Add basic assembler interface and an x86 backend.

Change-Id: Ia8136bad88f1194c8a247e2af80e486ab88c1e8c
diff --git a/src/assembler.h b/src/assembler.h
new file mode 100644
index 0000000..d211b6f
--- /dev/null
+++ b/src/assembler.h
@@ -0,0 +1,238 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+
+#ifndef ART_SRC_ASSEMBLER_H_
+#define ART_SRC_ASSEMBLER_H_
+
+#include "src/logging.h"
+#include "src/macros.h"
+#include "src/memory_region.h"
+
+namespace android {
+namespace runtime {
+
+class Assembler;
+class AssemblerBuffer;
+class AssemblerFixup;
+
+
+class Label {
+ public:
+  Label() : position_(0) {}
+
+  ~Label() {
+    // Assert if label is being destroyed with unresolved branches pending.
+    CHECK(!IsLinked());
+  }
+
+  // Returns the position for bound and linked labels. Cannot be used
+  // for unused labels.
+  int Position() const {
+    CHECK(!IsUnused());
+    return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize;
+  }
+
+  int LinkPosition() const {
+    CHECK(IsLinked());
+    return position_ - kWordSize;
+  }
+
+  bool IsBound() const { return position_ < 0; }
+  bool IsUnused() const { return position_ == 0; }
+  bool IsLinked() const { return position_ > 0; }
+
+ private:
+  int position_;
+
+  void Reinitialize() {
+    position_ = 0;
+  }
+
+  void BindTo(int position) {
+    CHECK(!IsBound());
+    position_ = -position - kPointerSize;
+    CHECK(IsBound());
+  }
+
+  void LinkTo(int position) {
+    CHECK(!IsBound());
+    position_ = position + kPointerSize;
+    CHECK(IsLinked());
+  }
+
+  friend class Assembler;
+  DISALLOW_COPY_AND_ASSIGN(Label);
+};
+
+
+// Assembler fixups are positions in generated code that require processing
+// after the code has been copied to executable memory. This includes building
+// relocation information.
+class AssemblerFixup {
+ public:
+  virtual void Process(const MemoryRegion& region, int position) = 0;
+  virtual ~AssemblerFixup() {}
+
+ private:
+  AssemblerFixup* previous_;
+  int position_;
+
+  AssemblerFixup* previous() const { return previous_; }
+  void set_previous(AssemblerFixup* previous) { previous_ = previous; }
+
+  int position() const { return position_; }
+  void set_position(int position) { position_ = position; }
+
+  friend class AssemblerBuffer;
+};
+
+
+class AssemblerBuffer {
+ public:
+  AssemblerBuffer();
+  ~AssemblerBuffer();
+
+  // Basic support for emitting, loading, and storing.
+  template<typename T> void Emit(T value) {
+    CHECK(HasEnsuredCapacity());
+    *reinterpret_cast<T*>(cursor_) = value;
+    cursor_ += sizeof(T);
+  }
+
+  template<typename T> T Load(size_t position) {
+    CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
+    return *reinterpret_cast<T*>(contents_ + position);
+  }
+
+  template<typename T> void Store(size_t position, T value) {
+    CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
+    *reinterpret_cast<T*>(contents_ + position) = value;
+  }
+
+  // Emit a fixup at the current location.
+  void EmitFixup(AssemblerFixup* fixup) {
+    fixup->set_previous(fixup_);
+    fixup->set_position(Size());
+    fixup_ = fixup;
+  }
+
+  // Get the size of the emitted code.
+  size_t Size() const {
+    CHECK_GE(cursor_, contents_);
+    return cursor_ - contents_;
+  }
+
+  byte* contents() const { return contents_; }
+
+  // Copy the assembled instructions into the specified memory block
+  // and apply all fixups.
+  void FinalizeInstructions(const MemoryRegion& region);
+
+  // To emit an instruction to the assembler buffer, the EnsureCapacity helper
+  // must be used to guarantee that the underlying data area is big enough to
+  // hold the emitted instruction. Usage:
+  //
+  //     AssemblerBuffer buffer;
+  //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
+  //     ... emit bytes for single instruction ...
+
+#ifdef DEBUG
+
+  class EnsureCapacity {
+   public:
+    explicit EnsureCapacity(AssemblerBuffer* buffer) {
+      if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity();
+      // In debug mode, we save the assembler buffer along with the gap
+      // size before we start emitting to the buffer. This allows us to
+      // check that any single generated instruction doesn't overflow the
+      // limit implied by the minimum gap size.
+      buffer_ = buffer;
+      gap_ = ComputeGap();
+      // Make sure that extending the capacity leaves a big enough gap
+      // for any kind of instruction.
+      CHECK_GE(gap_, kMinimumGap);
+      // Mark the buffer as having ensured the capacity.
+      CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
+      buffer->has_ensured_capacity_ = true;
+    }
+
+    ~EnsureCapacity() {
+      // Unmark the buffer, so we cannot emit after this.
+      buffer_->has_ensured_capacity_ = false;
+      // Make sure the generated instruction doesn't take up more
+      // space than the minimum gap.
+      int delta = gap_ - ComputeGap();
+      CHECK(delta <= kMinimumGap);
+    }
+
+   private:
+    AssemblerBuffer* buffer_;
+    int gap_;
+
+    int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
+  };
+
+  bool has_ensured_capacity_;
+  bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
+
+#else
+
+  class EnsureCapacity {
+   public:
+    explicit EnsureCapacity(AssemblerBuffer* buffer) {
+      if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity();
+    }
+  };
+
+  // When building the C++ tests, assertion code is enabled. To allow
+  // asserting that the user of the assembler buffer has ensured the
+  // capacity needed for emitting, we add a dummy method in non-debug mode.
+  bool HasEnsuredCapacity() const { return true; }
+
+#endif
+
+  // Returns the position in the instruction stream.
+  int GetPosition() { return  cursor_ - contents_; }
+
+ private:
+  // The limit is set to kMinimumGap bytes before the end of the data area.
+  // This leaves enough space for the longest possible instruction and allows
+  // for a single, fast space check per instruction.
+  static const int kMinimumGap = 32;
+
+  byte* contents_;
+  byte* cursor_;
+  byte* limit_;
+  AssemblerFixup* fixup_;
+  bool fixups_processed_;
+
+  byte* cursor() const { return cursor_; }
+  byte* limit() const { return limit_; }
+  size_t Capacity() const {
+    CHECK_GE(limit_, contents_);
+    return (limit_ - contents_) + kMinimumGap;
+  }
+
+  // Process the fixup chain starting at the given fixup. The offset is
+  // non-zero for fixups in the body if the preamble is non-empty.
+  void ProcessFixups(const MemoryRegion& region);
+
+  // Compute the limit based on the data area and the capacity. See
+  // description of kMinimumGap for the reasoning behind the value.
+  static byte* ComputeLimit(byte* data, size_t capacity) {
+    return data + capacity - kMinimumGap;
+  }
+
+  void ExtendCapacity();
+
+  friend class AssemblerFixup;
+};
+
+} }  // namespace android::runtime
+
+#if defined(__i386__)
+#include "src/assembler_x86.h"
+#elif defined(__arm__)
+#include "src/assembler_arm.h"
+#endif
+
+#endif  // ART_SRC_ASSEMBLER_H_