blob: 35d193c65c24346216ede24133dc3cd2db12dd31 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "dex/compiler_ir.h"
Vladimir Marko5c96e6b2013-11-14 15:34:17 +000018#include "dex/frontend.h"
19#include "dex/quick/dex_file_method_inliner.h"
20#include "dex/quick/dex_file_to_method_inliner_map.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070021#include "dex_file-inl.h"
Ian Rogers166db042013-07-26 12:05:57 -070022#include "entrypoints/quick/quick_entrypoints.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070023#include "invoke_type.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "mir_to_lir-inl.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070027#include "x86/codegen_x86.h"
28
29namespace art {
30
31/*
32 * This source files contains "gen" codegen routines that should
33 * be applicable to most targets. Only mid-level support utilities
34 * and "op" calls may be used here.
35 */
36
37/*
38 * To save scheduling time, helper calls are broken into two parts: generation of
39 * the helper target address, and the actuall call to the helper. Because x86
40 * has a memory call operation, part 1 is a NOP for x86. For other targets,
41 * load arguments between the two parts.
42 */
Ian Rogers848871b2013-08-05 10:56:33 -070043int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070044 return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
45}
46
47/* NOTE: if r_tgt is a temp, it will be freed following use */
Ian Rogers848871b2013-08-05 10:56:33 -070048LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070049 LIR* call_inst;
50 if (cu_->instruction_set == kX86) {
51 call_inst = OpThreadMem(kOpBlx, helper_offset);
52 } else {
53 call_inst = OpReg(kOpBlx, r_tgt);
54 FreeTemp(r_tgt);
55 }
56 if (safepoint_pc) {
57 MarkSafepointPC(call_inst);
58 }
59 return call_inst;
60}
61
Ian Rogers848871b2013-08-05 10:56:33 -070062void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070063 int r_tgt = CallHelperSetup(helper_offset);
64 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +000065 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -070066 CallHelper(r_tgt, helper_offset, safepoint_pc);
67}
68
Ian Rogers848871b2013-08-05 10:56:33 -070069void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070070 int r_tgt = CallHelperSetup(helper_offset);
71 OpRegCopy(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +000072 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -070073 CallHelper(r_tgt, helper_offset, safepoint_pc);
74}
75
Ian Rogers848871b2013-08-05 10:56:33 -070076void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
77 bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070078 int r_tgt = CallHelperSetup(helper_offset);
79 if (arg0.wide == 0) {
80 LoadValueDirectFixed(arg0, TargetReg(kArg0));
81 } else {
82 LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
83 }
Vladimir Marko31c2aac2013-12-09 16:31:19 +000084 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -070085 CallHelper(r_tgt, helper_offset, safepoint_pc);
86}
87
Ian Rogers848871b2013-08-05 10:56:33 -070088void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
Brian Carlstrom7940e442013-07-12 13:46:57 -070089 bool safepoint_pc) {
90 int r_tgt = CallHelperSetup(helper_offset);
91 LoadConstant(TargetReg(kArg0), arg0);
92 LoadConstant(TargetReg(kArg1), arg1);
Vladimir Marko31c2aac2013-12-09 16:31:19 +000093 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -070094 CallHelper(r_tgt, helper_offset, safepoint_pc);
95}
96
Ian Rogers848871b2013-08-05 10:56:33 -070097void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
Brian Carlstrom7940e442013-07-12 13:46:57 -070098 RegLocation arg1, bool safepoint_pc) {
99 int r_tgt = CallHelperSetup(helper_offset);
100 if (arg1.wide == 0) {
101 LoadValueDirectFixed(arg1, TargetReg(kArg1));
102 } else {
103 LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
104 }
105 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000106 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700107 CallHelper(r_tgt, helper_offset, safepoint_pc);
108}
109
Ian Rogers848871b2013-08-05 10:56:33 -0700110void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700111 bool safepoint_pc) {
112 int r_tgt = CallHelperSetup(helper_offset);
113 LoadValueDirectFixed(arg0, TargetReg(kArg0));
114 LoadConstant(TargetReg(kArg1), arg1);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000115 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 CallHelper(r_tgt, helper_offset, safepoint_pc);
117}
118
Ian Rogers848871b2013-08-05 10:56:33 -0700119void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700120 bool safepoint_pc) {
121 int r_tgt = CallHelperSetup(helper_offset);
122 OpRegCopy(TargetReg(kArg1), arg1);
123 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000124 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700125 CallHelper(r_tgt, helper_offset, safepoint_pc);
126}
127
Ian Rogers848871b2013-08-05 10:56:33 -0700128void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
129 bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700130 int r_tgt = CallHelperSetup(helper_offset);
131 OpRegCopy(TargetReg(kArg0), arg0);
132 LoadConstant(TargetReg(kArg1), arg1);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000133 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 CallHelper(r_tgt, helper_offset, safepoint_pc);
135}
136
Ian Rogers848871b2013-08-05 10:56:33 -0700137void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700138 int r_tgt = CallHelperSetup(helper_offset);
139 LoadCurrMethodDirect(TargetReg(kArg1));
140 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000141 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700142 CallHelper(r_tgt, helper_offset, safepoint_pc);
143}
144
Hiroshi Yamauchibe1ca552014-01-15 11:46:48 -0800145void Mir2Lir::CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
146 int r_tgt = CallHelperSetup(helper_offset);
147 DCHECK_NE(TargetReg(kArg1), arg0);
148 if (TargetReg(kArg0) != arg0) {
149 OpRegCopy(TargetReg(kArg0), arg0);
150 }
151 LoadCurrMethodDirect(TargetReg(kArg1));
152 ClobberCallerSave();
153 CallHelper(r_tgt, helper_offset, safepoint_pc);
154}
155
Hiroshi Yamauchibb8f0ab2014-01-27 16:50:29 -0800156void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
157 RegLocation arg2, bool safepoint_pc) {
158 int r_tgt = CallHelperSetup(helper_offset);
159 DCHECK_NE(TargetReg(kArg1), arg0);
160 if (TargetReg(kArg0) != arg0) {
161 OpRegCopy(TargetReg(kArg0), arg0);
162 }
163 LoadCurrMethodDirect(TargetReg(kArg1));
164 LoadValueDirectFixed(arg2, TargetReg(kArg2));
165 ClobberCallerSave();
166 CallHelper(r_tgt, helper_offset, safepoint_pc);
167}
168
Ian Rogers848871b2013-08-05 10:56:33 -0700169void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170 RegLocation arg1, bool safepoint_pc) {
171 int r_tgt = CallHelperSetup(helper_offset);
172 if (arg0.wide == 0) {
173 LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
174 if (arg1.wide == 0) {
175 if (cu_->instruction_set == kMips) {
176 LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
177 } else {
178 LoadValueDirectFixed(arg1, TargetReg(kArg1));
179 }
180 } else {
181 if (cu_->instruction_set == kMips) {
182 LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
183 } else {
184 LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
185 }
186 }
187 } else {
188 LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
189 if (arg1.wide == 0) {
190 LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
191 } else {
192 LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
193 }
194 }
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000195 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700196 CallHelper(r_tgt, helper_offset, safepoint_pc);
197}
198
Ian Rogers848871b2013-08-05 10:56:33 -0700199void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
200 bool safepoint_pc) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700201 int r_tgt = CallHelperSetup(helper_offset);
202 DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
203 OpRegCopy(TargetReg(kArg0), arg0);
204 OpRegCopy(TargetReg(kArg1), arg1);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000205 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700206 CallHelper(r_tgt, helper_offset, safepoint_pc);
207}
208
Ian Rogers848871b2013-08-05 10:56:33 -0700209void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700210 int arg2, bool safepoint_pc) {
211 int r_tgt = CallHelperSetup(helper_offset);
212 DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
213 OpRegCopy(TargetReg(kArg0), arg0);
214 OpRegCopy(TargetReg(kArg1), arg1);
215 LoadConstant(TargetReg(kArg2), arg2);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000216 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700217 CallHelper(r_tgt, helper_offset, safepoint_pc);
218}
219
Ian Rogers848871b2013-08-05 10:56:33 -0700220void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700221 int arg0, RegLocation arg2, bool safepoint_pc) {
222 int r_tgt = CallHelperSetup(helper_offset);
223 LoadValueDirectFixed(arg2, TargetReg(kArg2));
224 LoadCurrMethodDirect(TargetReg(kArg1));
225 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000226 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700227 CallHelper(r_tgt, helper_offset, safepoint_pc);
228}
229
Ian Rogers848871b2013-08-05 10:56:33 -0700230void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700231 int arg2, bool safepoint_pc) {
232 int r_tgt = CallHelperSetup(helper_offset);
233 LoadCurrMethodDirect(TargetReg(kArg1));
234 LoadConstant(TargetReg(kArg2), arg2);
235 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000236 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700237 CallHelper(r_tgt, helper_offset, safepoint_pc);
238}
239
Ian Rogers848871b2013-08-05 10:56:33 -0700240void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700241 int arg0, RegLocation arg1,
242 RegLocation arg2, bool safepoint_pc) {
243 int r_tgt = CallHelperSetup(helper_offset);
Ian Rogersa9a82542013-10-04 11:17:26 -0700244 DCHECK_EQ(arg1.wide, 0U);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700245 LoadValueDirectFixed(arg1, TargetReg(kArg1));
246 if (arg2.wide == 0) {
247 LoadValueDirectFixed(arg2, TargetReg(kArg2));
248 } else {
249 LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
250 }
251 LoadConstant(TargetReg(kArg0), arg0);
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000252 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700253 CallHelper(r_tgt, helper_offset, safepoint_pc);
254}
255
Ian Rogersa9a82542013-10-04 11:17:26 -0700256void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
257 RegLocation arg0, RegLocation arg1,
258 RegLocation arg2,
259 bool safepoint_pc) {
260 int r_tgt = CallHelperSetup(helper_offset);
261 DCHECK_EQ(arg0.wide, 0U);
262 LoadValueDirectFixed(arg0, TargetReg(kArg0));
263 DCHECK_EQ(arg1.wide, 0U);
264 LoadValueDirectFixed(arg1, TargetReg(kArg1));
265 DCHECK_EQ(arg1.wide, 0U);
266 LoadValueDirectFixed(arg2, TargetReg(kArg2));
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000267 ClobberCallerSave();
Ian Rogersa9a82542013-10-04 11:17:26 -0700268 CallHelper(r_tgt, helper_offset, safepoint_pc);
269}
270
Brian Carlstrom7940e442013-07-12 13:46:57 -0700271/*
272 * If there are any ins passed in registers that have not been promoted
273 * to a callee-save register, flush them to the frame. Perform intial
274 * assignment of promoted arguments.
275 *
276 * ArgLocs is an array of location records describing the incoming arguments
277 * with one location record per word of argument.
278 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700279void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700280 /*
281 * Dummy up a RegLocation for the incoming Method*
282 * It will attempt to keep kArg0 live (or copy it to home location
283 * if promoted).
284 */
285 RegLocation rl_src = rl_method;
286 rl_src.location = kLocPhysReg;
287 rl_src.low_reg = TargetReg(kArg0);
288 rl_src.home = false;
289 MarkLive(rl_src.low_reg, rl_src.s_reg_low);
290 StoreValue(rl_method, rl_src);
291 // If Method* has been promoted, explicitly flush
292 if (rl_method.location == kLocPhysReg) {
293 StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
294 }
295
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800296 if (cu_->num_ins == 0) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700297 return;
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800298 }
299
Brian Carlstrom7940e442013-07-12 13:46:57 -0700300 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
301 /*
302 * Copy incoming arguments to their proper home locations.
303 * NOTE: an older version of dx had an issue in which
304 * it would reuse static method argument registers.
305 * This could result in the same Dalvik virtual register
306 * being promoted to both core and fp regs. To account for this,
307 * we only copy to the corresponding promoted physical register
308 * if it matches the type of the SSA name for the incoming
309 * argument. It is also possible that long and double arguments
310 * end up half-promoted. In those cases, we must flush the promoted
311 * half to memory as well.
312 */
313 for (int i = 0; i < cu_->num_ins; i++) {
314 PromotionMap* v_map = &promotion_map_[start_vreg + i];
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800315 int reg = GetArgMappingToPhysicalReg(i);
316
317 if (reg != INVALID_REG) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700318 // If arriving in register
319 bool need_flush = true;
320 RegLocation* t_loc = &ArgLocs[i];
321 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800322 OpRegCopy(v_map->core_reg, reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700323 need_flush = false;
324 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800325 OpRegCopy(v_map->FpReg, reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700326 need_flush = false;
327 } else {
328 need_flush = true;
329 }
330
buzbeed0a03b82013-09-14 08:21:05 -0700331 // For wide args, force flush if not fully promoted
Brian Carlstrom7940e442013-07-12 13:46:57 -0700332 if (t_loc->wide) {
333 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
buzbeed0a03b82013-09-14 08:21:05 -0700334 // Is only half promoted?
Brian Carlstrom7940e442013-07-12 13:46:57 -0700335 need_flush |= (p_map->core_location != v_map->core_location) ||
336 (p_map->fp_location != v_map->fp_location);
buzbeed0a03b82013-09-14 08:21:05 -0700337 if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
338 /*
339 * In Arm, a double is represented as a pair of consecutive single float
340 * registers starting at an even number. It's possible that both Dalvik vRegs
341 * representing the incoming double were independently promoted as singles - but
342 * not in a form usable as a double. If so, we need to flush - even though the
343 * incoming arg appears fully in register. At this point in the code, both
344 * halves of the double are promoted. Make sure they are in a usable form.
345 */
346 int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
347 int low_reg = promotion_map_[lowreg_index].FpReg;
348 int high_reg = promotion_map_[lowreg_index + 1].FpReg;
349 if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
350 need_flush = true;
351 }
352 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700353 }
354 if (need_flush) {
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800355 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kWord);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700356 }
357 } else {
358 // If arriving in frame & promoted
359 if (v_map->core_location == kLocPhysReg) {
360 LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
361 v_map->core_reg);
362 }
363 if (v_map->fp_location == kLocPhysReg) {
364 LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
365 v_map->FpReg);
366 }
367 }
368 }
369}
370
371/*
372 * Bit of a hack here - in the absence of a real scheduling pass,
373 * emit the next instruction in static & direct invoke sequences.
374 */
375static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
376 int state, const MethodReference& target_method,
377 uint32_t unused,
378 uintptr_t direct_code, uintptr_t direct_method,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700379 InvokeType type) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700380 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700381 if (direct_code != 0 && direct_method != 0) {
382 switch (state) {
383 case 0: // Get the current Method* [sets kArg0]
384 if (direct_code != static_cast<unsigned int>(-1)) {
Ian Rogers83883d72013-10-21 21:07:24 -0700385 if (cu->instruction_set != kX86) {
386 cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
387 }
Mark Mendell55d0eac2014-02-06 11:02:52 -0800388 } else if (cu->instruction_set != kX86) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700389 CHECK_EQ(cu->dex_file, target_method.dex_file);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800390 cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700391 }
392 if (direct_method != static_cast<unsigned int>(-1)) {
393 cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
394 } else {
395 CHECK_EQ(cu->dex_file, target_method.dex_file);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800396 cg->LoadMethodAddress(target_method.dex_method_index, type, kArg0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700397 }
398 break;
399 default:
400 return -1;
401 }
402 } else {
403 switch (state) {
404 case 0: // Get the current Method* [sets kArg0]
405 // TUNING: we can save a reg copy if Method* has been promoted.
406 cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
407 break;
408 case 1: // Get method->dex_cache_resolved_methods_
409 cg->LoadWordDisp(cg->TargetReg(kArg0),
Brian Carlstromea46f952013-07-30 01:26:50 -0700410 mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700411 // Set up direct code if known.
412 if (direct_code != 0) {
413 if (direct_code != static_cast<unsigned int>(-1)) {
414 cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800415 } else if (cu->instruction_set != kX86) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700416 CHECK_EQ(cu->dex_file, target_method.dex_file);
Ian Rogers83883d72013-10-21 21:07:24 -0700417 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
Mark Mendell55d0eac2014-02-06 11:02:52 -0800418 cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700419 }
420 }
421 break;
422 case 2: // Grab target method*
423 CHECK_EQ(cu->dex_file, target_method.dex_file);
424 cg->LoadWordDisp(cg->TargetReg(kArg0),
425 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
426 (target_method.dex_method_index * 4),
427 cg-> TargetReg(kArg0));
428 break;
429 case 3: // Grab the code from the method*
430 if (cu->instruction_set != kX86) {
431 if (direct_code == 0) {
432 cg->LoadWordDisp(cg->TargetReg(kArg0),
Ian Rogersef7d42f2014-01-06 12:55:46 -0800433 mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700434 cg->TargetReg(kInvokeTgt));
435 }
436 break;
437 }
438 // Intentional fallthrough for x86
439 default:
440 return -1;
441 }
442 }
443 return state + 1;
444}
445
446/*
447 * Bit of a hack here - in the absence of a real scheduling pass,
448 * emit the next instruction in a virtual invoke sequence.
449 * We can use kLr as a temp prior to target address loading
450 * Note also that we'll load the first argument ("this") into
451 * kArg1 here rather than the standard LoadArgRegs.
452 */
453static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
454 int state, const MethodReference& target_method,
455 uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700456 InvokeType unused3) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700457 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
458 /*
459 * This is the fast path in which the target virtual method is
460 * fully resolved at compile time.
461 */
462 switch (state) {
463 case 0: { // Get "this" [set kArg1]
464 RegLocation rl_arg = info->args[0];
465 cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
466 break;
467 }
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700468 case 1: // Is "this" null? [use kArg1]
Brian Carlstrom7940e442013-07-12 13:46:57 -0700469 cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
470 // get this->klass_ [use kArg1, set kInvokeTgt]
471 cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
472 cg->TargetReg(kInvokeTgt));
473 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700474 case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
Brian Carlstrom7940e442013-07-12 13:46:57 -0700475 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
476 cg->TargetReg(kInvokeTgt));
477 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700478 case 3: // Get target method [use kInvokeTgt, set kArg0]
Brian Carlstrom7940e442013-07-12 13:46:57 -0700479 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
480 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
481 cg->TargetReg(kArg0));
482 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700483 case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
Brian Carlstrom7940e442013-07-12 13:46:57 -0700484 if (cu->instruction_set != kX86) {
485 cg->LoadWordDisp(cg->TargetReg(kArg0),
Ian Rogersef7d42f2014-01-06 12:55:46 -0800486 mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700487 cg->TargetReg(kInvokeTgt));
488 break;
489 }
490 // Intentional fallthrough for X86
491 default:
492 return -1;
493 }
494 return state + 1;
495}
496
497/*
Jeff Hao88474b42013-10-23 16:24:40 -0700498 * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
499 * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
500 * more than one interface method map to the same index. Note also that we'll load the first
501 * argument ("this") into kArg1 here rather than the standard LoadArgRegs.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700502 */
503static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
504 const MethodReference& target_method,
Jeff Hao88474b42013-10-23 16:24:40 -0700505 uint32_t method_idx, uintptr_t unused,
506 uintptr_t direct_method, InvokeType unused2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700507 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700508
Jeff Hao88474b42013-10-23 16:24:40 -0700509 switch (state) {
510 case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
Brian Carlstrom7940e442013-07-12 13:46:57 -0700511 CHECK_EQ(cu->dex_file, target_method.dex_file);
Jeff Hao88474b42013-10-23 16:24:40 -0700512 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
513 cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index);
514 if (cu->instruction_set == kX86) {
515 cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg));
516 }
517 break;
518 case 1: { // Get "this" [set kArg1]
519 RegLocation rl_arg = info->args[0];
520 cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
521 break;
522 }
523 case 2: // Is "this" null? [use kArg1]
524 cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
525 // Get this->klass_ [use kArg1, set kInvokeTgt]
526 cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
527 cg->TargetReg(kInvokeTgt));
528 break;
529 case 3: // Get this->klass_->imtable [use kInvokeTgt, set kInvokeTgt]
530 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::ImTableOffset().Int32Value(),
531 cg->TargetReg(kInvokeTgt));
532 break;
533 case 4: // Get target method [use kInvokeTgt, set kArg0]
534 cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), ((method_idx % ClassLinker::kImtSize) * 4) +
535 mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700536 cg->TargetReg(kArg0));
537 break;
Jeff Hao88474b42013-10-23 16:24:40 -0700538 case 5: // Get the compiled code address [use kArg0, set kInvokeTgt]
539 if (cu->instruction_set != kX86) {
540 cg->LoadWordDisp(cg->TargetReg(kArg0),
Ian Rogersef7d42f2014-01-06 12:55:46 -0800541 mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
Jeff Hao88474b42013-10-23 16:24:40 -0700542 cg->TargetReg(kInvokeTgt));
543 break;
544 }
545 // Intentional fallthrough for X86
Brian Carlstrom7940e442013-07-12 13:46:57 -0700546 default:
547 return -1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700548 }
549 return state + 1;
550}
551
Ian Rogers848871b2013-08-05 10:56:33 -0700552static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline,
Brian Carlstrom7940e442013-07-12 13:46:57 -0700553 int state, const MethodReference& target_method,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700554 uint32_t method_idx) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700555 Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
556 /*
557 * This handles the case in which the base method is not fully
558 * resolved at compile time, we bail to a runtime helper.
559 */
560 if (state == 0) {
561 if (cu->instruction_set != kX86) {
562 // Load trampoline target
Ian Rogers848871b2013-08-05 10:56:33 -0700563 cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700564 }
565 // Load kArg0 with method index
566 CHECK_EQ(cu->dex_file, target_method.dex_file);
567 cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
568 return 1;
569 }
570 return -1;
571}
572
573static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
574 int state,
575 const MethodReference& target_method,
576 uint32_t method_idx,
577 uintptr_t unused, uintptr_t unused2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700578 InvokeType unused3) {
Ian Rogers848871b2013-08-05 10:56:33 -0700579 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700580 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
581}
582
583static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
584 const MethodReference& target_method,
585 uint32_t method_idx, uintptr_t unused,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700586 uintptr_t unused2, InvokeType unused3) {
Ian Rogers848871b2013-08-05 10:56:33 -0700587 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
589}
590
591static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
592 const MethodReference& target_method,
593 uint32_t method_idx, uintptr_t unused,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700594 uintptr_t unused2, InvokeType unused3) {
Ian Rogers848871b2013-08-05 10:56:33 -0700595 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700596 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
597}
598
599static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
600 const MethodReference& target_method,
601 uint32_t method_idx, uintptr_t unused,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700602 uintptr_t unused2, InvokeType unused3) {
Ian Rogers848871b2013-08-05 10:56:33 -0700603 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700604 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
605}
606
607static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
608 CallInfo* info, int state,
609 const MethodReference& target_method,
610 uint32_t unused,
611 uintptr_t unused2, uintptr_t unused3,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700612 InvokeType unused4) {
Ian Rogers848871b2013-08-05 10:56:33 -0700613 ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700614 return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
615}
616
617int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
618 NextCallInsn next_call_insn,
619 const MethodReference& target_method,
620 uint32_t vtable_idx, uintptr_t direct_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700621 uintptr_t direct_method, InvokeType type, bool skip_this) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700622 int last_arg_reg = TargetReg(kArg3);
623 int next_reg = TargetReg(kArg1);
624 int next_arg = 0;
625 if (skip_this) {
626 next_reg++;
627 next_arg++;
628 }
629 for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
630 RegLocation rl_arg = info->args[next_arg++];
631 rl_arg = UpdateRawLoc(rl_arg);
632 if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
633 LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
634 next_reg++;
635 next_arg++;
636 } else {
637 if (rl_arg.wide) {
638 rl_arg.wide = false;
639 rl_arg.is_const = false;
640 }
641 LoadValueDirectFixed(rl_arg, next_reg);
642 }
643 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
644 direct_code, direct_method, type);
645 }
646 return call_state;
647}
648
649/*
650 * Load up to 5 arguments, the first three of which will be in
651 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
652 * and as part of the load sequence, it must be replaced with
653 * the target method pointer. Note, this may also be called
654 * for "range" variants if the number of arguments is 5 or fewer.
655 */
656int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
657 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
658 const MethodReference& target_method,
659 uint32_t vtable_idx, uintptr_t direct_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700660 uintptr_t direct_method, InvokeType type, bool skip_this) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700661 RegLocation rl_arg;
662
663 /* If no arguments, just return */
664 if (info->num_arg_words == 0)
665 return call_state;
666
667 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
668 direct_code, direct_method, type);
669
670 DCHECK_LE(info->num_arg_words, 5);
671 if (info->num_arg_words > 3) {
672 int32_t next_use = 3;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700673 // Detect special case of wide arg spanning arg3/arg4
Brian Carlstrom7940e442013-07-12 13:46:57 -0700674 RegLocation rl_use0 = info->args[0];
675 RegLocation rl_use1 = info->args[1];
676 RegLocation rl_use2 = info->args[2];
677 if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
678 rl_use2.wide) {
679 int reg = -1;
680 // Wide spans, we need the 2nd half of uses[2].
681 rl_arg = UpdateLocWide(rl_use2);
682 if (rl_arg.location == kLocPhysReg) {
683 reg = rl_arg.high_reg;
684 } else {
685 // kArg2 & rArg3 can safely be used here
686 reg = TargetReg(kArg3);
687 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
688 call_state = next_call_insn(cu_, info, call_state, target_method,
689 vtable_idx, direct_code, direct_method, type);
690 }
691 StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
692 StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
693 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
694 direct_code, direct_method, type);
695 next_use++;
696 }
697 // Loop through the rest
698 while (next_use < info->num_arg_words) {
699 int low_reg;
700 int high_reg = -1;
701 rl_arg = info->args[next_use];
702 rl_arg = UpdateRawLoc(rl_arg);
703 if (rl_arg.location == kLocPhysReg) {
704 low_reg = rl_arg.low_reg;
705 high_reg = rl_arg.high_reg;
706 } else {
707 low_reg = TargetReg(kArg2);
708 if (rl_arg.wide) {
709 high_reg = TargetReg(kArg3);
710 LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
711 } else {
712 LoadValueDirectFixed(rl_arg, low_reg);
713 }
714 call_state = next_call_insn(cu_, info, call_state, target_method,
715 vtable_idx, direct_code, direct_method, type);
716 }
717 int outs_offset = (next_use + 1) * 4;
718 if (rl_arg.wide) {
719 StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
720 next_use += 2;
721 } else {
722 StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
723 next_use++;
724 }
725 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
726 direct_code, direct_method, type);
727 }
728 }
729
730 call_state = LoadArgRegs(info, call_state, next_call_insn,
731 target_method, vtable_idx, direct_code, direct_method,
732 type, skip_this);
733
734 if (pcrLabel) {
735 *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
736 }
737 return call_state;
738}
739
740/*
741 * May have 0+ arguments (also used for jumbo). Note that
742 * source virtual registers may be in physical registers, so may
743 * need to be flushed to home location before copying. This
744 * applies to arg3 and above (see below).
745 *
746 * Two general strategies:
747 * If < 20 arguments
748 * Pass args 3-18 using vldm/vstm block copy
749 * Pass arg0, arg1 & arg2 in kArg1-kArg3
750 * If 20+ arguments
751 * Pass args arg19+ using memcpy block copy
752 * Pass arg0, arg1 & arg2 in kArg1-kArg3
753 *
754 */
755int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
756 LIR** pcrLabel, NextCallInsn next_call_insn,
757 const MethodReference& target_method,
758 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700759 InvokeType type, bool skip_this) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700760 // If we can treat it as non-range (Jumbo ops will use range form)
761 if (info->num_arg_words <= 5)
762 return GenDalvikArgsNoRange(info, call_state, pcrLabel,
763 next_call_insn, target_method, vtable_idx,
764 direct_code, direct_method, type, skip_this);
765 /*
766 * First load the non-register arguments. Both forms expect all
767 * of the source arguments to be in their home frame location, so
768 * scan the s_reg names and flush any that have been promoted to
769 * frame backing storage.
770 */
771 // Scan the rest of the args - if in phys_reg flush to memory
772 for (int next_arg = 0; next_arg < info->num_arg_words;) {
773 RegLocation loc = info->args[next_arg];
774 if (loc.wide) {
775 loc = UpdateLocWide(loc);
776 if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
777 StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
778 loc.low_reg, loc.high_reg);
779 }
780 next_arg += 2;
781 } else {
782 loc = UpdateLoc(loc);
783 if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
784 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
785 loc.low_reg, kWord);
786 }
787 next_arg++;
788 }
789 }
790
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800791 // Logic below assumes that Method pointer is at offset zero from SP.
792 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
793
794 // The first 3 arguments are passed via registers.
795 // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
796 // get size of uintptr_t or size of object reference according to model being used.
797 int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700798 int start_offset = SRegOffset(info->args[3].s_reg_low);
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800799 int regs_left_to_pass_via_stack = info->num_arg_words - 3;
800 DCHECK_GT(regs_left_to_pass_via_stack, 0);
801
802 if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
803 // Use vldm/vstm pair using kArg3 as a temp
804 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
805 direct_code, direct_method, type);
806 OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
807 LIR* ld = OpVldm(TargetReg(kArg3), regs_left_to_pass_via_stack);
808 // TUNING: loosen barrier
809 ld->u.m.def_mask = ENCODE_ALL;
810 SetMemRefType(ld, true /* is_load */, kDalvikReg);
811 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
812 direct_code, direct_method, type);
813 OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
814 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
815 direct_code, direct_method, type);
816 LIR* st = OpVstm(TargetReg(kArg3), regs_left_to_pass_via_stack);
817 SetMemRefType(st, false /* is_load */, kDalvikReg);
818 st->u.m.def_mask = ENCODE_ALL;
819 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
820 direct_code, direct_method, type);
821 } else if (cu_->instruction_set == kX86) {
822 int current_src_offset = start_offset;
823 int current_dest_offset = outs_offset;
824
825 while (regs_left_to_pass_via_stack > 0) {
826 // This is based on the knowledge that the stack itself is 16-byte aligned.
827 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
828 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
829 size_t bytes_to_move;
830
831 /*
832 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
833 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
834 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
835 * We do this because we could potentially do a smaller move to align.
836 */
837 if (regs_left_to_pass_via_stack == 4 ||
838 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
839 // Moving 128-bits via xmm register.
840 bytes_to_move = sizeof(uint32_t) * 4;
841
842 // Allocate a free xmm temp. Since we are working through the calling sequence,
843 // we expect to have an xmm temporary available.
844 int temp = AllocTempDouble();
845 CHECK_GT(temp, 0);
846
847 LIR* ld1 = nullptr;
848 LIR* ld2 = nullptr;
849 LIR* st1 = nullptr;
850 LIR* st2 = nullptr;
851
852 /*
853 * The logic is similar for both loads and stores. If we have 16-byte alignment,
854 * do an aligned move. If we have 8-byte alignment, then do the move in two
855 * parts. This approach prevents possible cache line splits. Finally, fall back
856 * to doing an unaligned move. In most cases we likely won't split the cache
857 * line but we cannot prove it and thus take a conservative approach.
858 */
859 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
860 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
861
862 if (src_is_16b_aligned) {
863 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
864 } else if (src_is_8b_aligned) {
865 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
866 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP);
867 } else {
868 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
869 }
870
871 if (dest_is_16b_aligned) {
872 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
873 } else if (dest_is_8b_aligned) {
874 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
875 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP);
876 } else {
877 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
878 }
879
880 // TODO If we could keep track of aliasing information for memory accesses that are wider
881 // than 64-bit, we wouldn't need to set up a barrier.
882 if (ld1 != nullptr) {
883 if (ld2 != nullptr) {
884 // For 64-bit load we can actually set up the aliasing information.
885 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
886 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
887 } else {
888 // Set barrier for 128-bit load.
889 SetMemRefType(ld1, true /* is_load */, kDalvikReg);
890 ld1->u.m.def_mask = ENCODE_ALL;
891 }
892 }
893 if (st1 != nullptr) {
894 if (st2 != nullptr) {
895 // For 64-bit store we can actually set up the aliasing information.
896 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
897 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
898 } else {
899 // Set barrier for 128-bit store.
900 SetMemRefType(st1, false /* is_load */, kDalvikReg);
901 st1->u.m.def_mask = ENCODE_ALL;
902 }
903 }
904
905 // Free the temporary used for the data movement.
906 FreeTemp(temp);
907 } else {
908 // Moving 32-bits via general purpose register.
909 bytes_to_move = sizeof(uint32_t);
910
911 // Instead of allocating a new temp, simply reuse one of the registers being used
912 // for argument passing.
913 int temp = TargetReg(kArg3);
914
915 // Now load the argument VR and store to the outs.
916 LoadWordDisp(TargetReg(kSp), current_src_offset, temp);
917 StoreWordDisp(TargetReg(kSp), current_dest_offset, temp);
918 }
919
920 current_src_offset += bytes_to_move;
921 current_dest_offset += bytes_to_move;
922 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
923 }
924 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700925 // Generate memcpy
926 OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
927 OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
Ian Rogers7655f292013-07-29 11:07:13 -0700928 CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700929 TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700930 }
931
932 call_state = LoadArgRegs(info, call_state, next_call_insn,
933 target_method, vtable_idx, direct_code, direct_method,
934 type, skip_this);
935
936 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
937 direct_code, direct_method, type);
938 if (pcrLabel) {
939 *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
940 }
941 return call_state;
942}
943
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700944RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700945 RegLocation res;
946 if (info->result.location == kLocInvalid) {
947 res = GetReturn(false);
948 } else {
949 res = info->result;
950 }
951 return res;
952}
953
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700954RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700955 RegLocation res;
956 if (info->result.location == kLocInvalid) {
957 res = GetReturnWide(false);
958 } else {
959 res = info->result;
960 }
961 return res;
962}
963
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700964bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700965 if (cu_->instruction_set == kMips) {
966 // TODO - add Mips implementation
967 return false;
968 }
969 // Location of reference to data array
970 int value_offset = mirror::String::ValueOffset().Int32Value();
971 // Location of count
972 int count_offset = mirror::String::CountOffset().Int32Value();
973 // Starting offset within data array
974 int offset_offset = mirror::String::OffsetOffset().Int32Value();
975 // Start of char data with array_
976 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
977
978 RegLocation rl_obj = info->args[0];
979 RegLocation rl_idx = info->args[1];
980 rl_obj = LoadValue(rl_obj, kCoreReg);
Mark Mendell2b724cb2014-02-06 05:24:20 -0800981 // X86 wants to avoid putting a constant index into a register.
982 if (!(cu_->instruction_set == kX86 && rl_idx.is_const)) {
983 rl_idx = LoadValue(rl_idx, kCoreReg);
984 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700985 int reg_max;
986 GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
987 bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
988 LIR* launch_pad = NULL;
989 int reg_off = INVALID_REG;
990 int reg_ptr = INVALID_REG;
991 if (cu_->instruction_set != kX86) {
992 reg_off = AllocTemp();
993 reg_ptr = AllocTemp();
994 if (range_check) {
995 reg_max = AllocTemp();
996 LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
997 }
998 LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
999 LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
1000 if (range_check) {
1001 // Set up a launch pad to allow retry in case of bounds violation */
buzbee0d829482013-10-11 15:24:55 -07001002 launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001003 intrinsic_launchpads_.Insert(launch_pad);
1004 OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
1005 FreeTemp(reg_max);
Vladimir Marko58af1f92013-12-19 13:31:15 +00001006 OpCondBranch(kCondUge, launch_pad);
Brian Carlstrom6f485c62013-07-18 15:35:35 -07001007 }
Mark Mendell2b724cb2014-02-06 05:24:20 -08001008 OpRegImm(kOpAdd, reg_ptr, data_offset);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001009 } else {
1010 if (range_check) {
Mark Mendell2b724cb2014-02-06 05:24:20 -08001011 // On x86, we can compare to memory directly
Brian Carlstrom7940e442013-07-12 13:46:57 -07001012 // Set up a launch pad to allow retry in case of bounds violation */
buzbee0d829482013-10-11 15:24:55 -07001013 launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001014 intrinsic_launchpads_.Insert(launch_pad);
Mark Mendell2b724cb2014-02-06 05:24:20 -08001015 if (rl_idx.is_const) {
1016 OpCmpMemImmBranch(kCondUlt, INVALID_REG, rl_obj.low_reg, count_offset,
1017 mir_graph_->ConstantValue(rl_idx.orig_sreg), launch_pad);
1018 } else {
1019 OpRegMem(kOpCmp, rl_idx.low_reg, rl_obj.low_reg, count_offset);
1020 OpCondBranch(kCondUge, launch_pad);
1021 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001022 }
1023 reg_off = AllocTemp();
1024 reg_ptr = AllocTemp();
1025 LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
1026 LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
1027 }
Mark Mendell2b724cb2014-02-06 05:24:20 -08001028 if (rl_idx.is_const) {
1029 OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
1030 } else {
1031 OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
1032 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001033 FreeTemp(rl_obj.low_reg);
Mark Mendell2b724cb2014-02-06 05:24:20 -08001034 if (rl_idx.low_reg != INVALID_REG) {
1035 FreeTemp(rl_idx.low_reg);
1036 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001037 RegLocation rl_dest = InlineTarget(info);
1038 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Mark Mendell2b724cb2014-02-06 05:24:20 -08001039 if (cu_->instruction_set != kX86) {
1040 LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
1041 } else {
1042 LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.low_reg,
1043 INVALID_REG, kUnsignedHalf, INVALID_SREG);
1044 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001045 FreeTemp(reg_off);
1046 FreeTemp(reg_ptr);
1047 StoreValue(rl_dest, rl_result);
1048 if (range_check) {
1049 launch_pad->operands[2] = 0; // no resumption
1050 }
1051 // Record that we've already inlined & null checked
1052 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1053 return true;
1054}
1055
1056// Generates an inlined String.is_empty or String.length.
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001057bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001058 if (cu_->instruction_set == kMips) {
1059 // TODO - add Mips implementation
1060 return false;
1061 }
1062 // dst = src.length();
1063 RegLocation rl_obj = info->args[0];
1064 rl_obj = LoadValue(rl_obj, kCoreReg);
1065 RegLocation rl_dest = InlineTarget(info);
1066 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1067 GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
1068 LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
1069 if (is_empty) {
1070 // dst = (dst == 0);
1071 if (cu_->instruction_set == kThumb2) {
1072 int t_reg = AllocTemp();
1073 OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
1074 OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
1075 } else {
1076 DCHECK_EQ(cu_->instruction_set, kX86);
1077 OpRegImm(kOpSub, rl_result.low_reg, 1);
1078 OpRegImm(kOpLsr, rl_result.low_reg, 31);
1079 }
1080 }
1081 StoreValue(rl_dest, rl_result);
1082 return true;
1083}
1084
Vladimir Marko6bdf1ff2013-10-29 17:40:46 +00001085bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1086 if (cu_->instruction_set == kMips) {
1087 // TODO - add Mips implementation
1088 return false;
1089 }
1090 RegLocation rl_src_i = info->args[0];
Mark Mendell55d0eac2014-02-06 11:02:52 -08001091 RegLocation rl_dest = (size == kLong) ? InlineTargetWide(info) : InlineTarget(info); // result reg
Vladimir Marko6bdf1ff2013-10-29 17:40:46 +00001092 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1093 if (size == kLong) {
1094 RegLocation rl_i = LoadValueWide(rl_src_i, kCoreReg);
Vladimir Markof246af22013-11-27 12:30:15 +00001095 int r_i_low = rl_i.low_reg;
1096 if (rl_i.low_reg == rl_result.low_reg) {
1097 // First REV shall clobber rl_result.low_reg, save the value in a temp for the second REV.
1098 r_i_low = AllocTemp();
1099 OpRegCopy(r_i_low, rl_i.low_reg);
1100 }
Vladimir Marko6bdf1ff2013-10-29 17:40:46 +00001101 OpRegReg(kOpRev, rl_result.low_reg, rl_i.high_reg);
Vladimir Markof246af22013-11-27 12:30:15 +00001102 OpRegReg(kOpRev, rl_result.high_reg, r_i_low);
1103 if (rl_i.low_reg == rl_result.low_reg) {
1104 FreeTemp(r_i_low);
1105 }
Vladimir Marko6bdf1ff2013-10-29 17:40:46 +00001106 StoreValueWide(rl_dest, rl_result);
1107 } else {
1108 DCHECK(size == kWord || size == kSignedHalf);
1109 OpKind op = (size == kWord) ? kOpRev : kOpRevsh;
1110 RegLocation rl_i = LoadValue(rl_src_i, kCoreReg);
1111 OpRegReg(op, rl_result.low_reg, rl_i.low_reg);
1112 StoreValue(rl_dest, rl_result);
1113 }
1114 return true;
1115}
1116
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001117bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001118 if (cu_->instruction_set == kMips) {
1119 // TODO - add Mips implementation
1120 return false;
1121 }
1122 RegLocation rl_src = info->args[0];
1123 rl_src = LoadValue(rl_src, kCoreReg);
1124 RegLocation rl_dest = InlineTarget(info);
1125 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1126 int sign_reg = AllocTemp();
1127 // abs(x) = y<=x>>31, (x+y)^y.
1128 OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
1129 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
1130 OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
1131 StoreValue(rl_dest, rl_result);
1132 return true;
1133}
1134
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001135bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001136 if (cu_->instruction_set == kMips) {
1137 // TODO - add Mips implementation
1138 return false;
1139 }
1140 if (cu_->instruction_set == kThumb2) {
1141 RegLocation rl_src = info->args[0];
1142 rl_src = LoadValueWide(rl_src, kCoreReg);
1143 RegLocation rl_dest = InlineTargetWide(info);
1144 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1145 int sign_reg = AllocTemp();
1146 // abs(x) = y<=x>>31, (x+y)^y.
1147 OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
1148 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
1149 OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
1150 OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
1151 OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
1152 StoreValueWide(rl_dest, rl_result);
1153 return true;
1154 } else {
1155 DCHECK_EQ(cu_->instruction_set, kX86);
1156 // Reuse source registers to avoid running out of temps
1157 RegLocation rl_src = info->args[0];
1158 rl_src = LoadValueWide(rl_src, kCoreReg);
1159 RegLocation rl_dest = InlineTargetWide(info);
1160 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1161 OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
1162 FreeTemp(rl_src.low_reg);
1163 FreeTemp(rl_src.high_reg);
1164 int sign_reg = AllocTemp();
1165 // abs(x) = y<=x>>31, (x+y)^y.
1166 OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
1167 OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
1168 OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
1169 OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
1170 OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
1171 StoreValueWide(rl_dest, rl_result);
1172 return true;
1173 }
1174}
1175
Yixin Shoudbb17e32014-02-07 05:09:30 -08001176bool Mir2Lir::GenInlinedAbsFloat(CallInfo* info) {
1177 if (cu_->instruction_set == kMips) {
1178 // TODO - add Mips implementation
1179 return false;
1180 }
1181 RegLocation rl_src = info->args[0];
1182 rl_src = LoadValue(rl_src, kCoreReg);
1183 RegLocation rl_dest = InlineTarget(info);
1184 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1185 int signMask = AllocTemp();
1186 LoadConstant(signMask, 0x7fffffff);
1187 OpRegRegReg(kOpAnd, rl_result.low_reg, rl_src.low_reg, signMask);
1188 FreeTemp(signMask);
1189 StoreValue(rl_dest, rl_result);
1190 return true;
1191}
1192
1193bool Mir2Lir::GenInlinedAbsDouble(CallInfo* info) {
1194 if (cu_->instruction_set == kMips) {
1195 // TODO - add Mips implementation
1196 return false;
1197 }
1198 RegLocation rl_src = info->args[0];
1199 rl_src = LoadValueWide(rl_src, kCoreReg);
1200 RegLocation rl_dest = InlineTargetWide(info);
1201 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1202 OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
1203 FreeTemp(rl_src.low_reg);
1204 FreeTemp(rl_src.high_reg);
1205 int signMask = AllocTemp();
1206 LoadConstant(signMask, 0x7fffffff);
1207 OpRegReg(kOpAnd, rl_result.high_reg, signMask);
1208 FreeTemp(signMask);
1209 StoreValueWide(rl_dest, rl_result);
1210 return true;
1211}
1212
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001213bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001214 if (cu_->instruction_set == kMips) {
1215 // TODO - add Mips implementation
1216 return false;
1217 }
1218 RegLocation rl_src = info->args[0];
1219 RegLocation rl_dest = InlineTarget(info);
1220 StoreValue(rl_dest, rl_src);
1221 return true;
1222}
1223
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001224bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001225 if (cu_->instruction_set == kMips) {
1226 // TODO - add Mips implementation
1227 return false;
1228 }
1229 RegLocation rl_src = info->args[0];
1230 RegLocation rl_dest = InlineTargetWide(info);
1231 StoreValueWide(rl_dest, rl_src);
1232 return true;
1233}
1234
1235/*
1236 * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff,
1237 * otherwise bails to standard library code.
1238 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001239bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001240 if (cu_->instruction_set == kMips) {
1241 // TODO - add Mips implementation
1242 return false;
1243 }
Vladimir Marko31c2aac2013-12-09 16:31:19 +00001244 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001245 LockCallTemps(); // Using fixed registers
1246 int reg_ptr = TargetReg(kArg0);
1247 int reg_char = TargetReg(kArg1);
1248 int reg_start = TargetReg(kArg2);
1249
1250 RegLocation rl_obj = info->args[0];
1251 RegLocation rl_char = info->args[1];
1252 RegLocation rl_start = info->args[2];
1253 LoadValueDirectFixed(rl_obj, reg_ptr);
1254 LoadValueDirectFixed(rl_char, reg_char);
1255 if (zero_based) {
1256 LoadConstant(reg_start, 0);
1257 } else {
1258 LoadValueDirectFixed(rl_start, reg_start);
1259 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001260 int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001261 GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
buzbee0d829482013-10-11 15:24:55 -07001262 LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001263 intrinsic_launchpads_.Insert(launch_pad);
1264 OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
1265 // NOTE: not a safepoint
Mark Mendell4028a6c2014-02-19 20:06:20 -08001266 OpReg(kOpBlx, r_tgt);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001267 LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
buzbee0d829482013-10-11 15:24:55 -07001268 launch_pad->operands[2] = WrapPointer(resume_tgt);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001269 // Record that we've already inlined & null checked
1270 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1271 RegLocation rl_return = GetReturn(false);
1272 RegLocation rl_dest = InlineTarget(info);
1273 StoreValue(rl_dest, rl_return);
1274 return true;
1275}
1276
1277/* Fast string.compareTo(Ljava/lang/string;)I. */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001278bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001279 if (cu_->instruction_set == kMips) {
1280 // TODO - add Mips implementation
1281 return false;
1282 }
Vladimir Marko31c2aac2013-12-09 16:31:19 +00001283 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001284 LockCallTemps(); // Using fixed registers
1285 int reg_this = TargetReg(kArg0);
1286 int reg_cmp = TargetReg(kArg1);
1287
1288 RegLocation rl_this = info->args[0];
1289 RegLocation rl_cmp = info->args[1];
1290 LoadValueDirectFixed(rl_this, reg_this);
1291 LoadValueDirectFixed(rl_cmp, reg_cmp);
1292 int r_tgt = (cu_->instruction_set != kX86) ?
Ian Rogers7655f292013-07-29 11:07:13 -07001293 LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001294 GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001295 // TUNING: check if rl_cmp.s_reg_low is already null checked
buzbee0d829482013-10-11 15:24:55 -07001296 LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001297 intrinsic_launchpads_.Insert(launch_pad);
1298 OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
1299 // NOTE: not a safepoint
1300 if (cu_->instruction_set != kX86) {
1301 OpReg(kOpBlx, r_tgt);
1302 } else {
Ian Rogers7655f292013-07-29 11:07:13 -07001303 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001304 }
1305 launch_pad->operands[2] = 0; // No return possible
1306 // Record that we've already inlined & null checked
1307 info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1308 RegLocation rl_return = GetReturn(false);
1309 RegLocation rl_dest = InlineTarget(info);
1310 StoreValue(rl_dest, rl_return);
1311 return true;
1312}
1313
1314bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1315 RegLocation rl_dest = InlineTarget(info);
1316 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Ian Rogers848871b2013-08-05 10:56:33 -07001317 ThreadOffset offset = Thread::PeerOffset();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001318 if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
Ian Rogers848871b2013-08-05 10:56:33 -07001319 LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001320 } else {
1321 CHECK(cu_->instruction_set == kX86);
Brian Carlstrom2d888622013-07-18 17:02:00 -07001322 reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001323 }
1324 StoreValue(rl_dest, rl_result);
1325 return true;
1326}
1327
1328bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1329 bool is_long, bool is_volatile) {
1330 if (cu_->instruction_set == kMips) {
1331 // TODO - add Mips implementation
1332 return false;
1333 }
1334 // Unused - RegLocation rl_src_unsafe = info->args[0];
1335 RegLocation rl_src_obj = info->args[1]; // Object
1336 RegLocation rl_src_offset = info->args[2]; // long low
1337 rl_src_offset.wide = 0; // ignore high half in info->args[3]
Mark Mendell55d0eac2014-02-06 11:02:52 -08001338 RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg
Brian Carlstrom7940e442013-07-12 13:46:57 -07001339 if (is_volatile) {
1340 GenMemBarrier(kLoadLoad);
1341 }
1342 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1343 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1344 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1345 if (is_long) {
1346 OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
1347 LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
1348 StoreValueWide(rl_dest, rl_result);
1349 } else {
1350 LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
1351 StoreValue(rl_dest, rl_result);
1352 }
1353 return true;
1354}
1355
1356bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1357 bool is_object, bool is_volatile, bool is_ordered) {
1358 if (cu_->instruction_set == kMips) {
1359 // TODO - add Mips implementation
1360 return false;
1361 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001362 // Unused - RegLocation rl_src_unsafe = info->args[0];
1363 RegLocation rl_src_obj = info->args[1]; // Object
1364 RegLocation rl_src_offset = info->args[2]; // long low
1365 rl_src_offset.wide = 0; // ignore high half in info->args[3]
1366 RegLocation rl_src_value = info->args[4]; // value to store
1367 if (is_volatile || is_ordered) {
1368 GenMemBarrier(kStoreStore);
1369 }
1370 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1371 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1372 RegLocation rl_value;
1373 if (is_long) {
1374 rl_value = LoadValueWide(rl_src_value, kCoreReg);
1375 OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
1376 StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
1377 } else {
1378 rl_value = LoadValue(rl_src_value, kCoreReg);
1379 StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
1380 }
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001381
1382 // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1383 FreeTemp(rl_offset.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001384 if (is_volatile) {
1385 GenMemBarrier(kStoreLoad);
1386 }
1387 if (is_object) {
1388 MarkGCCard(rl_value.low_reg, rl_object.low_reg);
1389 }
1390 return true;
1391}
1392
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001393void Mir2Lir::GenInvoke(CallInfo* info) {
Vladimir Marko5c96e6b2013-11-14 15:34:17 +00001394 if (!(info->opt_flags & MIR_INLINED)) {
Vladimir Marko5816ed42013-11-27 17:04:20 +00001395 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1396 if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1397 ->GenIntrinsic(this, info)) {
Vladimir Marko5c96e6b2013-11-14 15:34:17 +00001398 return;
1399 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001400 }
1401 InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo
1402 int call_state = 0;
1403 LIR* null_ck;
1404 LIR** p_null_ck = NULL;
1405 NextCallInsn next_call_insn;
1406 FlushAllRegs(); /* Everything to home location */
1407 // Explicit register usage
1408 LockCallTemps();
1409
1410 DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
1411 MethodReference target_method(cUnit->GetDexFile(), info->index);
1412 int vtable_idx;
1413 uintptr_t direct_code;
1414 uintptr_t direct_method;
1415 bool skip_this;
1416 bool fast_path =
1417 cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
1418 current_dalvik_offset_,
Ian Rogers65ec92c2013-09-06 10:49:58 -07001419 true, true,
1420 &info->type, &target_method,
1421 &vtable_idx,
1422 &direct_code, &direct_method) && !SLOW_INVOKE_PATH;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001423 if (info->type == kInterface) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001424 next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
Jeff Hao88474b42013-10-23 16:24:40 -07001425 skip_this = fast_path;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001426 } else if (info->type == kDirect) {
1427 if (fast_path) {
1428 p_null_ck = &null_ck;
1429 }
1430 next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
1431 skip_this = false;
1432 } else if (info->type == kStatic) {
1433 next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
1434 skip_this = false;
1435 } else if (info->type == kSuper) {
1436 DCHECK(!fast_path); // Fast path is a direct call.
1437 next_call_insn = NextSuperCallInsnSP;
1438 skip_this = false;
1439 } else {
1440 DCHECK_EQ(info->type, kVirtual);
1441 next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1442 skip_this = fast_path;
1443 }
1444 if (!info->is_range) {
1445 call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
1446 next_call_insn, target_method,
1447 vtable_idx, direct_code, direct_method,
1448 original_type, skip_this);
1449 } else {
1450 call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
1451 next_call_insn, target_method, vtable_idx,
1452 direct_code, direct_method, original_type,
1453 skip_this);
1454 }
1455 // Finish up any of the call sequence not interleaved in arg loading
1456 while (call_state >= 0) {
1457 call_state = next_call_insn(cu_, info, call_state, target_method,
1458 vtable_idx, direct_code, direct_method,
1459 original_type);
1460 }
1461 LIR* call_inst;
1462 if (cu_->instruction_set != kX86) {
1463 call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
1464 } else {
Jeff Hao88474b42013-10-23 16:24:40 -07001465 if (fast_path) {
Mark Mendell55d0eac2014-02-06 11:02:52 -08001466 if (direct_code == static_cast<unsigned int>(-1)) {
1467 // We can have the linker fixup a call relative.
1468 call_inst =
1469 reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(
1470 target_method.dex_method_index, info->type);
1471 } else {
1472 call_inst = OpMem(kOpBlx, TargetReg(kArg0),
1473 mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
1474 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001475 } else {
Ian Rogers848871b2013-08-05 10:56:33 -07001476 ThreadOffset trampoline(-1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001477 switch (info->type) {
1478 case kInterface:
Jeff Hao88474b42013-10-23 16:24:40 -07001479 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001480 break;
1481 case kDirect:
Ian Rogers7655f292013-07-29 11:07:13 -07001482 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001483 break;
1484 case kStatic:
Ian Rogers7655f292013-07-29 11:07:13 -07001485 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001486 break;
1487 case kSuper:
Ian Rogers7655f292013-07-29 11:07:13 -07001488 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001489 break;
1490 case kVirtual:
Ian Rogers7655f292013-07-29 11:07:13 -07001491 trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001492 break;
1493 default:
1494 LOG(FATAL) << "Unexpected invoke type";
1495 }
1496 call_inst = OpThreadMem(kOpBlx, trampoline);
1497 }
1498 }
1499 MarkSafepointPC(call_inst);
1500
Vladimir Marko31c2aac2013-12-09 16:31:19 +00001501 ClobberCallerSave();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001502 if (info->result.location != kLocInvalid) {
1503 // We have a following MOVE_RESULT - do it now.
1504 if (info->result.wide) {
1505 RegLocation ret_loc = GetReturnWide(info->result.fp);
1506 StoreValueWide(info->result, ret_loc);
1507 } else {
1508 RegLocation ret_loc = GetReturn(info->result.fp);
1509 StoreValue(info->result, ret_loc);
1510 }
1511 }
1512}
1513
1514} // namespace art