blob: 35d193c65c24346216ede24133dc3cd2db12dd31 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_ir.h"
#include "dex/frontend.h"
#include "dex/quick/dex_file_method_inliner.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex_file-inl.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "invoke_type.h"
#include "mirror/array.h"
#include "mirror/string.h"
#include "mir_to_lir-inl.h"
#include "x86/codegen_x86.h"
namespace art {
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
/*
* To save scheduling time, helper calls are broken into two parts: generation of
* the helper target address, and the actuall call to the helper. Because x86
* has a memory call operation, part 1 is a NOP for x86. For other targets,
* load arguments between the two parts.
*/
int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) {
return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
}
/* NOTE: if r_tgt is a temp, it will be freed following use */
LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc) {
LIR* call_inst;
if (cu_->instruction_set == kX86) {
call_inst = OpThreadMem(kOpBlx, helper_offset);
} else {
call_inst = OpReg(kOpBlx, r_tgt);
FreeTemp(r_tgt);
}
if (safepoint_pc) {
MarkSafepointPC(call_inst);
}
return call_inst;
}
void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, TargetReg(kArg0));
} else {
LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
}
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadConstant(TargetReg(kArg0), arg0);
LoadConstant(TargetReg(kArg1), arg1);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
RegLocation arg1, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, TargetReg(kArg1));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
}
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadValueDirectFixed(arg0, TargetReg(kArg0));
LoadConstant(TargetReg(kArg1), arg1);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg1), arg1);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
OpRegCopy(TargetReg(kArg0), arg0);
LoadConstant(TargetReg(kArg1), arg1);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg1), arg0);
if (TargetReg(kArg0) != arg0) {
OpRegCopy(TargetReg(kArg0), arg0);
}
LoadCurrMethodDirect(TargetReg(kArg1));
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
RegLocation arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg1), arg0);
if (TargetReg(kArg0) != arg0) {
OpRegCopy(TargetReg(kArg0), arg0);
}
LoadCurrMethodDirect(TargetReg(kArg1));
LoadValueDirectFixed(arg2, TargetReg(kArg2));
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0,
RegLocation arg1, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
if (arg0.wide == 0) {
LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
if (arg1.wide == 0) {
if (cu_->instruction_set == kMips) {
LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
} else {
LoadValueDirectFixed(arg1, TargetReg(kArg1));
}
} else {
if (cu_->instruction_set == kMips) {
LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
}
}
} else {
LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
if (arg1.wide == 0) {
LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
}
}
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
OpRegCopy(TargetReg(kArg0), arg0);
OpRegCopy(TargetReg(kArg1), arg1);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
int arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1
OpRegCopy(TargetReg(kArg0), arg0);
OpRegCopy(TargetReg(kArg1), arg1);
LoadConstant(TargetReg(kArg2), arg2);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,
int arg0, RegLocation arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadValueDirectFixed(arg2, TargetReg(kArg2));
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0,
int arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
LoadCurrMethodDirect(TargetReg(kArg1));
LoadConstant(TargetReg(kArg2), arg2);
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
int arg0, RegLocation arg1,
RegLocation arg2, bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_EQ(arg1.wide, 0U);
LoadValueDirectFixed(arg1, TargetReg(kArg1));
if (arg2.wide == 0) {
LoadValueDirectFixed(arg2, TargetReg(kArg2));
} else {
LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
}
LoadConstant(TargetReg(kArg0), arg0);
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
RegLocation arg0, RegLocation arg1,
RegLocation arg2,
bool safepoint_pc) {
int r_tgt = CallHelperSetup(helper_offset);
DCHECK_EQ(arg0.wide, 0U);
LoadValueDirectFixed(arg0, TargetReg(kArg0));
DCHECK_EQ(arg1.wide, 0U);
LoadValueDirectFixed(arg1, TargetReg(kArg1));
DCHECK_EQ(arg1.wide, 0U);
LoadValueDirectFixed(arg2, TargetReg(kArg2));
ClobberCallerSave();
CallHelper(r_tgt, helper_offset, safepoint_pc);
}
/*
* If there are any ins passed in registers that have not been promoted
* to a callee-save register, flush them to the frame. Perform intial
* assignment of promoted arguments.
*
* ArgLocs is an array of location records describing the incoming arguments
* with one location record per word of argument.
*/
void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
/*
* Dummy up a RegLocation for the incoming Method*
* It will attempt to keep kArg0 live (or copy it to home location
* if promoted).
*/
RegLocation rl_src = rl_method;
rl_src.location = kLocPhysReg;
rl_src.low_reg = TargetReg(kArg0);
rl_src.home = false;
MarkLive(rl_src.low_reg, rl_src.s_reg_low);
StoreValue(rl_method, rl_src);
// If Method* has been promoted, explicitly flush
if (rl_method.location == kLocPhysReg) {
StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
}
if (cu_->num_ins == 0) {
return;
}
int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
/*
* Copy incoming arguments to their proper home locations.
* NOTE: an older version of dx had an issue in which
* it would reuse static method argument registers.
* This could result in the same Dalvik virtual register
* being promoted to both core and fp regs. To account for this,
* we only copy to the corresponding promoted physical register
* if it matches the type of the SSA name for the incoming
* argument. It is also possible that long and double arguments
* end up half-promoted. In those cases, we must flush the promoted
* half to memory as well.
*/
for (int i = 0; i < cu_->num_ins; i++) {
PromotionMap* v_map = &promotion_map_[start_vreg + i];
int reg = GetArgMappingToPhysicalReg(i);
if (reg != INVALID_REG) {
// If arriving in register
bool need_flush = true;
RegLocation* t_loc = &ArgLocs[i];
if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
OpRegCopy(v_map->core_reg, reg);
need_flush = false;
} else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
OpRegCopy(v_map->FpReg, reg);
need_flush = false;
} else {
need_flush = true;
}
// For wide args, force flush if not fully promoted
if (t_loc->wide) {
PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
// Is only half promoted?
need_flush |= (p_map->core_location != v_map->core_location) ||
(p_map->fp_location != v_map->fp_location);
if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
/*
* In Arm, a double is represented as a pair of consecutive single float
* registers starting at an even number. It's possible that both Dalvik vRegs
* representing the incoming double were independently promoted as singles - but
* not in a form usable as a double. If so, we need to flush - even though the
* incoming arg appears fully in register. At this point in the code, both
* halves of the double are promoted. Make sure they are in a usable form.
*/
int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
int low_reg = promotion_map_[lowreg_index].FpReg;
int high_reg = promotion_map_[lowreg_index + 1].FpReg;
if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
need_flush = true;
}
}
}
if (need_flush) {
StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kWord);
}
} else {
// If arriving in frame & promoted
if (v_map->core_location == kLocPhysReg) {
LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
v_map->core_reg);
}
if (v_map->fp_location == kLocPhysReg) {
LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
v_map->FpReg);
}
}
}
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t unused,
uintptr_t direct_code, uintptr_t direct_method,
InvokeType type) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
if (direct_code != 0 && direct_method != 0) {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
if (direct_code != static_cast<unsigned int>(-1)) {
if (cu->instruction_set != kX86) {
cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
}
} else if (cu->instruction_set != kX86) {
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt);
}
if (direct_method != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
} else {
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadMethodAddress(target_method.dex_method_index, type, kArg0);
}
break;
default:
return -1;
}
} else {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
// TUNING: we can save a reg copy if Method* has been promoted.
cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
break;
case 1: // Get method->dex_cache_resolved_methods_
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
// Set up direct code if known.
if (direct_code != 0) {
if (direct_code != static_cast<unsigned int>(-1)) {
cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
} else if (cu->instruction_set != kX86) {
CHECK_EQ(cu->dex_file, target_method.dex_file);
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt);
}
}
break;
case 2: // Grab target method*
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
(target_method.dex_method_index * 4),
cg-> TargetReg(kArg0));
break;
case 3: // Grab the code from the method*
if (cu->instruction_set != kX86) {
if (direct_code == 0) {
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
}
break;
}
// Intentional fallthrough for x86
default:
return -1;
}
}
return state + 1;
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in a virtual invoke sequence.
* We can use kLr as a temp prior to target address loading
* Note also that we'll load the first argument ("this") into
* kArg1 here rather than the standard LoadArgRegs.
*/
static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
InvokeType unused3) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This is the fast path in which the target virtual method is
* fully resolved at compile time.
*/
switch (state) {
case 0: { // Get "this" [set kArg1]
RegLocation rl_arg = info->args[0];
cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
break;
}
case 1: // Is "this" null? [use kArg1]
cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
// get this->klass_ [use kArg1, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 3: // Get target method [use kInvokeTgt, set kArg0]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
cg->TargetReg(kArg0));
break;
case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt]
if (cu->instruction_set != kX86) {
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
}
// Intentional fallthrough for X86
default:
return -1;
}
return state + 1;
}
/*
* Emit the next instruction in an invoke interface sequence. This will do a lookup in the
* class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
* more than one interface method map to the same index. Note also that we'll load the first
* argument ("this") into kArg1 here rather than the standard LoadArgRegs.
*/
static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t direct_method, InvokeType unused2) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
switch (state) {
case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
CHECK_EQ(cu->dex_file, target_method.dex_file);
CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index);
if (cu->instruction_set == kX86) {
cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg));
}
break;
case 1: { // Get "this" [set kArg1]
RegLocation rl_arg = info->args[0];
cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
break;
}
case 2: // Is "this" null? [use kArg1]
cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
// Get this->klass_ [use kArg1, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 3: // Get this->klass_->imtable [use kInvokeTgt, set kInvokeTgt]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::ImTableOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
case 4: // Get target method [use kInvokeTgt, set kArg0]
cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), ((method_idx % ClassLinker::kImtSize) * 4) +
mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
cg->TargetReg(kArg0));
break;
case 5: // Get the compiled code address [use kArg0, set kInvokeTgt]
if (cu->instruction_set != kX86) {
cg->LoadWordDisp(cg->TargetReg(kArg0),
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
cg->TargetReg(kInvokeTgt));
break;
}
// Intentional fallthrough for X86
default:
return -1;
}
return state + 1;
}
static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline,
int state, const MethodReference& target_method,
uint32_t method_idx) {
Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
/*
* This handles the case in which the base method is not fully
* resolved at compile time, we bail to a runtime helper.
*/
if (state == 0) {
if (cu->instruction_set != kX86) {
// Load trampoline target
cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt));
}
// Load kArg0 with method index
CHECK_EQ(cu->dex_file, target_method.dex_file);
cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
return 1;
}
return -1;
}
static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
int state,
const MethodReference& target_method,
uint32_t method_idx,
uintptr_t unused, uintptr_t unused2,
InvokeType unused3) {
ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
const MethodReference& target_method,
uint32_t method_idx, uintptr_t unused,
uintptr_t unused2, InvokeType unused3) {
ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
CallInfo* info, int state,
const MethodReference& target_method,
uint32_t unused,
uintptr_t unused2, uintptr_t unused3,
InvokeType unused4) {
ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
}
int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
int last_arg_reg = TargetReg(kArg3);
int next_reg = TargetReg(kArg1);
int next_arg = 0;
if (skip_this) {
next_reg++;
next_arg++;
}
for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
RegLocation rl_arg = info->args[next_arg++];
rl_arg = UpdateRawLoc(rl_arg);
if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
next_reg++;
next_arg++;
} else {
if (rl_arg.wide) {
rl_arg.wide = false;
rl_arg.is_const = false;
}
LoadValueDirectFixed(rl_arg, next_reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
return call_state;
}
/*
* Load up to 5 arguments, the first three of which will be in
* kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
* and as part of the load sequence, it must be replaced with
* the target method pointer. Note, this may also be called
* for "range" variants if the number of arguments is 5 or fewer.
*/
int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code,
uintptr_t direct_method, InvokeType type, bool skip_this) {
RegLocation rl_arg;
/* If no arguments, just return */
if (info->num_arg_words == 0)
return call_state;
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
DCHECK_LE(info->num_arg_words, 5);
if (info->num_arg_words > 3) {
int32_t next_use = 3;
// Detect special case of wide arg spanning arg3/arg4
RegLocation rl_use0 = info->args[0];
RegLocation rl_use1 = info->args[1];
RegLocation rl_use2 = info->args[2];
if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
rl_use2.wide) {
int reg = -1;
// Wide spans, we need the 2nd half of uses[2].
rl_arg = UpdateLocWide(rl_use2);
if (rl_arg.location == kLocPhysReg) {
reg = rl_arg.high_reg;
} else {
// kArg2 & rArg3 can safely be used here
reg = TargetReg(kArg3);
LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
next_use++;
}
// Loop through the rest
while (next_use < info->num_arg_words) {
int low_reg;
int high_reg = -1;
rl_arg = info->args[next_use];
rl_arg = UpdateRawLoc(rl_arg);
if (rl_arg.location == kLocPhysReg) {
low_reg = rl_arg.low_reg;
high_reg = rl_arg.high_reg;
} else {
low_reg = TargetReg(kArg2);
if (rl_arg.wide) {
high_reg = TargetReg(kArg3);
LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
} else {
LoadValueDirectFixed(rl_arg, low_reg);
}
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method, type);
}
int outs_offset = (next_use + 1) * 4;
if (rl_arg.wide) {
StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
next_use += 2;
} else {
StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
next_use++;
}
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
}
}
call_state = LoadArgRegs(info, call_state, next_call_insn,
target_method, vtable_idx, direct_code, direct_method,
type, skip_this);
if (pcrLabel) {
*pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
}
return call_state;
}
/*
* May have 0+ arguments (also used for jumbo). Note that
* source virtual registers may be in physical registers, so may
* need to be flushed to home location before copying. This
* applies to arg3 and above (see below).
*
* Two general strategies:
* If < 20 arguments
* Pass args 3-18 using vldm/vstm block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
* If 20+ arguments
* Pass args arg19+ using memcpy block copy
* Pass arg0, arg1 & arg2 in kArg1-kArg3
*
*/
int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
LIR** pcrLabel, NextCallInsn next_call_insn,
const MethodReference& target_method,
uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
InvokeType type, bool skip_this) {
// If we can treat it as non-range (Jumbo ops will use range form)
if (info->num_arg_words <= 5)
return GenDalvikArgsNoRange(info, call_state, pcrLabel,
next_call_insn, target_method, vtable_idx,
direct_code, direct_method, type, skip_this);
/*
* First load the non-register arguments. Both forms expect all
* of the source arguments to be in their home frame location, so
* scan the s_reg names and flush any that have been promoted to
* frame backing storage.
*/
// Scan the rest of the args - if in phys_reg flush to memory
for (int next_arg = 0; next_arg < info->num_arg_words;) {
RegLocation loc = info->args[next_arg];
if (loc.wide) {
loc = UpdateLocWide(loc);
if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
loc.low_reg, loc.high_reg);
}
next_arg += 2;
} else {
loc = UpdateLoc(loc);
if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
loc.low_reg, kWord);
}
next_arg++;
}
}
// Logic below assumes that Method pointer is at offset zero from SP.
DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
// The first 3 arguments are passed via registers.
// TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
// get size of uintptr_t or size of object reference according to model being used.
int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
int start_offset = SRegOffset(info->args[3].s_reg_low);
int regs_left_to_pass_via_stack = info->num_arg_words - 3;
DCHECK_GT(regs_left_to_pass_via_stack, 0);
if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
// Use vldm/vstm pair using kArg3 as a temp
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
LIR* ld = OpVldm(TargetReg(kArg3), regs_left_to_pass_via_stack);
// TUNING: loosen barrier
ld->u.m.def_mask = ENCODE_ALL;
SetMemRefType(ld, true /* is_load */, kDalvikReg);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
LIR* st = OpVstm(TargetReg(kArg3), regs_left_to_pass_via_stack);
SetMemRefType(st, false /* is_load */, kDalvikReg);
st->u.m.def_mask = ENCODE_ALL;
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
} else if (cu_->instruction_set == kX86) {
int current_src_offset = start_offset;
int current_dest_offset = outs_offset;
while (regs_left_to_pass_via_stack > 0) {
// This is based on the knowledge that the stack itself is 16-byte aligned.
bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
size_t bytes_to_move;
/*
* The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
* a 128-bit move because we won't get the chance to try to aligned. If there are more than
* 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
* We do this because we could potentially do a smaller move to align.
*/
if (regs_left_to_pass_via_stack == 4 ||
(regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
// Moving 128-bits via xmm register.
bytes_to_move = sizeof(uint32_t) * 4;
// Allocate a free xmm temp. Since we are working through the calling sequence,
// we expect to have an xmm temporary available.
int temp = AllocTempDouble();
CHECK_GT(temp, 0);
LIR* ld1 = nullptr;
LIR* ld2 = nullptr;
LIR* st1 = nullptr;
LIR* st2 = nullptr;
/*
* The logic is similar for both loads and stores. If we have 16-byte alignment,
* do an aligned move. If we have 8-byte alignment, then do the move in two
* parts. This approach prevents possible cache line splits. Finally, fall back
* to doing an unaligned move. In most cases we likely won't split the cache
* line but we cannot prove it and thus take a conservative approach.
*/
bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
if (src_is_16b_aligned) {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
} else if (src_is_8b_aligned) {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP);
} else {
ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
}
if (dest_is_16b_aligned) {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
} else if (dest_is_8b_aligned) {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP);
} else {
st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
}
// TODO If we could keep track of aliasing information for memory accesses that are wider
// than 64-bit, we wouldn't need to set up a barrier.
if (ld1 != nullptr) {
if (ld2 != nullptr) {
// For 64-bit load we can actually set up the aliasing information.
AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
} else {
// Set barrier for 128-bit load.
SetMemRefType(ld1, true /* is_load */, kDalvikReg);
ld1->u.m.def_mask = ENCODE_ALL;
}
}
if (st1 != nullptr) {
if (st2 != nullptr) {
// For 64-bit store we can actually set up the aliasing information.
AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
} else {
// Set barrier for 128-bit store.
SetMemRefType(st1, false /* is_load */, kDalvikReg);
st1->u.m.def_mask = ENCODE_ALL;
}
}
// Free the temporary used for the data movement.
FreeTemp(temp);
} else {
// Moving 32-bits via general purpose register.
bytes_to_move = sizeof(uint32_t);
// Instead of allocating a new temp, simply reuse one of the registers being used
// for argument passing.
int temp = TargetReg(kArg3);
// Now load the argument VR and store to the outs.
LoadWordDisp(TargetReg(kSp), current_src_offset, temp);
StoreWordDisp(TargetReg(kSp), current_dest_offset, temp);
}
current_src_offset += bytes_to_move;
current_dest_offset += bytes_to_move;
regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
}
} else {
// Generate memcpy
OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
}
call_state = LoadArgRegs(info, call_state, next_call_insn,
target_method, vtable_idx, direct_code, direct_method,
type, skip_this);
call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
direct_code, direct_method, type);
if (pcrLabel) {
*pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
}
return call_state;
}
RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturn(false);
} else {
res = info->result;
}
return res;
}
RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
RegLocation res;
if (info->result.location == kLocInvalid) {
res = GetReturnWide(false);
} else {
res = info->result;
}
return res;
}
bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// Location of reference to data array
int value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count
int count_offset = mirror::String::CountOffset().Int32Value();
// Starting offset within data array
int offset_offset = mirror::String::OffsetOffset().Int32Value();
// Start of char data with array_
int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
RegLocation rl_obj = info->args[0];
RegLocation rl_idx = info->args[1];
rl_obj = LoadValue(rl_obj, kCoreReg);
// X86 wants to avoid putting a constant index into a register.
if (!(cu_->instruction_set == kX86 && rl_idx.is_const)) {
rl_idx = LoadValue(rl_idx, kCoreReg);
}
int reg_max;
GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
LIR* launch_pad = NULL;
int reg_off = INVALID_REG;
int reg_ptr = INVALID_REG;
if (cu_->instruction_set != kX86) {
reg_off = AllocTemp();
reg_ptr = AllocTemp();
if (range_check) {
reg_max = AllocTemp();
LoadWordDisp(rl_obj.low_reg, count_offset, reg_max);
}
LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
if (range_check) {
// Set up a launch pad to allow retry in case of bounds violation */
launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
intrinsic_launchpads_.Insert(launch_pad);
OpRegReg(kOpCmp, rl_idx.low_reg, reg_max);
FreeTemp(reg_max);
OpCondBranch(kCondUge, launch_pad);
}
OpRegImm(kOpAdd, reg_ptr, data_offset);
} else {
if (range_check) {
// On x86, we can compare to memory directly
// Set up a launch pad to allow retry in case of bounds violation */
launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
intrinsic_launchpads_.Insert(launch_pad);
if (rl_idx.is_const) {
OpCmpMemImmBranch(kCondUlt, INVALID_REG, rl_obj.low_reg, count_offset,
mir_graph_->ConstantValue(rl_idx.orig_sreg), launch_pad);
} else {
OpRegMem(kOpCmp, rl_idx.low_reg, rl_obj.low_reg, count_offset);
OpCondBranch(kCondUge, launch_pad);
}
}
reg_off = AllocTemp();
reg_ptr = AllocTemp();
LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off);
LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr);
}
if (rl_idx.is_const) {
OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
} else {
OpRegReg(kOpAdd, reg_off, rl_idx.low_reg);
}
FreeTemp(rl_obj.low_reg);
if (rl_idx.low_reg != INVALID_REG) {
FreeTemp(rl_idx.low_reg);
}
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (cu_->instruction_set != kX86) {
LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf);
} else {
LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.low_reg,
INVALID_REG, kUnsignedHalf, INVALID_SREG);
}
FreeTemp(reg_off);
FreeTemp(reg_ptr);
StoreValue(rl_dest, rl_result);
if (range_check) {
launch_pad->operands[2] = 0; // no resumption
}
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
return true;
}
// Generates an inlined String.is_empty or String.length.
bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// dst = src.length();
RegLocation rl_obj = info->args[0];
rl_obj = LoadValue(rl_obj, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags);
LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg);
if (is_empty) {
// dst = (dst == 0);
if (cu_->instruction_set == kThumb2) {
int t_reg = AllocTemp();
OpRegReg(kOpNeg, t_reg, rl_result.low_reg);
OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg);
} else {
DCHECK_EQ(cu_->instruction_set, kX86);
OpRegImm(kOpSub, rl_result.low_reg, 1);
OpRegImm(kOpLsr, rl_result.low_reg, 31);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src_i = info->args[0];
RegLocation rl_dest = (size == kLong) ? InlineTargetWide(info) : InlineTarget(info); // result reg
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (size == kLong) {
RegLocation rl_i = LoadValueWide(rl_src_i, kCoreReg);
int r_i_low = rl_i.low_reg;
if (rl_i.low_reg == rl_result.low_reg) {
// First REV shall clobber rl_result.low_reg, save the value in a temp for the second REV.
r_i_low = AllocTemp();
OpRegCopy(r_i_low, rl_i.low_reg);
}
OpRegReg(kOpRev, rl_result.low_reg, rl_i.high_reg);
OpRegReg(kOpRev, rl_result.high_reg, r_i_low);
if (rl_i.low_reg == rl_result.low_reg) {
FreeTemp(r_i_low);
}
StoreValueWide(rl_dest, rl_result);
} else {
DCHECK(size == kWord || size == kSignedHalf);
OpKind op = (size == kWord) ? kOpRev : kOpRevsh;
RegLocation rl_i = LoadValue(rl_src_i, kCoreReg);
OpRegReg(op, rl_result.low_reg, rl_i.low_reg);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31);
OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
if (cu_->instruction_set == kThumb2) {
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31);
OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg);
OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
StoreValueWide(rl_dest, rl_result);
return true;
} else {
DCHECK_EQ(cu_->instruction_set, kX86);
// Reuse source registers to avoid running out of temps
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
FreeTemp(rl_src.low_reg);
FreeTemp(rl_src.high_reg);
int sign_reg = AllocTemp();
// abs(x) = y<=x>>31, (x+y)^y.
OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31);
OpRegReg(kOpAdd, rl_result.low_reg, sign_reg);
OpRegReg(kOpAdc, rl_result.high_reg, sign_reg);
OpRegReg(kOpXor, rl_result.low_reg, sign_reg);
OpRegReg(kOpXor, rl_result.high_reg, sign_reg);
StoreValueWide(rl_dest, rl_result);
return true;
}
}
bool Mir2Lir::GenInlinedAbsFloat(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int signMask = AllocTemp();
LoadConstant(signMask, 0x7fffffff);
OpRegRegReg(kOpAnd, rl_result.low_reg, rl_src.low_reg, signMask);
FreeTemp(signMask);
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedAbsDouble(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_dest = InlineTargetWide(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg);
FreeTemp(rl_src.low_reg);
FreeTemp(rl_src.high_reg);
int signMask = AllocTemp();
LoadConstant(signMask, 0x7fffffff);
OpRegReg(kOpAnd, rl_result.high_reg, signMask);
FreeTemp(signMask);
StoreValueWide(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_src);
return true;
}
bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
RegLocation rl_src = info->args[0];
RegLocation rl_dest = InlineTargetWide(info);
StoreValueWide(rl_dest, rl_src);
return true;
}
/*
* Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff,
* otherwise bails to standard library code.
*/
bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
int reg_ptr = TargetReg(kArg0);
int reg_char = TargetReg(kArg1);
int reg_start = TargetReg(kArg2);
RegLocation rl_obj = info->args[0];
RegLocation rl_char = info->args[1];
RegLocation rl_start = info->args[2];
LoadValueDirectFixed(rl_obj, reg_ptr);
LoadValueDirectFixed(rl_char, reg_char);
if (zero_based) {
LoadConstant(reg_start, 0);
} else {
LoadValueDirectFixed(rl_start, reg_start);
}
int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf));
GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
intrinsic_launchpads_.Insert(launch_pad);
OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
// NOTE: not a safepoint
OpReg(kOpBlx, r_tgt);
LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
launch_pad->operands[2] = WrapPointer(resume_tgt);
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rl_return = GetReturn(false);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
/* Fast string.compareTo(Ljava/lang/string;)I. */
bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
ClobberCallerSave();
LockCallTemps(); // Using fixed registers
int reg_this = TargetReg(kArg0);
int reg_cmp = TargetReg(kArg1);
RegLocation rl_this = info->args[0];
RegLocation rl_cmp = info->args[1];
LoadValueDirectFixed(rl_this, reg_this);
LoadValueDirectFixed(rl_cmp, reg_cmp);
int r_tgt = (cu_->instruction_set != kX86) ?
LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
// TUNING: check if rl_cmp.s_reg_low is already null checked
LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
intrinsic_launchpads_.Insert(launch_pad);
OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
// NOTE: not a safepoint
if (cu_->instruction_set != kX86) {
OpReg(kOpBlx, r_tgt);
} else {
OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
}
launch_pad->operands[2] = 0; // No return possible
// Record that we've already inlined & null checked
info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
RegLocation rl_return = GetReturn(false);
RegLocation rl_dest = InlineTarget(info);
StoreValue(rl_dest, rl_return);
return true;
}
bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
ThreadOffset offset = Thread::PeerOffset();
if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg);
} else {
CHECK(cu_->instruction_set == kX86);
reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset);
}
StoreValue(rl_dest, rl_result);
return true;
}
bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
bool is_long, bool is_volatile) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset.wide = 0; // ignore high half in info->args[3]
RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg
if (is_volatile) {
GenMemBarrier(kLoadLoad);
}
RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_long) {
OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
StoreValueWide(rl_dest, rl_result);
} else {
LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
bool is_object, bool is_volatile, bool is_ordered) {
if (cu_->instruction_set == kMips) {
// TODO - add Mips implementation
return false;
}
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset.wide = 0; // ignore high half in info->args[3]
RegLocation rl_src_value = info->args[4]; // value to store
if (is_volatile || is_ordered) {
GenMemBarrier(kStoreStore);
}
RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
RegLocation rl_value;
if (is_long) {
rl_value = LoadValueWide(rl_src_value, kCoreReg);
OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg);
StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
} else {
rl_value = LoadValue(rl_src_value, kCoreReg);
StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord);
}
// Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
FreeTemp(rl_offset.low_reg);
if (is_volatile) {
GenMemBarrier(kStoreLoad);
}
if (is_object) {
MarkGCCard(rl_value.low_reg, rl_object.low_reg);
}
return true;
}
void Mir2Lir::GenInvoke(CallInfo* info) {
if (!(info->opt_flags & MIR_INLINED)) {
DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
->GenIntrinsic(this, info)) {
return;
}
}
InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo
int call_state = 0;
LIR* null_ck;
LIR** p_null_ck = NULL;
NextCallInsn next_call_insn;
FlushAllRegs(); /* Everything to home location */
// Explicit register usage
LockCallTemps();
DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit();
MethodReference target_method(cUnit->GetDexFile(), info->index);
int vtable_idx;
uintptr_t direct_code;
uintptr_t direct_method;
bool skip_this;
bool fast_path =
cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(),
current_dalvik_offset_,
true, true,
&info->type, &target_method,
&vtable_idx,
&direct_code, &direct_method) && !SLOW_INVOKE_PATH;
if (info->type == kInterface) {
next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
skip_this = fast_path;
} else if (info->type == kDirect) {
if (fast_path) {
p_null_ck = &null_ck;
}
next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
skip_this = false;
} else if (info->type == kStatic) {
next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
skip_this = false;
} else if (info->type == kSuper) {
DCHECK(!fast_path); // Fast path is a direct call.
next_call_insn = NextSuperCallInsnSP;
skip_this = false;
} else {
DCHECK_EQ(info->type, kVirtual);
next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
skip_this = fast_path;
}
if (!info->is_range) {
call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
next_call_insn, target_method,
vtable_idx, direct_code, direct_method,
original_type, skip_this);
} else {
call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
next_call_insn, target_method, vtable_idx,
direct_code, direct_method, original_type,
skip_this);
}
// Finish up any of the call sequence not interleaved in arg loading
while (call_state >= 0) {
call_state = next_call_insn(cu_, info, call_state, target_method,
vtable_idx, direct_code, direct_method,
original_type);
}
LIR* call_inst;
if (cu_->instruction_set != kX86) {
call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
} else {
if (fast_path) {
if (direct_code == static_cast<unsigned int>(-1)) {
// We can have the linker fixup a call relative.
call_inst =
reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(
target_method.dex_method_index, info->type);
} else {
call_inst = OpMem(kOpBlx, TargetReg(kArg0),
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
}
} else {
ThreadOffset trampoline(-1);
switch (info->type) {
case kInterface:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
break;
case kDirect:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
break;
case kStatic:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
break;
case kSuper:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
break;
case kVirtual:
trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
break;
default:
LOG(FATAL) << "Unexpected invoke type";
}
call_inst = OpThreadMem(kOpBlx, trampoline);
}
}
MarkSafepointPC(call_inst);
ClobberCallerSave();
if (info->result.location != kLocInvalid) {
// We have a following MOVE_RESULT - do it now.
if (info->result.wide) {
RegLocation ret_loc = GetReturnWide(info->result.fp);
StoreValueWide(info->result, ret_loc);
} else {
RegLocation ret_loc = GetReturn(info->result.fp);
StoreValue(info->result, ret_loc);
}
}
}
} // namespace art