Carl Shapiro | a5d5cfd | 2011-06-21 12:46:59 -0700 | [diff] [blame] | 1 | // Copyright 2011 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #ifndef ART_SRC_ASSEMBLER_H_ |
| 4 | #define ART_SRC_ASSEMBLER_H_ |
| 5 | |
| 6 | #include "src/logging.h" |
| 7 | #include "src/macros.h" |
| 8 | #include "src/memory_region.h" |
| 9 | |
Carl Shapiro | 6b6b5f0 | 2011-06-21 15:05:09 -0700 | [diff] [blame] | 10 | namespace art { |
Carl Shapiro | a5d5cfd | 2011-06-21 12:46:59 -0700 | [diff] [blame] | 11 | |
| 12 | class Assembler; |
| 13 | class AssemblerBuffer; |
| 14 | class AssemblerFixup; |
| 15 | |
Ian Rogers | b033c75 | 2011-07-20 12:22:35 -0700 | [diff] [blame^] | 16 | // Allow the meaning of offsets to be strongly typed |
| 17 | class Offset { |
| 18 | public: |
| 19 | explicit Offset(size_t val) : val_(val) {} |
| 20 | int32_t Int32Value() const { |
| 21 | return static_cast<int32_t>(val_); |
| 22 | } |
| 23 | uint32_t Uint32Value() const { |
| 24 | return static_cast<uint32_t>(val_); |
| 25 | } |
| 26 | protected: |
| 27 | size_t val_; |
| 28 | }; |
| 29 | std::ostream& operator<<(std::ostream& os, const Offset& offs); |
| 30 | |
| 31 | // Offsets relative to the current frame |
| 32 | class FrameOffset : public Offset { |
| 33 | public: |
| 34 | explicit FrameOffset(size_t val) : Offset(val) {} |
| 35 | bool operator>(FrameOffset other) const { return val_ > other.val_; } |
| 36 | bool operator<(FrameOffset other) const { return val_ < other.val_; } |
| 37 | }; |
| 38 | |
| 39 | // Offsets relative to the current running thread |
| 40 | class ThreadOffset : public Offset { |
| 41 | public: |
| 42 | explicit ThreadOffset(size_t val) : Offset(val) {} |
| 43 | }; |
| 44 | |
| 45 | // Offsets relative to an object |
| 46 | class MemberOffset : public Offset { |
| 47 | public: |
| 48 | explicit MemberOffset(size_t val) : Offset(val) {} |
| 49 | }; |
Carl Shapiro | a5d5cfd | 2011-06-21 12:46:59 -0700 | [diff] [blame] | 50 | |
| 51 | class Label { |
| 52 | public: |
| 53 | Label() : position_(0) {} |
| 54 | |
| 55 | ~Label() { |
| 56 | // Assert if label is being destroyed with unresolved branches pending. |
| 57 | CHECK(!IsLinked()); |
| 58 | } |
| 59 | |
| 60 | // Returns the position for bound and linked labels. Cannot be used |
| 61 | // for unused labels. |
| 62 | int Position() const { |
| 63 | CHECK(!IsUnused()); |
| 64 | return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize; |
| 65 | } |
| 66 | |
| 67 | int LinkPosition() const { |
| 68 | CHECK(IsLinked()); |
| 69 | return position_ - kWordSize; |
| 70 | } |
| 71 | |
| 72 | bool IsBound() const { return position_ < 0; } |
| 73 | bool IsUnused() const { return position_ == 0; } |
| 74 | bool IsLinked() const { return position_ > 0; } |
| 75 | |
| 76 | private: |
| 77 | int position_; |
| 78 | |
| 79 | void Reinitialize() { |
| 80 | position_ = 0; |
| 81 | } |
| 82 | |
| 83 | void BindTo(int position) { |
| 84 | CHECK(!IsBound()); |
| 85 | position_ = -position - kPointerSize; |
| 86 | CHECK(IsBound()); |
| 87 | } |
| 88 | |
| 89 | void LinkTo(int position) { |
| 90 | CHECK(!IsBound()); |
| 91 | position_ = position + kPointerSize; |
| 92 | CHECK(IsLinked()); |
| 93 | } |
| 94 | |
| 95 | friend class Assembler; |
| 96 | DISALLOW_COPY_AND_ASSIGN(Label); |
| 97 | }; |
| 98 | |
| 99 | |
| 100 | // Assembler fixups are positions in generated code that require processing |
| 101 | // after the code has been copied to executable memory. This includes building |
| 102 | // relocation information. |
| 103 | class AssemblerFixup { |
| 104 | public: |
| 105 | virtual void Process(const MemoryRegion& region, int position) = 0; |
| 106 | virtual ~AssemblerFixup() {} |
| 107 | |
| 108 | private: |
| 109 | AssemblerFixup* previous_; |
| 110 | int position_; |
| 111 | |
| 112 | AssemblerFixup* previous() const { return previous_; } |
| 113 | void set_previous(AssemblerFixup* previous) { previous_ = previous; } |
| 114 | |
| 115 | int position() const { return position_; } |
| 116 | void set_position(int position) { position_ = position; } |
| 117 | |
| 118 | friend class AssemblerBuffer; |
| 119 | }; |
| 120 | |
| 121 | |
| 122 | class AssemblerBuffer { |
| 123 | public: |
| 124 | AssemblerBuffer(); |
| 125 | ~AssemblerBuffer(); |
| 126 | |
| 127 | // Basic support for emitting, loading, and storing. |
| 128 | template<typename T> void Emit(T value) { |
| 129 | CHECK(HasEnsuredCapacity()); |
| 130 | *reinterpret_cast<T*>(cursor_) = value; |
| 131 | cursor_ += sizeof(T); |
| 132 | } |
| 133 | |
| 134 | template<typename T> T Load(size_t position) { |
| 135 | CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| 136 | return *reinterpret_cast<T*>(contents_ + position); |
| 137 | } |
| 138 | |
| 139 | template<typename T> void Store(size_t position, T value) { |
| 140 | CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| 141 | *reinterpret_cast<T*>(contents_ + position) = value; |
| 142 | } |
| 143 | |
| 144 | // Emit a fixup at the current location. |
| 145 | void EmitFixup(AssemblerFixup* fixup) { |
| 146 | fixup->set_previous(fixup_); |
| 147 | fixup->set_position(Size()); |
| 148 | fixup_ = fixup; |
| 149 | } |
| 150 | |
| 151 | // Get the size of the emitted code. |
| 152 | size_t Size() const { |
| 153 | CHECK_GE(cursor_, contents_); |
| 154 | return cursor_ - contents_; |
| 155 | } |
| 156 | |
| 157 | byte* contents() const { return contents_; } |
| 158 | |
| 159 | // Copy the assembled instructions into the specified memory block |
| 160 | // and apply all fixups. |
| 161 | void FinalizeInstructions(const MemoryRegion& region); |
| 162 | |
| 163 | // To emit an instruction to the assembler buffer, the EnsureCapacity helper |
| 164 | // must be used to guarantee that the underlying data area is big enough to |
| 165 | // hold the emitted instruction. Usage: |
| 166 | // |
| 167 | // AssemblerBuffer buffer; |
| 168 | // AssemblerBuffer::EnsureCapacity ensured(&buffer); |
| 169 | // ... emit bytes for single instruction ... |
| 170 | |
| 171 | #ifdef DEBUG |
| 172 | |
| 173 | class EnsureCapacity { |
| 174 | public: |
| 175 | explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| 176 | if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); |
| 177 | // In debug mode, we save the assembler buffer along with the gap |
| 178 | // size before we start emitting to the buffer. This allows us to |
| 179 | // check that any single generated instruction doesn't overflow the |
| 180 | // limit implied by the minimum gap size. |
| 181 | buffer_ = buffer; |
| 182 | gap_ = ComputeGap(); |
| 183 | // Make sure that extending the capacity leaves a big enough gap |
| 184 | // for any kind of instruction. |
| 185 | CHECK_GE(gap_, kMinimumGap); |
| 186 | // Mark the buffer as having ensured the capacity. |
| 187 | CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. |
| 188 | buffer->has_ensured_capacity_ = true; |
| 189 | } |
| 190 | |
| 191 | ~EnsureCapacity() { |
| 192 | // Unmark the buffer, so we cannot emit after this. |
| 193 | buffer_->has_ensured_capacity_ = false; |
| 194 | // Make sure the generated instruction doesn't take up more |
| 195 | // space than the minimum gap. |
| 196 | int delta = gap_ - ComputeGap(); |
Ian Rogers | b033c75 | 2011-07-20 12:22:35 -0700 | [diff] [blame^] | 197 | CHECK_LE(delta, kMinimumGap); |
Carl Shapiro | a5d5cfd | 2011-06-21 12:46:59 -0700 | [diff] [blame] | 198 | } |
| 199 | |
| 200 | private: |
| 201 | AssemblerBuffer* buffer_; |
| 202 | int gap_; |
| 203 | |
| 204 | int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } |
| 205 | }; |
| 206 | |
| 207 | bool has_ensured_capacity_; |
| 208 | bool HasEnsuredCapacity() const { return has_ensured_capacity_; } |
| 209 | |
| 210 | #else |
| 211 | |
| 212 | class EnsureCapacity { |
| 213 | public: |
| 214 | explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| 215 | if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); |
| 216 | } |
| 217 | }; |
| 218 | |
| 219 | // When building the C++ tests, assertion code is enabled. To allow |
| 220 | // asserting that the user of the assembler buffer has ensured the |
| 221 | // capacity needed for emitting, we add a dummy method in non-debug mode. |
| 222 | bool HasEnsuredCapacity() const { return true; } |
| 223 | |
| 224 | #endif |
| 225 | |
| 226 | // Returns the position in the instruction stream. |
| 227 | int GetPosition() { return cursor_ - contents_; } |
| 228 | |
| 229 | private: |
| 230 | // The limit is set to kMinimumGap bytes before the end of the data area. |
| 231 | // This leaves enough space for the longest possible instruction and allows |
| 232 | // for a single, fast space check per instruction. |
| 233 | static const int kMinimumGap = 32; |
| 234 | |
| 235 | byte* contents_; |
| 236 | byte* cursor_; |
| 237 | byte* limit_; |
| 238 | AssemblerFixup* fixup_; |
| 239 | bool fixups_processed_; |
| 240 | |
| 241 | byte* cursor() const { return cursor_; } |
| 242 | byte* limit() const { return limit_; } |
| 243 | size_t Capacity() const { |
| 244 | CHECK_GE(limit_, contents_); |
| 245 | return (limit_ - contents_) + kMinimumGap; |
| 246 | } |
| 247 | |
| 248 | // Process the fixup chain starting at the given fixup. The offset is |
| 249 | // non-zero for fixups in the body if the preamble is non-empty. |
| 250 | void ProcessFixups(const MemoryRegion& region); |
| 251 | |
| 252 | // Compute the limit based on the data area and the capacity. See |
| 253 | // description of kMinimumGap for the reasoning behind the value. |
| 254 | static byte* ComputeLimit(byte* data, size_t capacity) { |
| 255 | return data + capacity - kMinimumGap; |
| 256 | } |
| 257 | |
| 258 | void ExtendCapacity(); |
| 259 | |
| 260 | friend class AssemblerFixup; |
| 261 | }; |
| 262 | |
Carl Shapiro | 6b6b5f0 | 2011-06-21 15:05:09 -0700 | [diff] [blame] | 263 | } // namespace art |
Carl Shapiro | a5d5cfd | 2011-06-21 12:46:59 -0700 | [diff] [blame] | 264 | |
| 265 | #if defined(__i386__) |
| 266 | #include "src/assembler_x86.h" |
| 267 | #elif defined(__arm__) |
| 268 | #include "src/assembler_arm.h" |
| 269 | #endif |
| 270 | |
| 271 | #endif // ART_SRC_ASSEMBLER_H_ |