41 -0700971inline int task_curr(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
973 return cpu_curr(task_cpu(p)) == p;
974}
975
Peter Williams2dd73a42006-06-27 02:54:34 -0700976/* Used instead of source_load when we know the type == 0 */
977unsigned long weighted_cpuload(const int cpu)
978{
Ingo Molnardd41f592007-07-09 18:51:59 +0200979 return cpu_rq(cpu)->ls.load.weight;
980}
981
982static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
983{
984#ifdef CONFIG_SMP
985 task_thread_info(p)->cpu = cpu;
986 set_task_cfs_rq(p);
987#endif
Peter Williams2dd73a42006-06-27 02:54:34 -0700988}
989
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990#ifdef CONFIG_SMP
Ingo Molnarc65cc872007-07-09 18:51:58 +0200991
Ingo Molnardd41f592007-07-09 18:51:59 +0200992void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
Ingo Molnarc65cc872007-07-09 18:51:58 +0200993{
Ingo Molnardd41f592007-07-09 18:51:59 +0200994 int old_cpu = task_cpu(p);
995 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
996 u64 clock_offset, fair_clock_offset;
997
998 clock_offset = old_rq->clock - new_rq->clock;
999 fair_clock_offset = old_rq->cfs.fair_clock -
1000 new_rq->cfs.fair_clock;
1001 if (p->se.wait_start)
1002 p->se.wait_start -= clock_offset;
1003 if (p->se.wait_start_fair)
1004 p->se.wait_start_fair -= fair_clock_offset;
1005 if (p->se.sleep_start)
1006 p->se.sleep_start -= clock_offset;
1007 if (p->se.block_start)
1008 p->se.block_start -= clock_offset;
1009 if (p->se.sleep_start_fair)
1010 p->se.sleep_start_fair -= fair_clock_offset;
1011
1012 __set_task_cpu(p, new_cpu);
Ingo Molnarc65cc872007-07-09 18:51:58 +02001013}
1014
Ingo Molnar70b97a72006-07-03 00:25:42 -07001015struct migration_req {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 struct list_head list;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017
Ingo Molnar36c8b582006-07-03 00:25:41 -07001018 struct task_struct *task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 int dest_cpu;
1020
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021 struct completion done;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001022};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023
1024/*
1025 * The task's runqueue lock must be held.
1026 * Returns true if you have to wait for migration thread.
1027 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001028static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07001029migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001031 struct rq *rq = task_rq(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032
1033 /*
1034 * If the task is not on a runqueue (and not running), then
1035 * it is sufficient to simply update the task's cpu field.
1036 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001037 if (!p->se.on_rq && !task_running(rq, p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038 set_task_cpu(p, dest_cpu);
1039 return 0;
1040 }
1041
1042 init_completion(&req->done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043 req->task = p;
1044 req->dest_cpu = dest_cpu;
1045 list_add(&req->list, &rq->migration_queue);
Ingo Molnar48f24c42006-07-03 00:25:40 -07001046
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047 return 1;
1048}
1049
1050/*
1051 * wait_task_inactive - wait for a thread to unschedule.
1052 *
1053 * The caller must ensure that the task *will* unschedule sometime soon,
1054 * else this function might spin for a *long* time. This function can't
1055 * be called with interrupts off, or it may introduce deadlock with
1056 * smp_call_function() if an IPI is sent by the same process we are
1057 * waiting to become inactive.
1058 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001059void wait_task_inactive(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060{
1061 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001062 int running, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001063 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064
1065repeat:
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001066 /*
1067 * We do the initial early heuristics without holding
1068 * any task-queue locks at all. We'll only try to get
1069 * the runqueue lock when things look like they will
1070 * work out!
1071 */
1072 rq = task_rq(p);
1073
1074 /*
1075 * If the task is actively running on another CPU
1076 * still, just relax and busy-wait without holding
1077 * any locks.
1078 *
1079 * NOTE! Since we don't hold any locks, it's not
1080 * even sure that "rq" stays as the right runqueue!
1081 * But we don't care, since "task_running()" will
1082 * return false if the runqueue has changed and p
1083 * is actually now running somewhere else!
1084 */
1085 while (task_running(rq, p))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086 cpu_relax();
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001087
1088 /*
1089 * Ok, time to look more closely! We need the rq
1090 * lock now, to be *sure*. If we're wrong, we'll
1091 * just go back and repeat.
1092 */
1093 rq = task_rq_lock(p, &flags);
1094 running = task_running(rq, p);
Ingo Molnardd41f592007-07-09 18:51:59 +02001095 on_rq = p->se.on_rq;
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001096 task_rq_unlock(rq, &flags);
1097
1098 /*
1099 * Was it really running after all now that we
1100 * checked with the proper locks actually held?
1101 *
1102 * Oops. Go back and try again..
1103 */
1104 if (unlikely(running)) {
1105 cpu_relax();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001106 goto repeat;
1107 }
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001108
1109 /*
1110 * It's not enough that it's not actively running,
1111 * it must be off the runqueue _entirely_, and not
1112 * preempted!
1113 *
1114 * So if it wa still runnable (but just not actively
1115 * running right now), it's preempted, and we should
1116 * yield - it could be a while.
1117 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001118 if (unlikely(on_rq)) {
Linus Torvaldsfa490cf2007-06-18 09:34:40 -07001119 yield();
1120 goto repeat;
1121 }
1122
1123 /*
1124 * Ahh, all good. It wasn't running, and it wasn't
1125 * runnable, which means that it will never become
1126 * running in the future either. We're all done!
1127 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128}
1129
1130/***
1131 * kick_process - kick a running thread to enter/exit the kernel
1132 * @p: the to-be-kicked thread
1133 *
1134 * Cause a process which is running on another CPU to enter
1135 * kernel-mode, without any delay. (to get signals handled.)
1136 *
1137 * NOTE: this function doesnt have to take the runqueue lock,
1138 * because all it wants to ensure is that the remote task enters
1139 * the kernel. If the IPI races and the task has been migrated
1140 * to another CPU then no harm is done and the purpose has been
1141 * achieved as well.
1142 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001143void kick_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001144{
1145 int cpu;
1146
1147 preempt_disable();
1148 cpu = task_cpu(p);
1149 if ((cpu != smp_processor_id()) && task_curr(p))
1150 smp_send_reschedule(cpu);
1151 preempt_enable();
1152}
1153
1154/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001155 * Return a low guess at the load of a migration-source cpu weighted
1156 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 *
1158 * We want to under-estimate the load of migration sources, to
1159 * balance conservatively.
1160 */
Con Kolivasb9104722005-11-08 21:38:55 -08001161static inline unsigned long source_load(int cpu, int type)
1162{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001163 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001164 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001165
Peter Williams2dd73a42006-06-27 02:54:34 -07001166 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001167 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001168
Ingo Molnardd41f592007-07-09 18:51:59 +02001169 return min(rq->cpu_load[type-1], total);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170}
1171
1172/*
Peter Williams2dd73a42006-06-27 02:54:34 -07001173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001175 */
Con Kolivasb9104722005-11-08 21:38:55 -08001176static inline unsigned long target_load(int cpu, int type)
1177{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001178 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001179 unsigned long total = weighted_cpuload(cpu);
Nick Piggina2000572006-02-10 01:51:02 -08001180
Peter Williams2dd73a42006-06-27 02:54:34 -07001181 if (type == 0)
Ingo Molnardd41f592007-07-09 18:51:59 +02001182 return total;
Peter Williams2dd73a42006-06-27 02:54:34 -07001183
Ingo Molnardd41f592007-07-09 18:51:59 +02001184 return max(rq->cpu_load[type-1], total);
Peter Williams2dd73a42006-06-27 02:54:34 -07001185}
1186
1187/*
1188 * Return the average load per task on the cpu's run queue
1189 */
1190static inline unsigned long cpu_avg_load_per_task(int cpu)
1191{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001192 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02001193 unsigned long total = weighted_cpuload(cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001194 unsigned long n = rq->nr_running;
1195
Ingo Molnardd41f592007-07-09 18:51:59 +02001196 return n ? total / n : SCHED_LOAD_SCALE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197}
1198
Nick Piggin147cbb42005-06-25 14:57:19 -07001199/*
1200 * find_idlest_group finds and returns the least busy CPU group within the
1201 * domain.
1202 */
1203static struct sched_group *
1204find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1205{
1206 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1207 unsigned long min_load = ULONG_MAX, this_load = 0;
1208 int load_idx = sd->forkexec_idx;
1209 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1210
1211 do {
1212 unsigned long load, avg_load;
1213 int local_group;
1214 int i;
1215
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001216 /* Skip over this group if it has no CPUs allowed */
1217 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1218 goto nextgroup;
1219
Nick Piggin147cbb42005-06-25 14:57:19 -07001220 local_group = cpu_isset(this_cpu, group->cpumask);
Nick Piggin147cbb42005-06-25 14:57:19 -07001221
1222 /* Tally up the load of all CPUs in the group */
1223 avg_load = 0;
1224
1225 for_each_cpu_mask(i, group->cpumask) {
1226 /* Bias balancing toward cpus of our domain */
1227 if (local_group)
1228 load = source_load(i, load_idx);
1229 else
1230 load = target_load(i, load_idx);
1231
1232 avg_load += load;
1233 }
1234
1235 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07001236 avg_load = sg_div_cpu_power(group,
1237 avg_load * SCHED_LOAD_SCALE);
Nick Piggin147cbb42005-06-25 14:57:19 -07001238
1239 if (local_group) {
1240 this_load = avg_load;
1241 this = group;
1242 } else if (avg_load < min_load) {
1243 min_load = avg_load;
1244 idlest = group;
1245 }
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001246nextgroup:
Nick Piggin147cbb42005-06-25 14:57:19 -07001247 group = group->next;
1248 } while (group != sd->groups);
1249
1250 if (!idlest || 100*this_load < imbalance*min_load)
1251 return NULL;
1252 return idlest;
1253}
1254
1255/*
Satoru Takeuchi0feaece2006-10-03 01:14:10 -07001256 * find_idlest_cpu - find the idlest cpu among the cpus in group.
Nick Piggin147cbb42005-06-25 14:57:19 -07001257 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07001258static int
1259find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
Nick Piggin147cbb42005-06-25 14:57:19 -07001260{
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001261 cpumask_t tmp;
Nick Piggin147cbb42005-06-25 14:57:19 -07001262 unsigned long load, min_load = ULONG_MAX;
1263 int idlest = -1;
1264 int i;
1265
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001266 /* Traverse only the allowed CPUs */
1267 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1268
1269 for_each_cpu_mask(i, tmp) {
Peter Williams2dd73a42006-06-27 02:54:34 -07001270 load = weighted_cpuload(i);
Nick Piggin147cbb42005-06-25 14:57:19 -07001271
1272 if (load < min_load || (load == min_load && i == this_cpu)) {
1273 min_load = load;
1274 idlest = i;
1275 }
1276 }
1277
1278 return idlest;
1279}
1280
Nick Piggin476d1392005-06-25 14:57:29 -07001281/*
1282 * sched_balance_self: balance the current task (running on cpu) in domains
1283 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1284 * SD_BALANCE_EXEC.
1285 *
1286 * Balance, ie. select the least loaded group.
1287 *
1288 * Returns the target CPU number, or the same CPU if no balancing is needed.
1289 *
1290 * preempt must be disabled.
1291 */
1292static int sched_balance_self(int cpu, int flag)
1293{
1294 struct task_struct *t = current;
1295 struct sched_domain *tmp, *sd = NULL;
Nick Piggin147cbb42005-06-25 14:57:19 -07001296
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001297 for_each_domain(cpu, tmp) {
Ingo Molnar9761eea2007-07-09 18:52:00 +02001298 /*
1299 * If power savings logic is enabled for a domain, stop there.
1300 */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07001301 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1302 break;
Nick Piggin476d1392005-06-25 14:57:29 -07001303 if (tmp->flags & flag)
1304 sd = tmp;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07001305 }
Nick Piggin476d1392005-06-25 14:57:29 -07001306
1307 while (sd) {
1308 cpumask_t span;
1309 struct sched_group *group;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001310 int new_cpu, weight;
1311
1312 if (!(sd->flags & flag)) {
1313 sd = sd->child;
1314 continue;
1315 }
Nick Piggin476d1392005-06-25 14:57:29 -07001316
1317 span = sd->span;
1318 group = find_idlest_group(sd, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001319 if (!group) {
1320 sd = sd->child;
1321 continue;
1322 }
Nick Piggin476d1392005-06-25 14:57:29 -07001323
M.Baris Demirayda5a5522005-09-10 00:26:09 -07001324 new_cpu = find_idlest_cpu(group, t, cpu);
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001325 if (new_cpu == -1 || new_cpu == cpu) {
1326 /* Now try balancing at a lower domain level of cpu */
1327 sd = sd->child;
1328 continue;
1329 }
Nick Piggin476d1392005-06-25 14:57:29 -07001330
Siddha, Suresh B1a848872006-10-03 01:14:08 -07001331 /* Now try balancing at a lower domain level of new_cpu */
Nick Piggin476d1392005-06-25 14:57:29 -07001332 cpu = new_cpu;
Nick Piggin476d1392005-06-25 14:57:29 -07001333 sd = NULL;
1334 weight = cpus_weight(span);
1335 for_each_domain(cpu, tmp) {
1336 if (weight <= cpus_weight(tmp->span))
1337 break;
1338 if (tmp->flags & flag)
1339 sd = tmp;
1340 }
1341 /* while loop will break here if sd == NULL */
1342 }
1343
1344 return cpu;
1345}
1346
1347#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348
1349/*
1350 * wake_idle() will wake a task on an idle cpu if task->cpu is
1351 * not idle and an idle cpu is available. The span of cpus to
1352 * search starts with cpus closest then further out as needed,
1353 * so we always favor a closer, idle cpu.
1354 *
1355 * Returns the CPU we should wake onto.
1356 */
1357#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
Ingo Molnar36c8b582006-07-03 00:25:41 -07001358static int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001359{
1360 cpumask_t tmp;
1361 struct sched_domain *sd;
1362 int i;
1363
Siddha, Suresh B49531982007-05-08 00:33:01 -07001364 /*
1365 * If it is idle, then it is the best cpu to run this task.
1366 *
1367 * This cpu is also the best, if it has more than one task already.
1368 * Siblings must be also busy(in most cases) as they didn't already
1369 * pickup the extra load from this cpu and hence we need not check
1370 * sibling runqueue info. This will avoid the checks and cache miss
1371 * penalities associated with that.
1372 */
1373 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001374 return cpu;
1375
1376 for_each_domain(cpu, sd) {
1377 if (sd->flags & SD_WAKE_IDLE) {
Nick Piggine0f364f2005-06-25 14:57:06 -07001378 cpus_and(tmp, sd->span, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 for_each_cpu_mask(i, tmp) {
1380 if (idle_cpu(i))
1381 return i;
1382 }
Ingo Molnar9761eea2007-07-09 18:52:00 +02001383 } else {
Nick Piggine0f364f2005-06-25 14:57:06 -07001384 break;
Ingo Molnar9761eea2007-07-09 18:52:00 +02001385 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001386 }
1387 return cpu;
1388}
1389#else
Ingo Molnar36c8b582006-07-03 00:25:41 -07001390static inline int wake_idle(int cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001391{
1392 return cpu;
1393}
1394#endif
1395
1396/***
1397 * try_to_wake_up - wake up a thread
1398 * @p: the to-be-woken-up thread
1399 * @state: the mask of task states that can be woken
1400 * @sync: do a synchronous wakeup?
1401 *
1402 * Put it on the run-queue if it's not already there. The "current"
1403 * thread is always on the run-queue (except when the actual
1404 * re-schedule is in progress), and as such you're allowed to do
1405 * the simpler "current->state = TASK_RUNNING" to mark yourself
1406 * runnable without the overhead of this.
1407 *
1408 * returns failure only if the task is already active.
1409 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001410static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411{
1412 int cpu, this_cpu, success = 0;
1413 unsigned long flags;
1414 long old_state;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001415 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001416#ifdef CONFIG_SMP
Nick Piggin78979862005-06-25 14:57:13 -07001417 struct sched_domain *sd, *this_sd = NULL;
Ingo Molnar70b97a72006-07-03 00:25:42 -07001418 unsigned long load, this_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419 int new_cpu;
1420#endif
1421
1422 rq = task_rq_lock(p, &flags);
1423 old_state = p->state;
1424 if (!(old_state & state))
1425 goto out;
1426
Ingo Molnardd41f592007-07-09 18:51:59 +02001427 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001428 goto out_running;
1429
1430 cpu = task_cpu(p);
1431 this_cpu = smp_processor_id();
1432
1433#ifdef CONFIG_SMP
1434 if (unlikely(task_running(rq, p)))
1435 goto out_activate;
1436
Nick Piggin78979862005-06-25 14:57:13 -07001437 new_cpu = cpu;
1438
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 schedstat_inc(rq, ttwu_cnt);
1440 if (cpu == this_cpu) {
1441 schedstat_inc(rq, ttwu_local);
Nick Piggin78979862005-06-25 14:57:13 -07001442 goto out_set_cpu;
1443 }
1444
1445 for_each_domain(this_cpu, sd) {
1446 if (cpu_isset(cpu, sd->span)) {
1447 schedstat_inc(sd, ttwu_wake_remote);
1448 this_sd = sd;
1449 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 }
1451 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452
Nick Piggin78979862005-06-25 14:57:13 -07001453 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001454 goto out_set_cpu;
1455
Linus Torvalds1da177e2005-04-16 15:20:36 -07001456 /*
Nick Piggin78979862005-06-25 14:57:13 -07001457 * Check for affine wakeup and passive balancing possibilities.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458 */
Nick Piggin78979862005-06-25 14:57:13 -07001459 if (this_sd) {
1460 int idx = this_sd->wake_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 unsigned int imbalance;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462
Nick Piggina3f21bc2005-06-25 14:57:15 -07001463 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1464
Nick Piggin78979862005-06-25 14:57:13 -07001465 load = source_load(cpu, idx);
1466 this_load = target_load(this_cpu, idx);
1467
Nick Piggin78979862005-06-25 14:57:13 -07001468 new_cpu = this_cpu; /* Wake to this CPU if we can */
1469
Nick Piggina3f21bc2005-06-25 14:57:15 -07001470 if (this_sd->flags & SD_WAKE_AFFINE) {
1471 unsigned long tl = this_load;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08001472 unsigned long tl_per_task;
1473
1474 tl_per_task = cpu_avg_load_per_task(this_cpu);
Peter Williams2dd73a42006-06-27 02:54:34 -07001475
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476 /*
Nick Piggina3f21bc2005-06-25 14:57:15 -07001477 * If sync wakeup then subtract the (maximum possible)
1478 * effect of the currently running task from the load
1479 * of the current CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480 */
Nick Piggina3f21bc2005-06-25 14:57:15 -07001481 if (sync)
Ingo Molnardd41f592007-07-09 18:51:59 +02001482 tl -= current->se.load.weight;
Nick Piggina3f21bc2005-06-25 14:57:15 -07001483
1484 if ((tl <= load &&
Peter Williams2dd73a42006-06-27 02:54:34 -07001485 tl + target_load(cpu, idx) <= tl_per_task) ||
Ingo Molnardd41f592007-07-09 18:51:59 +02001486 100*(tl + p->se.load.weight) <= imbalance*load) {
Nick Piggina3f21bc2005-06-25 14:57:15 -07001487 /*
1488 * This domain has SD_WAKE_AFFINE and
1489 * p is cache cold in this domain, and
1490 * there is no bad imbalance.
1491 */
1492 schedstat_inc(this_sd, ttwu_move_affine);
1493 goto out_set_cpu;
1494 }
1495 }
1496
1497 /*
1498 * Start passive balancing when half the imbalance_pct
1499 * limit is reached.
1500 */
1501 if (this_sd->flags & SD_WAKE_BALANCE) {
1502 if (imbalance*this_load <= 100*load) {
1503 schedstat_inc(this_sd, ttwu_move_balance);
1504 goto out_set_cpu;
1505 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506 }
1507 }
1508
1509 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1510out_set_cpu:
1511 new_cpu = wake_idle(new_cpu, p);
1512 if (new_cpu != cpu) {
1513 set_task_cpu(p, new_cpu);
1514 task_rq_unlock(rq, &flags);
1515 /* might preempt at this point */
1516 rq = task_rq_lock(p, &flags);
1517 old_state = p->state;
1518 if (!(old_state & state))
1519 goto out;
Ingo Molnardd41f592007-07-09 18:51:59 +02001520 if (p->se.on_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 goto out_running;
1522
1523 this_cpu = smp_processor_id();
1524 cpu = task_cpu(p);
1525 }
1526
1527out_activate:
1528#endif /* CONFIG_SMP */
Ingo Molnardd41f592007-07-09 18:51:59 +02001529 activate_task(rq, p, 1);
Ingo Molnard79fc0f2005-09-10 00:26:12 -07001530 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531 * Sync wakeups (i.e. those types of wakeups where the waker
1532 * has indicated that it will leave the CPU in short order)
1533 * don't trigger a preemption, if the woken up task will run on
1534 * this cpu. (in this case the 'I will reschedule' promise of
1535 * the waker guarantees that the freshly woken up task is going
1536 * to be considered on this CPU.)
1537 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001538 if (!sync || cpu != this_cpu)
1539 check_preempt_curr(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540 success = 1;
1541
1542out_running:
1543 p->state = TASK_RUNNING;
1544out:
1545 task_rq_unlock(rq, &flags);
1546
1547 return success;
1548}
1549
Ingo Molnar36c8b582006-07-03 00:25:41 -07001550int fastcall wake_up_process(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551{
1552 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1553 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1554}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555EXPORT_SYMBOL(wake_up_process);
1556
Ingo Molnar36c8b582006-07-03 00:25:41 -07001557int fastcall wake_up_state(struct task_struct *p, unsigned int state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558{
1559 return try_to_wake_up(p, state, 0);
1560}
1561
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562/*
1563 * Perform scheduler related setup for a newly forked process p.
1564 * p is forked by current.
Ingo Molnardd41f592007-07-09 18:51:59 +02001565 *
1566 * __sched_fork() is basic setup used by init_idle() too:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001568static void __sched_fork(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001569{
Ingo Molnardd41f592007-07-09 18:51:59 +02001570 p->se.wait_start_fair = 0;
1571 p->se.wait_start = 0;
1572 p->se.exec_start = 0;
1573 p->se.sum_exec_runtime = 0;
1574 p->se.delta_exec = 0;
1575 p->se.delta_fair_run = 0;
1576 p->se.delta_fair_sleep = 0;
1577 p->se.wait_runtime = 0;
1578 p->se.sum_wait_runtime = 0;
1579 p->se.sum_sleep_runtime = 0;
1580 p->se.sleep_start = 0;
1581 p->se.sleep_start_fair = 0;
1582 p->se.block_start = 0;
1583 p->se.sleep_max = 0;
1584 p->se.block_max = 0;
1585 p->se.exec_max = 0;
1586 p->se.wait_max = 0;
1587 p->se.wait_runtime_overruns = 0;
1588 p->se.wait_runtime_underruns = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001589
Ingo Molnardd41f592007-07-09 18:51:59 +02001590 INIT_LIST_HEAD(&p->run_list);
1591 p->se.on_rq = 0;
Nick Piggin476d1392005-06-25 14:57:29 -07001592
Avi Kivitye107be32007-07-26 13:40:43 +02001593#ifdef CONFIG_PREEMPT_NOTIFIERS
1594 INIT_HLIST_HEAD(&p->preempt_notifiers);
1595#endif
1596
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597 /*
1598 * We mark the process as running here, but have not actually
1599 * inserted it onto the runqueue yet. This guarantees that
1600 * nobody will actually run it, and a signal or other external
1601 * event cannot wake it up and insert it on the runqueue either.
1602 */
1603 p->state = TASK_RUNNING;
Ingo Molnardd41f592007-07-09 18:51:59 +02001604}
1605
1606/*
1607 * fork()/clone()-time setup:
1608 */
1609void sched_fork(struct task_struct *p, int clone_flags)
1610{
1611 int cpu = get_cpu();
1612
1613 __sched_fork(p);
1614
1615#ifdef CONFIG_SMP
1616 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1617#endif
1618 __set_task_cpu(p, cpu);
Ingo Molnarb29739f2006-06-27 02:54:51 -07001619
1620 /*
1621 * Make sure we do not leak PI boosting priority to the child:
1622 */
1623 p->prio = current->normal_prio;
1624
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001625#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
Ingo Molnardd41f592007-07-09 18:51:59 +02001626 if (likely(sched_info_on()))
Chandra Seetharaman52f17b62006-07-14 00:24:38 -07001627 memset(&p->sched_info, 0, sizeof(p->sched_info));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001628#endif
Chen, Kenneth Wd6077cb2006-02-14 13:53:10 -08001629#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
Nick Piggin4866cde2005-06-25 14:57:23 -07001630 p->oncpu = 0;
1631#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001632#ifdef CONFIG_PREEMPT
Nick Piggin4866cde2005-06-25 14:57:23 -07001633 /* Want to start with kernel preemption disabled. */
Al Viroa1261f52005-11-13 16:06:55 -08001634 task_thread_info(p)->preempt_count = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635#endif
Nick Piggin476d1392005-06-25 14:57:29 -07001636 put_cpu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637}
1638
1639/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001640 * After fork, child runs first. (default) If set to 0 then
1641 * parent will (try to) run first.
1642 */
1643unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1644
1645/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646 * wake_up_new_task - wake up a newly created task for the first time.
1647 *
1648 * This function will do some initial scheduler statistics housekeeping
1649 * that must be done for every newly created context, then puts the task
1650 * on the runqueue and wakes it.
1651 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001652void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001653{
1654 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02001655 struct rq *rq;
1656 int this_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657
1658 rq = task_rq_lock(p, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 BUG_ON(p->state != TASK_RUNNING);
Ingo Molnardd41f592007-07-09 18:51:59 +02001660 this_cpu = smp_processor_id(); /* parent's CPU */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661
1662 p->prio = effective_prio(p);
1663
Ingo Molnardd41f592007-07-09 18:51:59 +02001664 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1665 task_cpu(p) != this_cpu || !current->se.on_rq) {
1666 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001668 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02001669 * Let the scheduling class do new task startup
1670 * management (if any):
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001672 p->sched_class->task_new(rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673 }
Ingo Molnardd41f592007-07-09 18:51:59 +02001674 check_preempt_curr(rq, p);
1675 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676}
1677
Avi Kivitye107be32007-07-26 13:40:43 +02001678#ifdef CONFIG_PREEMPT_NOTIFIERS
1679
1680/**
Randy Dunlap421cee22007-07-31 00:37:50 -07001681 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1682 * @notifier: notifier struct to register
Avi Kivitye107be32007-07-26 13:40:43 +02001683 */
1684void preempt_notifier_register(struct preempt_notifier *notifier)
1685{
1686 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1687}
1688EXPORT_SYMBOL_GPL(preempt_notifier_register);
1689
1690/**
1691 * preempt_notifier_unregister - no longer interested in preemption notifications
Randy Dunlap421cee22007-07-31 00:37:50 -07001692 * @notifier: notifier struct to unregister
Avi Kivitye107be32007-07-26 13:40:43 +02001693 *
1694 * This is safe to call from within a preemption notifier.
1695 */
1696void preempt_notifier_unregister(struct preempt_notifier *notifier)
1697{
1698 hlist_del(&notifier->link);
1699}
1700EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1701
1702static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1703{
1704 struct preempt_notifier *notifier;
1705 struct hlist_node *node;
1706
1707 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1708 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1709}
1710
1711static void
1712fire_sched_out_preempt_notifiers(struct task_struct *curr,
1713 struct task_struct *next)
1714{
1715 struct preempt_notifier *notifier;
1716 struct hlist_node *node;
1717
1718 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1719 notifier->ops->sched_out(notifier, next);
1720}
1721
1722#else
1723
1724static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1725{
1726}
1727
1728static void
1729fire_sched_out_preempt_notifiers(struct task_struct *curr,
1730 struct task_struct *next)
1731{
1732}
1733
1734#endif
1735
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736/**
Nick Piggin4866cde2005-06-25 14:57:23 -07001737 * prepare_task_switch - prepare to switch tasks
1738 * @rq: the runqueue preparing to switch
Randy Dunlap421cee22007-07-31 00:37:50 -07001739 * @prev: the current task that is being switched out
Nick Piggin4866cde2005-06-25 14:57:23 -07001740 * @next: the task we are going to switch to.
1741 *
1742 * This is called with the rq lock held and interrupts off. It must
1743 * be paired with a subsequent finish_task_switch after the context
1744 * switch.
1745 *
1746 * prepare_task_switch sets up locking and calls architecture specific
1747 * hooks.
1748 */
Avi Kivitye107be32007-07-26 13:40:43 +02001749static inline void
1750prepare_task_switch(struct rq *rq, struct task_struct *prev,
1751 struct task_struct *next)
Nick Piggin4866cde2005-06-25 14:57:23 -07001752{
Avi Kivitye107be32007-07-26 13:40:43 +02001753 fire_sched_out_preempt_notifiers(prev, next);
Nick Piggin4866cde2005-06-25 14:57:23 -07001754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1756}
1757
1758/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759 * finish_task_switch - clean up after a task-switch
Jeff Garzik344baba2005-09-07 01:15:17 -04001760 * @rq: runqueue associated with task-switch
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761 * @prev: the thread we just switched away from.
1762 *
Nick Piggin4866cde2005-06-25 14:57:23 -07001763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 *
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1772 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07001773static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 __releases(rq->lock)
1775{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776 struct mm_struct *mm = rq->prev_mm;
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001777 long prev_state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778
1779 rq->prev_mm = NULL;
1780
1781 /*
1782 * A task struct has one reference for the use as "current".
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001786 * The test for TASK_DEAD must occur while the runqueue locks are
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1791 */
Oleg Nesterov55a101f2006-09-29 02:01:10 -07001792 prev_state = prev->state;
Nick Piggin4866cde2005-06-25 14:57:23 -07001793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
Avi Kivitye107be32007-07-26 13:40:43 +02001795 fire_sched_in_preempt_notifiers(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 if (mm)
1797 mmdrop(mm);
Oleg Nesterovc394cc92006-09-29 02:01:11 -07001798 if (unlikely(prev_state == TASK_DEAD)) {
bibo maoc6fd91f2006-03-26 01:38:20 -08001799 /*
1800 * Remove function-return probe instances associated with this
1801 * task and put them back on the free list.
Ingo Molnar9761eea2007-07-09 18:52:00 +02001802 */
bibo maoc6fd91f2006-03-26 01:38:20 -08001803 kprobe_flush_task(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 put_task_struct(prev);
bibo maoc6fd91f2006-03-26 01:38:20 -08001805 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001806}
1807
1808/**
1809 * schedule_tail - first thing a freshly forked thread must call.
1810 * @prev: the thread we just switched away from.
1811 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07001812asmlinkage void schedule_tail(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813 __releases(rq->lock)
1814{
Ingo Molnar70b97a72006-07-03 00:25:42 -07001815 struct rq *rq = this_rq();
1816
Nick Piggin4866cde2005-06-25 14:57:23 -07001817 finish_task_switch(rq, prev);
1818#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1819 /* In this case, finish_task_switch does not reenable preemption */
1820 preempt_enable();
1821#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822 if (current->set_child_tid)
1823 put_user(current->pid, current->set_child_tid);
1824}
1825
1826/*
1827 * context_switch - switch to the new MM and the new
1828 * thread's register state.
1829 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001830static inline void
Ingo Molnar70b97a72006-07-03 00:25:42 -07001831context_switch(struct rq *rq, struct task_struct *prev,
Ingo Molnar36c8b582006-07-03 00:25:41 -07001832 struct task_struct *next)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833{
Ingo Molnardd41f592007-07-09 18:51:59 +02001834 struct mm_struct *mm, *oldmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835
Avi Kivitye107be32007-07-26 13:40:43 +02001836 prepare_task_switch(rq, prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02001837 mm = next->mm;
1838 oldmm = prev->active_mm;
Zachary Amsden9226d122007-02-13 13:26:21 +01001839 /*
1840 * For paravirt, this is coupled with an exit in switch_to to
1841 * combine the page table reload and the switch backend into
1842 * one hypercall.
1843 */
1844 arch_enter_lazy_cpu_mode();
1845
Ingo Molnardd41f592007-07-09 18:51:59 +02001846 if (unlikely(!mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847 next->active_mm = oldmm;
1848 atomic_inc(&oldmm->mm_count);
1849 enter_lazy_tlb(oldmm, next);
1850 } else
1851 switch_mm(oldmm, mm, next);
1852
Ingo Molnardd41f592007-07-09 18:51:59 +02001853 if (unlikely(!prev->mm)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001854 prev->active_mm = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 rq->prev_mm = oldmm;
1856 }
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001857 /*
1858 * Since the runqueue lock will be released by the next
1859 * task (which is an invalid locking op but in the case
1860 * of the scheduler it's an obvious special-case), so we
1861 * do an early lockdep release here:
1862 */
1863#ifndef __ARCH_WANT_UNLOCKED_CTXSW
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07001864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Ingo Molnar3a5f5e42006-07-14 00:24:27 -07001865#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001866
1867 /* Here we just switch the register state and the stack. */
1868 switch_to(prev, next, prev);
1869
Ingo Molnardd41f592007-07-09 18:51:59 +02001870 barrier();
1871 /*
1872 * this_rq must be evaluated again because prev may have moved
1873 * CPUs since it called schedule(), thus the 'rq' on its stack
1874 * frame will be invalid.
1875 */
1876 finish_task_switch(this_rq(), prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877}
1878
1879/*
1880 * nr_running, nr_uninterruptible and nr_context_switches:
1881 *
1882 * externally visible scheduler statistics: current number of runnable
1883 * threads, current number of uninterruptible-sleeping threads, total
1884 * number of context switches performed since bootup.
1885 */
1886unsigned long nr_running(void)
1887{
1888 unsigned long i, sum = 0;
1889
1890 for_each_online_cpu(i)
1891 sum += cpu_rq(i)->nr_running;
1892
1893 return sum;
1894}
1895
1896unsigned long nr_uninterruptible(void)
1897{
1898 unsigned long i, sum = 0;
1899
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001900 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901 sum += cpu_rq(i)->nr_uninterruptible;
1902
1903 /*
1904 * Since we read the counters lockless, it might be slightly
1905 * inaccurate. Do not allow it to go below zero though:
1906 */
1907 if (unlikely((long)sum < 0))
1908 sum = 0;
1909
1910 return sum;
1911}
1912
1913unsigned long long nr_context_switches(void)
1914{
Steven Rostedtcc94abf2006-06-27 02:54:31 -07001915 int i;
1916 unsigned long long sum = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001918 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 sum += cpu_rq(i)->nr_switches;
1920
1921 return sum;
1922}
1923
1924unsigned long nr_iowait(void)
1925{
1926 unsigned long i, sum = 0;
1927
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08001928 for_each_possible_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1930
1931 return sum;
1932}
1933
Jack Steinerdb1b1fe2006-03-31 02:31:21 -08001934unsigned long nr_active(void)
1935{
1936 unsigned long i, running = 0, uninterruptible = 0;
1937
1938 for_each_online_cpu(i) {
1939 running += cpu_rq(i)->nr_running;
1940 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1941 }
1942
1943 if (unlikely((long)uninterruptible < 0))
1944 uninterruptible = 0;
1945
1946 return running + uninterruptible;
1947}
1948
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949/*
Ingo Molnardd41f592007-07-09 18:51:59 +02001950 * Update rq->cpu_load[] statistics. This function is usually called every
1951 * scheduler tick (TICK_NSEC).
Ingo Molnar48f24c42006-07-03 00:25:40 -07001952 */
Ingo Molnardd41f592007-07-09 18:51:59 +02001953static void update_cpu_load(struct rq *this_rq)
Ingo Molnar48f24c42006-07-03 00:25:40 -07001954{
Ingo Molnardd41f592007-07-09 18:51:59 +02001955 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1956 unsigned long total_load = this_rq->ls.load.weight;
1957 unsigned long this_load = total_load;
1958 struct load_stat *ls = &this_rq->ls;
1959 u64 now = __rq_clock(this_rq);
1960 int i, scale;
1961
1962 this_rq->nr_load_updates++;
1963 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1964 goto do_avg;
1965
1966 /* Update delta_fair/delta_exec fields first */
1967 update_curr_load(this_rq, now);
1968
1969 fair_delta64 = ls->delta_fair + 1;
1970 ls->delta_fair = 0;
1971
1972 exec_delta64 = ls->delta_exec + 1;
1973 ls->delta_exec = 0;
1974
1975 sample_interval64 = now - ls->load_update_last;
1976 ls->load_update_last = now;
1977
1978 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1979 sample_interval64 = TICK_NSEC;
1980
1981 if (exec_delta64 > sample_interval64)
1982 exec_delta64 = sample_interval64;
1983
1984 idle_delta64 = sample_interval64 - exec_delta64;
1985
1986 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1987 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1988
1989 this_load = (unsigned long)tmp64;
1990
1991do_avg:
1992
1993 /* Update our load: */
1994 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1995 unsigned long old_load, new_load;
1996
1997 /* scale is effectively 1 << i now, and >> i divides by scale */
1998
1999 old_load = this_rq->cpu_load[i];
2000 new_load = this_load;
2001
2002 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2003 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002004}
2005
Ingo Molnardd41f592007-07-09 18:51:59 +02002006#ifdef CONFIG_SMP
2007
Ingo Molnar48f24c42006-07-03 00:25:40 -07002008/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009 * double_rq_lock - safely lock two runqueues
2010 *
2011 * Note this does not disable interrupts like task_rq_lock,
2012 * you need to do so manually before calling.
2013 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002014static void double_rq_lock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 __acquires(rq1->lock)
2016 __acquires(rq2->lock)
2017{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002018 BUG_ON(!irqs_disabled());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019 if (rq1 == rq2) {
2020 spin_lock(&rq1->lock);
2021 __acquire(rq2->lock); /* Fake it out ;) */
2022 } else {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002023 if (rq1 < rq2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002024 spin_lock(&rq1->lock);
2025 spin_lock(&rq2->lock);
2026 } else {
2027 spin_lock(&rq2->lock);
2028 spin_lock(&rq1->lock);
2029 }
2030 }
2031}
2032
2033/*
2034 * double_rq_unlock - safely unlock two runqueues
2035 *
2036 * Note this does not restore interrupts like task_rq_unlock,
2037 * you need to do so manually after calling.
2038 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002039static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 __releases(rq1->lock)
2041 __releases(rq2->lock)
2042{
2043 spin_unlock(&rq1->lock);
2044 if (rq1 != rq2)
2045 spin_unlock(&rq2->lock);
2046 else
2047 __release(rq2->lock);
2048}
2049
2050/*
2051 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2052 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002053static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054 __releases(this_rq->lock)
2055 __acquires(busiest->lock)
2056 __acquires(this_rq->lock)
2057{
Kirill Korotaev054b9102006-12-10 02:20:11 -08002058 if (unlikely(!irqs_disabled())) {
2059 /* printk() doesn't work good under rq->lock */
2060 spin_unlock(&this_rq->lock);
2061 BUG_ON(1);
2062 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002063 if (unlikely(!spin_trylock(&busiest->lock))) {
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002064 if (busiest < this_rq) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 spin_unlock(&this_rq->lock);
2066 spin_lock(&busiest->lock);
2067 spin_lock(&this_rq->lock);
2068 } else
2069 spin_lock(&busiest->lock);
2070 }
2071}
2072
2073/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 * If dest_cpu is allowed for this process, migrate the task to it.
2075 * This is accomplished by forcing the cpu_allowed mask to only
2076 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2077 * the cpu_allowed mask is restored.
2078 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07002079static void sched_migrate_task(struct task_struct *p, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002081 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002083 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084
2085 rq = task_rq_lock(p, &flags);
2086 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2087 || unlikely(cpu_is_offline(dest_cpu)))
2088 goto out;
2089
2090 /* force the process onto the specified CPU */
2091 if (migrate_task(p, dest_cpu, &req)) {
2092 /* Need to wait for migration thread (might exit: take ref). */
2093 struct task_struct *mt = rq->migration_thread;
Ingo Molnar36c8b582006-07-03 00:25:41 -07002094
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095 get_task_struct(mt);
2096 task_rq_unlock(rq, &flags);
2097 wake_up_process(mt);
2098 put_task_struct(mt);
2099 wait_for_completion(&req.done);
Ingo Molnar36c8b582006-07-03 00:25:41 -07002100
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101 return;
2102 }
2103out:
2104 task_rq_unlock(rq, &flags);
2105}
2106
2107/*
Nick Piggin476d1392005-06-25 14:57:29 -07002108 * sched_exec - execve() is a valuable balancing opportunity, because at
2109 * this point the task has the smallest effective memory and cache footprint.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 */
2111void sched_exec(void)
2112{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002113 int new_cpu, this_cpu = get_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002114 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115 put_cpu();
Nick Piggin476d1392005-06-25 14:57:29 -07002116 if (new_cpu != this_cpu)
2117 sched_migrate_task(current, new_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002118}
2119
2120/*
2121 * pull_task - move a task from a remote runqueue to the local runqueue.
2122 * Both runqueues must be locked.
2123 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002124static void pull_task(struct rq *src_rq, struct task_struct *p,
2125 struct rq *this_rq, int this_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126{
Ingo Molnardd41f592007-07-09 18:51:59 +02002127 deactivate_task(src_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128 set_task_cpu(p, this_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02002129 activate_task(this_rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130 /*
2131 * Note that idle threads have a prio of MAX_PRIO, for this test
2132 * to be always true for them.
2133 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002134 check_preempt_curr(this_rq, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135}
2136
2137/*
2138 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2139 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08002140static
Ingo Molnar70b97a72006-07-03 00:25:42 -07002141int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002142 struct sched_domain *sd, enum cpu_idle_type idle,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07002143 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144{
2145 /*
2146 * We do not migrate tasks that are:
2147 * 1) running (obviously), or
2148 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2149 * 3) are cache-hot on their current CPU.
2150 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 if (!cpu_isset(this_cpu, p->cpus_allowed))
2152 return 0;
Nick Piggin81026792005-06-25 14:57:07 -07002153 *all_pinned = 0;
2154
2155 if (task_running(rq, p))
2156 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002157
2158 /*
Ingo Molnardd41f592007-07-09 18:51:59 +02002159 * Aggressive migration if too many balance attempts have failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002161 if (sd->nr_balance_failed > sd->cache_nice_tries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162 return 1;
2163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 return 1;
2165}
2166
Ingo Molnardd41f592007-07-09 18:51:59 +02002167static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2168 unsigned long max_nr_move, unsigned long max_load_move,
2169 struct sched_domain *sd, enum cpu_idle_type idle,
2170 int *all_pinned, unsigned long *load_moved,
2171 int this_best_prio, int best_prio, int best_prio_seen,
2172 struct rq_iterator *iterator)
2173{
2174 int pulled = 0, pinned = 0, skip_for_load;
2175 struct task_struct *p;
2176 long rem_load_move = max_load_move;
2177
2178 if (max_nr_move == 0 || max_load_move == 0)
2179 goto out;
2180
2181 pinned = 1;
2182
2183 /*
2184 * Start the load-balancing iterator:
2185 */
2186 p = iterator->start(iterator->arg);
2187next:
2188 if (!p)
2189 goto out;
2190 /*
2191 * To help distribute high priority tasks accross CPUs we don't
2192 * skip a task if it will be the highest priority task (i.e. smallest
2193 * prio value) on its new queue regardless of its load weight
2194 */
2195 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2196 SCHED_LOAD_SCALE_FUZZ;
2197 if (skip_for_load && p->prio < this_best_prio)
2198 skip_for_load = !best_prio_seen && p->prio == best_prio;
2199 if (skip_for_load ||
2200 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2201
2202 best_prio_seen |= p->prio == best_prio;
2203 p = iterator->next(iterator->arg);
2204 goto next;
2205 }
2206
2207 pull_task(busiest, p, this_rq, this_cpu);
2208 pulled++;
2209 rem_load_move -= p->se.load.weight;
2210
2211 /*
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2214 */
2215 if (pulled < max_nr_move && rem_load_move > 0) {
2216 if (p->prio < this_best_prio)
2217 this_best_prio = p->prio;
2218 p = iterator->next(iterator->arg);
2219 goto next;
2220 }
2221out:
2222 /*
2223 * Right now, this is the only place pull_task() is called,
2224 * so we can safely collect pull_task() stats here rather than
2225 * inside pull_task().
2226 */
2227 schedstat_add(sd, lb_gained[idle], pulled);
2228
2229 if (all_pinned)
2230 *all_pinned = pinned;
2231 *load_moved = max_load_move - rem_load_move;
2232 return pulled;
2233}
Ingo Molnar48f24c42006-07-03 00:25:40 -07002234
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235/*
Peter Williams2dd73a42006-06-27 02:54:34 -07002236 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2237 * load from busiest to this_rq, as part of a balancing operation within
2238 * "domain". Returns the number of tasks moved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239 *
2240 * Called with both runqueues locked.
2241 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002242static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002243 unsigned long max_nr_move, unsigned long max_load_move,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002244 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams2dd73a42006-06-27 02:54:34 -07002245 int *all_pinned)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246{
Ingo Molnardd41f592007-07-09 18:51:59 +02002247 struct sched_class *class = sched_class_highest;
2248 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2249 long rem_load_move = max_load_move;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002250
Ingo Molnardd41f592007-07-09 18:51:59 +02002251 do {
2252 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2253 max_nr_move, (unsigned long)rem_load_move,
2254 sd, idle, all_pinned, &load_moved);
2255 total_nr_moved += nr_moved;
2256 max_nr_move -= nr_moved;
2257 rem_load_move -= load_moved;
2258 class = class->next;
2259 } while (class && max_nr_move && rem_load_move > 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260
Ingo Molnardd41f592007-07-09 18:51:59 +02002261 return total_nr_moved;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262}
2263
2264/*
2265 * find_busiest_group finds and returns the busiest CPU group within the
Ingo Molnar48f24c42006-07-03 00:25:40 -07002266 * domain. It calculates and returns the amount of weighted load which
2267 * should be moved to restore balance via the imbalance parameter.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 */
2269static struct sched_group *
2270find_busiest_group(struct sched_domain *sd, int this_cpu,
Ingo Molnardd41f592007-07-09 18:51:59 +02002271 unsigned long *imbalance, enum cpu_idle_type idle,
2272 int *sd_idle, cpumask_t *cpus, int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273{
2274 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2275 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002276 unsigned long max_pull;
Peter Williams2dd73a42006-06-27 02:54:34 -07002277 unsigned long busiest_load_per_task, busiest_nr_running;
2278 unsigned long this_load_per_task, this_nr_running;
Nick Piggin78979862005-06-25 14:57:13 -07002279 int load_idx;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002280#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2281 int power_savings_balance = 1;
2282 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2283 unsigned long min_nr_running = ULONG_MAX;
2284 struct sched_group *group_min = NULL, *group_leader = NULL;
2285#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286
2287 max_load = this_load = total_load = total_pwr = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002288 busiest_load_per_task = busiest_nr_running = 0;
2289 this_load_per_task = this_nr_running = 0;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002290 if (idle == CPU_NOT_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002291 load_idx = sd->busy_idx;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002292 else if (idle == CPU_NEWLY_IDLE)
Nick Piggin78979862005-06-25 14:57:13 -07002293 load_idx = sd->newidle_idx;
2294 else
2295 load_idx = sd->idle_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296
2297 do {
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002298 unsigned long load, group_capacity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002299 int local_group;
2300 int i;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002301 unsigned int balance_cpu = -1, first_idle_cpu = 0;
Peter Williams2dd73a42006-06-27 02:54:34 -07002302 unsigned long sum_nr_running, sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002303
2304 local_group = cpu_isset(this_cpu, group->cpumask);
2305
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002306 if (local_group)
2307 balance_cpu = first_cpu(group->cpumask);
2308
Linus Torvalds1da177e2005-04-16 15:20:36 -07002309 /* Tally up the load of all CPUs in the group */
Peter Williams2dd73a42006-06-27 02:54:34 -07002310 sum_weighted_load = sum_nr_running = avg_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002311
2312 for_each_cpu_mask(i, group->cpumask) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002313 struct rq *rq;
2314
2315 if (!cpu_isset(i, *cpus))
2316 continue;
2317
2318 rq = cpu_rq(i);
Peter Williams2dd73a42006-06-27 02:54:34 -07002319
Suresh Siddha9439aab2007-07-19 21:28:35 +02002320 if (*sd_idle && rq->nr_running)
Nick Piggin5969fe02005-09-10 00:26:19 -07002321 *sd_idle = 0;
2322
Linus Torvalds1da177e2005-04-16 15:20:36 -07002323 /* Bias balancing toward cpus of our domain */
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002324 if (local_group) {
2325 if (idle_cpu(i) && !first_idle_cpu) {
2326 first_idle_cpu = 1;
2327 balance_cpu = i;
2328 }
2329
Nick Piggina2000572006-02-10 01:51:02 -08002330 load = target_load(i, load_idx);
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002331 } else
Nick Piggina2000572006-02-10 01:51:02 -08002332 load = source_load(i, load_idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333
2334 avg_load += load;
Peter Williams2dd73a42006-06-27 02:54:34 -07002335 sum_nr_running += rq->nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002336 sum_weighted_load += weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002337 }
2338
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002339 /*
2340 * First idle cpu or the first cpu(busiest) in this sched group
2341 * is eligible for doing load balancing at this and above
Suresh Siddha9439aab2007-07-19 21:28:35 +02002342 * domains. In the newly idle case, we will allow all the cpu's
2343 * to do the newly idle load balance.
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002344 */
Suresh Siddha9439aab2007-07-19 21:28:35 +02002345 if (idle != CPU_NEWLY_IDLE && local_group &&
2346 balance_cpu != this_cpu && balance) {
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002347 *balance = 0;
2348 goto ret;
2349 }
2350
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 total_load += avg_load;
Eric Dumazet5517d862007-05-08 00:32:57 -07002352 total_pwr += group->__cpu_power;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353
2354 /* Adjust by relative CPU power of the group */
Eric Dumazet5517d862007-05-08 00:32:57 -07002355 avg_load = sg_div_cpu_power(group,
2356 avg_load * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357
Eric Dumazet5517d862007-05-08 00:32:57 -07002358 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002359
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360 if (local_group) {
2361 this_load = avg_load;
2362 this = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002363 this_nr_running = sum_nr_running;
2364 this_load_per_task = sum_weighted_load;
2365 } else if (avg_load > max_load &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002366 sum_nr_running > group_capacity) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002367 max_load = avg_load;
2368 busiest = group;
Peter Williams2dd73a42006-06-27 02:54:34 -07002369 busiest_nr_running = sum_nr_running;
2370 busiest_load_per_task = sum_weighted_load;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002372
2373#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2374 /*
2375 * Busy processors will not participate in power savings
2376 * balance.
2377 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002378 if (idle == CPU_NOT_IDLE ||
2379 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2380 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002381
2382 /*
2383 * If the local group is idle or completely loaded
2384 * no need to do power savings balance at this domain
2385 */
2386 if (local_group && (this_nr_running >= group_capacity ||
2387 !this_nr_running))
2388 power_savings_balance = 0;
2389
Ingo Molnardd41f592007-07-09 18:51:59 +02002390 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002391 * If a group is already running at full capacity or idle,
2392 * don't include that group in power savings calculations
Ingo Molnardd41f592007-07-09 18:51:59 +02002393 */
2394 if (!power_savings_balance || sum_nr_running >= group_capacity
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002395 || !sum_nr_running)
Ingo Molnardd41f592007-07-09 18:51:59 +02002396 goto group_next;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002397
Ingo Molnardd41f592007-07-09 18:51:59 +02002398 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002399 * Calculate the group which has the least non-idle load.
Ingo Molnardd41f592007-07-09 18:51:59 +02002400 * This is the group from where we need to pick up the load
2401 * for saving power
2402 */
2403 if ((sum_nr_running < min_nr_running) ||
2404 (sum_nr_running == min_nr_running &&
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002405 first_cpu(group->cpumask) <
2406 first_cpu(group_min->cpumask))) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002407 group_min = group;
2408 min_nr_running = sum_nr_running;
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002409 min_load_per_task = sum_weighted_load /
2410 sum_nr_running;
Ingo Molnardd41f592007-07-09 18:51:59 +02002411 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002412
Ingo Molnardd41f592007-07-09 18:51:59 +02002413 /*
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002414 * Calculate the group which is almost near its
Ingo Molnardd41f592007-07-09 18:51:59 +02002415 * capacity but still has some space to pick up some load
2416 * from other group and save more power
2417 */
2418 if (sum_nr_running <= group_capacity - 1) {
2419 if (sum_nr_running > leader_nr_running ||
2420 (sum_nr_running == leader_nr_running &&
2421 first_cpu(group->cpumask) >
2422 first_cpu(group_leader->cpumask))) {
2423 group_leader = group;
2424 leader_nr_running = sum_nr_running;
2425 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07002426 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002427group_next:
2428#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002429 group = group->next;
2430 } while (group != sd->groups);
2431
Peter Williams2dd73a42006-06-27 02:54:34 -07002432 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002433 goto out_balanced;
2434
2435 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2436
2437 if (this_load >= avg_load ||
2438 100*max_load <= sd->imbalance_pct*this_load)
2439 goto out_balanced;
2440
Peter Williams2dd73a42006-06-27 02:54:34 -07002441 busiest_load_per_task /= busiest_nr_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442 /*
2443 * We're trying to get all the cpus to the average_load, so we don't
2444 * want to push ourselves above the average load, nor do we wish to
2445 * reduce the max loaded cpu below the average load, as either of these
2446 * actions would just result in more rebalancing later, and ping-pong
2447 * tasks around. Thus we look for the minimum possible imbalance.
2448 * Negative imbalances (*we* are more loaded than anyone else) will
2449 * be counted as no imbalance for these purposes -- we can't fix that
2450 * by pulling tasks to us. Be careful of negative numbers as they'll
2451 * appear as very large values with unsigned longs.
2452 */
Peter Williams2dd73a42006-06-27 02:54:34 -07002453 if (max_load <= busiest_load_per_task)
2454 goto out_balanced;
2455
2456 /*
2457 * In the presence of smp nice balancing, certain scenarios can have
2458 * max load less than avg load(as we skip the groups at or below
2459 * its cpu_power, while calculating max_load..)
2460 */
2461 if (max_load < avg_load) {
2462 *imbalance = 0;
2463 goto small_imbalance;
2464 }
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002465
2466 /* Don't want to pull so many tasks that a group would go idle */
Peter Williams2dd73a42006-06-27 02:54:34 -07002467 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
Siddha, Suresh B0c117f12005-09-10 00:26:21 -07002468
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469 /* How much load to actually move to equalise the imbalance */
Eric Dumazet5517d862007-05-08 00:32:57 -07002470 *imbalance = min(max_pull * busiest->__cpu_power,
2471 (avg_load - this_load) * this->__cpu_power)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002472 / SCHED_LOAD_SCALE;
2473
Peter Williams2dd73a42006-06-27 02:54:34 -07002474 /*
2475 * if *imbalance is less than the average load per runnable task
2476 * there is no gaurantee that any tasks will be moved so we'll have
2477 * a think about bumping its value to force at least one task to be
2478 * moved
2479 */
Ingo Molnardd41f592007-07-09 18:51:59 +02002480 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07002481 unsigned long tmp, pwr_now, pwr_move;
Peter Williams2dd73a42006-06-27 02:54:34 -07002482 unsigned int imbn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483
Peter Williams2dd73a42006-06-27 02:54:34 -07002484small_imbalance:
2485 pwr_move = pwr_now = 0;
2486 imbn = 2;
2487 if (this_nr_running) {
2488 this_load_per_task /= this_nr_running;
2489 if (busiest_load_per_task > this_load_per_task)
2490 imbn = 1;
2491 } else
2492 this_load_per_task = SCHED_LOAD_SCALE;
2493
Ingo Molnardd41f592007-07-09 18:51:59 +02002494 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2495 busiest_load_per_task * imbn) {
Peter Williams2dd73a42006-06-27 02:54:34 -07002496 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497 return busiest;
2498 }
2499
2500 /*
2501 * OK, we don't have enough imbalance to justify moving tasks,
2502 * however we may be able to increase total CPU power used by
2503 * moving them.
2504 */
2505
Eric Dumazet5517d862007-05-08 00:32:57 -07002506 pwr_now += busiest->__cpu_power *
2507 min(busiest_load_per_task, max_load);
2508 pwr_now += this->__cpu_power *
2509 min(this_load_per_task, this_load);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510 pwr_now /= SCHED_LOAD_SCALE;
2511
2512 /* Amount of load we'd subtract */
Eric Dumazet5517d862007-05-08 00:32:57 -07002513 tmp = sg_div_cpu_power(busiest,
2514 busiest_load_per_task * SCHED_LOAD_SCALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002515 if (max_load > tmp)
Eric Dumazet5517d862007-05-08 00:32:57 -07002516 pwr_move += busiest->__cpu_power *
Peter Williams2dd73a42006-06-27 02:54:34 -07002517 min(busiest_load_per_task, max_load - tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518
2519 /* Amount of load we'd add */
Eric Dumazet5517d862007-05-08 00:32:57 -07002520 if (max_load * busiest->__cpu_power <
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08002521 busiest_load_per_task * SCHED_LOAD_SCALE)
Eric Dumazet5517d862007-05-08 00:32:57 -07002522 tmp = sg_div_cpu_power(this,
2523 max_load * busiest->__cpu_power);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 else
Eric Dumazet5517d862007-05-08 00:32:57 -07002525 tmp = sg_div_cpu_power(this,
2526 busiest_load_per_task * SCHED_LOAD_SCALE);
2527 pwr_move += this->__cpu_power *
2528 min(this_load_per_task, this_load + tmp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529 pwr_move /= SCHED_LOAD_SCALE;
2530
2531 /* Move if we gain throughput */
2532 if (pwr_move <= pwr_now)
2533 goto out_balanced;
2534
Peter Williams2dd73a42006-06-27 02:54:34 -07002535 *imbalance = busiest_load_per_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 }
2537
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538 return busiest;
2539
2540out_balanced:
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002541#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002542 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002543 goto ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002545 if (this == group_leader && group_leader != group_min) {
2546 *imbalance = min_load_per_task;
2547 return group_min;
2548 }
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002549#endif
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002550ret:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002551 *imbalance = 0;
2552 return NULL;
2553}
2554
2555/*
2556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2557 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002558static struct rq *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002559find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002560 unsigned long imbalance, cpumask_t *cpus)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002561{
Ingo Molnar70b97a72006-07-03 00:25:42 -07002562 struct rq *busiest = NULL, *rq;
Peter Williams2dd73a42006-06-27 02:54:34 -07002563 unsigned long max_load = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564 int i;
2565
2566 for_each_cpu_mask(i, group->cpumask) {
Ingo Molnardd41f592007-07-09 18:51:59 +02002567 unsigned long wl;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002568
2569 if (!cpu_isset(i, *cpus))
2570 continue;
2571
Ingo Molnar48f24c42006-07-03 00:25:40 -07002572 rq = cpu_rq(i);
Ingo Molnardd41f592007-07-09 18:51:59 +02002573 wl = weighted_cpuload(i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574
Ingo Molnardd41f592007-07-09 18:51:59 +02002575 if (rq->nr_running == 1 && wl > imbalance)
Peter Williams2dd73a42006-06-27 02:54:34 -07002576 continue;
2577
Ingo Molnardd41f592007-07-09 18:51:59 +02002578 if (wl > max_load) {
2579 max_load = wl;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002580 busiest = rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581 }
2582 }
2583
2584 return busiest;
2585}
2586
2587/*
Nick Piggin77391d72005-06-25 14:57:30 -07002588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2589 * so long as it is large enough.
2590 */
2591#define MAX_PINNED_INTERVAL 512
2592
Ingo Molnar48f24c42006-07-03 00:25:40 -07002593static inline unsigned long minus_1_or_zero(unsigned long n)
2594{
2595 return n > 0 ? n - 1 : 0;
2596}
2597
Nick Piggin77391d72005-06-25 14:57:30 -07002598/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2600 * tasks if there is an imbalance.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002602static int load_balance(int this_cpu, struct rq *this_rq,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002603 struct sched_domain *sd, enum cpu_idle_type idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002604 int *balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605{
Ingo Molnar48f24c42006-07-03 00:25:40 -07002606 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002607 struct sched_group *group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608 unsigned long imbalance;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002609 struct rq *busiest;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002610 cpumask_t cpus = CPU_MASK_ALL;
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002611 unsigned long flags;
Nick Piggin5969fe02005-09-10 00:26:19 -07002612
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002613 /*
2614 * When power savings policy is enabled for the parent domain, idle
2615 * sibling can pick up load irrespective of busy siblings. In this case,
Ingo Molnardd41f592007-07-09 18:51:59 +02002616 * let the state of idle sibling percolate up as CPU_IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002617 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002618 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002619 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002620 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002621 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002622
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623 schedstat_inc(sd, lb_cnt[idle]);
2624
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002625redo:
2626 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002627 &cpus, balance);
2628
Chen, Kenneth W06066712006-12-10 02:20:35 -08002629 if (*balance == 0)
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002630 goto out_balanced;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002631
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632 if (!group) {
2633 schedstat_inc(sd, lb_nobusyg[idle]);
2634 goto out_balanced;
2635 }
2636
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002637 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 if (!busiest) {
2639 schedstat_inc(sd, lb_nobusyq[idle]);
2640 goto out_balanced;
2641 }
2642
Nick Piggindb935db2005-06-25 14:57:11 -07002643 BUG_ON(busiest == this_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002644
2645 schedstat_add(sd, lb_imbalance[idle], imbalance);
2646
2647 nr_moved = 0;
2648 if (busiest->nr_running > 1) {
2649 /*
2650 * Attempt to move tasks. If find_busiest_group has found
2651 * an imbalance but busiest->nr_running <= 1, the group is
2652 * still unbalanced. nr_moved simply stays zero, so it is
2653 * correctly treated as an imbalance.
2654 */
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002655 local_irq_save(flags);
Nick Piggine17224b2005-09-10 00:26:18 -07002656 double_rq_lock(this_rq, busiest);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002658 minus_1_or_zero(busiest->nr_running),
2659 imbalance, sd, idle, &all_pinned);
Nick Piggine17224b2005-09-10 00:26:18 -07002660 double_rq_unlock(this_rq, busiest);
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002661 local_irq_restore(flags);
Nick Piggin81026792005-06-25 14:57:07 -07002662
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002663 /*
2664 * some other cpu did the load balance for us.
2665 */
2666 if (nr_moved && this_cpu != smp_processor_id())
2667 resched_cpu(this_cpu);
2668
Nick Piggin81026792005-06-25 14:57:07 -07002669 /* All tasks on this runqueue were pinned by CPU affinity */
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002670 if (unlikely(all_pinned)) {
2671 cpu_clear(cpu_of(busiest), cpus);
2672 if (!cpus_empty(cpus))
2673 goto redo;
Nick Piggin81026792005-06-25 14:57:07 -07002674 goto out_balanced;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002675 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002676 }
Nick Piggin81026792005-06-25 14:57:07 -07002677
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678 if (!nr_moved) {
2679 schedstat_inc(sd, lb_failed[idle]);
2680 sd->nr_balance_failed++;
2681
2682 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002684 spin_lock_irqsave(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002685
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2688 */
2689 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002690 spin_unlock_irqrestore(&busiest->lock, flags);
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002691 all_pinned = 1;
2692 goto out_one_pinned;
2693 }
2694
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695 if (!busiest->active_balance) {
2696 busiest->active_balance = 1;
2697 busiest->push_cpu = this_cpu;
Nick Piggin81026792005-06-25 14:57:07 -07002698 active_balance = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 }
Christoph Lameterfe2eea32006-12-10 02:20:21 -08002700 spin_unlock_irqrestore(&busiest->lock, flags);
Nick Piggin81026792005-06-25 14:57:07 -07002701 if (active_balance)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002702 wake_up_process(busiest->migration_thread);
2703
2704 /*
2705 * We've kicked active balancing, reset the failure
2706 * counter.
2707 */
Nick Piggin39507452005-06-25 14:57:09 -07002708 sd->nr_balance_failed = sd->cache_nice_tries+1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709 }
Nick Piggin81026792005-06-25 14:57:07 -07002710 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 sd->nr_balance_failed = 0;
2712
Nick Piggin81026792005-06-25 14:57:07 -07002713 if (likely(!active_balance)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714 /* We were unbalanced, so reset the balancing interval */
2715 sd->balance_interval = sd->min_interval;
Nick Piggin81026792005-06-25 14:57:07 -07002716 } else {
2717 /*
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2721 * move_tasks).
2722 */
2723 if (sd->balance_interval < sd->max_interval)
2724 sd->balance_interval *= 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002725 }
2726
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07002727 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002729 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730 return nr_moved;
2731
2732out_balanced:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 schedstat_inc(sd, lb_balanced[idle]);
2734
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002735 sd->nr_balance_failed = 0;
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07002736
2737out_one_pinned:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 /* tune up the balancing interval */
Nick Piggin77391d72005-06-25 14:57:30 -07002739 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2740 (sd->balance_interval < sd->max_interval))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 sd->balance_interval *= 2;
2742
Ingo Molnar48f24c42006-07-03 00:25:40 -07002743 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002745 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 return 0;
2747}
2748
2749/*
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2752 *
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754 * this_rq is locked.
2755 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07002756static int
Ingo Molnar70b97a72006-07-03 00:25:42 -07002757load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758{
2759 struct sched_group *group;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002760 struct rq *busiest = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761 unsigned long imbalance;
2762 int nr_moved = 0;
Nick Piggin5969fe02005-09-10 00:26:19 -07002763 int sd_idle = 0;
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002764 int all_pinned = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002765 cpumask_t cpus = CPU_MASK_ALL;
Nick Piggin5969fe02005-09-10 00:26:19 -07002766
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002767 /*
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002771 * portraying it as CPU_NOT_IDLE.
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002772 */
2773 if (sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002775 sd_idle = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002777 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002778redo:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002779 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
Siddha, Suresh B783609c2006-12-10 02:20:33 -08002780 &sd_idle, &cpus, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781 if (!group) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002782 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002783 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784 }
2785
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002786 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002787 &cpus);
Nick Piggindb935db2005-06-25 14:57:11 -07002788 if (!busiest) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002789 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002790 goto out_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 }
2792
Nick Piggindb935db2005-06-25 14:57:11 -07002793 BUG_ON(busiest == this_rq);
2794
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002795 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002796
2797 nr_moved = 0;
2798 if (busiest->nr_running > 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq, busiest);
2801 nr_moved = move_tasks(this_rq, this_cpu, busiest,
Peter Williams2dd73a42006-06-27 02:54:34 -07002802 minus_1_or_zero(busiest->nr_running),
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002803 imbalance, sd, CPU_NEWLY_IDLE,
2804 &all_pinned);
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002805 spin_unlock(&busiest->lock);
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002806
Suresh Siddha969bb4e2007-07-19 21:28:35 +02002807 if (unlikely(all_pinned)) {
Christoph Lameter0a2966b2006-09-25 23:30:51 -07002808 cpu_clear(cpu_of(busiest), cpus);
2809 if (!cpus_empty(cpus))
2810 goto redo;
2811 }
Nick Piggind6d5cfa2005-09-10 00:26:16 -07002812 }
2813
Nick Piggin5969fe02005-09-10 00:26:19 -07002814 if (!nr_moved) {
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002815 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002816 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2817 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002818 return -1;
2819 } else
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002820 sd->nr_balance_failed = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002821
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 return nr_moved;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002823
2824out_balanced:
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002825 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
Ingo Molnar48f24c42006-07-03 00:25:40 -07002826 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
Siddha, Suresh B89c47102006-10-03 01:14:09 -07002827 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
Nick Piggin5969fe02005-09-10 00:26:19 -07002828 return -1;
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002829 sd->nr_balance_failed = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07002830
Nick Piggin16cfb1c2005-06-25 14:57:08 -07002831 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832}
2833
2834/*
2835 * idle_balance is called by schedule() if this_cpu is about to become
2836 * idle. Attempts to pull tasks from other CPUs.
2837 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002838static void idle_balance(int this_cpu, struct rq *this_rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839{
2840 struct sched_domain *sd;
Ingo Molnardd41f592007-07-09 18:51:59 +02002841 int pulled_task = -1;
2842 unsigned long next_balance = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843
2844 for_each_domain(this_cpu, sd) {
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002845 unsigned long interval;
2846
2847 if (!(sd->flags & SD_LOAD_BALANCE))
2848 continue;
2849
2850 if (sd->flags & SD_BALANCE_NEWIDLE)
Ingo Molnar48f24c42006-07-03 00:25:40 -07002851 /* If we've pulled tasks over stop searching: */
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002852 pulled_task = load_balance_newidle(this_cpu,
Christoph Lameter92c4ca52007-06-23 17:16:33 -07002853 this_rq, sd);
2854
2855 interval = msecs_to_jiffies(sd->balance_interval);
2856 if (time_after(next_balance, sd->last_balance + interval))
2857 next_balance = sd->last_balance + interval;
2858 if (pulled_task)
2859 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 }
Ingo Molnardd41f592007-07-09 18:51:59 +02002861 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
Christoph Lameter1bd77f22006-12-10 02:20:27 -08002862 /*
2863 * We are going idle. next_balance may be set based on
2864 * a busy processor. So reset next_balance.
2865 */
2866 this_rq->next_balance = next_balance;
Ingo Molnardd41f592007-07-09 18:51:59 +02002867 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868}
2869
2870/*
2871 * active_load_balance is run by migration threads. It pushes running tasks
2872 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2873 * running on each physical CPU where possible, and avoids physical /
2874 * logical imbalances.
2875 *
2876 * Called with busiest_rq locked.
2877 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07002878static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879{
Nick Piggin39507452005-06-25 14:57:09 -07002880 int target_cpu = busiest_rq->push_cpu;
Ingo Molnar70b97a72006-07-03 00:25:42 -07002881 struct sched_domain *sd;
2882 struct rq *target_rq;
Nick Piggin39507452005-06-25 14:57:09 -07002883
Ingo Molnar48f24c42006-07-03 00:25:40 -07002884 /* Is there any task to move? */
Nick Piggin39507452005-06-25 14:57:09 -07002885 if (busiest_rq->nr_running <= 1)
Nick Piggin39507452005-06-25 14:57:09 -07002886 return;
2887
2888 target_rq = cpu_rq(target_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889
2890 /*
Nick Piggin39507452005-06-25 14:57:09 -07002891 * This condition is "impossible", if it occurs
2892 * we need to fix it. Originally reported by
2893 * Bjorn Helgaas on a 128-cpu setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002894 */
Nick Piggin39507452005-06-25 14:57:09 -07002895 BUG_ON(busiest_rq == target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002896
Nick Piggin39507452005-06-25 14:57:09 -07002897 /* move a task from busiest_rq to target_rq */
2898 double_lock_balance(busiest_rq, target_rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899
Nick Piggin39507452005-06-25 14:57:09 -07002900 /* Search for an sd spanning us and the target CPU. */
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002901 for_each_domain(target_cpu, sd) {
Nick Piggin39507452005-06-25 14:57:09 -07002902 if ((sd->flags & SD_LOAD_BALANCE) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07002903 cpu_isset(busiest_cpu, sd->span))
Nick Piggin39507452005-06-25 14:57:09 -07002904 break;
Chen, Kenneth Wc96d1452006-06-27 02:54:28 -07002905 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906
Ingo Molnar48f24c42006-07-03 00:25:40 -07002907 if (likely(sd)) {
2908 schedstat_inc(sd, alb_cnt);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002909
Ingo Molnar48f24c42006-07-03 00:25:40 -07002910 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
Ingo Molnard15bcfd2007-07-09 18:51:57 +02002911 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
Ingo Molnar48f24c42006-07-03 00:25:40 -07002912 NULL))
2913 schedstat_inc(sd, alb_pushed);
2914 else
2915 schedstat_inc(sd, alb_failed);
2916 }
Nick Piggin39507452005-06-25 14:57:09 -07002917 spin_unlock(&target_rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918}
2919
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002920#ifdef CONFIG_NO_HZ
2921static struct {
2922 atomic_t load_balancer;
2923 cpumask_t cpu_mask;
2924} nohz ____cacheline_aligned = {
2925 .load_balancer = ATOMIC_INIT(-1),
2926 .cpu_mask = CPU_MASK_NONE,
2927};
2928
Christoph Lameter7835b982006-12-10 02:20:22 -08002929/*
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002930 * This routine will try to nominate the ilb (idle load balancing)
2931 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2932 * load balancing on behalf of all those cpus. If all the cpus in the system
2933 * go into this tickless mode, then there will be no ilb owner (as there is
2934 * no need for one) and all the cpus will sleep till the next wakeup event
2935 * arrives...
Christoph Lameter7835b982006-12-10 02:20:22 -08002936 *
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07002937 * For the ilb owner, tick is not stopped. And this tick will be used
2938 * for idle load balancing. ilb owner will still be part of
2939 * nohz.cpu_mask..
2940 *
2941 * While stopping the tick, this cpu will become the ilb owner if there
2942 * is no other owner. And will be the owner till that cpu becomes busy
2943 * or if all cpus in the system stop their ticks at which point
2944 * there is no need for ilb owner.
2945 *
2946 * When the ilb owner becomes busy, it nominates another owner, during the
2947 * next busy scheduler_tick()
2948 */
2949int select_nohz_load_balancer(int stop_tick)
2950{
2951 int cpu = smp_processor_id();
2952
2953 if (stop_tick) {
2954 cpu_set(cpu, nohz.cpu_mask);
2955 cpu_rq(cpu)->in_nohz_recently = 1;
2956
2957 /*
2958 * If we are going offline and still the leader, give up!
2959 */
2960 if (cpu_is_offline(cpu) &&
2961 atomic_read(&nohz.load_balancer) == cpu) {
2962 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2963 BUG();
2964 return 0;
2965 }
2966
2967 /* time for ilb owner also to sleep */
2968 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2969 if (atomic_read(&nohz.load_balancer) == cpu)
2970 atomic_set(&nohz.load_balancer, -1);
2971 return 0;
2972 }
2973
2974 if (atomic_read(&nohz.load_balancer) == -1) {
2975 /* make me the ilb owner */
2976 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2977 return 1;
2978 } else if (atomic_read(&nohz.load_balancer) == cpu)
2979 return 1;
2980 } else {
2981 if (!cpu_isset(cpu, nohz.cpu_mask))
2982 return 0;
2983
2984 cpu_clear(cpu, nohz.cpu_mask);
2985
2986 if (atomic_read(&nohz.load_balancer) == cpu)
2987 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2988 BUG();
2989 }
2990 return 0;
2991}
2992#endif
2993
2994static DEFINE_SPINLOCK(balancing);
2995
2996/*
Christoph Lameter7835b982006-12-10 02:20:22 -08002997 * It checks each scheduling domain to see if it is due to be balanced,
2998 * and initiates a balancing operation if so.
2999 *
3000 * Balancing parameters are set up in arch_init_sched_domains.
3001 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003002static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
Christoph Lameter7835b982006-12-10 02:20:22 -08003003{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003004 int balance = 1;
3005 struct rq *rq = cpu_rq(cpu);
Christoph Lameter7835b982006-12-10 02:20:22 -08003006 unsigned long interval;
3007 struct sched_domain *sd;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003008 /* Earliest time when we have to do rebalance again */
Christoph Lameterc9819f42006-12-10 02:20:25 -08003009 unsigned long next_balance = jiffies + 60*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003010
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003011 for_each_domain(cpu, sd) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003012 if (!(sd->flags & SD_LOAD_BALANCE))
3013 continue;
3014
3015 interval = sd->balance_interval;
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003016 if (idle != CPU_IDLE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003017 interval *= sd->busy_factor;
3018
3019 /* scale ms to jiffies */
3020 interval = msecs_to_jiffies(interval);
3021 if (unlikely(!interval))
3022 interval = 1;
Ingo Molnardd41f592007-07-09 18:51:59 +02003023 if (interval > HZ*NR_CPUS/10)
3024 interval = HZ*NR_CPUS/10;
3025
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026
Christoph Lameter08c183f2006-12-10 02:20:29 -08003027 if (sd->flags & SD_SERIALIZE) {
3028 if (!spin_trylock(&balancing))
3029 goto out;
3030 }
3031
Christoph Lameterc9819f42006-12-10 02:20:25 -08003032 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003033 if (load_balance(cpu, rq, sd, idle, &balance)) {
Siddha, Suresh Bfa3b6dd2005-09-10 00:26:21 -07003034 /*
3035 * We've pulled tasks over so either we're no
Nick Piggin5969fe02005-09-10 00:26:19 -07003036 * longer idle, or one of our SMT siblings is
3037 * not idle.
3038 */
Ingo Molnard15bcfd2007-07-09 18:51:57 +02003039 idle = CPU_NOT_IDLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003040 }
Christoph Lameter1bd77f22006-12-10 02:20:27 -08003041 sd->last_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042 }
Christoph Lameter08c183f2006-12-10 02:20:29 -08003043 if (sd->flags & SD_SERIALIZE)
3044 spin_unlock(&balancing);
3045out:
Christoph Lameterc9819f42006-12-10 02:20:25 -08003046 if (time_after(next_balance, sd->last_balance + interval))
3047 next_balance = sd->last_balance + interval;
Siddha, Suresh B783609c2006-12-10 02:20:33 -08003048
3049 /*
3050 * Stop the load balance at this level. There is another
3051 * CPU in our sched group which is doing load balancing more
3052 * actively.
3053 */
3054 if (!balance)
3055 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056 }
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003057 rq->next_balance = next_balance;
3058}
3059
3060/*
3061 * run_rebalance_domains is triggered when needed from the scheduler tick.
3062 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3063 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3064 */
3065static void run_rebalance_domains(struct softirq_action *h)
3066{
Ingo Molnardd41f592007-07-09 18:51:59 +02003067 int this_cpu = smp_processor_id();
3068 struct rq *this_rq = cpu_rq(this_cpu);
3069 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3070 CPU_IDLE : CPU_NOT_IDLE;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003071
Ingo Molnardd41f592007-07-09 18:51:59 +02003072 rebalance_domains(this_cpu, idle);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003073
3074#ifdef CONFIG_NO_HZ
3075 /*
3076 * If this cpu is the owner for idle load balancing, then do the
3077 * balancing on behalf of the other idle cpus whose ticks are
3078 * stopped.
3079 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003080 if (this_rq->idle_at_tick &&
3081 atomic_read(&nohz.load_balancer) == this_cpu) {
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003082 cpumask_t cpus = nohz.cpu_mask;
3083 struct rq *rq;
3084 int balance_cpu;
3085
Ingo Molnardd41f592007-07-09 18:51:59 +02003086 cpu_clear(this_cpu, cpus);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003087 for_each_cpu_mask(balance_cpu, cpus) {
3088 /*
3089 * If this cpu gets work to do, stop the load balancing
3090 * work being done for other cpus. Next load
3091 * balancing owner will pick it up.
3092 */
3093 if (need_resched())
3094 break;
3095
Ingo Molnardd41f592007-07-09 18:51:59 +02003096 rebalance_domains(balance_cpu, SCHED_IDLE);
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003097
3098 rq = cpu_rq(balance_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003099 if (time_after(this_rq->next_balance, rq->next_balance))
3100 this_rq->next_balance = rq->next_balance;
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003101 }
3102 }
3103#endif
3104}
3105
3106/*
3107 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3108 *
3109 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3110 * idle load balancing owner or decide to stop the periodic load balancing,
3111 * if the whole system is idle.
3112 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003113static inline void trigger_load_balance(struct rq *rq, int cpu)
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003114{
Siddha, Suresh B46cb4b72007-05-08 00:32:51 -07003115#ifdef CONFIG_NO_HZ
3116 /*
3117 * If we were in the nohz mode recently and busy at the current
3118 * scheduler tick, then check if we need to nominate new idle
3119 * load balancer.
3120 */
3121 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3122 rq->in_nohz_recently = 0;
3123
3124 if (atomic_read(&nohz.load_balancer) == cpu) {
3125 cpu_clear(cpu, nohz.cpu_mask);
3126 atomic_set(&nohz.load_balancer, -1);
3127 }
3128
3129 if (atomic_read(&nohz.load_balancer) == -1) {
3130 /*
3131 * simple selection for now: Nominate the
3132 * first cpu in the nohz list to be the next
3133 * ilb owner.
3134 *
3135 * TBD: Traverse the sched domains and nominate
3136 * the nearest cpu in the nohz.cpu_mask.
3137 */
3138 int ilb = first_cpu(nohz.cpu_mask);
3139
3140 if (ilb != NR_CPUS)
3141 resched_cpu(ilb);
3142 }
3143 }
3144
3145 /*
3146 * If this cpu is idle and doing idle load balancing for all the
3147 * cpus with ticks stopped, is it time for that to stop?
3148 */
3149 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3150 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3151 resched_cpu(cpu);
3152 return;
3153 }
3154
3155 /*
3156 * If this cpu is idle and the idle load balancing is done by
3157 * someone else, then no need raise the SCHED_SOFTIRQ
3158 */
3159 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3160 cpu_isset(cpu, nohz.cpu_mask))
3161 return;
3162#endif
3163 if (time_after_eq(jiffies, rq->next_balance))
3164 raise_softirq(SCHED_SOFTIRQ);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003165}
Ingo Molnardd41f592007-07-09 18:51:59 +02003166
3167#else /* CONFIG_SMP */
3168
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169/*
3170 * on UP we do not need to balance between CPUs:
3171 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07003172static inline void idle_balance(int cpu, struct rq *rq)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173{
3174}
Ingo Molnardd41f592007-07-09 18:51:59 +02003175
3176/* Avoid "used but not defined" warning on UP */
3177static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3178 unsigned long max_nr_move, unsigned long max_load_move,
3179 struct sched_domain *sd, enum cpu_idle_type idle,
3180 int *all_pinned, unsigned long *load_moved,
3181 int this_best_prio, int best_prio, int best_prio_seen,
3182 struct rq_iterator *iterator)
3183{
3184 *load_moved = 0;
3185
3186 return 0;
3187}
3188
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189#endif
3190
Linus Torvalds1da177e2005-04-16 15:20:36 -07003191DEFINE_PER_CPU(struct kernel_stat, kstat);
3192
3193EXPORT_PER_CPU_SYMBOL(kstat);
3194
3195/*
Ingo Molnar41b86e92007-07-09 18:51:58 +02003196 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3197 * that have not yet been banked in case the task is currently running.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003198 */
Ingo Molnar41b86e92007-07-09 18:51:58 +02003199unsigned long long task_sched_runtime(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003200{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003201 unsigned long flags;
Ingo Molnar41b86e92007-07-09 18:51:58 +02003202 u64 ns, delta_exec;
3203 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07003204
Ingo Molnar41b86e92007-07-09 18:51:58 +02003205 rq = task_rq_lock(p, &flags);
3206 ns = p->se.sum_exec_runtime;
3207 if (rq->curr == p) {
3208 delta_exec = rq_clock(rq) - p->se.exec_start;
3209 if ((s64)delta_exec > 0)
3210 ns += delta_exec;
3211 }
3212 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07003213
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214 return ns;
3215}
3216
3217/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07003218 * Account user cpu time to a process.
3219 * @p: the process that the cpu time gets accounted to
3220 * @hardirq_offset: the offset to subtract from hardirq_count()
3221 * @cputime: the cpu time spent in user space since the last update
3222 */
3223void account_user_time(struct task_struct *p, cputime_t cputime)
3224{
3225 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3226 cputime64_t tmp;
3227
3228 p->utime = cputime_add(p->utime, cputime);
3229
3230 /* Add user time to cpustat. */
3231 tmp = cputime_to_cputime64(cputime);
3232 if (TASK_NICE(p) > 0)
3233 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3234 else
3235 cpustat->user = cputime64_add(cpustat->user, tmp);
3236}
3237
3238/*
3239 * Account system cpu time to a process.
3240 * @p: the process that the cpu time gets accounted to
3241 * @hardirq_offset: the offset to subtract from hardirq_count()
3242 * @cputime: the cpu time spent in kernel space since the last update
3243 */
3244void account_system_time(struct task_struct *p, int hardirq_offset,
3245 cputime_t cputime)
3246{
3247 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003248 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003249 cputime64_t tmp;
3250
3251 p->stime = cputime_add(p->stime, cputime);
3252
3253 /* Add system time to cpustat. */
3254 tmp = cputime_to_cputime64(cputime);
3255 if (hardirq_count() - hardirq_offset)
3256 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3257 else if (softirq_count())
3258 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3259 else if (p != rq->idle)
3260 cpustat->system = cputime64_add(cpustat->system, tmp);
3261 else if (atomic_read(&rq->nr_iowait) > 0)
3262 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3263 else
3264 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3265 /* Account for system time used */
3266 acct_update_integrals(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003267}
3268
3269/*
3270 * Account for involuntary wait time.
3271 * @p: the process from which the cpu time has been stolen
3272 * @steal: the cpu time spent in involuntary wait
3273 */
3274void account_steal_time(struct task_struct *p, cputime_t steal)
3275{
3276 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3277 cputime64_t tmp = cputime_to_cputime64(steal);
Ingo Molnar70b97a72006-07-03 00:25:42 -07003278 struct rq *rq = this_rq();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003279
3280 if (p == rq->idle) {
3281 p->stime = cputime_add(p->stime, steal);
3282 if (atomic_read(&rq->nr_iowait) > 0)
3283 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3284 else
3285 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3286 } else
3287 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3288}
3289
Christoph Lameter7835b982006-12-10 02:20:22 -08003290/*
3291 * This function gets called by the timer code, with HZ frequency.
3292 * We call it with interrupts disabled.
3293 *
3294 * It also gets called by the fork code, when changing the parent's
3295 * timeslices.
3296 */
3297void scheduler_tick(void)
3298{
Christoph Lameter7835b982006-12-10 02:20:22 -08003299 int cpu = smp_processor_id();
3300 struct rq *rq = cpu_rq(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02003301 struct task_struct *curr = rq->curr;
Christoph Lameter7835b982006-12-10 02:20:22 -08003302
Ingo Molnardd41f592007-07-09 18:51:59 +02003303 spin_lock(&rq->lock);
3304 if (curr != rq->idle) /* FIXME: needed? */
3305 curr->sched_class->task_tick(rq, curr);
3306 update_cpu_load(rq);
3307 spin_unlock(&rq->lock);
3308
Christoph Lametere418e1c2006-12-10 02:20:23 -08003309#ifdef CONFIG_SMP
Ingo Molnardd41f592007-07-09 18:51:59 +02003310 rq->idle_at_tick = idle_cpu(cpu);
3311 trigger_load_balance(rq, cpu);
Christoph Lametere418e1c2006-12-10 02:20:23 -08003312#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313}
3314
Linus Torvalds1da177e2005-04-16 15:20:36 -07003315#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3316
3317void fastcall add_preempt_count(int val)
3318{
3319 /*
3320 * Underflow?
3321 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003322 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3323 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324 preempt_count() += val;
3325 /*
3326 * Spinlock count overflowing soon?
3327 */
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08003328 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3329 PREEMPT_MASK - 10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330}
3331EXPORT_SYMBOL(add_preempt_count);
3332
3333void fastcall sub_preempt_count(int val)
3334{
3335 /*
3336 * Underflow?
3337 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003338 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3339 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340 /*
3341 * Is the spinlock portion underflowing?
3342 */
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07003343 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3344 !(preempt_count() & PREEMPT_MASK)))
3345 return;
3346
Linus Torvalds1da177e2005-04-16 15:20:36 -07003347 preempt_count() -= val;
3348}
3349EXPORT_SYMBOL(sub_preempt_count);
3350
3351#endif
3352
3353/*
Ingo Molnardd41f592007-07-09 18:51:59 +02003354 * Print scheduling while atomic bug:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003355 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003356static noinline void __schedule_bug(struct task_struct *prev)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003357{
Ingo Molnardd41f592007-07-09 18:51:59 +02003358 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3359 prev->comm, preempt_count(), prev->pid);
3360 debug_show_held_locks(prev);
3361 if (irqs_disabled())
3362 print_irqtrace_events(prev);
3363 dump_stack();
3364}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365
Ingo Molnardd41f592007-07-09 18:51:59 +02003366/*
3367 * Various schedule()-time debugging checks and statistics:
3368 */
3369static inline void schedule_debug(struct task_struct *prev)
3370{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003371 /*
3372 * Test if we are atomic. Since do_exit() needs to call into
3373 * schedule() atomically, we ignore that path for now.
3374 * Otherwise, whine if we are scheduling when we should not be.
3375 */
Ingo Molnardd41f592007-07-09 18:51:59 +02003376 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3377 __schedule_bug(prev);
3378
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3380
Ingo Molnardd41f592007-07-09 18:51:59 +02003381 schedstat_inc(this_rq(), sched_cnt);
3382}
3383
3384/*
3385 * Pick up the highest-prio task:
3386 */
3387static inline struct task_struct *
3388pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3389{
3390 struct sched_class *class;
3391 struct task_struct *p;
3392
3393 /*
3394 * Optimization: we know that if all tasks are in
3395 * the fair class we can call that function directly:
3396 */
3397 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3398 p = fair_sched_class.pick_next_task(rq, now);
3399 if (likely(p))
3400 return p;
3401 }
3402
3403 class = sched_class_highest;
3404 for ( ; ; ) {
3405 p = class->pick_next_task(rq, now);
3406 if (p)
3407 return p;
3408 /*
3409 * Will never be NULL as the idle class always
3410 * returns a non-NULL p:
3411 */
3412 class = class->next;
3413 }
3414}
3415
3416/*
3417 * schedule() is the main scheduler function.
3418 */
3419asmlinkage void __sched schedule(void)
3420{
3421 struct task_struct *prev, *next;
3422 long *switch_count;
3423 struct rq *rq;
3424 u64 now;
3425 int cpu;
3426
Linus Torvalds1da177e2005-04-16 15:20:36 -07003427need_resched:
3428 preempt_disable();
Ingo Molnardd41f592007-07-09 18:51:59 +02003429 cpu = smp_processor_id();
3430 rq = cpu_rq(cpu);
3431 rcu_qsctr_inc(cpu);
3432 prev = rq->curr;
3433 switch_count = &prev->nivcsw;
3434
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435 release_kernel_lock(prev);
3436need_resched_nonpreemptible:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003437
Ingo Molnardd41f592007-07-09 18:51:59 +02003438 schedule_debug(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439
3440 spin_lock_irq(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441 clear_tsk_need_resched(prev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003442
Ingo Molnardd41f592007-07-09 18:51:59 +02003443 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3444 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3445 unlikely(signal_pending(prev)))) {
3446 prev->state = TASK_RUNNING;
3447 } else {
3448 deactivate_task(rq, prev, 1);
3449 }
3450 switch_count = &prev->nvcsw;
3451 }
3452
3453 if (unlikely(!rq->nr_running))
3454 idle_balance(cpu, rq);
3455
3456 now = __rq_clock(rq);
3457 prev->sched_class->put_prev_task(rq, prev, now);
3458 next = pick_next_task(rq, prev, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003459
3460 sched_info_switch(prev, next);
Ingo Molnardd41f592007-07-09 18:51:59 +02003461
Linus Torvalds1da177e2005-04-16 15:20:36 -07003462 if (likely(prev != next)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003463 rq->nr_switches++;
3464 rq->curr = next;
3465 ++*switch_count;
3466
Ingo Molnardd41f592007-07-09 18:51:59 +02003467 context_switch(rq, prev, next); /* unlocks the rq */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003468 } else
3469 spin_unlock_irq(&rq->lock);
3470
Ingo Molnardd41f592007-07-09 18:51:59 +02003471 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3472 cpu = smp_processor_id();
3473 rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003474 goto need_resched_nonpreemptible;
Ingo Molnardd41f592007-07-09 18:51:59 +02003475 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476 preempt_enable_no_resched();
3477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3478 goto need_resched;
3479}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480EXPORT_SYMBOL(schedule);
3481
3482#ifdef CONFIG_PREEMPT
3483/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003484 * this is the entry point to schedule() from in-kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003485 * off of preempt_enable. Kernel preemptions off return from interrupt
3486 * occur there and call schedule directly.
3487 */
3488asmlinkage void __sched preempt_schedule(void)
3489{
3490 struct thread_info *ti = current_thread_info();
3491#ifdef CONFIG_PREEMPT_BKL
3492 struct task_struct *task = current;
3493 int saved_lock_depth;
3494#endif
3495 /*
3496 * If there is a non-zero preempt_count or interrupts are disabled,
3497 * we do not want to preempt the current task. Just return..
3498 */
Nick Pigginbeed33a2006-10-11 01:21:52 -07003499 if (likely(ti->preempt_count || irqs_disabled()))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 return;
3501
3502need_resched:
3503 add_preempt_count(PREEMPT_ACTIVE);
3504 /*
3505 * We keep the big kernel semaphore locked, but we
3506 * clear ->lock_depth so that schedule() doesnt
3507 * auto-release the semaphore:
3508 */
3509#ifdef CONFIG_PREEMPT_BKL
3510 saved_lock_depth = task->lock_depth;
3511 task->lock_depth = -1;
3512#endif
3513 schedule();
3514#ifdef CONFIG_PREEMPT_BKL
3515 task->lock_depth = saved_lock_depth;
3516#endif
3517 sub_preempt_count(PREEMPT_ACTIVE);
3518
3519 /* we could miss a preemption opportunity between schedule and now */
3520 barrier();
3521 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3522 goto need_resched;
3523}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003524EXPORT_SYMBOL(preempt_schedule);
3525
3526/*
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003527 * this is the entry point to schedule() from kernel preemption
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528 * off of irq context.
3529 * Note, that this is called and return with irqs disabled. This will
3530 * protect us against recursive calling from irq.
3531 */
3532asmlinkage void __sched preempt_schedule_irq(void)
3533{
3534 struct thread_info *ti = current_thread_info();
3535#ifdef CONFIG_PREEMPT_BKL
3536 struct task_struct *task = current;
3537 int saved_lock_depth;
3538#endif
Andreas Mohr2ed6e342006-07-10 04:43:52 -07003539 /* Catch callers which need to be fixed */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540 BUG_ON(ti->preempt_count || !irqs_disabled());
3541
3542need_resched:
3543 add_preempt_count(PREEMPT_ACTIVE);
3544 /*
3545 * We keep the big kernel semaphore locked, but we
3546 * clear ->lock_depth so that schedule() doesnt
3547 * auto-release the semaphore:
3548 */
3549#ifdef CONFIG_PREEMPT_BKL
3550 saved_lock_depth = task->lock_depth;
3551 task->lock_depth = -1;
3552#endif
3553 local_irq_enable();
3554 schedule();
3555 local_irq_disable();
3556#ifdef CONFIG_PREEMPT_BKL
3557 task->lock_depth = saved_lock_depth;
3558#endif
3559 sub_preempt_count(PREEMPT_ACTIVE);
3560
3561 /* we could miss a preemption opportunity between schedule and now */
3562 barrier();
3563 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3564 goto need_resched;
3565}
3566
3567#endif /* CONFIG_PREEMPT */
3568
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003569int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3570 void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571{
Ingo Molnar48f24c42006-07-03 00:25:40 -07003572 return try_to_wake_up(curr->private, mode, sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574EXPORT_SYMBOL(default_wake_function);
3575
3576/*
3577 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3578 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3579 * number) then we wake all the non-exclusive tasks and one exclusive task.
3580 *
3581 * There are circumstances in which we can try to wake a task which has already
3582 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3583 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3584 */
3585static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3586 int nr_exclusive, int sync, void *key)
3587{
3588 struct list_head *tmp, *next;
3589
3590 list_for_each_safe(tmp, next, &q->task_list) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07003591 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3592 unsigned flags = curr->flags;
3593
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 if (curr->func(curr, mode, sync, key) &&
Ingo Molnar48f24c42006-07-03 00:25:40 -07003595 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003596 break;
3597 }
3598}
3599
3600/**
3601 * __wake_up - wake up threads blocked on a waitqueue.
3602 * @q: the waitqueue
3603 * @mode: which threads
3604 * @nr_exclusive: how many wake-one or wake-many threads to wake up
Martin Waitz67be2dd2005-05-01 08:59:26 -07003605 * @key: is directly passed to the wakeup function
Linus Torvalds1da177e2005-04-16 15:20:36 -07003606 */
3607void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003608 int nr_exclusive, void *key)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609{
3610 unsigned long flags;
3611
3612 spin_lock_irqsave(&q->lock, flags);
3613 __wake_up_common(q, mode, nr_exclusive, 0, key);
3614 spin_unlock_irqrestore(&q->lock, flags);
3615}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616EXPORT_SYMBOL(__wake_up);
3617
3618/*
3619 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3620 */
3621void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3622{
3623 __wake_up_common(q, mode, 1, 0, NULL);
3624}
3625
3626/**
Martin Waitz67be2dd2005-05-01 08:59:26 -07003627 * __wake_up_sync - wake up threads blocked on a waitqueue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003628 * @q: the waitqueue
3629 * @mode: which threads
3630 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3631 *
3632 * The sync wakeup differs that the waker knows that it will schedule
3633 * away soon, so while the target thread will be woken up, it will not
3634 * be migrated to another CPU - ie. the two threads are 'synchronized'
3635 * with each other. This can prevent needless bouncing between CPUs.
3636 *
3637 * On UP it can prevent extra preemption.
3638 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003639void fastcall
3640__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003641{
3642 unsigned long flags;
3643 int sync = 1;
3644
3645 if (unlikely(!q))
3646 return;
3647
3648 if (unlikely(!nr_exclusive))
3649 sync = 0;
3650
3651 spin_lock_irqsave(&q->lock, flags);
3652 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3653 spin_unlock_irqrestore(&q->lock, flags);
3654}
3655EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3656
3657void fastcall complete(struct completion *x)
3658{
3659 unsigned long flags;
3660
3661 spin_lock_irqsave(&x->wait.lock, flags);
3662 x->done++;
3663 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3664 1, 0, NULL);
3665 spin_unlock_irqrestore(&x->wait.lock, flags);
3666}
3667EXPORT_SYMBOL(complete);
3668
3669void fastcall complete_all(struct completion *x)
3670{
3671 unsigned long flags;
3672
3673 spin_lock_irqsave(&x->wait.lock, flags);
3674 x->done += UINT_MAX/2;
3675 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3676 0, 0, NULL);
3677 spin_unlock_irqrestore(&x->wait.lock, flags);
3678}
3679EXPORT_SYMBOL(complete_all);
3680
3681void fastcall __sched wait_for_completion(struct completion *x)
3682{
3683 might_sleep();
Ingo Molnar48f24c42006-07-03 00:25:40 -07003684
Linus Torvalds1da177e2005-04-16 15:20:36 -07003685 spin_lock_irq(&x->wait.lock);
3686 if (!x->done) {
3687 DECLARE_WAITQUEUE(wait, current);
3688
3689 wait.flags |= WQ_FLAG_EXCLUSIVE;
3690 __add_wait_queue_tail(&x->wait, &wait);
3691 do {
3692 __set_current_state(TASK_UNINTERRUPTIBLE);
3693 spin_unlock_irq(&x->wait.lock);
3694 schedule();
3695 spin_lock_irq(&x->wait.lock);
3696 } while (!x->done);
3697 __remove_wait_queue(&x->wait, &wait);
3698 }
3699 x->done--;
3700 spin_unlock_irq(&x->wait.lock);
3701}
3702EXPORT_SYMBOL(wait_for_completion);
3703
3704unsigned long fastcall __sched
3705wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3706{
3707 might_sleep();
3708
3709 spin_lock_irq(&x->wait.lock);
3710 if (!x->done) {
3711 DECLARE_WAITQUEUE(wait, current);
3712
3713 wait.flags |= WQ_FLAG_EXCLUSIVE;
3714 __add_wait_queue_tail(&x->wait, &wait);
3715 do {
3716 __set_current_state(TASK_UNINTERRUPTIBLE);
3717 spin_unlock_irq(&x->wait.lock);
3718 timeout = schedule_timeout(timeout);
3719 spin_lock_irq(&x->wait.lock);
3720 if (!timeout) {
3721 __remove_wait_queue(&x->wait, &wait);
3722 goto out;
3723 }
3724 } while (!x->done);
3725 __remove_wait_queue(&x->wait, &wait);
3726 }
3727 x->done--;
3728out:
3729 spin_unlock_irq(&x->wait.lock);
3730 return timeout;
3731}
3732EXPORT_SYMBOL(wait_for_completion_timeout);
3733
3734int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3735{
3736 int ret = 0;
3737
3738 might_sleep();
3739
3740 spin_lock_irq(&x->wait.lock);
3741 if (!x->done) {
3742 DECLARE_WAITQUEUE(wait, current);
3743
3744 wait.flags |= WQ_FLAG_EXCLUSIVE;
3745 __add_wait_queue_tail(&x->wait, &wait);
3746 do {
3747 if (signal_pending(current)) {
3748 ret = -ERESTARTSYS;
3749 __remove_wait_queue(&x->wait, &wait);
3750 goto out;
3751 }
3752 __set_current_state(TASK_INTERRUPTIBLE);
3753 spin_unlock_irq(&x->wait.lock);
3754 schedule();
3755 spin_lock_irq(&x->wait.lock);
3756 } while (!x->done);
3757 __remove_wait_queue(&x->wait, &wait);
3758 }
3759 x->done--;
3760out:
3761 spin_unlock_irq(&x->wait.lock);
3762
3763 return ret;
3764}
3765EXPORT_SYMBOL(wait_for_completion_interruptible);
3766
3767unsigned long fastcall __sched
3768wait_for_completion_interruptible_timeout(struct completion *x,
3769 unsigned long timeout)
3770{
3771 might_sleep();
3772
3773 spin_lock_irq(&x->wait.lock);
3774 if (!x->done) {
3775 DECLARE_WAITQUEUE(wait, current);
3776
3777 wait.flags |= WQ_FLAG_EXCLUSIVE;
3778 __add_wait_queue_tail(&x->wait, &wait);
3779 do {
3780 if (signal_pending(current)) {
3781 timeout = -ERESTARTSYS;
3782 __remove_wait_queue(&x->wait, &wait);
3783 goto out;
3784 }
3785 __set_current_state(TASK_INTERRUPTIBLE);
3786 spin_unlock_irq(&x->wait.lock);
3787 timeout = schedule_timeout(timeout);
3788 spin_lock_irq(&x->wait.lock);
3789 if (!timeout) {
3790 __remove_wait_queue(&x->wait, &wait);
3791 goto out;
3792 }
3793 } while (!x->done);
3794 __remove_wait_queue(&x->wait, &wait);
3795 }
3796 x->done--;
3797out:
3798 spin_unlock_irq(&x->wait.lock);
3799 return timeout;
3800}
3801EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3802
Ingo Molnar0fec1712007-07-09 18:52:01 +02003803static inline void
3804sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003806 spin_lock_irqsave(&q->lock, *flags);
3807 __add_wait_queue(q, wait);
3808 spin_unlock(&q->lock);
3809}
3810
3811static inline void
3812sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3813{
3814 spin_lock_irq(&q->lock);
3815 __remove_wait_queue(q, wait);
3816 spin_unlock_irqrestore(&q->lock, *flags);
3817}
3818
3819void __sched interruptible_sleep_on(wait_queue_head_t *q)
3820{
3821 unsigned long flags;
3822 wait_queue_t wait;
3823
3824 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825
3826 current->state = TASK_INTERRUPTIBLE;
3827
Ingo Molnar0fec1712007-07-09 18:52:01 +02003828 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003829 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003830 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003831}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003832EXPORT_SYMBOL(interruptible_sleep_on);
3833
Ingo Molnar0fec1712007-07-09 18:52:01 +02003834long __sched
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07003835interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003836{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003837 unsigned long flags;
3838 wait_queue_t wait;
3839
3840 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003841
3842 current->state = TASK_INTERRUPTIBLE;
3843
Ingo Molnar0fec1712007-07-09 18:52:01 +02003844 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003846 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003847
3848 return timeout;
3849}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003850EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3851
Ingo Molnar0fec1712007-07-09 18:52:01 +02003852void __sched sleep_on(wait_queue_head_t *q)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003853{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003854 unsigned long flags;
3855 wait_queue_t wait;
3856
3857 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858
3859 current->state = TASK_UNINTERRUPTIBLE;
3860
Ingo Molnar0fec1712007-07-09 18:52:01 +02003861 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003862 schedule();
Ingo Molnar0fec1712007-07-09 18:52:01 +02003863 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003864}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865EXPORT_SYMBOL(sleep_on);
3866
Ingo Molnar0fec1712007-07-09 18:52:01 +02003867long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003868{
Ingo Molnar0fec1712007-07-09 18:52:01 +02003869 unsigned long flags;
3870 wait_queue_t wait;
3871
3872 init_waitqueue_entry(&wait, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003873
3874 current->state = TASK_UNINTERRUPTIBLE;
3875
Ingo Molnar0fec1712007-07-09 18:52:01 +02003876 sleep_on_head(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003877 timeout = schedule_timeout(timeout);
Ingo Molnar0fec1712007-07-09 18:52:01 +02003878 sleep_on_tail(q, &wait, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003879
3880 return timeout;
3881}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003882EXPORT_SYMBOL(sleep_on_timeout);
3883
Ingo Molnarb29739f2006-06-27 02:54:51 -07003884#ifdef CONFIG_RT_MUTEXES
3885
3886/*
3887 * rt_mutex_setprio - set the current priority of a task
3888 * @p: task
3889 * @prio: prio value (kernel-internal form)
3890 *
3891 * This function changes the 'effective' priority of a task. It does
3892 * not touch ->normal_prio like __setscheduler().
3893 *
3894 * Used by the rt_mutex code to implement priority inheritance logic.
3895 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003896void rt_mutex_setprio(struct task_struct *p, int prio)
Ingo Molnarb29739f2006-06-27 02:54:51 -07003897{
3898 unsigned long flags;
Ingo Molnardd41f592007-07-09 18:51:59 +02003899 int oldprio, on_rq;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003900 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003901 u64 now;
Ingo Molnarb29739f2006-06-27 02:54:51 -07003902
3903 BUG_ON(prio < 0 || prio > MAX_PRIO);
3904
3905 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02003906 now = rq_clock(rq);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003907
Andrew Mortond5f9f942007-05-08 20:27:06 -07003908 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02003909 on_rq = p->se.on_rq;
3910 if (on_rq)
3911 dequeue_task(rq, p, 0, now);
3912
3913 if (rt_prio(prio))
3914 p->sched_class = &rt_sched_class;
3915 else
3916 p->sched_class = &fair_sched_class;
3917
Ingo Molnarb29739f2006-06-27 02:54:51 -07003918 p->prio = prio;
3919
Ingo Molnardd41f592007-07-09 18:51:59 +02003920 if (on_rq) {
3921 enqueue_task(rq, p, 0, now);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003922 /*
3923 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07003924 * our priority decreased, or if we are not currently running on
3925 * this runqueue and our priority is higher than the current's
Ingo Molnarb29739f2006-06-27 02:54:51 -07003926 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003927 if (task_running(rq, p)) {
3928 if (p->prio > oldprio)
3929 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02003930 } else {
3931 check_preempt_curr(rq, p);
3932 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07003933 }
3934 task_rq_unlock(rq, &flags);
3935}
3936
3937#endif
3938
Ingo Molnar36c8b582006-07-03 00:25:41 -07003939void set_user_nice(struct task_struct *p, long nice)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003940{
Ingo Molnardd41f592007-07-09 18:51:59 +02003941 int old_prio, delta, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003942 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07003943 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02003944 u64 now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003945
3946 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3947 return;
3948 /*
3949 * We have to be careful, if called from sys_setpriority(),
3950 * the task might be in the middle of scheduling on another CPU.
3951 */
3952 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02003953 now = rq_clock(rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003954 /*
3955 * The RT priorities are set via sched_setscheduler(), but we still
3956 * allow the 'normal' nice value to be set - but as expected
3957 * it wont have any effect on scheduling until the task is
Ingo Molnardd41f592007-07-09 18:51:59 +02003958 * SCHED_FIFO/SCHED_RR:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003959 */
Ingo Molnare05606d2007-07-09 18:51:59 +02003960 if (task_has_rt_policy(p)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003961 p->static_prio = NICE_TO_PRIO(nice);
3962 goto out_unlock;
3963 }
Ingo Molnardd41f592007-07-09 18:51:59 +02003964 on_rq = p->se.on_rq;
3965 if (on_rq) {
3966 dequeue_task(rq, p, 0, now);
3967 dec_load(rq, p, now);
Peter Williams2dd73a42006-06-27 02:54:34 -07003968 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969
Linus Torvalds1da177e2005-04-16 15:20:36 -07003970 p->static_prio = NICE_TO_PRIO(nice);
Peter Williams2dd73a42006-06-27 02:54:34 -07003971 set_load_weight(p);
Ingo Molnarb29739f2006-06-27 02:54:51 -07003972 old_prio = p->prio;
3973 p->prio = effective_prio(p);
3974 delta = p->prio - old_prio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975
Ingo Molnardd41f592007-07-09 18:51:59 +02003976 if (on_rq) {
3977 enqueue_task(rq, p, 0, now);
3978 inc_load(rq, p, now);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003979 /*
Andrew Mortond5f9f942007-05-08 20:27:06 -07003980 * If the task increased its priority or is running and
3981 * lowered its priority, then reschedule its CPU:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07003983 if (delta < 0 || (delta > 0 && task_running(rq, p)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003984 resched_task(rq->curr);
3985 }
3986out_unlock:
3987 task_rq_unlock(rq, &flags);
3988}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003989EXPORT_SYMBOL(set_user_nice);
3990
Matt Mackalle43379f2005-05-01 08:59:00 -07003991/*
3992 * can_nice - check if a task can reduce its nice value
3993 * @p: task
3994 * @nice: nice value
3995 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07003996int can_nice(const struct task_struct *p, const int nice)
Matt Mackalle43379f2005-05-01 08:59:00 -07003997{
Matt Mackall024f4742005-08-18 11:24:19 -07003998 /* convert nice value [19,-20] to rlimit style value [1,40] */
3999 int nice_rlim = 20 - nice;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004000
Matt Mackalle43379f2005-05-01 08:59:00 -07004001 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4002 capable(CAP_SYS_NICE));
4003}
4004
Linus Torvalds1da177e2005-04-16 15:20:36 -07004005#ifdef __ARCH_WANT_SYS_NICE
4006
4007/*
4008 * sys_nice - change the priority of the current process.
4009 * @increment: priority increment
4010 *
4011 * sys_setpriority is a more generic, but much slower function that
4012 * does similar things.
4013 */
4014asmlinkage long sys_nice(int increment)
4015{
Ingo Molnar48f24c42006-07-03 00:25:40 -07004016 long nice, retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004017
4018 /*
4019 * Setpriority might change our priority at the same moment.
4020 * We don't have to worry. Conceptually one call occurs first
4021 * and we have a single winner.
4022 */
Matt Mackalle43379f2005-05-01 08:59:00 -07004023 if (increment < -40)
4024 increment = -40;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004025 if (increment > 40)
4026 increment = 40;
4027
4028 nice = PRIO_TO_NICE(current->static_prio) + increment;
4029 if (nice < -20)
4030 nice = -20;
4031 if (nice > 19)
4032 nice = 19;
4033
Matt Mackalle43379f2005-05-01 08:59:00 -07004034 if (increment < 0 && !can_nice(current, nice))
4035 return -EPERM;
4036
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 retval = security_task_setnice(current, nice);
4038 if (retval)
4039 return retval;
4040
4041 set_user_nice(current, nice);
4042 return 0;
4043}
4044
4045#endif
4046
4047/**
4048 * task_prio - return the priority value of a given task.
4049 * @p: the task in question.
4050 *
4051 * This is the priority value as seen by users in /proc.
4052 * RT tasks are offset by -200. Normal tasks are centered
4053 * around 0, value goes from -16 to +15.
4054 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004055int task_prio(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004056{
4057 return p->prio - MAX_RT_PRIO;
4058}
4059
4060/**
4061 * task_nice - return the nice value of a given task.
4062 * @p: the task in question.
4063 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004064int task_nice(const struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004065{
4066 return TASK_NICE(p);
4067}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004068EXPORT_SYMBOL_GPL(task_nice);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004069
4070/**
4071 * idle_cpu - is a given cpu idle currently?
4072 * @cpu: the processor in question.
4073 */
4074int idle_cpu(int cpu)
4075{
4076 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4077}
4078
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079/**
4080 * idle_task - return the idle task for a given cpu.
4081 * @cpu: the processor in question.
4082 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004083struct task_struct *idle_task(int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084{
4085 return cpu_rq(cpu)->idle;
4086}
4087
4088/**
4089 * find_process_by_pid - find a process with a matching PID value.
4090 * @pid: the pid in question.
4091 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004092static inline struct task_struct *find_process_by_pid(pid_t pid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004093{
4094 return pid ? find_task_by_pid(pid) : current;
4095}
4096
4097/* Actually do priority change: must hold rq lock. */
Ingo Molnardd41f592007-07-09 18:51:59 +02004098static void
4099__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004100{
Ingo Molnardd41f592007-07-09 18:51:59 +02004101 BUG_ON(p->se.on_rq);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004102
Linus Torvalds1da177e2005-04-16 15:20:36 -07004103 p->policy = policy;
Ingo Molnardd41f592007-07-09 18:51:59 +02004104 switch (p->policy) {
4105 case SCHED_NORMAL:
4106 case SCHED_BATCH:
4107 case SCHED_IDLE:
4108 p->sched_class = &fair_sched_class;
4109 break;
4110 case SCHED_FIFO:
4111 case SCHED_RR:
4112 p->sched_class = &rt_sched_class;
4113 break;
4114 }
4115
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116 p->rt_priority = prio;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004117 p->normal_prio = normal_prio(p);
4118 /* we are holding p->pi_lock already */
4119 p->prio = rt_mutex_getprio(p);
Peter Williams2dd73a42006-06-27 02:54:34 -07004120 set_load_weight(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004121}
4122
4123/**
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004124 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125 * @p: the task in question.
4126 * @policy: new policy.
4127 * @param: structure containing the new RT priority.
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004128 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004129 * NOTE that the task may be already dead.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004131int sched_setscheduler(struct task_struct *p, int policy,
4132 struct sched_param *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004133{
Ingo Molnardd41f592007-07-09 18:51:59 +02004134 int retval, oldprio, oldpolicy = -1, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004135 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004136 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004137
Steven Rostedt66e53932006-06-27 02:54:44 -07004138 /* may grab non-irq protected spin_locks */
4139 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140recheck:
4141 /* double check policy once rq lock held */
4142 if (policy < 0)
4143 policy = oldpolicy = p->policy;
4144 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
Ingo Molnardd41f592007-07-09 18:51:59 +02004145 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4146 policy != SCHED_IDLE)
Ingo Molnarb0a94992006-01-14 13:20:41 -08004147 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004148 /*
4149 * Valid priorities for SCHED_FIFO and SCHED_RR are
Ingo Molnardd41f592007-07-09 18:51:59 +02004150 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4151 * SCHED_BATCH and SCHED_IDLE is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004152 */
4153 if (param->sched_priority < 0 ||
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004154 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
Steven Rostedtd46523e2005-07-25 16:28:39 -04004155 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004156 return -EINVAL;
Ingo Molnare05606d2007-07-09 18:51:59 +02004157 if (rt_policy(policy) != (param->sched_priority != 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 return -EINVAL;
4159
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004160 /*
4161 * Allow unprivileged RT tasks to decrease priority:
4162 */
4163 if (!capable(CAP_SYS_NICE)) {
Ingo Molnare05606d2007-07-09 18:51:59 +02004164 if (rt_policy(policy)) {
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004165 unsigned long rlim_rtprio;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004166
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004167 if (!lock_task_sighand(p, &flags))
4168 return -ESRCH;
4169 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4170 unlock_task_sighand(p, &flags);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004171
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004172 /* can't set/change the rt policy */
4173 if (policy != p->policy && !rlim_rtprio)
4174 return -EPERM;
4175
4176 /* can't increase priority */
4177 if (param->sched_priority > p->rt_priority &&
4178 param->sched_priority > rlim_rtprio)
4179 return -EPERM;
4180 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004181 /*
4182 * Like positive nice levels, dont allow tasks to
4183 * move out of SCHED_IDLE either:
4184 */
4185 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4186 return -EPERM;
Oleg Nesterov8dc3e902006-09-29 02:00:50 -07004187
Olivier Croquette37e4ab32005-06-25 14:57:32 -07004188 /* can't change other user's priorities */
4189 if ((current->euid != p->euid) &&
4190 (current->euid != p->uid))
4191 return -EPERM;
4192 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193
4194 retval = security_task_setscheduler(p, policy, param);
4195 if (retval)
4196 return retval;
4197 /*
Ingo Molnarb29739f2006-06-27 02:54:51 -07004198 * make sure no PI-waiters arrive (or leave) while we are
4199 * changing the priority of the task:
4200 */
4201 spin_lock_irqsave(&p->pi_lock, flags);
4202 /*
Linus Torvalds1da177e2005-04-16 15:20:36 -07004203 * To be able to change p->policy safely, the apropriate
4204 * runqueue lock must be held.
4205 */
Ingo Molnarb29739f2006-06-27 02:54:51 -07004206 rq = __task_rq_lock(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207 /* recheck policy now with rq lock held */
4208 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4209 policy = oldpolicy = -1;
Ingo Molnarb29739f2006-06-27 02:54:51 -07004210 __task_rq_unlock(rq);
4211 spin_unlock_irqrestore(&p->pi_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212 goto recheck;
4213 }
Ingo Molnardd41f592007-07-09 18:51:59 +02004214 on_rq = p->se.on_rq;
4215 if (on_rq)
4216 deactivate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004217 oldprio = p->prio;
Ingo Molnardd41f592007-07-09 18:51:59 +02004218 __setscheduler(rq, p, policy, param->sched_priority);
4219 if (on_rq) {
4220 activate_task(rq, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004221 /*
4222 * Reschedule if we are currently running on this runqueue and
Andrew Mortond5f9f942007-05-08 20:27:06 -07004223 * our priority decreased, or if we are not currently running on
4224 * this runqueue and our priority is higher than the current's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004225 */
Andrew Mortond5f9f942007-05-08 20:27:06 -07004226 if (task_running(rq, p)) {
4227 if (p->prio > oldprio)
4228 resched_task(rq->curr);
Ingo Molnardd41f592007-07-09 18:51:59 +02004229 } else {
4230 check_preempt_curr(rq, p);
4231 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232 }
Ingo Molnarb29739f2006-06-27 02:54:51 -07004233 __task_rq_unlock(rq);
4234 spin_unlock_irqrestore(&p->pi_lock, flags);
4235
Thomas Gleixner95e02ca2006-06-27 02:55:02 -07004236 rt_mutex_adjust_pi(p);
4237
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238 return 0;
4239}
4240EXPORT_SYMBOL_GPL(sched_setscheduler);
4241
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004242static int
4243do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004244{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004245 struct sched_param lparam;
4246 struct task_struct *p;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004247 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004248
4249 if (!param || pid < 0)
4250 return -EINVAL;
4251 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4252 return -EFAULT;
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004253
4254 rcu_read_lock();
4255 retval = -ESRCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004256 p = find_process_by_pid(pid);
Oleg Nesterov5fe1d752006-09-29 02:00:48 -07004257 if (p != NULL)
4258 retval = sched_setscheduler(p, policy, &lparam);
4259 rcu_read_unlock();
Ingo Molnar36c8b582006-07-03 00:25:41 -07004260
Linus Torvalds1da177e2005-04-16 15:20:36 -07004261 return retval;
4262}
4263
4264/**
4265 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4266 * @pid: the pid in question.
4267 * @policy: new policy.
4268 * @param: structure containing the new RT priority.
4269 */
4270asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4271 struct sched_param __user *param)
4272{
Jason Baronc21761f2006-01-18 17:43:03 -08004273 /* negative values for policy are not valid */
4274 if (policy < 0)
4275 return -EINVAL;
4276
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 return do_sched_setscheduler(pid, policy, param);
4278}
4279
4280/**
4281 * sys_sched_setparam - set/change the RT priority of a thread
4282 * @pid: the pid in question.
4283 * @param: structure containing the new RT priority.
4284 */
4285asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4286{
4287 return do_sched_setscheduler(pid, -1, param);
4288}
4289
4290/**
4291 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4292 * @pid: the pid in question.
4293 */
4294asmlinkage long sys_sched_getscheduler(pid_t pid)
4295{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004296 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004297 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298
4299 if (pid < 0)
4300 goto out_nounlock;
4301
4302 retval = -ESRCH;
4303 read_lock(&tasklist_lock);
4304 p = find_process_by_pid(pid);
4305 if (p) {
4306 retval = security_task_getscheduler(p);
4307 if (!retval)
4308 retval = p->policy;
4309 }
4310 read_unlock(&tasklist_lock);
4311
4312out_nounlock:
4313 return retval;
4314}
4315
4316/**
4317 * sys_sched_getscheduler - get the RT priority of a thread
4318 * @pid: the pid in question.
4319 * @param: structure containing the RT priority.
4320 */
4321asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4322{
4323 struct sched_param lp;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004324 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 int retval = -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326
4327 if (!param || pid < 0)
4328 goto out_nounlock;
4329
4330 read_lock(&tasklist_lock);
4331 p = find_process_by_pid(pid);
4332 retval = -ESRCH;
4333 if (!p)
4334 goto out_unlock;
4335
4336 retval = security_task_getscheduler(p);
4337 if (retval)
4338 goto out_unlock;
4339
4340 lp.sched_priority = p->rt_priority;
4341 read_unlock(&tasklist_lock);
4342
4343 /*
4344 * This one might sleep, we cannot do it with a spinlock held ...
4345 */
4346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348out_nounlock:
4349 return retval;
4350
4351out_unlock:
4352 read_unlock(&tasklist_lock);
4353 return retval;
4354}
4355
4356long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4357{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004358 cpumask_t cpus_allowed;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004359 struct task_struct *p;
4360 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004361
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004362 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363 read_lock(&tasklist_lock);
4364
4365 p = find_process_by_pid(pid);
4366 if (!p) {
4367 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004368 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004369 return -ESRCH;
4370 }
4371
4372 /*
4373 * It is not safe to call set_cpus_allowed with the
4374 * tasklist_lock held. We will bump the task_struct's
4375 * usage count and then drop tasklist_lock.
4376 */
4377 get_task_struct(p);
4378 read_unlock(&tasklist_lock);
4379
4380 retval = -EPERM;
4381 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4382 !capable(CAP_SYS_NICE))
4383 goto out_unlock;
4384
David Quigleye7834f82006-06-23 02:03:59 -07004385 retval = security_task_setscheduler(p, 0, NULL);
4386 if (retval)
4387 goto out_unlock;
4388
Linus Torvalds1da177e2005-04-16 15:20:36 -07004389 cpus_allowed = cpuset_cpus_allowed(p);
4390 cpus_and(new_mask, new_mask, cpus_allowed);
4391 retval = set_cpus_allowed(p, new_mask);
4392
4393out_unlock:
4394 put_task_struct(p);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004395 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004396 return retval;
4397}
4398
4399static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4400 cpumask_t *new_mask)
4401{
4402 if (len < sizeof(cpumask_t)) {
4403 memset(new_mask, 0, sizeof(cpumask_t));
4404 } else if (len > sizeof(cpumask_t)) {
4405 len = sizeof(cpumask_t);
4406 }
4407 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4408}
4409
4410/**
4411 * sys_sched_setaffinity - set the cpu affinity of a process
4412 * @pid: pid of the process
4413 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4414 * @user_mask_ptr: user-space pointer to the new cpu mask
4415 */
4416asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4417 unsigned long __user *user_mask_ptr)
4418{
4419 cpumask_t new_mask;
4420 int retval;
4421
4422 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4423 if (retval)
4424 return retval;
4425
4426 return sched_setaffinity(pid, new_mask);
4427}
4428
4429/*
4430 * Represents all cpu's present in the system
4431 * In systems capable of hotplug, this map could dynamically grow
4432 * as new cpu's are detected in the system via any platform specific
4433 * method, such as ACPI for e.g.
4434 */
4435
Andi Kleen4cef0c62006-01-11 22:44:57 +01004436cpumask_t cpu_present_map __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004437EXPORT_SYMBOL(cpu_present_map);
4438
4439#ifndef CONFIG_SMP
Andi Kleen4cef0c62006-01-11 22:44:57 +01004440cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004441EXPORT_SYMBOL(cpu_online_map);
4442
Andi Kleen4cef0c62006-01-11 22:44:57 +01004443cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
Greg Bankse16b38f2006-10-02 02:17:40 -07004444EXPORT_SYMBOL(cpu_possible_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004445#endif
4446
4447long sched_getaffinity(pid_t pid, cpumask_t *mask)
4448{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004449 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004450 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004451
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004452 mutex_lock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004453 read_lock(&tasklist_lock);
4454
4455 retval = -ESRCH;
4456 p = find_process_by_pid(pid);
4457 if (!p)
4458 goto out_unlock;
4459
David Quigleye7834f82006-06-23 02:03:59 -07004460 retval = security_task_getscheduler(p);
4461 if (retval)
4462 goto out_unlock;
4463
Jack Steiner2f7016d2006-02-01 03:05:18 -08004464 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004465
4466out_unlock:
4467 read_unlock(&tasklist_lock);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07004468 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004469 if (retval)
4470 return retval;
4471
4472 return 0;
4473}
4474
4475/**
4476 * sys_sched_getaffinity - get the cpu affinity of a process
4477 * @pid: pid of the process
4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4480 */
4481asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4482 unsigned long __user *user_mask_ptr)
4483{
4484 int ret;
4485 cpumask_t mask;
4486
4487 if (len < sizeof(cpumask_t))
4488 return -EINVAL;
4489
4490 ret = sched_getaffinity(pid, &mask);
4491 if (ret < 0)
4492 return ret;
4493
4494 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4495 return -EFAULT;
4496
4497 return sizeof(cpumask_t);
4498}
4499
4500/**
4501 * sys_sched_yield - yield the current processor to other threads.
4502 *
Ingo Molnardd41f592007-07-09 18:51:59 +02004503 * This function yields the current CPU to other tasks. If there are no
4504 * other threads running on this CPU then this function will return.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004505 */
4506asmlinkage long sys_sched_yield(void)
4507{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004508 struct rq *rq = this_rq_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004509
4510 schedstat_inc(rq, yld_cnt);
Ingo Molnardd41f592007-07-09 18:51:59 +02004511 if (unlikely(rq->nr_running == 1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004512 schedstat_inc(rq, yld_act_empty);
Ingo Molnardd41f592007-07-09 18:51:59 +02004513 else
4514 current->sched_class->yield_task(rq, current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004515
4516 /*
4517 * Since we are going to call schedule() anyway, there's
4518 * no need to preempt or enable interrupts:
4519 */
4520 __release(rq->lock);
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004521 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004522 _raw_spin_unlock(&rq->lock);
4523 preempt_enable_no_resched();
4524
4525 schedule();
4526
4527 return 0;
4528}
4529
Andrew Mortone7b38402006-06-30 01:56:00 -07004530static void __cond_resched(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004531{
Ingo Molnar8e0a43d2006-06-23 02:05:23 -07004532#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4533 __might_sleep(__FILE__, __LINE__);
4534#endif
Ingo Molnar5bbcfd92005-07-07 17:57:04 -07004535 /*
4536 * The BKS might be reacquired before we have dropped
4537 * PREEMPT_ACTIVE, which could trigger a second
4538 * cond_resched() call.
4539 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004540 do {
4541 add_preempt_count(PREEMPT_ACTIVE);
4542 schedule();
4543 sub_preempt_count(PREEMPT_ACTIVE);
4544 } while (need_resched());
4545}
4546
4547int __sched cond_resched(void)
4548{
Ingo Molnar94142322006-12-29 16:48:13 -08004549 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4550 system_state == SYSTEM_RUNNING) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004551 __cond_resched();
4552 return 1;
4553 }
4554 return 0;
4555}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004556EXPORT_SYMBOL(cond_resched);
4557
4558/*
4559 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4560 * call schedule, and on return reacquire the lock.
4561 *
4562 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4563 * operations here to prevent schedule() from being called twice (once via
4564 * spin_unlock(), once by hand).
4565 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004566int cond_resched_lock(spinlock_t *lock)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004567{
Jan Kara6df3cec2005-06-13 15:52:32 -07004568 int ret = 0;
4569
Linus Torvalds1da177e2005-04-16 15:20:36 -07004570 if (need_lockbreak(lock)) {
4571 spin_unlock(lock);
4572 cpu_relax();
Jan Kara6df3cec2005-06-13 15:52:32 -07004573 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004574 spin_lock(lock);
4575 }
Ingo Molnar94142322006-12-29 16:48:13 -08004576 if (need_resched() && system_state == SYSTEM_RUNNING) {
Ingo Molnar8a25d5d2006-07-03 00:24:54 -07004577 spin_release(&lock->dep_map, 1, _THIS_IP_);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004578 _raw_spin_unlock(lock);
4579 preempt_enable_no_resched();
4580 __cond_resched();
Jan Kara6df3cec2005-06-13 15:52:32 -07004581 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004582 spin_lock(lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004583 }
Jan Kara6df3cec2005-06-13 15:52:32 -07004584 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004585}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004586EXPORT_SYMBOL(cond_resched_lock);
4587
4588int __sched cond_resched_softirq(void)
4589{
4590 BUG_ON(!in_softirq());
4591
Ingo Molnar94142322006-12-29 16:48:13 -08004592 if (need_resched() && system_state == SYSTEM_RUNNING) {
Thomas Gleixner98d825672007-05-23 13:58:18 -07004593 local_bh_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004594 __cond_resched();
4595 local_bh_disable();
4596 return 1;
4597 }
4598 return 0;
4599}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004600EXPORT_SYMBOL(cond_resched_softirq);
4601
Linus Torvalds1da177e2005-04-16 15:20:36 -07004602/**
4603 * yield - yield the current processor to other threads.
4604 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08004605 * This is a shortcut for kernel-space yielding - it marks the
Linus Torvalds1da177e2005-04-16 15:20:36 -07004606 * thread runnable and calls sys_sched_yield().
4607 */
4608void __sched yield(void)
4609{
4610 set_current_state(TASK_RUNNING);
4611 sys_sched_yield();
4612}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613EXPORT_SYMBOL(yield);
4614
4615/*
4616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4617 * that process accounting knows that this is a task in IO wait state.
4618 *
4619 * But don't do that if it is a deliberate, throttling IO wait (this task
4620 * has set its backing_dev_info: the queue against which it should throttle)
4621 */
4622void __sched io_schedule(void)
4623{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004624 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004625
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004626 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004627 atomic_inc(&rq->nr_iowait);
4628 schedule();
4629 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004630 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004631}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004632EXPORT_SYMBOL(io_schedule);
4633
4634long __sched io_schedule_timeout(long timeout)
4635{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004636 struct rq *rq = &__raw_get_cpu_var(runqueues);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004637 long ret;
4638
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004639 delayacct_blkio_start();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004640 atomic_inc(&rq->nr_iowait);
4641 ret = schedule_timeout(timeout);
4642 atomic_dec(&rq->nr_iowait);
Shailabh Nagar0ff92242006-07-14 00:24:37 -07004643 delayacct_blkio_end();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004644 return ret;
4645}
4646
4647/**
4648 * sys_sched_get_priority_max - return maximum RT priority.
4649 * @policy: scheduling class.
4650 *
4651 * this syscall returns the maximum rt_priority that can be used
4652 * by a given scheduling class.
4653 */
4654asmlinkage long sys_sched_get_priority_max(int policy)
4655{
4656 int ret = -EINVAL;
4657
4658 switch (policy) {
4659 case SCHED_FIFO:
4660 case SCHED_RR:
4661 ret = MAX_USER_RT_PRIO-1;
4662 break;
4663 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004664 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004665 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004666 ret = 0;
4667 break;
4668 }
4669 return ret;
4670}
4671
4672/**
4673 * sys_sched_get_priority_min - return minimum RT priority.
4674 * @policy: scheduling class.
4675 *
4676 * this syscall returns the minimum rt_priority that can be used
4677 * by a given scheduling class.
4678 */
4679asmlinkage long sys_sched_get_priority_min(int policy)
4680{
4681 int ret = -EINVAL;
4682
4683 switch (policy) {
4684 case SCHED_FIFO:
4685 case SCHED_RR:
4686 ret = 1;
4687 break;
4688 case SCHED_NORMAL:
Ingo Molnarb0a94992006-01-14 13:20:41 -08004689 case SCHED_BATCH:
Ingo Molnardd41f592007-07-09 18:51:59 +02004690 case SCHED_IDLE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691 ret = 0;
4692 }
4693 return ret;
4694}
4695
4696/**
4697 * sys_sched_rr_get_interval - return the default timeslice of a process.
4698 * @pid: pid of the process.
4699 * @interval: userspace pointer to the timeslice value.
4700 *
4701 * this syscall writes the default timeslice value of a given process
4702 * into the user-space timespec buffer. A value of '0' means infinity.
4703 */
4704asmlinkage
4705long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4706{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004707 struct task_struct *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004708 int retval = -EINVAL;
4709 struct timespec t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004710
4711 if (pid < 0)
4712 goto out_nounlock;
4713
4714 retval = -ESRCH;
4715 read_lock(&tasklist_lock);
4716 p = find_process_by_pid(pid);
4717 if (!p)
4718 goto out_unlock;
4719
4720 retval = security_task_getscheduler(p);
4721 if (retval)
4722 goto out_unlock;
4723
Peter Williamsb78709c2006-06-26 16:58:00 +10004724 jiffies_to_timespec(p->policy == SCHED_FIFO ?
Ingo Molnardd41f592007-07-09 18:51:59 +02004725 0 : static_prio_timeslice(p->static_prio), &t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004726 read_unlock(&tasklist_lock);
4727 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4728out_nounlock:
4729 return retval;
4730out_unlock:
4731 read_unlock(&tasklist_lock);
4732 return retval;
4733}
4734
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004735static const char stat_nam[] = "RSDTtZX";
Ingo Molnar36c8b582006-07-03 00:25:41 -07004736
4737static void show_task(struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004738{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004739 unsigned long free = 0;
Ingo Molnar36c8b582006-07-03 00:25:41 -07004740 unsigned state;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004741
Linus Torvalds1da177e2005-04-16 15:20:36 -07004742 state = p->state ? __ffs(p->state) + 1 : 0;
Andreas Mohr2ed6e342006-07-10 04:43:52 -07004743 printk("%-13.13s %c", p->comm,
4744 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
Ingo Molnar4bd77322007-07-11 21:21:47 +02004745#if BITS_PER_LONG == 32
Linus Torvalds1da177e2005-04-16 15:20:36 -07004746 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004747 printk(" running ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004748 else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004749 printk(" %08lx ", thread_saved_pc(p));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004750#else
4751 if (state == TASK_RUNNING)
Ingo Molnar4bd77322007-07-11 21:21:47 +02004752 printk(" running task ");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004753 else
4754 printk(" %016lx ", thread_saved_pc(p));
4755#endif
4756#ifdef CONFIG_DEBUG_STACK_USAGE
4757 {
Al Viro10ebffd2005-11-13 16:06:56 -08004758 unsigned long *n = end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004759 while (!*n)
4760 n++;
Al Viro10ebffd2005-11-13 16:06:56 -08004761 free = (unsigned long)n - (unsigned long)end_of_stack(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004762 }
4763#endif
Ingo Molnar4bd77322007-07-11 21:21:47 +02004764 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004765
4766 if (state != TASK_RUNNING)
4767 show_stack(p, NULL);
4768}
4769
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004770void show_state_filter(unsigned long state_filter)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004771{
Ingo Molnar36c8b582006-07-03 00:25:41 -07004772 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004773
Ingo Molnar4bd77322007-07-11 21:21:47 +02004774#if BITS_PER_LONG == 32
4775 printk(KERN_INFO
4776 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004777#else
Ingo Molnar4bd77322007-07-11 21:21:47 +02004778 printk(KERN_INFO
4779 " task PC stack pid father\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004780#endif
4781 read_lock(&tasklist_lock);
4782 do_each_thread(g, p) {
4783 /*
4784 * reset the NMI-timeout, listing all files on a slow
4785 * console might take alot of time:
4786 */
4787 touch_nmi_watchdog();
Ingo Molnar39bc89f2007-04-25 20:50:03 -07004788 if (!state_filter || (p->state & state_filter))
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004789 show_task(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004790 } while_each_thread(g, p);
4791
Jeremy Fitzhardinge04c91672007-05-08 00:28:05 -07004792 touch_all_softlockup_watchdogs();
4793
Ingo Molnardd41f592007-07-09 18:51:59 +02004794#ifdef CONFIG_SCHED_DEBUG
4795 sysrq_sched_debug_show();
4796#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004797 read_unlock(&tasklist_lock);
Ingo Molnare59e2ae2006-12-06 20:35:59 -08004798 /*
4799 * Only show locks if all tasks are dumped:
4800 */
4801 if (state_filter == -1)
4802 debug_show_all_locks();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004803}
4804
Ingo Molnar1df21052007-07-09 18:51:58 +02004805void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4806{
Ingo Molnardd41f592007-07-09 18:51:59 +02004807 idle->sched_class = &idle_sched_class;
Ingo Molnar1df21052007-07-09 18:51:58 +02004808}
4809
Ingo Molnarf340c0d2005-06-28 16:40:42 +02004810/**
4811 * init_idle - set up an idle thread for a given CPU
4812 * @idle: task in question
4813 * @cpu: cpu the idle task belongs to
4814 *
4815 * NOTE: this function does not set the idle thread's NEED_RESCHED
4816 * flag, to make booting more robust.
4817 */
Nick Piggin5c1e1762006-10-03 01:14:04 -07004818void __cpuinit init_idle(struct task_struct *idle, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004819{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004820 struct rq *rq = cpu_rq(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004821 unsigned long flags;
4822
Ingo Molnardd41f592007-07-09 18:51:59 +02004823 __sched_fork(idle);
4824 idle->se.exec_start = sched_clock();
4825
Ingo Molnarb29739f2006-06-27 02:54:51 -07004826 idle->prio = idle->normal_prio = MAX_PRIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004827 idle->cpus_allowed = cpumask_of_cpu(cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004828 __set_task_cpu(idle, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004829
4830 spin_lock_irqsave(&rq->lock, flags);
4831 rq->curr = rq->idle = idle;
Nick Piggin4866cde2005-06-25 14:57:23 -07004832#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4833 idle->oncpu = 1;
4834#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004835 spin_unlock_irqrestore(&rq->lock, flags);
4836
4837 /* Set the preempt count _outside_ the spinlocks! */
4838#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
Al Viroa1261f52005-11-13 16:06:55 -08004839 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004840#else
Al Viroa1261f52005-11-13 16:06:55 -08004841 task_thread_info(idle)->preempt_count = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842#endif
Ingo Molnardd41f592007-07-09 18:51:59 +02004843 /*
4844 * The idle tasks have their own, simple scheduling class:
4845 */
4846 idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004847}
4848
4849/*
4850 * In a system that switches off the HZ timer nohz_cpu_mask
4851 * indicates which cpus entered this state. This is used
4852 * in the rcu update to wait only for active cpus. For system
4853 * which do not switch off the HZ timer nohz_cpu_mask should
4854 * always be CPU_MASK_NONE.
4855 */
4856cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4857
Ingo Molnardd41f592007-07-09 18:51:59 +02004858/*
4859 * Increase the granularity value when there are more CPUs,
4860 * because with more CPUs the 'effective latency' as visible
4861 * to users decreases. But the relationship is not linear,
4862 * so pick a second-best guess by going with the log2 of the
4863 * number of CPUs.
4864 *
4865 * This idea comes from the SD scheduler of Con Kolivas:
4866 */
4867static inline void sched_init_granularity(void)
4868{
4869 unsigned int factor = 1 + ilog2(num_online_cpus());
Ingo Molnara5968df2007-07-11 21:21:47 +02004870 const unsigned long gran_limit = 100000000;
Ingo Molnardd41f592007-07-09 18:51:59 +02004871
4872 sysctl_sched_granularity *= factor;
4873 if (sysctl_sched_granularity > gran_limit)
4874 sysctl_sched_granularity = gran_limit;
4875
4876 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4877 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4878}
4879
Linus Torvalds1da177e2005-04-16 15:20:36 -07004880#ifdef CONFIG_SMP
4881/*
4882 * This is how migration works:
4883 *
Ingo Molnar70b97a72006-07-03 00:25:42 -07004884 * 1) we queue a struct migration_req structure in the source CPU's
Linus Torvalds1da177e2005-04-16 15:20:36 -07004885 * runqueue and wake up that CPU's migration thread.
4886 * 2) we down() the locked semaphore => thread blocks.
4887 * 3) migration thread wakes up (implicitly it forces the migrated
4888 * thread off the CPU)
4889 * 4) it gets the migration request and checks whether the migrated
4890 * task is still in the wrong runqueue.
4891 * 5) if it's in the wrong runqueue then the migration thread removes
4892 * it and puts it into the right queue.
4893 * 6) migration thread up()s the semaphore.
4894 * 7) we wake up and the migration is done.
4895 */
4896
4897/*
4898 * Change a given task's CPU affinity. Migrate the thread to a
4899 * proper CPU and schedule it away if the CPU it's executing on
4900 * is removed from the allowed bitmask.
4901 *
4902 * NOTE: the caller must have a valid reference to the task, the
4903 * task must not exit() & deallocate itself prematurely. The
4904 * call is not atomic; no spinlocks may be held.
4905 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07004906int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004907{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004908 struct migration_req req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004909 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004910 struct rq *rq;
Ingo Molnar48f24c42006-07-03 00:25:40 -07004911 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004912
4913 rq = task_rq_lock(p, &flags);
4914 if (!cpus_intersects(new_mask, cpu_online_map)) {
4915 ret = -EINVAL;
4916 goto out;
4917 }
4918
4919 p->cpus_allowed = new_mask;
4920 /* Can the task run on the task's current CPU? If so, we're done */
4921 if (cpu_isset(task_cpu(p), new_mask))
4922 goto out;
4923
4924 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4925 /* Need help from migration thread: drop lock and wait. */
4926 task_rq_unlock(rq, &flags);
4927 wake_up_process(rq->migration_thread);
4928 wait_for_completion(&req.done);
4929 tlb_migrate_finish(p->mm);
4930 return 0;
4931 }
4932out:
4933 task_rq_unlock(rq, &flags);
Ingo Molnar48f24c42006-07-03 00:25:40 -07004934
Linus Torvalds1da177e2005-04-16 15:20:36 -07004935 return ret;
4936}
Linus Torvalds1da177e2005-04-16 15:20:36 -07004937EXPORT_SYMBOL_GPL(set_cpus_allowed);
4938
4939/*
4940 * Move (not current) task off this cpu, onto dest cpu. We're doing
4941 * this because either it can't run here any more (set_cpus_allowed()
4942 * away from this CPU, or CPU going down), or because we're
4943 * attempting to rebalance this task on exec (sched_exec).
4944 *
4945 * So we race with normal scheduler movements, but that's OK, as long
4946 * as the task is no longer on this CPU.
Kirill Korotaevefc30812006-06-27 02:54:32 -07004947 *
4948 * Returns non-zero if task was successfully migrated.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004949 */
Kirill Korotaevefc30812006-06-27 02:54:32 -07004950static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004951{
Ingo Molnar70b97a72006-07-03 00:25:42 -07004952 struct rq *rq_dest, *rq_src;
Ingo Molnardd41f592007-07-09 18:51:59 +02004953 int ret = 0, on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004954
4955 if (unlikely(cpu_is_offline(dest_cpu)))
Kirill Korotaevefc30812006-06-27 02:54:32 -07004956 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004957
4958 rq_src = cpu_rq(src_cpu);
4959 rq_dest = cpu_rq(dest_cpu);
4960
4961 double_rq_lock(rq_src, rq_dest);
4962 /* Already moved. */
4963 if (task_cpu(p) != src_cpu)
4964 goto out;
4965 /* Affinity changed (again). */
4966 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4967 goto out;
4968
Ingo Molnardd41f592007-07-09 18:51:59 +02004969 on_rq = p->se.on_rq;
4970 if (on_rq)
4971 deactivate_task(rq_src, p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972 set_task_cpu(p, dest_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02004973 if (on_rq) {
4974 activate_task(rq_dest, p, 0);
4975 check_preempt_curr(rq_dest, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976 }
Kirill Korotaevefc30812006-06-27 02:54:32 -07004977 ret = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978out:
4979 double_rq_unlock(rq_src, rq_dest);
Kirill Korotaevefc30812006-06-27 02:54:32 -07004980 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004981}
4982
4983/*
4984 * migration_thread - this is a highprio system thread that performs
4985 * thread migration by bumping thread off CPU then 'pushing' onto
4986 * another runqueue.
4987 */
Ingo Molnar95cdf3b2005-09-10 00:26:11 -07004988static int migration_thread(void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004989{
Linus Torvalds1da177e2005-04-16 15:20:36 -07004990 int cpu = (long)data;
Ingo Molnar70b97a72006-07-03 00:25:42 -07004991 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004992
4993 rq = cpu_rq(cpu);
4994 BUG_ON(rq->migration_thread != current);
4995
4996 set_current_state(TASK_INTERRUPTIBLE);
4997 while (!kthread_should_stop()) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07004998 struct migration_req *req;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004999 struct list_head *head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005000
Linus Torvalds1da177e2005-04-16 15:20:36 -07005001 spin_lock_irq(&rq->lock);
5002
5003 if (cpu_is_offline(cpu)) {
5004 spin_unlock_irq(&rq->lock);
5005 goto wait_to_die;
5006 }
5007
5008 if (rq->active_balance) {
5009 active_load_balance(rq, cpu);
5010 rq->active_balance = 0;
5011 }
5012
5013 head = &rq->migration_queue;
5014
5015 if (list_empty(head)) {
5016 spin_unlock_irq(&rq->lock);
5017 schedule();
5018 set_current_state(TASK_INTERRUPTIBLE);
5019 continue;
5020 }
Ingo Molnar70b97a72006-07-03 00:25:42 -07005021 req = list_entry(head->next, struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005022 list_del_init(head->next);
5023
Nick Piggin674311d2005-06-25 14:57:27 -07005024 spin_unlock(&rq->lock);
5025 __migrate_task(req->task, cpu, req->dest_cpu);
5026 local_irq_enable();
Linus Torvalds1da177e2005-04-16 15:20:36 -07005027
5028 complete(&req->done);
5029 }
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5032
5033wait_to_die:
5034 /* Wait for kthread_stop */
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 while (!kthread_should_stop()) {
5037 schedule();
5038 set_current_state(TASK_INTERRUPTIBLE);
5039 }
5040 __set_current_state(TASK_RUNNING);
5041 return 0;
5042}
5043
5044#ifdef CONFIG_HOTPLUG_CPU
Kirill Korotaev054b9102006-12-10 02:20:11 -08005045/*
5046 * Figure out where task on dead CPU should go, use force if neccessary.
5047 * NOTE: interrupts should be disabled by the caller
5048 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005049static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005050{
Kirill Korotaevefc30812006-06-27 02:54:32 -07005051 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005052 cpumask_t mask;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005053 struct rq *rq;
5054 int dest_cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005055
Kirill Korotaevefc30812006-06-27 02:54:32 -07005056restart:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005057 /* On same node? */
5058 mask = node_to_cpumask(cpu_to_node(dead_cpu));
Ingo Molnar48f24c42006-07-03 00:25:40 -07005059 cpus_and(mask, mask, p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005060 dest_cpu = any_online_cpu(mask);
5061
5062 /* On any allowed CPU? */
5063 if (dest_cpu == NR_CPUS)
Ingo Molnar48f24c42006-07-03 00:25:40 -07005064 dest_cpu = any_online_cpu(p->cpus_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005065
5066 /* No more Mr. Nice Guy. */
5067 if (dest_cpu == NR_CPUS) {
Ingo Molnar48f24c42006-07-03 00:25:40 -07005068 rq = task_rq_lock(p, &flags);
5069 cpus_setall(p->cpus_allowed);
5070 dest_cpu = any_online_cpu(p->cpus_allowed);
Kirill Korotaevefc30812006-06-27 02:54:32 -07005071 task_rq_unlock(rq, &flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005072
5073 /*
5074 * Don't tell them about moving exiting tasks or
5075 * kernel threads (both mm NULL), since they never
5076 * leave kernel.
5077 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005078 if (p->mm && printk_ratelimit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079 printk(KERN_INFO "process %d (%s) no "
5080 "longer affine to cpu%d\n",
Ingo Molnar48f24c42006-07-03 00:25:40 -07005081 p->pid, p->comm, dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005082 }
Ingo Molnar48f24c42006-07-03 00:25:40 -07005083 if (!__migrate_task(p, dead_cpu, dest_cpu))
Kirill Korotaevefc30812006-06-27 02:54:32 -07005084 goto restart;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005085}
5086
5087/*
5088 * While a dead CPU has no uninterruptible tasks queued at this point,
5089 * it might still have a nonzero ->nr_uninterruptible counter, because
5090 * for performance reasons the counter is not stricly tracking tasks to
5091 * their home CPUs. So we just add the counter to another CPU's counter,
5092 * to keep the global sum constant after CPU-down:
5093 */
Ingo Molnar70b97a72006-07-03 00:25:42 -07005094static void migrate_nr_uninterruptible(struct rq *rq_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005095{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005096 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005097 unsigned long flags;
5098
5099 local_irq_save(flags);
5100 double_rq_lock(rq_src, rq_dest);
5101 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5102 rq_src->nr_uninterruptible = 0;
5103 double_rq_unlock(rq_src, rq_dest);
5104 local_irq_restore(flags);
5105}
5106
5107/* Run through task list and migrate tasks from the dead cpu. */
5108static void migrate_live_tasks(int src_cpu)
5109{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005110 struct task_struct *p, *t;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005111
5112 write_lock_irq(&tasklist_lock);
5113
Ingo Molnar48f24c42006-07-03 00:25:40 -07005114 do_each_thread(t, p) {
5115 if (p == current)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005116 continue;
5117
Ingo Molnar48f24c42006-07-03 00:25:40 -07005118 if (task_cpu(p) == src_cpu)
5119 move_task_off_dead_cpu(src_cpu, p);
5120 } while_each_thread(t, p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005121
5122 write_unlock_irq(&tasklist_lock);
5123}
5124
Ingo Molnardd41f592007-07-09 18:51:59 +02005125/*
5126 * Schedules idle task to be the next runnable task on current CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005127 * It does so by boosting its priority to highest possible and adding it to
Ingo Molnar48f24c42006-07-03 00:25:40 -07005128 * the _front_ of the runqueue. Used by CPU offline code.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005129 */
5130void sched_idle_next(void)
5131{
Ingo Molnar48f24c42006-07-03 00:25:40 -07005132 int this_cpu = smp_processor_id();
Ingo Molnar70b97a72006-07-03 00:25:42 -07005133 struct rq *rq = cpu_rq(this_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005134 struct task_struct *p = rq->idle;
5135 unsigned long flags;
5136
5137 /* cpu has to be offline */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005138 BUG_ON(cpu_online(this_cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005139
Ingo Molnar48f24c42006-07-03 00:25:40 -07005140 /*
5141 * Strictly not necessary since rest of the CPUs are stopped by now
5142 * and interrupts disabled on the current cpu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005143 */
5144 spin_lock_irqsave(&rq->lock, flags);
5145
Ingo Molnardd41f592007-07-09 18:51:59 +02005146 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005147
5148 /* Add idle task to the _front_ of its priority queue: */
Ingo Molnardd41f592007-07-09 18:51:59 +02005149 activate_idle_task(p, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150
5151 spin_unlock_irqrestore(&rq->lock, flags);
5152}
5153
Ingo Molnar48f24c42006-07-03 00:25:40 -07005154/*
5155 * Ensures that the idle task is using init_mm right before its cpu goes
Linus Torvalds1da177e2005-04-16 15:20:36 -07005156 * offline.
5157 */
5158void idle_task_exit(void)
5159{
5160 struct mm_struct *mm = current->active_mm;
5161
5162 BUG_ON(cpu_online(smp_processor_id()));
5163
5164 if (mm != &init_mm)
5165 switch_mm(mm, &init_mm, current);
5166 mmdrop(mm);
5167}
5168
Kirill Korotaev054b9102006-12-10 02:20:11 -08005169/* called under rq->lock with disabled interrupts */
Ingo Molnar36c8b582006-07-03 00:25:41 -07005170static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005171{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005172 struct rq *rq = cpu_rq(dead_cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005173
5174 /* Must be exiting, otherwise would be on tasklist. */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005175 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005176
5177 /* Cannot have done final schedule yet: would have vanished. */
Oleg Nesterovc394cc92006-09-29 02:01:11 -07005178 BUG_ON(p->state == TASK_DEAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005179
Ingo Molnar48f24c42006-07-03 00:25:40 -07005180 get_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005181
5182 /*
5183 * Drop lock around migration; if someone else moves it,
5184 * that's OK. No task can be added to this CPU, so iteration is
5185 * fine.
Kirill Korotaev054b9102006-12-10 02:20:11 -08005186 * NOTE: interrupts should be left disabled --dev@
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187 */
Kirill Korotaev054b9102006-12-10 02:20:11 -08005188 spin_unlock(&rq->lock);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005189 move_task_off_dead_cpu(dead_cpu, p);
Kirill Korotaev054b9102006-12-10 02:20:11 -08005190 spin_lock(&rq->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191
Ingo Molnar48f24c42006-07-03 00:25:40 -07005192 put_task_struct(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005193}
5194
5195/* release_task() removes task from tasklist, so we won't find dead tasks. */
5196static void migrate_dead_tasks(unsigned int dead_cpu)
5197{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005198 struct rq *rq = cpu_rq(dead_cpu);
Ingo Molnardd41f592007-07-09 18:51:59 +02005199 struct task_struct *next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005200
Ingo Molnardd41f592007-07-09 18:51:59 +02005201 for ( ; ; ) {
5202 if (!rq->nr_running)
5203 break;
5204 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5205 if (!next)
5206 break;
5207 migrate_dead(dead_cpu, next);
Nick Piggine692ab52007-07-26 13:40:43 +02005208
Linus Torvalds1da177e2005-04-16 15:20:36 -07005209 }
5210}
5211#endif /* CONFIG_HOTPLUG_CPU */
5212
Nick Piggine692ab52007-07-26 13:40:43 +02005213#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5214
5215static struct ctl_table sd_ctl_dir[] = {
5216 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5217 {0,},
5218};
5219
5220static struct ctl_table sd_ctl_root[] = {
5221 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5222 {0,},
5223};
5224
5225static struct ctl_table *sd_alloc_ctl_entry(int n)
5226{
5227 struct ctl_table *entry =
5228 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5229
5230 BUG_ON(!entry);
5231 memset(entry, 0, n * sizeof(struct ctl_table));
5232
5233 return entry;
5234}
5235
5236static void
5237set_table_entry(struct ctl_table *entry, int ctl_name,
5238 const char *procname, void *data, int maxlen,
5239 mode_t mode, proc_handler *proc_handler)
5240{
5241 entry->ctl_name = ctl_name;
5242 entry->procname = procname;
5243 entry->data = data;
5244 entry->maxlen = maxlen;
5245 entry->mode = mode;
5246 entry->proc_handler = proc_handler;
5247}
5248
5249static struct ctl_table *
5250sd_alloc_ctl_domain_table(struct sched_domain *sd)
5251{
5252 struct ctl_table *table = sd_alloc_ctl_entry(14);
5253
5254 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5255 sizeof(long), 0644, proc_doulongvec_minmax);
5256 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5257 sizeof(long), 0644, proc_doulongvec_minmax);
5258 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5259 sizeof(int), 0644, proc_dointvec_minmax);
5260 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5261 sizeof(int), 0644, proc_dointvec_minmax);
5262 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax);
5264 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5269 sizeof(int), 0644, proc_dointvec_minmax);
5270 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5271 sizeof(int), 0644, proc_dointvec_minmax);
5272 set_table_entry(&table[9], 10, "cache_hot_time", &sd->cache_hot_time,
5273 sizeof(long long), 0644, proc_doulongvec_minmax);
5274 set_table_entry(&table[10], 11, "cache_nice_tries",
5275 &sd->cache_nice_tries,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[12], 13, "flags", &sd->flags,
5278 sizeof(int), 0644, proc_dointvec_minmax);
5279
5280 return table;
5281}
5282
5283static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5284{
5285 struct ctl_table *entry, *table;
5286 struct sched_domain *sd;
5287 int domain_num = 0, i;
5288 char buf[32];
5289
5290 for_each_domain(cpu, sd)
5291 domain_num++;
5292 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5293
5294 i = 0;
5295 for_each_domain(cpu, sd) {
5296 snprintf(buf, 32, "domain%d", i);
5297 entry->ctl_name = i + 1;
5298 entry->procname = kstrdup(buf, GFP_KERNEL);
5299 entry->mode = 0755;
5300 entry->child = sd_alloc_ctl_domain_table(sd);
5301 entry++;
5302 i++;
5303 }
5304 return table;
5305}
5306
5307static struct ctl_table_header *sd_sysctl_header;
5308static void init_sched_domain_sysctl(void)
5309{
5310 int i, cpu_num = num_online_cpus();
5311 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5312 char buf[32];
5313
5314 sd_ctl_dir[0].child = entry;
5315
5316 for (i = 0; i < cpu_num; i++, entry++) {
5317 snprintf(buf, 32, "cpu%d", i);
5318 entry->ctl_name = i + 1;
5319 entry->procname = kstrdup(buf, GFP_KERNEL);
5320 entry->mode = 0755;
5321 entry->child = sd_alloc_ctl_cpu_table(i);
5322 }
5323 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5324}
5325#else
5326static void init_sched_domain_sysctl(void)
5327{
5328}
5329#endif
5330
Linus Torvalds1da177e2005-04-16 15:20:36 -07005331/*
5332 * migration_call - callback that gets triggered when a CPU is added.
5333 * Here we can start up the necessary migration thread for the new CPU.
5334 */
Ingo Molnar48f24c42006-07-03 00:25:40 -07005335static int __cpuinit
5336migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005337{
Linus Torvalds1da177e2005-04-16 15:20:36 -07005338 struct task_struct *p;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005339 int cpu = (long)hcpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005340 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07005341 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005342
5343 switch (action) {
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005344 case CPU_LOCK_ACQUIRE:
5345 mutex_lock(&sched_hotcpu_mutex);
5346 break;
5347
Linus Torvalds1da177e2005-04-16 15:20:36 -07005348 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005349 case CPU_UP_PREPARE_FROZEN:
Ingo Molnardd41f592007-07-09 18:51:59 +02005350 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005351 if (IS_ERR(p))
5352 return NOTIFY_BAD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005353 kthread_bind(p, cpu);
5354 /* Must be high prio: stop_machine expects to yield to it. */
5355 rq = task_rq_lock(p, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005356 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005357 task_rq_unlock(rq, &flags);
5358 cpu_rq(cpu)->migration_thread = p;
5359 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005360
Linus Torvalds1da177e2005-04-16 15:20:36 -07005361 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005362 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005363 /* Strictly unneccessary, as first user will wake it. */
5364 wake_up_process(cpu_rq(cpu)->migration_thread);
5365 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005366
Linus Torvalds1da177e2005-04-16 15:20:36 -07005367#ifdef CONFIG_HOTPLUG_CPU
5368 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005369 case CPU_UP_CANCELED_FROZEN:
Heiko Carstensfc75cdf2006-06-25 05:49:10 -07005370 if (!cpu_rq(cpu)->migration_thread)
5371 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372 /* Unbind it from offline cpu so it can run. Fall thru. */
Heiko Carstensa4c4af72005-11-07 00:58:38 -08005373 kthread_bind(cpu_rq(cpu)->migration_thread,
5374 any_online_cpu(cpu_online_map));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005375 kthread_stop(cpu_rq(cpu)->migration_thread);
5376 cpu_rq(cpu)->migration_thread = NULL;
5377 break;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005378
Linus Torvalds1da177e2005-04-16 15:20:36 -07005379 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07005380 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07005381 migrate_live_tasks(cpu);
5382 rq = cpu_rq(cpu);
5383 kthread_stop(rq->migration_thread);
5384 rq->migration_thread = NULL;
5385 /* Idle task back to normal (off runqueue, low prio) */
5386 rq = task_rq_lock(rq->idle, &flags);
Ingo Molnardd41f592007-07-09 18:51:59 +02005387 deactivate_task(rq, rq->idle, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005388 rq->idle->static_prio = MAX_PRIO;
Ingo Molnardd41f592007-07-09 18:51:59 +02005389 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5390 rq->idle->sched_class = &idle_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005391 migrate_dead_tasks(cpu);
5392 task_rq_unlock(rq, &flags);
5393 migrate_nr_uninterruptible(rq);
5394 BUG_ON(rq->nr_running != 0);
5395
5396 /* No need to migrate the tasks: it was best-effort if
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005397 * they didn't take sched_hotcpu_mutex. Just wake up
Linus Torvalds1da177e2005-04-16 15:20:36 -07005398 * the requestors. */
5399 spin_lock_irq(&rq->lock);
5400 while (!list_empty(&rq->migration_queue)) {
Ingo Molnar70b97a72006-07-03 00:25:42 -07005401 struct migration_req *req;
5402
Linus Torvalds1da177e2005-04-16 15:20:36 -07005403 req = list_entry(rq->migration_queue.next,
Ingo Molnar70b97a72006-07-03 00:25:42 -07005404 struct migration_req, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005405 list_del_init(&req->list);
5406 complete(&req->done);
5407 }
5408 spin_unlock_irq(&rq->lock);
5409 break;
5410#endif
Gautham R Shenoy5be93612007-05-09 02:34:04 -07005411 case CPU_LOCK_RELEASE:
5412 mutex_unlock(&sched_hotcpu_mutex);
5413 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005414 }
5415 return NOTIFY_OK;
5416}
5417
5418/* Register at highest priority so that task migration (migrate_all_tasks)
5419 * happens before everything else.
5420 */
Chandra Seetharaman26c21432006-06-27 02:54:10 -07005421static struct notifier_block __cpuinitdata migration_notifier = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005422 .notifier_call = migration_call,
5423 .priority = 10
5424};
5425
5426int __init migration_init(void)
5427{
5428 void *cpu = (void *)(long)smp_processor_id();
Akinobu Mita07dccf32006-09-29 02:00:22 -07005429 int err;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005430
5431 /* Start one for the boot CPU: */
Akinobu Mita07dccf32006-09-29 02:00:22 -07005432 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5433 BUG_ON(err == NOTIFY_BAD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005434 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5435 register_cpu_notifier(&migration_notifier);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005436
Linus Torvalds1da177e2005-04-16 15:20:36 -07005437 return 0;
5438}
5439#endif
5440
5441#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07005442
5443/* Number of possible processor ids */
5444int nr_cpu_ids __read_mostly = NR_CPUS;
5445EXPORT_SYMBOL(nr_cpu_ids);
5446
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005447#undef SCHED_DOMAIN_DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -07005448#ifdef SCHED_DOMAIN_DEBUG
5449static void sched_domain_debug(struct sched_domain *sd, int cpu)
5450{
5451 int level = 0;
5452
Nick Piggin41c7ce92005-06-25 14:57:24 -07005453 if (!sd) {
5454 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5455 return;
5456 }
5457
Linus Torvalds1da177e2005-04-16 15:20:36 -07005458 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5459
5460 do {
5461 int i;
5462 char str[NR_CPUS];
5463 struct sched_group *group = sd->groups;
5464 cpumask_t groupmask;
5465
5466 cpumask_scnprintf(str, NR_CPUS, sd->span);
5467 cpus_clear(groupmask);
5468
5469 printk(KERN_DEBUG);
5470 for (i = 0; i < level + 1; i++)
5471 printk(" ");
5472 printk("domain %d: ", level);
5473
5474 if (!(sd->flags & SD_LOAD_BALANCE)) {
5475 printk("does not load-balance\n");
5476 if (sd->parent)
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005477 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5478 " has parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005479 break;
5480 }
5481
5482 printk("span %s\n", str);
5483
5484 if (!cpu_isset(cpu, sd->span))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005485 printk(KERN_ERR "ERROR: domain->span does not contain "
5486 "CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005487 if (!cpu_isset(cpu, group->cpumask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005488 printk(KERN_ERR "ERROR: domain->groups does not contain"
5489 " CPU%d\n", cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005490
5491 printk(KERN_DEBUG);
5492 for (i = 0; i < level + 2; i++)
5493 printk(" ");
5494 printk("groups:");
5495 do {
5496 if (!group) {
5497 printk("\n");
5498 printk(KERN_ERR "ERROR: group is NULL\n");
5499 break;
5500 }
5501
Eric Dumazet5517d862007-05-08 00:32:57 -07005502 if (!group->__cpu_power) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005503 printk("\n");
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005504 printk(KERN_ERR "ERROR: domain->cpu_power not "
5505 "set\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005506 }
5507
5508 if (!cpus_weight(group->cpumask)) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: empty group\n");
5511 }
5512
5513 if (cpus_intersects(groupmask, group->cpumask)) {
5514 printk("\n");
5515 printk(KERN_ERR "ERROR: repeated CPUs\n");
5516 }
5517
5518 cpus_or(groupmask, groupmask, group->cpumask);
5519
5520 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5521 printk(" %s", str);
5522
5523 group = group->next;
5524 } while (group != sd->groups);
5525 printk("\n");
5526
5527 if (!cpus_equal(sd->span, groupmask))
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005528 printk(KERN_ERR "ERROR: groups don't span "
5529 "domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005530
5531 level++;
5532 sd = sd->parent;
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005533 if (!sd)
5534 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005535
Miguel Ojeda Sandonis33859f72006-12-10 02:20:38 -08005536 if (!cpus_subset(groupmask, sd->span))
5537 printk(KERN_ERR "ERROR: parent span is not a superset "
5538 "of domain->span\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005539
5540 } while (sd);
5541}
5542#else
Ingo Molnar48f24c42006-07-03 00:25:40 -07005543# define sched_domain_debug(sd, cpu) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005544#endif
5545
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005546static int sd_degenerate(struct sched_domain *sd)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005547{
5548 if (cpus_weight(sd->span) == 1)
5549 return 1;
5550
5551 /* Following flags need at least 2 groups */
5552 if (sd->flags & (SD_LOAD_BALANCE |
5553 SD_BALANCE_NEWIDLE |
5554 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005555 SD_BALANCE_EXEC |
5556 SD_SHARE_CPUPOWER |
5557 SD_SHARE_PKG_RESOURCES)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005558 if (sd->groups != sd->groups->next)
5559 return 0;
5560 }
5561
5562 /* Following flags don't use groups */
5563 if (sd->flags & (SD_WAKE_IDLE |
5564 SD_WAKE_AFFINE |
5565 SD_WAKE_BALANCE))
5566 return 0;
5567
5568 return 1;
5569}
5570
Ingo Molnar48f24c42006-07-03 00:25:40 -07005571static int
5572sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
Suresh Siddha245af2c2005-06-25 14:57:25 -07005573{
5574 unsigned long cflags = sd->flags, pflags = parent->flags;
5575
5576 if (sd_degenerate(parent))
5577 return 1;
5578
5579 if (!cpus_equal(sd->span, parent->span))
5580 return 0;
5581
5582 /* Does parent contain flags not in child? */
5583 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5584 if (cflags & SD_WAKE_AFFINE)
5585 pflags &= ~SD_WAKE_BALANCE;
5586 /* Flags needing groups don't count if only 1 group in parent */
5587 if (parent->groups == parent->groups->next) {
5588 pflags &= ~(SD_LOAD_BALANCE |
5589 SD_BALANCE_NEWIDLE |
5590 SD_BALANCE_FORK |
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005591 SD_BALANCE_EXEC |
5592 SD_SHARE_CPUPOWER |
5593 SD_SHARE_PKG_RESOURCES);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005594 }
5595 if (~cflags & pflags)
5596 return 0;
5597
5598 return 1;
5599}
5600
Linus Torvalds1da177e2005-04-16 15:20:36 -07005601/*
5602 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5603 * hold the hotplug lock.
5604 */
John Hawkes9c1cfda2005-09-06 15:18:14 -07005605static void cpu_attach_domain(struct sched_domain *sd, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005606{
Ingo Molnar70b97a72006-07-03 00:25:42 -07005607 struct rq *rq = cpu_rq(cpu);
Suresh Siddha245af2c2005-06-25 14:57:25 -07005608 struct sched_domain *tmp;
5609
5610 /* Remove the sched domains which do not contribute to scheduling. */
5611 for (tmp = sd; tmp; tmp = tmp->parent) {
5612 struct sched_domain *parent = tmp->parent;
5613 if (!parent)
5614 break;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005615 if (sd_parent_degenerate(tmp, parent)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005616 tmp->parent = parent->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005617 if (parent->parent)
5618 parent->parent->child = tmp;
5619 }
Suresh Siddha245af2c2005-06-25 14:57:25 -07005620 }
5621
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005622 if (sd && sd_degenerate(sd)) {
Suresh Siddha245af2c2005-06-25 14:57:25 -07005623 sd = sd->parent;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07005624 if (sd)
5625 sd->child = NULL;
5626 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627
5628 sched_domain_debug(sd, cpu);
5629
Nick Piggin674311d2005-06-25 14:57:27 -07005630 rcu_assign_pointer(rq->sd, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005631}
5632
5633/* cpus with isolated domains */
Tim Chen67af63a2006-12-22 01:07:50 -08005634static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005635
5636/* Setup the mask of cpus configured for isolated domains */
5637static int __init isolated_cpu_setup(char *str)
5638{
5639 int ints[NR_CPUS], i;
5640
5641 str = get_options(str, ARRAY_SIZE(ints), ints);
5642 cpus_clear(cpu_isolated_map);
5643 for (i = 1; i <= ints[0]; i++)
5644 if (ints[i] < NR_CPUS)
5645 cpu_set(ints[i], cpu_isolated_map);
5646 return 1;
5647}
5648
5649__setup ("isolcpus=", isolated_cpu_setup);
5650
5651/*
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005652 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5653 * to a function which identifies what group(along with sched group) a CPU
5654 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5655 * (due to the fact that we keep track of groups covered with a cpumask_t).
Linus Torvalds1da177e2005-04-16 15:20:36 -07005656 *
5657 * init_sched_build_groups will build a circular linked list of the groups
5658 * covered by the given span, and will set each group's ->cpumask correctly,
5659 * and ->cpu_power to 0.
5660 */
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005661static void
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005662init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5663 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5664 struct sched_group **sg))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005665{
5666 struct sched_group *first = NULL, *last = NULL;
5667 cpumask_t covered = CPU_MASK_NONE;
5668 int i;
5669
5670 for_each_cpu_mask(i, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005671 struct sched_group *sg;
5672 int group = group_fn(i, cpu_map, &sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005673 int j;
5674
5675 if (cpu_isset(i, covered))
5676 continue;
5677
5678 sg->cpumask = CPU_MASK_NONE;
Eric Dumazet5517d862007-05-08 00:32:57 -07005679 sg->__cpu_power = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005680
5681 for_each_cpu_mask(j, span) {
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005682 if (group_fn(j, cpu_map, NULL) != group)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005683 continue;
5684
5685 cpu_set(j, covered);
5686 cpu_set(j, sg->cpumask);
5687 }
5688 if (!first)
5689 first = sg;
5690 if (last)
5691 last->next = sg;
5692 last = sg;
5693 }
5694 last->next = first;
5695}
5696
John Hawkes9c1cfda2005-09-06 15:18:14 -07005697#define SD_NODES_PER_DOMAIN 16
Linus Torvalds1da177e2005-04-16 15:20:36 -07005698
John Hawkes9c1cfda2005-09-06 15:18:14 -07005699#ifdef CONFIG_NUMA
akpm@osdl.org198e2f12006-01-12 01:05:30 -08005700
John Hawkes9c1cfda2005-09-06 15:18:14 -07005701/**
5702 * find_next_best_node - find the next node to include in a sched_domain
5703 * @node: node whose sched_domain we're building
5704 * @used_nodes: nodes already in the sched_domain
5705 *
5706 * Find the next node to include in a given scheduling domain. Simply
5707 * finds the closest node not already in the @used_nodes map.
5708 *
5709 * Should use nodemask_t.
5710 */
5711static int find_next_best_node(int node, unsigned long *used_nodes)
5712{
5713 int i, n, val, min_val, best_node = 0;
5714
5715 min_val = INT_MAX;
5716
5717 for (i = 0; i < MAX_NUMNODES; i++) {
5718 /* Start at @node */
5719 n = (node + i) % MAX_NUMNODES;
5720
5721 if (!nr_cpus_node(n))
5722 continue;
5723
5724 /* Skip already used nodes */
5725 if (test_bit(n, used_nodes))
5726 continue;
5727
5728 /* Simple min distance search */
5729 val = node_distance(node, n);
5730
5731 if (val < min_val) {
5732 min_val = val;
5733 best_node = n;
5734 }
5735 }
5736
5737 set_bit(best_node, used_nodes);
5738 return best_node;
5739}
5740
5741/**
5742 * sched_domain_node_span - get a cpumask for a node's sched_domain
5743 * @node: node whose cpumask we're constructing
5744 * @size: number of nodes to include in this span
5745 *
5746 * Given a node, construct a good cpumask for its sched_domain to span. It
5747 * should be one that prevents unnecessary balancing, but also spreads tasks
5748 * out optimally.
5749 */
5750static cpumask_t sched_domain_node_span(int node)
5751{
John Hawkes9c1cfda2005-09-06 15:18:14 -07005752 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005753 cpumask_t span, nodemask;
5754 int i;
John Hawkes9c1cfda2005-09-06 15:18:14 -07005755
5756 cpus_clear(span);
5757 bitmap_zero(used_nodes, MAX_NUMNODES);
5758
5759 nodemask = node_to_cpumask(node);
5760 cpus_or(span, span, nodemask);
5761 set_bit(node, used_nodes);
5762
5763 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5764 int next_node = find_next_best_node(node, used_nodes);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005765
John Hawkes9c1cfda2005-09-06 15:18:14 -07005766 nodemask = node_to_cpumask(next_node);
5767 cpus_or(span, span, nodemask);
5768 }
5769
5770 return span;
5771}
5772#endif
5773
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07005774int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005775
John Hawkes9c1cfda2005-09-06 15:18:14 -07005776/*
Ingo Molnar48f24c42006-07-03 00:25:40 -07005777 * SMT sched-domains:
John Hawkes9c1cfda2005-09-06 15:18:14 -07005778 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005779#ifdef CONFIG_SCHED_SMT
5780static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005781static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005782
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005783static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5784 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005785{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005786 if (sg)
5787 *sg = &per_cpu(sched_group_cpus, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005788 return cpu;
5789}
5790#endif
5791
Ingo Molnar48f24c42006-07-03 00:25:40 -07005792/*
5793 * multi-core sched-domains:
5794 */
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005795#ifdef CONFIG_SCHED_MC
5796static DEFINE_PER_CPU(struct sched_domain, core_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005797static DEFINE_PER_CPU(struct sched_group, sched_group_core);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005798#endif
5799
5800#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005801static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5802 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005803{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005804 int group;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005805 cpumask_t mask = cpu_sibling_map[cpu];
5806 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005807 group = first_cpu(mask);
5808 if (sg)
5809 *sg = &per_cpu(sched_group_core, group);
5810 return group;
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005811}
5812#elif defined(CONFIG_SCHED_MC)
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005813static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5814 struct sched_group **sg)
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005815{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005816 if (sg)
5817 *sg = &per_cpu(sched_group_core, cpu);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005818 return cpu;
5819}
5820#endif
5821
Linus Torvalds1da177e2005-04-16 15:20:36 -07005822static DEFINE_PER_CPU(struct sched_domain, phys_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005823static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
Ingo Molnar48f24c42006-07-03 00:25:40 -07005824
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005825static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5826 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005827{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005828 int group;
Ingo Molnar48f24c42006-07-03 00:25:40 -07005829#ifdef CONFIG_SCHED_MC
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005830 cpumask_t mask = cpu_coregroup_map(cpu);
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005831 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005832 group = first_cpu(mask);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08005833#elif defined(CONFIG_SCHED_SMT)
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005834 cpumask_t mask = cpu_sibling_map[cpu];
5835 cpus_and(mask, mask, *cpu_map);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005836 group = first_cpu(mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005837#else
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005838 group = cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005839#endif
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005840 if (sg)
5841 *sg = &per_cpu(sched_group_phys, group);
5842 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005843}
5844
5845#ifdef CONFIG_NUMA
John Hawkes9c1cfda2005-09-06 15:18:14 -07005846/*
5847 * The init_sched_build_groups can't handle what we want to do with node
5848 * groups, so roll our own. Now each node has its own list of groups which
5849 * gets dynamically allocated.
5850 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005851static DEFINE_PER_CPU(struct sched_domain, node_domains);
John Hawkesd1b55132005-09-06 15:18:14 -07005852static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
John Hawkes9c1cfda2005-09-06 15:18:14 -07005853
5854static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005855static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
John Hawkes9c1cfda2005-09-06 15:18:14 -07005856
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005857static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5858 struct sched_group **sg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005859{
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005860 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5861 int group;
5862
5863 cpus_and(nodemask, nodemask, *cpu_map);
5864 group = first_cpu(nodemask);
5865
5866 if (sg)
5867 *sg = &per_cpu(sched_group_allnodes, group);
5868 return group;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005869}
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08005870
Siddha, Suresh B08069032006-03-27 01:15:23 -08005871static void init_numa_sched_groups_power(struct sched_group *group_head)
5872{
5873 struct sched_group *sg = group_head;
5874 int j;
5875
5876 if (!sg)
5877 return;
5878next_sg:
5879 for_each_cpu_mask(j, sg->cpumask) {
5880 struct sched_domain *sd;
5881
5882 sd = &per_cpu(phys_domains, j);
5883 if (j != first_cpu(sd->groups->cpumask)) {
5884 /*
5885 * Only add "power" once for each
5886 * physical package.
5887 */
5888 continue;
5889 }
5890
Eric Dumazet5517d862007-05-08 00:32:57 -07005891 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
Siddha, Suresh B08069032006-03-27 01:15:23 -08005892 }
5893 sg = sg->next;
5894 if (sg != group_head)
5895 goto next_sg;
5896}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005897#endif
5898
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005899#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005900/* Free memory allocated for various sched_group structures */
5901static void free_sched_groups(const cpumask_t *cpu_map)
5902{
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005903 int cpu, i;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005904
5905 for_each_cpu_mask(cpu, *cpu_map) {
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005906 struct sched_group **sched_group_nodes
5907 = sched_group_nodes_bycpu[cpu];
5908
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005909 if (!sched_group_nodes)
5910 continue;
5911
5912 for (i = 0; i < MAX_NUMNODES; i++) {
5913 cpumask_t nodemask = node_to_cpumask(i);
5914 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5915
5916 cpus_and(nodemask, nodemask, *cpu_map);
5917 if (cpus_empty(nodemask))
5918 continue;
5919
5920 if (sg == NULL)
5921 continue;
5922 sg = sg->next;
5923next_sg:
5924 oldsg = sg;
5925 sg = sg->next;
5926 kfree(oldsg);
5927 if (oldsg != sched_group_nodes[i])
5928 goto next_sg;
5929 }
5930 kfree(sched_group_nodes);
5931 sched_group_nodes_bycpu[cpu] = NULL;
5932 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005933}
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07005934#else
5935static void free_sched_groups(const cpumask_t *cpu_map)
5936{
5937}
5938#endif
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005939
Linus Torvalds1da177e2005-04-16 15:20:36 -07005940/*
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005941 * Initialize sched groups cpu_power.
5942 *
5943 * cpu_power indicates the capacity of sched group, which is used while
5944 * distributing the load between different sched groups in a sched domain.
5945 * Typically cpu_power for all the groups in a sched domain will be same unless
5946 * there are asymmetries in the topology. If there are asymmetries, group
5947 * having more cpu_power will pickup more load compared to the group having
5948 * less cpu_power.
5949 *
5950 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5951 * the maximum number of tasks a group can handle in the presence of other idle
5952 * or lightly loaded groups in the same sched domain.
5953 */
5954static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5955{
5956 struct sched_domain *child;
5957 struct sched_group *group;
5958
5959 WARN_ON(!sd || !sd->groups);
5960
5961 if (cpu != first_cpu(sd->groups->cpumask))
5962 return;
5963
5964 child = sd->child;
5965
Eric Dumazet5517d862007-05-08 00:32:57 -07005966 sd->groups->__cpu_power = 0;
5967
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005968 /*
5969 * For perf policy, if the groups in child domain share resources
5970 * (for example cores sharing some portions of the cache hierarchy
5971 * or SMT), then set this domain groups cpu_power such that each group
5972 * can handle only one task, when there are other idle groups in the
5973 * same sched domain.
5974 */
5975 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5976 (child->flags &
5977 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
Eric Dumazet5517d862007-05-08 00:32:57 -07005978 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005979 return;
5980 }
5981
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005982 /*
5983 * add cpu_power of each child group to this groups cpu_power
5984 */
5985 group = child->groups;
5986 do {
Eric Dumazet5517d862007-05-08 00:32:57 -07005987 sg_inc_cpu_power(sd->groups, group->__cpu_power);
Siddha, Suresh B89c47102006-10-03 01:14:09 -07005988 group = group->next;
5989 } while (group != child->groups);
5990}
5991
5992/*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07005993 * Build sched domains for a given set of cpus and attach the sched domains
5994 * to the individual cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07005995 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07005996static int build_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005997{
5998 int i;
John Hawkesd1b55132005-09-06 15:18:14 -07005999#ifdef CONFIG_NUMA
6000 struct sched_group **sched_group_nodes = NULL;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006001 int sd_allnodes = 0;
John Hawkesd1b55132005-09-06 15:18:14 -07006002
6003 /*
6004 * Allocate the per-node list of sched groups
6005 */
Ingo Molnardd41f592007-07-09 18:51:59 +02006006 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
Srivatsa Vaddagirid3a5aa92006-06-27 02:54:39 -07006007 GFP_KERNEL);
John Hawkesd1b55132005-09-06 15:18:14 -07006008 if (!sched_group_nodes) {
6009 printk(KERN_WARNING "Can not alloc sched group node list\n");
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006010 return -ENOMEM;
John Hawkesd1b55132005-09-06 15:18:14 -07006011 }
6012 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6013#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006014
6015 /*
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006016 * Set up domains for cpus specified by the cpu_map.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006017 */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006018 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006019 struct sched_domain *sd = NULL, *p;
6020 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6021
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006022 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006023
6024#ifdef CONFIG_NUMA
Ingo Molnardd41f592007-07-09 18:51:59 +02006025 if (cpus_weight(*cpu_map) >
6026 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
John Hawkes9c1cfda2005-09-06 15:18:14 -07006027 sd = &per_cpu(allnodes_domains, i);
6028 *sd = SD_ALLNODES_INIT;
6029 sd->span = *cpu_map;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006030 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006031 p = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006032 sd_allnodes = 1;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006033 } else
6034 p = NULL;
6035
Linus Torvalds1da177e2005-04-16 15:20:36 -07006036 sd = &per_cpu(node_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006037 *sd = SD_NODE_INIT;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006038 sd->span = sched_domain_node_span(cpu_to_node(i));
6039 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006040 if (p)
6041 p->child = sd;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006042 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006043#endif
6044
6045 p = sd;
6046 sd = &per_cpu(phys_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006047 *sd = SD_CPU_INIT;
6048 sd->span = nodemask;
6049 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006050 if (p)
6051 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006052 cpu_to_phys_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006053
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006054#ifdef CONFIG_SCHED_MC
6055 p = sd;
6056 sd = &per_cpu(core_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006057 *sd = SD_MC_INIT;
6058 sd->span = cpu_coregroup_map(i);
6059 cpus_and(sd->span, sd->span, *cpu_map);
6060 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006061 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006062 cpu_to_core_group(i, cpu_map, &sd->groups);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006063#endif
6064
Linus Torvalds1da177e2005-04-16 15:20:36 -07006065#ifdef CONFIG_SCHED_SMT
6066 p = sd;
6067 sd = &per_cpu(cpu_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006068 *sd = SD_SIBLING_INIT;
6069 sd->span = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006070 cpus_and(sd->span, sd->span, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006071 sd->parent = p;
Siddha, Suresh B1a848872006-10-03 01:14:08 -07006072 p->child = sd;
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006073 cpu_to_cpu_group(i, cpu_map, &sd->groups);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006074#endif
6075 }
6076
6077#ifdef CONFIG_SCHED_SMT
6078 /* Set up CPU (sibling) groups */
John Hawkes9c1cfda2005-09-06 15:18:14 -07006079 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006080 cpumask_t this_sibling_map = cpu_sibling_map[i];
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006081 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006082 if (i != first_cpu(this_sibling_map))
6083 continue;
6084
Ingo Molnardd41f592007-07-09 18:51:59 +02006085 init_sched_build_groups(this_sibling_map, cpu_map,
6086 &cpu_to_cpu_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006087 }
6088#endif
6089
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006090#ifdef CONFIG_SCHED_MC
6091 /* Set up multi-core groups */
6092 for_each_cpu_mask(i, *cpu_map) {
6093 cpumask_t this_core_map = cpu_coregroup_map(i);
6094 cpus_and(this_core_map, this_core_map, *cpu_map);
6095 if (i != first_cpu(this_core_map))
6096 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006097 init_sched_build_groups(this_core_map, cpu_map,
6098 &cpu_to_core_group);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006099 }
6100#endif
6101
Linus Torvalds1da177e2005-04-16 15:20:36 -07006102 /* Set up physical groups */
6103 for (i = 0; i < MAX_NUMNODES; i++) {
6104 cpumask_t nodemask = node_to_cpumask(i);
6105
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006106 cpus_and(nodemask, nodemask, *cpu_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006107 if (cpus_empty(nodemask))
6108 continue;
6109
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006110 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006111 }
6112
6113#ifdef CONFIG_NUMA
6114 /* Set up node groups */
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006115 if (sd_allnodes)
Ingo Molnardd41f592007-07-09 18:51:59 +02006116 init_sched_build_groups(*cpu_map, cpu_map,
6117 &cpu_to_allnodes_group);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006118
6119 for (i = 0; i < MAX_NUMNODES; i++) {
6120 /* Set up node groups */
6121 struct sched_group *sg, *prev;
6122 cpumask_t nodemask = node_to_cpumask(i);
6123 cpumask_t domainspan;
6124 cpumask_t covered = CPU_MASK_NONE;
6125 int j;
6126
6127 cpus_and(nodemask, nodemask, *cpu_map);
John Hawkesd1b55132005-09-06 15:18:14 -07006128 if (cpus_empty(nodemask)) {
6129 sched_group_nodes[i] = NULL;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006130 continue;
John Hawkesd1b55132005-09-06 15:18:14 -07006131 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006132
6133 domainspan = sched_domain_node_span(i);
6134 cpus_and(domainspan, domainspan, *cpu_map);
6135
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006136 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006137 if (!sg) {
6138 printk(KERN_WARNING "Can not alloc domain group for "
6139 "node %d\n", i);
6140 goto error;
6141 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006142 sched_group_nodes[i] = sg;
6143 for_each_cpu_mask(j, nodemask) {
6144 struct sched_domain *sd;
Ingo Molnar9761eea2007-07-09 18:52:00 +02006145
John Hawkes9c1cfda2005-09-06 15:18:14 -07006146 sd = &per_cpu(node_domains, j);
6147 sd->groups = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006148 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006149 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006150 sg->cpumask = nodemask;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006151 sg->next = sg;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006152 cpus_or(covered, covered, nodemask);
6153 prev = sg;
6154
6155 for (j = 0; j < MAX_NUMNODES; j++) {
6156 cpumask_t tmp, notcovered;
6157 int n = (i + j) % MAX_NUMNODES;
6158
6159 cpus_complement(notcovered, covered);
6160 cpus_and(tmp, notcovered, *cpu_map);
6161 cpus_and(tmp, tmp, domainspan);
6162 if (cpus_empty(tmp))
6163 break;
6164
6165 nodemask = node_to_cpumask(n);
6166 cpus_and(tmp, tmp, nodemask);
6167 if (cpus_empty(tmp))
6168 continue;
6169
Srivatsa Vaddagiri15f0b672006-06-27 02:54:40 -07006170 sg = kmalloc_node(sizeof(struct sched_group),
6171 GFP_KERNEL, i);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006172 if (!sg) {
6173 printk(KERN_WARNING
6174 "Can not alloc domain group for node %d\n", j);
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006175 goto error;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006176 }
Eric Dumazet5517d862007-05-08 00:32:57 -07006177 sg->__cpu_power = 0;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006178 sg->cpumask = tmp;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006179 sg->next = prev->next;
John Hawkes9c1cfda2005-09-06 15:18:14 -07006180 cpus_or(covered, covered, tmp);
6181 prev->next = sg;
6182 prev = sg;
6183 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006184 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006185#endif
6186
6187 /* Calculate CPU power for physical packages and nodes */
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006188#ifdef CONFIG_SCHED_SMT
6189 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006190 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6191
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006192 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006193 }
6194#endif
6195#ifdef CONFIG_SCHED_MC
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006196 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006197 struct sched_domain *sd = &per_cpu(core_domains, i);
6198
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006199 init_sched_groups_power(i, sd);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006200 }
6201#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006202
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006203 for_each_cpu_mask(i, *cpu_map) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006204 struct sched_domain *sd = &per_cpu(phys_domains, i);
6205
Siddha, Suresh B89c47102006-10-03 01:14:09 -07006206 init_sched_groups_power(i, sd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006207 }
6208
John Hawkes9c1cfda2005-09-06 15:18:14 -07006209#ifdef CONFIG_NUMA
Siddha, Suresh B08069032006-03-27 01:15:23 -08006210 for (i = 0; i < MAX_NUMNODES; i++)
6211 init_numa_sched_groups_power(sched_group_nodes[i]);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006212
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006213 if (sd_allnodes) {
6214 struct sched_group *sg;
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006215
Siddha, Suresh B6711cab2006-12-10 02:20:07 -08006216 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
Siddha, Suresh Bf712c0c2006-07-30 03:02:59 -07006217 init_numa_sched_groups_power(sg);
6218 }
John Hawkes9c1cfda2005-09-06 15:18:14 -07006219#endif
6220
Linus Torvalds1da177e2005-04-16 15:20:36 -07006221 /* Attach the domains */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006222 for_each_cpu_mask(i, *cpu_map) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006223 struct sched_domain *sd;
6224#ifdef CONFIG_SCHED_SMT
6225 sd = &per_cpu(cpu_domains, i);
Siddha, Suresh B1e9f28f2006-03-27 01:15:22 -08006226#elif defined(CONFIG_SCHED_MC)
6227 sd = &per_cpu(core_domains, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006228#else
6229 sd = &per_cpu(phys_domains, i);
6230#endif
6231 cpu_attach_domain(sd, i);
6232 }
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006233
6234 return 0;
6235
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006236#ifdef CONFIG_NUMA
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006237error:
6238 free_sched_groups(cpu_map);
6239 return -ENOMEM;
Siddha, Suresh Ba6160582006-10-03 01:14:06 -07006240#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006241}
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006242/*
6243 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6244 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006245static int arch_init_sched_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006246{
6247 cpumask_t cpu_default_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006248 int err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006249
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006250 /*
6251 * Setup mask for cpus without special case scheduling requirements.
6252 * For now this just excludes isolated cpus, but could be used to
6253 * exclude other special cases in the future.
6254 */
6255 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6256
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006257 err = build_sched_domains(&cpu_default_map);
6258
6259 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006260}
6261
6262static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006263{
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006264 free_sched_groups(cpu_map);
John Hawkes9c1cfda2005-09-06 15:18:14 -07006265}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006266
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006267/*
6268 * Detach sched domains from a group of cpus specified in cpu_map
6269 * These cpus will now be attached to the NULL domain
6270 */
Arjan van de Ven858119e2006-01-14 13:20:43 -08006271static void detach_destroy_domains(const cpumask_t *cpu_map)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006272{
6273 int i;
6274
6275 for_each_cpu_mask(i, *cpu_map)
6276 cpu_attach_domain(NULL, i);
6277 synchronize_sched();
6278 arch_destroy_sched_domains(cpu_map);
6279}
6280
6281/*
6282 * Partition sched domains as specified by the cpumasks below.
6283 * This attaches all cpus from the cpumasks to the NULL domain,
6284 * waits for a RCU quiescent period, recalculates sched
6285 * domain information and then attaches them back to the
6286 * correct sched domains
6287 * Call with hotplug lock held
6288 */
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006289int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006290{
6291 cpumask_t change_map;
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006292 int err = 0;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006293
6294 cpus_and(*partition1, *partition1, cpu_online_map);
6295 cpus_and(*partition2, *partition2, cpu_online_map);
6296 cpus_or(change_map, *partition1, *partition2);
6297
6298 /* Detach sched domains from all of the affected cpus */
6299 detach_destroy_domains(&change_map);
6300 if (!cpus_empty(*partition1))
Srivatsa Vaddagiri51888ca2006-06-27 02:54:38 -07006301 err = build_sched_domains(partition1);
6302 if (!err && !cpus_empty(*partition2))
6303 err = build_sched_domains(partition2);
6304
6305 return err;
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006306}
6307
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006308#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6309int arch_reinit_sched_domains(void)
6310{
6311 int err;
6312
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006313 mutex_lock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006314 detach_destroy_domains(&cpu_online_map);
6315 err = arch_init_sched_domains(&cpu_online_map);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006316 mutex_unlock(&sched_hotcpu_mutex);
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006317
6318 return err;
6319}
6320
6321static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6322{
6323 int ret;
6324
6325 if (buf[0] != '0' && buf[0] != '1')
6326 return -EINVAL;
6327
6328 if (smt)
6329 sched_smt_power_savings = (buf[0] == '1');
6330 else
6331 sched_mc_power_savings = (buf[0] == '1');
6332
6333 ret = arch_reinit_sched_domains();
6334
6335 return ret ? ret : count;
6336}
6337
6338int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6339{
6340 int err = 0;
Ingo Molnar48f24c42006-07-03 00:25:40 -07006341
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006342#ifdef CONFIG_SCHED_SMT
6343 if (smt_capable())
6344 err = sysfs_create_file(&cls->kset.kobj,
6345 &attr_sched_smt_power_savings.attr);
6346#endif
6347#ifdef CONFIG_SCHED_MC
6348 if (!err && mc_capable())
6349 err = sysfs_create_file(&cls->kset.kobj,
6350 &attr_sched_mc_power_savings.attr);
6351#endif
6352 return err;
6353}
6354#endif
6355
6356#ifdef CONFIG_SCHED_MC
6357static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6358{
6359 return sprintf(page, "%u\n", sched_mc_power_savings);
6360}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006361static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6362 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006363{
6364 return sched_power_savings_store(buf, count, 0);
6365}
6366SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6367 sched_mc_power_savings_store);
6368#endif
6369
6370#ifdef CONFIG_SCHED_SMT
6371static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6372{
6373 return sprintf(page, "%u\n", sched_smt_power_savings);
6374}
Ingo Molnar48f24c42006-07-03 00:25:40 -07006375static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6376 const char *buf, size_t count)
Siddha, Suresh B5c45bf22006-06-27 02:54:42 -07006377{
6378 return sched_power_savings_store(buf, count, 1);
6379}
6380SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6381 sched_smt_power_savings_store);
6382#endif
6383
Linus Torvalds1da177e2005-04-16 15:20:36 -07006384/*
6385 * Force a reinitialization of the sched domains hierarchy. The domains
6386 * and groups cannot be updated in place without racing with the balancing
Nick Piggin41c7ce92005-06-25 14:57:24 -07006387 * code, so we temporarily attach all running cpus to the NULL domain
Linus Torvalds1da177e2005-04-16 15:20:36 -07006388 * which will prevent rebalancing while the sched domains are recalculated.
6389 */
6390static int update_sched_domains(struct notifier_block *nfb,
6391 unsigned long action, void *hcpu)
6392{
Linus Torvalds1da177e2005-04-16 15:20:36 -07006393 switch (action) {
6394 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006395 case CPU_UP_PREPARE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006396 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006397 case CPU_DOWN_PREPARE_FROZEN:
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006398 detach_destroy_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006399 return NOTIFY_OK;
6400
6401 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006402 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006403 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006404 case CPU_DOWN_FAILED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006405 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006406 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006407 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07006408 case CPU_DEAD_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07006409 /*
6410 * Fall through and re-initialise the domains.
6411 */
6412 break;
6413 default:
6414 return NOTIFY_DONE;
6415 }
6416
6417 /* The hotplug lock is already held by cpu_up/cpu_down */
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006418 arch_init_sched_domains(&cpu_online_map);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006419
6420 return NOTIFY_OK;
6421}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006422
6423void __init sched_init_smp(void)
6424{
Nick Piggin5c1e1762006-10-03 01:14:04 -07006425 cpumask_t non_isolated_cpus;
6426
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006427 mutex_lock(&sched_hotcpu_mutex);
Dinakar Guniguntala1a20ff22005-06-25 14:57:33 -07006428 arch_init_sched_domains(&cpu_online_map);
Nathan Lynche5e56732007-01-10 23:15:28 -08006429 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006430 if (cpus_empty(non_isolated_cpus))
6431 cpu_set(smp_processor_id(), non_isolated_cpus);
Gautham R Shenoy5be93612007-05-09 02:34:04 -07006432 mutex_unlock(&sched_hotcpu_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006433 /* XXX: Theoretical race here - CPU may be hotplugged now */
6434 hotcpu_notifier(update_sched_domains, 0);
Nick Piggin5c1e1762006-10-03 01:14:04 -07006435
Nick Piggine692ab52007-07-26 13:40:43 +02006436 init_sched_domain_sysctl();
6437
Nick Piggin5c1e1762006-10-03 01:14:04 -07006438 /* Move init over to a non-isolated CPU */
6439 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6440 BUG();
Ingo Molnardd41f592007-07-09 18:51:59 +02006441 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006442}
6443#else
6444void __init sched_init_smp(void)
6445{
Ingo Molnardd41f592007-07-09 18:51:59 +02006446 sched_init_granularity();
Linus Torvalds1da177e2005-04-16 15:20:36 -07006447}
6448#endif /* CONFIG_SMP */
6449
6450int in_sched_functions(unsigned long addr)
6451{
6452 /* Linker adds these: start and end of __sched functions */
6453 extern char __sched_text_start[], __sched_text_end[];
Ingo Molnar48f24c42006-07-03 00:25:40 -07006454
Linus Torvalds1da177e2005-04-16 15:20:36 -07006455 return in_lock_functions(addr) ||
6456 (addr >= (unsigned long)__sched_text_start
6457 && addr < (unsigned long)__sched_text_end);
6458}
6459
Ingo Molnardd41f592007-07-09 18:51:59 +02006460static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6461{
6462 cfs_rq->tasks_timeline = RB_ROOT;
6463 cfs_rq->fair_clock = 1;
6464#ifdef CONFIG_FAIR_GROUP_SCHED
6465 cfs_rq->rq = rq;
6466#endif
6467}
6468
Linus Torvalds1da177e2005-04-16 15:20:36 -07006469void __init sched_init(void)
6470{
Ingo Molnardd41f592007-07-09 18:51:59 +02006471 u64 now = sched_clock();
Christoph Lameter476f3532007-05-06 14:48:58 -07006472 int highest_cpu = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006473 int i, j;
6474
6475 /*
6476 * Link up the scheduling class hierarchy:
6477 */
6478 rt_sched_class.next = &fair_sched_class;
6479 fair_sched_class.next = &idle_sched_class;
6480 idle_sched_class.next = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006481
KAMEZAWA Hiroyuki0a945022006-03-28 01:56:37 -08006482 for_each_possible_cpu(i) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006483 struct rt_prio_array *array;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006484 struct rq *rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006485
6486 rq = cpu_rq(i);
6487 spin_lock_init(&rq->lock);
Ingo Molnarfcb99372006-07-03 00:25:10 -07006488 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
Nick Piggin78979862005-06-25 14:57:13 -07006489 rq->nr_running = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006490 rq->clock = 1;
6491 init_cfs_rq(&rq->cfs, rq);
6492#ifdef CONFIG_FAIR_GROUP_SCHED
6493 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6494 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6495#endif
6496 rq->ls.load_update_last = now;
6497 rq->ls.load_update_start = now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006498
Ingo Molnardd41f592007-07-09 18:51:59 +02006499 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6500 rq->cpu_load[j] = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006501#ifdef CONFIG_SMP
Nick Piggin41c7ce92005-06-25 14:57:24 -07006502 rq->sd = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006503 rq->active_balance = 0;
Ingo Molnardd41f592007-07-09 18:51:59 +02006504 rq->next_balance = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006505 rq->push_cpu = 0;
Christoph Lameter0a2966b2006-09-25 23:30:51 -07006506 rq->cpu = i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006507 rq->migration_thread = NULL;
6508 INIT_LIST_HEAD(&rq->migration_queue);
6509#endif
6510 atomic_set(&rq->nr_iowait, 0);
6511
Ingo Molnardd41f592007-07-09 18:51:59 +02006512 array = &rq->rt.active;
6513 for (j = 0; j < MAX_RT_PRIO; j++) {
6514 INIT_LIST_HEAD(array->queue + j);
6515 __clear_bit(j, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006516 }
Christoph Lameter476f3532007-05-06 14:48:58 -07006517 highest_cpu = i;
Ingo Molnardd41f592007-07-09 18:51:59 +02006518 /* delimiter for bitsearch: */
6519 __set_bit(MAX_RT_PRIO, array->bitmap);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006520 }
6521
Peter Williams2dd73a42006-06-27 02:54:34 -07006522 set_load_weight(&init_task);
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006523
Avi Kivitye107be32007-07-26 13:40:43 +02006524#ifdef CONFIG_PREEMPT_NOTIFIERS
6525 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6526#endif
6527
Christoph Lameterc9819f42006-12-10 02:20:25 -08006528#ifdef CONFIG_SMP
Christoph Lameter476f3532007-05-06 14:48:58 -07006529 nr_cpu_ids = highest_cpu + 1;
Christoph Lameterc9819f42006-12-10 02:20:25 -08006530 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6531#endif
6532
Heiko Carstensb50f60c2006-07-30 03:03:52 -07006533#ifdef CONFIG_RT_MUTEXES
6534 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6535#endif
6536
Linus Torvalds1da177e2005-04-16 15:20:36 -07006537 /*
6538 * The boot idle thread does lazy MMU switching as well:
6539 */
6540 atomic_inc(&init_mm.mm_count);
6541 enter_lazy_tlb(&init_mm, current);
6542
6543 /*
6544 * Make us the idle thread. Technically, schedule() should not be
6545 * called from this thread, however somewhere below it might be,
6546 * but because we are the idle thread, we just pick up running again
6547 * when this runqueue becomes "idle".
6548 */
6549 init_idle(current, smp_processor_id());
Ingo Molnardd41f592007-07-09 18:51:59 +02006550 /*
6551 * During early bootup we pretend to be a normal task:
6552 */
6553 current->sched_class = &fair_sched_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006554}
6555
6556#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6557void __might_sleep(char *file, int line)
6558{
Ingo Molnar48f24c42006-07-03 00:25:40 -07006559#ifdef in_atomic
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 static unsigned long prev_jiffy; /* ratelimiting */
6561
6562 if ((in_atomic() || irqs_disabled()) &&
6563 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6564 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6565 return;
6566 prev_jiffy = jiffies;
Ingo Molnar91368d72006-03-23 03:00:54 -08006567 printk(KERN_ERR "BUG: sleeping function called from invalid"
Linus Torvalds1da177e2005-04-16 15:20:36 -07006568 " context at %s:%d\n", file, line);
6569 printk("in_atomic():%d, irqs_disabled():%d\n",
6570 in_atomic(), irqs_disabled());
Peter Zijlstraa4c410f2006-12-06 20:37:21 -08006571 debug_show_held_locks(current);
Ingo Molnar3117df02006-12-13 00:34:43 -08006572 if (irqs_disabled())
6573 print_irqtrace_events(current);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006574 dump_stack();
6575 }
6576#endif
6577}
6578EXPORT_SYMBOL(__might_sleep);
6579#endif
6580
6581#ifdef CONFIG_MAGIC_SYSRQ
6582void normalize_rt_tasks(void)
6583{
Ingo Molnara0f98a12007-06-17 18:37:45 +02006584 struct task_struct *g, *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006585 unsigned long flags;
Ingo Molnar70b97a72006-07-03 00:25:42 -07006586 struct rq *rq;
Ingo Molnardd41f592007-07-09 18:51:59 +02006587 int on_rq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006588
6589 read_lock_irq(&tasklist_lock);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006590 do_each_thread(g, p) {
Ingo Molnardd41f592007-07-09 18:51:59 +02006591 p->se.fair_key = 0;
6592 p->se.wait_runtime = 0;
6593 p->se.wait_start_fair = 0;
6594 p->se.wait_start = 0;
6595 p->se.exec_start = 0;
6596 p->se.sleep_start = 0;
6597 p->se.sleep_start_fair = 0;
6598 p->se.block_start = 0;
6599 task_rq(p)->cfs.fair_clock = 0;
6600 task_rq(p)->clock = 0;
6601
6602 if (!rt_task(p)) {
6603 /*
6604 * Renice negative nice level userspace
6605 * tasks back to 0:
6606 */
6607 if (TASK_NICE(p) < 0 && p->mm)
6608 set_user_nice(p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006609 continue;
Ingo Molnardd41f592007-07-09 18:51:59 +02006610 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006611
Ingo Molnarb29739f2006-06-27 02:54:51 -07006612 spin_lock_irqsave(&p->pi_lock, flags);
6613 rq = __task_rq_lock(p);
Ingo Molnardd41f592007-07-09 18:51:59 +02006614#ifdef CONFIG_SMP
6615 /*
6616 * Do not touch the migration thread:
6617 */
6618 if (p == rq->migration_thread)
6619 goto out_unlock;
6620#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07006621
Ingo Molnardd41f592007-07-09 18:51:59 +02006622 on_rq = p->se.on_rq;
6623 if (on_rq)
6624 deactivate_task(task_rq(p), p, 0);
6625 __setscheduler(rq, p, SCHED_NORMAL, 0);
6626 if (on_rq) {
6627 activate_task(task_rq(p), p, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006628 resched_task(rq->curr);
6629 }
Ingo Molnardd41f592007-07-09 18:51:59 +02006630#ifdef CONFIG_SMP
6631 out_unlock:
6632#endif
Ingo Molnarb29739f2006-06-27 02:54:51 -07006633 __task_rq_unlock(rq);
6634 spin_unlock_irqrestore(&p->pi_lock, flags);
Ingo Molnara0f98a12007-06-17 18:37:45 +02006635 } while_each_thread(g, p);
6636
Linus Torvalds1da177e2005-04-16 15:20:36 -07006637 read_unlock_irq(&tasklist_lock);
6638}
6639
6640#endif /* CONFIG_MAGIC_SYSRQ */
Linus Torvalds1df5c102005-09-12 07:59:21 -07006641
6642#ifdef CONFIG_IA64
6643/*
6644 * These functions are only useful for the IA64 MCA handling.
6645 *
6646 * They can only be called when the whole system has been
6647 * stopped - every CPU needs to be quiescent, and no scheduling
6648 * activity can take place. Using them for anything else would
6649 * be a serious bug, and as a result, they aren't even visible
6650 * under any other configuration.
6651 */
6652
6653/**
6654 * curr_task - return the current task for a given cpu.
6655 * @cpu: the processor in question.
6656 *
6657 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6658 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006659struct task_struct *curr_task(int cpu)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006660{
6661 return cpu_curr(cpu);
6662}
6663
6664/**
6665 * set_curr_task - set the current task for a given cpu.
6666 * @cpu: the processor in question.
6667 * @p: the task pointer to set.
6668 *
6669 * Description: This function must only be used when non-maskable interrupts
6670 * are serviced on a separate stack. It allows the architecture to switch the
6671 * notion of the current task on a cpu in a non-blocking manner. This function
6672 * must be called with all CPU's synchronized, and interrupts disabled, the
6673 * and caller must save the original value of the current task (see
6674 * curr_task() above) and restore that value before reenabling interrupts and
6675 * re-starting the system.
6676 *
6677 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6678 */
Ingo Molnar36c8b582006-07-03 00:25:41 -07006679void set_curr_task(int cpu, struct task_struct *p)
Linus Torvalds1df5c102005-09-12 07:59:21 -07006680{
6681 cpu_curr(cpu) = p;
6682}
6683
6684#endif