| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex/compiler_ir.h" |
| #include "dex/frontend.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex_file-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "invoke_type.h" |
| #include "mirror/array.h" |
| #include "mirror/string.h" |
| #include "mir_to_lir-inl.h" |
| #include "x86/codegen_x86.h" |
| |
| namespace art { |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| |
| /* |
| * To save scheduling time, helper calls are broken into two parts: generation of |
| * the helper target address, and the actuall call to the helper. Because x86 |
| * has a memory call operation, part 1 is a NOP for x86. For other targets, |
| * load arguments between the two parts. |
| */ |
| int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) { |
| return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset); |
| } |
| |
| /* NOTE: if r_tgt is a temp, it will be freed following use */ |
| LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc) { |
| LIR* call_inst; |
| if (cu_->instruction_set == kX86) { |
| call_inst = OpThreadMem(kOpBlx, helper_offset); |
| } else { |
| call_inst = OpReg(kOpBlx, r_tgt); |
| FreeTemp(r_tgt); |
| } |
| if (safepoint_pc) { |
| MarkSafepointPC(call_inst); |
| } |
| return call_inst; |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| OpRegCopy(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| if (arg0.wide == 0) { |
| LoadValueDirectFixed(arg0, TargetReg(kArg0)); |
| } else { |
| LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1)); |
| } |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadConstant(TargetReg(kArg0), arg0); |
| LoadConstant(TargetReg(kArg1), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0, |
| RegLocation arg1, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| if (arg1.wide == 0) { |
| LoadValueDirectFixed(arg1, TargetReg(kArg1)); |
| } else { |
| LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); |
| } |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadValueDirectFixed(arg0, TargetReg(kArg0)); |
| LoadConstant(TargetReg(kArg1), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| OpRegCopy(TargetReg(kArg1), arg1); |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| OpRegCopy(TargetReg(kArg0), arg0); |
| LoadConstant(TargetReg(kArg1), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadCurrMethodDirect(TargetReg(kArg1)); |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_NE(TargetReg(kArg1), arg0); |
| if (TargetReg(kArg0) != arg0) { |
| OpRegCopy(TargetReg(kArg0), arg0); |
| } |
| LoadCurrMethodDirect(TargetReg(kArg1)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0, |
| RegLocation arg2, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_NE(TargetReg(kArg1), arg0); |
| if (TargetReg(kArg0) != arg0) { |
| OpRegCopy(TargetReg(kArg0), arg0); |
| } |
| LoadCurrMethodDirect(TargetReg(kArg1)); |
| LoadValueDirectFixed(arg2, TargetReg(kArg2)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0, |
| RegLocation arg1, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| if (arg0.wide == 0) { |
| LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); |
| if (arg1.wide == 0) { |
| if (cu_->instruction_set == kMips) { |
| LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1)); |
| } else { |
| LoadValueDirectFixed(arg1, TargetReg(kArg1)); |
| } |
| } else { |
| if (cu_->instruction_set == kMips) { |
| LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2)); |
| } else { |
| LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2)); |
| } |
| } |
| } else { |
| LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); |
| if (arg1.wide == 0) { |
| LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2)); |
| } else { |
| LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3)); |
| } |
| } |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 |
| OpRegCopy(TargetReg(kArg0), arg0); |
| OpRegCopy(TargetReg(kArg1), arg1); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1, |
| int arg2, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_NE(TargetReg(kArg0), arg1); // check copy into arg0 won't clobber arg1 |
| OpRegCopy(TargetReg(kArg0), arg0); |
| OpRegCopy(TargetReg(kArg1), arg1); |
| LoadConstant(TargetReg(kArg2), arg2); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset, |
| int arg0, RegLocation arg2, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadValueDirectFixed(arg2, TargetReg(kArg2)); |
| LoadCurrMethodDirect(TargetReg(kArg1)); |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0, |
| int arg2, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| LoadCurrMethodDirect(TargetReg(kArg1)); |
| LoadConstant(TargetReg(kArg2), arg2); |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset, |
| int arg0, RegLocation arg1, |
| RegLocation arg2, bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_EQ(arg1.wide, 0U); |
| LoadValueDirectFixed(arg1, TargetReg(kArg1)); |
| if (arg2.wide == 0) { |
| LoadValueDirectFixed(arg2, TargetReg(kArg2)); |
| } else { |
| LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3)); |
| } |
| LoadConstant(TargetReg(kArg0), arg0); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset, |
| RegLocation arg0, RegLocation arg1, |
| RegLocation arg2, |
| bool safepoint_pc) { |
| int r_tgt = CallHelperSetup(helper_offset); |
| DCHECK_EQ(arg0.wide, 0U); |
| LoadValueDirectFixed(arg0, TargetReg(kArg0)); |
| DCHECK_EQ(arg1.wide, 0U); |
| LoadValueDirectFixed(arg1, TargetReg(kArg1)); |
| DCHECK_EQ(arg1.wide, 0U); |
| LoadValueDirectFixed(arg2, TargetReg(kArg2)); |
| ClobberCallerSave(); |
| CallHelper(r_tgt, helper_offset, safepoint_pc); |
| } |
| |
| /* |
| * If there are any ins passed in registers that have not been promoted |
| * to a callee-save register, flush them to the frame. Perform intial |
| * assignment of promoted arguments. |
| * |
| * ArgLocs is an array of location records describing the incoming arguments |
| * with one location record per word of argument. |
| */ |
| void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) { |
| /* |
| * Dummy up a RegLocation for the incoming Method* |
| * It will attempt to keep kArg0 live (or copy it to home location |
| * if promoted). |
| */ |
| RegLocation rl_src = rl_method; |
| rl_src.location = kLocPhysReg; |
| rl_src.low_reg = TargetReg(kArg0); |
| rl_src.home = false; |
| MarkLive(rl_src.low_reg, rl_src.s_reg_low); |
| StoreValue(rl_method, rl_src); |
| // If Method* has been promoted, explicitly flush |
| if (rl_method.location == kLocPhysReg) { |
| StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0)); |
| } |
| |
| if (cu_->num_ins == 0) { |
| return; |
| } |
| |
| int start_vreg = cu_->num_dalvik_registers - cu_->num_ins; |
| /* |
| * Copy incoming arguments to their proper home locations. |
| * NOTE: an older version of dx had an issue in which |
| * it would reuse static method argument registers. |
| * This could result in the same Dalvik virtual register |
| * being promoted to both core and fp regs. To account for this, |
| * we only copy to the corresponding promoted physical register |
| * if it matches the type of the SSA name for the incoming |
| * argument. It is also possible that long and double arguments |
| * end up half-promoted. In those cases, we must flush the promoted |
| * half to memory as well. |
| */ |
| for (int i = 0; i < cu_->num_ins; i++) { |
| PromotionMap* v_map = &promotion_map_[start_vreg + i]; |
| int reg = GetArgMappingToPhysicalReg(i); |
| |
| if (reg != INVALID_REG) { |
| // If arriving in register |
| bool need_flush = true; |
| RegLocation* t_loc = &ArgLocs[i]; |
| if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) { |
| OpRegCopy(v_map->core_reg, reg); |
| need_flush = false; |
| } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) { |
| OpRegCopy(v_map->FpReg, reg); |
| need_flush = false; |
| } else { |
| need_flush = true; |
| } |
| |
| // For wide args, force flush if not fully promoted |
| if (t_loc->wide) { |
| PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1); |
| // Is only half promoted? |
| need_flush |= (p_map->core_location != v_map->core_location) || |
| (p_map->fp_location != v_map->fp_location); |
| if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) { |
| /* |
| * In Arm, a double is represented as a pair of consecutive single float |
| * registers starting at an even number. It's possible that both Dalvik vRegs |
| * representing the incoming double were independently promoted as singles - but |
| * not in a form usable as a double. If so, we need to flush - even though the |
| * incoming arg appears fully in register. At this point in the code, both |
| * halves of the double are promoted. Make sure they are in a usable form. |
| */ |
| int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0); |
| int low_reg = promotion_map_[lowreg_index].FpReg; |
| int high_reg = promotion_map_[lowreg_index + 1].FpReg; |
| if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) { |
| need_flush = true; |
| } |
| } |
| } |
| if (need_flush) { |
| StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kWord); |
| } |
| } else { |
| // If arriving in frame & promoted |
| if (v_map->core_location == kLocPhysReg) { |
| LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), |
| v_map->core_reg); |
| } |
| if (v_map->fp_location == kLocPhysReg) { |
| LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), |
| v_map->FpReg); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in static & direct invoke sequences. |
| */ |
| static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info, |
| int state, const MethodReference& target_method, |
| uint32_t unused, |
| uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type) { |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| if (direct_code != 0 && direct_method != 0) { |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| if (direct_code != static_cast<unsigned int>(-1)) { |
| if (cu->instruction_set != kX86) { |
| cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); |
| } |
| } else if (cu->instruction_set != kX86) { |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt); |
| } |
| if (direct_method != static_cast<unsigned int>(-1)) { |
| cg->LoadConstant(cg->TargetReg(kArg0), direct_method); |
| } else { |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadMethodAddress(target_method.dex_method_index, type, kArg0); |
| } |
| break; |
| default: |
| return -1; |
| } |
| } else { |
| switch (state) { |
| case 0: // Get the current Method* [sets kArg0] |
| // TUNING: we can save a reg copy if Method* has been promoted. |
| cg->LoadCurrMethodDirect(cg->TargetReg(kArg0)); |
| break; |
| case 1: // Get method->dex_cache_resolved_methods_ |
| cg->LoadWordDisp(cg->TargetReg(kArg0), |
| mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0)); |
| // Set up direct code if known. |
| if (direct_code != 0) { |
| if (direct_code != static_cast<unsigned int>(-1)) { |
| cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code); |
| } else if (cu->instruction_set != kX86) { |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); |
| cg->LoadCodeAddress(target_method.dex_method_index, type, kInvokeTgt); |
| } |
| } |
| break; |
| case 2: // Grab target method* |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadWordDisp(cg->TargetReg(kArg0), |
| mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + |
| (target_method.dex_method_index * 4), |
| cg-> TargetReg(kArg0)); |
| break; |
| case 3: // Grab the code from the method* |
| if (cu->instruction_set != kX86) { |
| if (direct_code == 0) { |
| cg->LoadWordDisp(cg->TargetReg(kArg0), |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| } |
| break; |
| } |
| // Intentional fallthrough for x86 |
| default: |
| return -1; |
| } |
| } |
| return state + 1; |
| } |
| |
| /* |
| * Bit of a hack here - in the absence of a real scheduling pass, |
| * emit the next instruction in a virtual invoke sequence. |
| * We can use kLr as a temp prior to target address loading |
| * Note also that we'll load the first argument ("this") into |
| * kArg1 here rather than the standard LoadArgRegs. |
| */ |
| static int NextVCallInsn(CompilationUnit* cu, CallInfo* info, |
| int state, const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t unused, uintptr_t unused2, |
| InvokeType unused3) { |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| /* |
| * This is the fast path in which the target virtual method is |
| * fully resolved at compile time. |
| */ |
| switch (state) { |
| case 0: { // Get "this" [set kArg1] |
| RegLocation rl_arg = info->args[0]; |
| cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); |
| break; |
| } |
| case 1: // Is "this" null? [use kArg1] |
| cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags); |
| // get this->klass_ [use kArg1, set kInvokeTgt] |
| cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| case 2: // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt] |
| cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| case 3: // Get target method [use kInvokeTgt, set kArg0] |
| cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) + |
| mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(), |
| cg->TargetReg(kArg0)); |
| break; |
| case 4: // Get the compiled code address [uses kArg0, sets kInvokeTgt] |
| if (cu->instruction_set != kX86) { |
| cg->LoadWordDisp(cg->TargetReg(kArg0), |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| } |
| // Intentional fallthrough for X86 |
| default: |
| return -1; |
| } |
| return state + 1; |
| } |
| |
| /* |
| * Emit the next instruction in an invoke interface sequence. This will do a lookup in the |
| * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if |
| * more than one interface method map to the same index. Note also that we'll load the first |
| * argument ("this") into kArg1 here rather than the standard LoadArgRegs. |
| */ |
| static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t unused, |
| uintptr_t direct_method, InvokeType unused2) { |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| |
| switch (state) { |
| case 0: // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)] |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); |
| cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index); |
| if (cu->instruction_set == kX86) { |
| cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg)); |
| } |
| break; |
| case 1: { // Get "this" [set kArg1] |
| RegLocation rl_arg = info->args[0]; |
| cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1)); |
| break; |
| } |
| case 2: // Is "this" null? [use kArg1] |
| cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags); |
| // Get this->klass_ [use kArg1, set kInvokeTgt] |
| cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| case 3: // Get this->klass_->imtable [use kInvokeTgt, set kInvokeTgt] |
| cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::ImTableOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| case 4: // Get target method [use kInvokeTgt, set kArg0] |
| cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), ((method_idx % ClassLinker::kImtSize) * 4) + |
| mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(), |
| cg->TargetReg(kArg0)); |
| break; |
| case 5: // Get the compiled code address [use kArg0, set kInvokeTgt] |
| if (cu->instruction_set != kX86) { |
| cg->LoadWordDisp(cg->TargetReg(kArg0), |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(), |
| cg->TargetReg(kInvokeTgt)); |
| break; |
| } |
| // Intentional fallthrough for X86 |
| default: |
| return -1; |
| } |
| return state + 1; |
| } |
| |
| static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline, |
| int state, const MethodReference& target_method, |
| uint32_t method_idx) { |
| Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get()); |
| /* |
| * This handles the case in which the base method is not fully |
| * resolved at compile time, we bail to a runtime helper. |
| */ |
| if (state == 0) { |
| if (cu->instruction_set != kX86) { |
| // Load trampoline target |
| cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt)); |
| } |
| // Load kArg0 with method index |
| CHECK_EQ(cu->dex_file, target_method.dex_file); |
| cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index); |
| return 1; |
| } |
| return -1; |
| } |
| |
| static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info, |
| int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, |
| uintptr_t unused, uintptr_t unused2, |
| InvokeType unused3) { |
| ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); |
| return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); |
| } |
| |
| static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) { |
| ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); |
| return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); |
| } |
| |
| static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) { |
| ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); |
| return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); |
| } |
| |
| static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t method_idx, uintptr_t unused, |
| uintptr_t unused2, InvokeType unused3) { |
| ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); |
| return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); |
| } |
| |
| static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu, |
| CallInfo* info, int state, |
| const MethodReference& target_method, |
| uint32_t unused, |
| uintptr_t unused2, uintptr_t unused3, |
| InvokeType unused4) { |
| ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); |
| return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0); |
| } |
| |
| int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state, |
| NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, |
| uintptr_t direct_method, InvokeType type, bool skip_this) { |
| int last_arg_reg = TargetReg(kArg3); |
| int next_reg = TargetReg(kArg1); |
| int next_arg = 0; |
| if (skip_this) { |
| next_reg++; |
| next_arg++; |
| } |
| for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) { |
| RegLocation rl_arg = info->args[next_arg++]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) { |
| LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1); |
| next_reg++; |
| next_arg++; |
| } else { |
| if (rl_arg.wide) { |
| rl_arg.wide = false; |
| rl_arg.is_const = false; |
| } |
| LoadValueDirectFixed(rl_arg, next_reg); |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| } |
| return call_state; |
| } |
| |
| /* |
| * Load up to 5 arguments, the first three of which will be in |
| * kArg1 .. kArg3. On entry kArg0 contains the current method pointer, |
| * and as part of the load sequence, it must be replaced with |
| * the target method pointer. Note, this may also be called |
| * for "range" variants if the number of arguments is 5 or fewer. |
| */ |
| int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info, |
| int call_state, LIR** pcrLabel, NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, |
| uintptr_t direct_method, InvokeType type, bool skip_this) { |
| RegLocation rl_arg; |
| |
| /* If no arguments, just return */ |
| if (info->num_arg_words == 0) |
| return call_state; |
| |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| |
| DCHECK_LE(info->num_arg_words, 5); |
| if (info->num_arg_words > 3) { |
| int32_t next_use = 3; |
| // Detect special case of wide arg spanning arg3/arg4 |
| RegLocation rl_use0 = info->args[0]; |
| RegLocation rl_use1 = info->args[1]; |
| RegLocation rl_use2 = info->args[2]; |
| if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && |
| rl_use2.wide) { |
| int reg = -1; |
| // Wide spans, we need the 2nd half of uses[2]. |
| rl_arg = UpdateLocWide(rl_use2); |
| if (rl_arg.location == kLocPhysReg) { |
| reg = rl_arg.high_reg; |
| } else { |
| // kArg2 & rArg3 can safely be used here |
| reg = TargetReg(kArg3); |
| LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg); |
| call_state = next_call_insn(cu_, info, call_state, target_method, |
| vtable_idx, direct_code, direct_method, type); |
| } |
| StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord); |
| StoreBaseDisp(TargetReg(kSp), 16 /* (3+1)*4 */, reg, kWord); |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| next_use++; |
| } |
| // Loop through the rest |
| while (next_use < info->num_arg_words) { |
| int low_reg; |
| int high_reg = -1; |
| rl_arg = info->args[next_use]; |
| rl_arg = UpdateRawLoc(rl_arg); |
| if (rl_arg.location == kLocPhysReg) { |
| low_reg = rl_arg.low_reg; |
| high_reg = rl_arg.high_reg; |
| } else { |
| low_reg = TargetReg(kArg2); |
| if (rl_arg.wide) { |
| high_reg = TargetReg(kArg3); |
| LoadValueDirectWideFixed(rl_arg, low_reg, high_reg); |
| } else { |
| LoadValueDirectFixed(rl_arg, low_reg); |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, |
| vtable_idx, direct_code, direct_method, type); |
| } |
| int outs_offset = (next_use + 1) * 4; |
| if (rl_arg.wide) { |
| StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg); |
| next_use += 2; |
| } else { |
| StoreWordDisp(TargetReg(kSp), outs_offset, low_reg); |
| next_use++; |
| } |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| } |
| } |
| |
| call_state = LoadArgRegs(info, call_state, next_call_insn, |
| target_method, vtable_idx, direct_code, direct_method, |
| type, skip_this); |
| |
| if (pcrLabel) { |
| *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); |
| } |
| return call_state; |
| } |
| |
| /* |
| * May have 0+ arguments (also used for jumbo). Note that |
| * source virtual registers may be in physical registers, so may |
| * need to be flushed to home location before copying. This |
| * applies to arg3 and above (see below). |
| * |
| * Two general strategies: |
| * If < 20 arguments |
| * Pass args 3-18 using vldm/vstm block copy |
| * Pass arg0, arg1 & arg2 in kArg1-kArg3 |
| * If 20+ arguments |
| * Pass args arg19+ using memcpy block copy |
| * Pass arg0, arg1 & arg2 in kArg1-kArg3 |
| * |
| */ |
| int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state, |
| LIR** pcrLabel, NextCallInsn next_call_insn, |
| const MethodReference& target_method, |
| uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method, |
| InvokeType type, bool skip_this) { |
| // If we can treat it as non-range (Jumbo ops will use range form) |
| if (info->num_arg_words <= 5) |
| return GenDalvikArgsNoRange(info, call_state, pcrLabel, |
| next_call_insn, target_method, vtable_idx, |
| direct_code, direct_method, type, skip_this); |
| /* |
| * First load the non-register arguments. Both forms expect all |
| * of the source arguments to be in their home frame location, so |
| * scan the s_reg names and flush any that have been promoted to |
| * frame backing storage. |
| */ |
| // Scan the rest of the args - if in phys_reg flush to memory |
| for (int next_arg = 0; next_arg < info->num_arg_words;) { |
| RegLocation loc = info->args[next_arg]; |
| if (loc.wide) { |
| loc = UpdateLocWide(loc); |
| if ((next_arg >= 2) && (loc.location == kLocPhysReg)) { |
| StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low), |
| loc.low_reg, loc.high_reg); |
| } |
| next_arg += 2; |
| } else { |
| loc = UpdateLoc(loc); |
| if ((next_arg >= 3) && (loc.location == kLocPhysReg)) { |
| StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), |
| loc.low_reg, kWord); |
| } |
| next_arg++; |
| } |
| } |
| |
| // Logic below assumes that Method pointer is at offset zero from SP. |
| DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0); |
| |
| // The first 3 arguments are passed via registers. |
| // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either |
| // get size of uintptr_t or size of object reference according to model being used. |
| int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t)); |
| int start_offset = SRegOffset(info->args[3].s_reg_low); |
| int regs_left_to_pass_via_stack = info->num_arg_words - 3; |
| DCHECK_GT(regs_left_to_pass_via_stack, 0); |
| |
| if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) { |
| // Use vldm/vstm pair using kArg3 as a temp |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset); |
| LIR* ld = OpVldm(TargetReg(kArg3), regs_left_to_pass_via_stack); |
| // TUNING: loosen barrier |
| ld->u.m.def_mask = ENCODE_ALL; |
| SetMemRefType(ld, true /* is_load */, kDalvikReg); |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4)); |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| LIR* st = OpVstm(TargetReg(kArg3), regs_left_to_pass_via_stack); |
| SetMemRefType(st, false /* is_load */, kDalvikReg); |
| st->u.m.def_mask = ENCODE_ALL; |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| } else if (cu_->instruction_set == kX86) { |
| int current_src_offset = start_offset; |
| int current_dest_offset = outs_offset; |
| |
| while (regs_left_to_pass_via_stack > 0) { |
| // This is based on the knowledge that the stack itself is 16-byte aligned. |
| bool src_is_16b_aligned = (current_src_offset & 0xF) == 0; |
| bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0; |
| size_t bytes_to_move; |
| |
| /* |
| * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a |
| * a 128-bit move because we won't get the chance to try to aligned. If there are more than |
| * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned. |
| * We do this because we could potentially do a smaller move to align. |
| */ |
| if (regs_left_to_pass_via_stack == 4 || |
| (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) { |
| // Moving 128-bits via xmm register. |
| bytes_to_move = sizeof(uint32_t) * 4; |
| |
| // Allocate a free xmm temp. Since we are working through the calling sequence, |
| // we expect to have an xmm temporary available. |
| int temp = AllocTempDouble(); |
| CHECK_GT(temp, 0); |
| |
| LIR* ld1 = nullptr; |
| LIR* ld2 = nullptr; |
| LIR* st1 = nullptr; |
| LIR* st2 = nullptr; |
| |
| /* |
| * The logic is similar for both loads and stores. If we have 16-byte alignment, |
| * do an aligned move. If we have 8-byte alignment, then do the move in two |
| * parts. This approach prevents possible cache line splits. Finally, fall back |
| * to doing an unaligned move. In most cases we likely won't split the cache |
| * line but we cannot prove it and thus take a conservative approach. |
| */ |
| bool src_is_8b_aligned = (current_src_offset & 0x7) == 0; |
| bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0; |
| |
| if (src_is_16b_aligned) { |
| ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP); |
| } else if (src_is_8b_aligned) { |
| ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP); |
| ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP); |
| } else { |
| ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP); |
| } |
| |
| if (dest_is_16b_aligned) { |
| st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP); |
| } else if (dest_is_8b_aligned) { |
| st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP); |
| st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP); |
| } else { |
| st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP); |
| } |
| |
| // TODO If we could keep track of aliasing information for memory accesses that are wider |
| // than 64-bit, we wouldn't need to set up a barrier. |
| if (ld1 != nullptr) { |
| if (ld2 != nullptr) { |
| // For 64-bit load we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true); |
| AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true); |
| } else { |
| // Set barrier for 128-bit load. |
| SetMemRefType(ld1, true /* is_load */, kDalvikReg); |
| ld1->u.m.def_mask = ENCODE_ALL; |
| } |
| } |
| if (st1 != nullptr) { |
| if (st2 != nullptr) { |
| // For 64-bit store we can actually set up the aliasing information. |
| AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true); |
| AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true); |
| } else { |
| // Set barrier for 128-bit store. |
| SetMemRefType(st1, false /* is_load */, kDalvikReg); |
| st1->u.m.def_mask = ENCODE_ALL; |
| } |
| } |
| |
| // Free the temporary used for the data movement. |
| FreeTemp(temp); |
| } else { |
| // Moving 32-bits via general purpose register. |
| bytes_to_move = sizeof(uint32_t); |
| |
| // Instead of allocating a new temp, simply reuse one of the registers being used |
| // for argument passing. |
| int temp = TargetReg(kArg3); |
| |
| // Now load the argument VR and store to the outs. |
| LoadWordDisp(TargetReg(kSp), current_src_offset, temp); |
| StoreWordDisp(TargetReg(kSp), current_dest_offset, temp); |
| } |
| |
| current_src_offset += bytes_to_move; |
| current_dest_offset += bytes_to_move; |
| regs_left_to_pass_via_stack -= (bytes_to_move >> 2); |
| } |
| } else { |
| // Generate memcpy |
| OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset); |
| OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset); |
| CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0), |
| TargetReg(kArg1), (info->num_arg_words - 3) * 4, false); |
| } |
| |
| call_state = LoadArgRegs(info, call_state, next_call_insn, |
| target_method, vtable_idx, direct_code, direct_method, |
| type, skip_this); |
| |
| call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx, |
| direct_code, direct_method, type); |
| if (pcrLabel) { |
| *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags); |
| } |
| return call_state; |
| } |
| |
| RegLocation Mir2Lir::InlineTarget(CallInfo* info) { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| res = GetReturn(false); |
| } else { |
| res = info->result; |
| } |
| return res; |
| } |
| |
| RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) { |
| RegLocation res; |
| if (info->result.location == kLocInvalid) { |
| res = GetReturnWide(false); |
| } else { |
| res = info->result; |
| } |
| return res; |
| } |
| |
| bool Mir2Lir::GenInlinedCharAt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // Location of reference to data array |
| int value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count |
| int count_offset = mirror::String::CountOffset().Int32Value(); |
| // Starting offset within data array |
| int offset_offset = mirror::String::OffsetOffset().Int32Value(); |
| // Start of char data with array_ |
| int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value(); |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_idx = info->args[1]; |
| rl_obj = LoadValue(rl_obj, kCoreReg); |
| // X86 wants to avoid putting a constant index into a register. |
| if (!(cu_->instruction_set == kX86 && rl_idx.is_const)) { |
| rl_idx = LoadValue(rl_idx, kCoreReg); |
| } |
| int reg_max; |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); |
| bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| LIR* launch_pad = NULL; |
| int reg_off = INVALID_REG; |
| int reg_ptr = INVALID_REG; |
| if (cu_->instruction_set != kX86) { |
| reg_off = AllocTemp(); |
| reg_ptr = AllocTemp(); |
| if (range_check) { |
| reg_max = AllocTemp(); |
| LoadWordDisp(rl_obj.low_reg, count_offset, reg_max); |
| } |
| LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); |
| LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); |
| if (range_check) { |
| // Set up a launch pad to allow retry in case of bounds violation */ |
| launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info)); |
| intrinsic_launchpads_.Insert(launch_pad); |
| OpRegReg(kOpCmp, rl_idx.low_reg, reg_max); |
| FreeTemp(reg_max); |
| OpCondBranch(kCondUge, launch_pad); |
| } |
| OpRegImm(kOpAdd, reg_ptr, data_offset); |
| } else { |
| if (range_check) { |
| // On x86, we can compare to memory directly |
| // Set up a launch pad to allow retry in case of bounds violation */ |
| launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info)); |
| intrinsic_launchpads_.Insert(launch_pad); |
| if (rl_idx.is_const) { |
| OpCmpMemImmBranch(kCondUlt, INVALID_REG, rl_obj.low_reg, count_offset, |
| mir_graph_->ConstantValue(rl_idx.orig_sreg), launch_pad); |
| } else { |
| OpRegMem(kOpCmp, rl_idx.low_reg, rl_obj.low_reg, count_offset); |
| OpCondBranch(kCondUge, launch_pad); |
| } |
| } |
| reg_off = AllocTemp(); |
| reg_ptr = AllocTemp(); |
| LoadWordDisp(rl_obj.low_reg, offset_offset, reg_off); |
| LoadWordDisp(rl_obj.low_reg, value_offset, reg_ptr); |
| } |
| if (rl_idx.is_const) { |
| OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg)); |
| } else { |
| OpRegReg(kOpAdd, reg_off, rl_idx.low_reg); |
| } |
| FreeTemp(rl_obj.low_reg); |
| if (rl_idx.low_reg != INVALID_REG) { |
| FreeTemp(rl_idx.low_reg); |
| } |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (cu_->instruction_set != kX86) { |
| LoadBaseIndexed(reg_ptr, reg_off, rl_result.low_reg, 1, kUnsignedHalf); |
| } else { |
| LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.low_reg, |
| INVALID_REG, kUnsignedHalf, INVALID_SREG); |
| } |
| FreeTemp(reg_off); |
| FreeTemp(reg_ptr); |
| StoreValue(rl_dest, rl_result); |
| if (range_check) { |
| launch_pad->operands[2] = 0; // no resumption |
| } |
| // Record that we've already inlined & null checked |
| info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| return true; |
| } |
| |
| // Generates an inlined String.is_empty or String.length. |
| bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // dst = src.length(); |
| RegLocation rl_obj = info->args[0]; |
| rl_obj = LoadValue(rl_obj, kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, info->opt_flags); |
| LoadWordDisp(rl_obj.low_reg, mirror::String::CountOffset().Int32Value(), rl_result.low_reg); |
| if (is_empty) { |
| // dst = (dst == 0); |
| if (cu_->instruction_set == kThumb2) { |
| int t_reg = AllocTemp(); |
| OpRegReg(kOpNeg, t_reg, rl_result.low_reg); |
| OpRegRegReg(kOpAdc, rl_result.low_reg, rl_result.low_reg, t_reg); |
| } else { |
| DCHECK_EQ(cu_->instruction_set, kX86); |
| OpRegImm(kOpSub, rl_result.low_reg, 1); |
| OpRegImm(kOpLsr, rl_result.low_reg, 31); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src_i = info->args[0]; |
| RegLocation rl_dest = (size == kLong) ? InlineTargetWide(info) : InlineTarget(info); // result reg |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (size == kLong) { |
| RegLocation rl_i = LoadValueWide(rl_src_i, kCoreReg); |
| int r_i_low = rl_i.low_reg; |
| if (rl_i.low_reg == rl_result.low_reg) { |
| // First REV shall clobber rl_result.low_reg, save the value in a temp for the second REV. |
| r_i_low = AllocTemp(); |
| OpRegCopy(r_i_low, rl_i.low_reg); |
| } |
| OpRegReg(kOpRev, rl_result.low_reg, rl_i.high_reg); |
| OpRegReg(kOpRev, rl_result.high_reg, r_i_low); |
| if (rl_i.low_reg == rl_result.low_reg) { |
| FreeTemp(r_i_low); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| DCHECK(size == kWord || size == kSignedHalf); |
| OpKind op = (size == kWord) ? kOpRev : kOpRevsh; |
| RegLocation rl_i = LoadValue(rl_src_i, kCoreReg); |
| OpRegReg(op, rl_result.low_reg, rl_i.low_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int sign_reg = AllocTemp(); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| OpRegRegImm(kOpAsr, sign_reg, rl_src.low_reg, 31); |
| OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.low_reg, sign_reg); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| if (cu_->instruction_set == kThumb2) { |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTargetWide(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int sign_reg = AllocTemp(); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| OpRegRegImm(kOpAsr, sign_reg, rl_src.high_reg, 31); |
| OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, sign_reg); |
| OpRegRegReg(kOpAdc, rl_result.high_reg, rl_src.high_reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.low_reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.high_reg, sign_reg); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } else { |
| DCHECK_EQ(cu_->instruction_set, kX86); |
| // Reuse source registers to avoid running out of temps |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTargetWide(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg); |
| FreeTemp(rl_src.low_reg); |
| FreeTemp(rl_src.high_reg); |
| int sign_reg = AllocTemp(); |
| // abs(x) = y<=x>>31, (x+y)^y. |
| OpRegRegImm(kOpAsr, sign_reg, rl_result.high_reg, 31); |
| OpRegReg(kOpAdd, rl_result.low_reg, sign_reg); |
| OpRegReg(kOpAdc, rl_result.high_reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.low_reg, sign_reg); |
| OpRegReg(kOpXor, rl_result.high_reg, sign_reg); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| } |
| |
| bool Mir2Lir::GenInlinedAbsFloat(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int signMask = AllocTemp(); |
| LoadConstant(signMask, 0x7fffffff); |
| OpRegRegReg(kOpAnd, rl_result.low_reg, rl_src.low_reg, signMask); |
| FreeTemp(signMask); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedAbsDouble(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src = info->args[0]; |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_dest = InlineTargetWide(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopyWide(rl_result.low_reg, rl_result.high_reg, rl_src.low_reg, rl_src.high_reg); |
| FreeTemp(rl_src.low_reg); |
| FreeTemp(rl_src.high_reg); |
| int signMask = AllocTemp(); |
| LoadConstant(signMask, 0x7fffffff); |
| OpRegReg(kOpAnd, rl_result.high_reg, signMask); |
| FreeTemp(signMask); |
| StoreValueWide(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_dest = InlineTarget(info); |
| StoreValue(rl_dest, rl_src); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_dest = InlineTargetWide(info); |
| StoreValueWide(rl_dest, rl_src); |
| return true; |
| } |
| |
| /* |
| * Fast string.index_of(I) & (II). Tests for simple case of char <= 0xffff, |
| * otherwise bails to standard library code. |
| */ |
| bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| int reg_ptr = TargetReg(kArg0); |
| int reg_char = TargetReg(kArg1); |
| int reg_start = TargetReg(kArg2); |
| |
| RegLocation rl_obj = info->args[0]; |
| RegLocation rl_char = info->args[1]; |
| RegLocation rl_start = info->args[2]; |
| LoadValueDirectFixed(rl_obj, reg_ptr); |
| LoadValueDirectFixed(rl_char, reg_char); |
| if (zero_based) { |
| LoadConstant(reg_start, 0); |
| } else { |
| LoadValueDirectFixed(rl_start, reg_start); |
| } |
| int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf)); |
| GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags); |
| LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info)); |
| intrinsic_launchpads_.Insert(launch_pad); |
| OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad); |
| // NOTE: not a safepoint |
| OpReg(kOpBlx, r_tgt); |
| LIR* resume_tgt = NewLIR0(kPseudoTargetLabel); |
| launch_pad->operands[2] = WrapPointer(resume_tgt); |
| // Record that we've already inlined & null checked |
| info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| RegLocation rl_return = GetReturn(false); |
| RegLocation rl_dest = InlineTarget(info); |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| /* Fast string.compareTo(Ljava/lang/string;)I. */ |
| bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| ClobberCallerSave(); |
| LockCallTemps(); // Using fixed registers |
| int reg_this = TargetReg(kArg0); |
| int reg_cmp = TargetReg(kArg1); |
| |
| RegLocation rl_this = info->args[0]; |
| RegLocation rl_cmp = info->args[1]; |
| LoadValueDirectFixed(rl_this, reg_this); |
| LoadValueDirectFixed(rl_cmp, reg_cmp); |
| int r_tgt = (cu_->instruction_set != kX86) ? |
| LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0; |
| GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags); |
| // TUNING: check if rl_cmp.s_reg_low is already null checked |
| LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info)); |
| intrinsic_launchpads_.Insert(launch_pad); |
| OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad); |
| // NOTE: not a safepoint |
| if (cu_->instruction_set != kX86) { |
| OpReg(kOpBlx, r_tgt); |
| } else { |
| OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)); |
| } |
| launch_pad->operands[2] = 0; // No return possible |
| // Record that we've already inlined & null checked |
| info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); |
| RegLocation rl_return = GetReturn(false); |
| RegLocation rl_dest = InlineTarget(info); |
| StoreValue(rl_dest, rl_return); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) { |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| ThreadOffset offset = Thread::PeerOffset(); |
| if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) { |
| LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.low_reg); |
| } else { |
| CHECK(cu_->instruction_set == kX86); |
| reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.low_reg, offset); |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info, |
| bool is_long, bool is_volatile) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset.wide = 0; // ignore high half in info->args[3] |
| RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info); // result reg |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (is_long) { |
| OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); |
| LoadBaseDispWide(rl_object.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| LoadBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_result.low_reg, 0, kWord); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long, |
| bool is_object, bool is_volatile, bool is_ordered) { |
| if (cu_->instruction_set == kMips) { |
| // TODO - add Mips implementation |
| return false; |
| } |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset.wide = 0; // ignore high half in info->args[3] |
| RegLocation rl_src_value = info->args[4]; // value to store |
| if (is_volatile || is_ordered) { |
| GenMemBarrier(kStoreStore); |
| } |
| RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg); |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| RegLocation rl_value; |
| if (is_long) { |
| rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| OpRegReg(kOpAdd, rl_object.low_reg, rl_offset.low_reg); |
| StoreBaseDispWide(rl_object.low_reg, 0, rl_value.low_reg, rl_value.high_reg); |
| } else { |
| rl_value = LoadValue(rl_src_value, kCoreReg); |
| StoreBaseIndexed(rl_object.low_reg, rl_offset.low_reg, rl_value.low_reg, 0, kWord); |
| } |
| |
| // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard. |
| FreeTemp(rl_offset.low_reg); |
| if (is_volatile) { |
| GenMemBarrier(kStoreLoad); |
| } |
| if (is_object) { |
| MarkGCCard(rl_value.low_reg, rl_object.low_reg); |
| } |
| return true; |
| } |
| |
| void Mir2Lir::GenInvoke(CallInfo* info) { |
| if (!(info->opt_flags & MIR_INLINED)) { |
| DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); |
| if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) |
| ->GenIntrinsic(this, info)) { |
| return; |
| } |
| } |
| InvokeType original_type = info->type; // avoiding mutation by ComputeInvokeInfo |
| int call_state = 0; |
| LIR* null_ck; |
| LIR** p_null_ck = NULL; |
| NextCallInsn next_call_insn; |
| FlushAllRegs(); /* Everything to home location */ |
| // Explicit register usage |
| LockCallTemps(); |
| |
| DexCompilationUnit* cUnit = mir_graph_->GetCurrentDexCompilationUnit(); |
| MethodReference target_method(cUnit->GetDexFile(), info->index); |
| int vtable_idx; |
| uintptr_t direct_code; |
| uintptr_t direct_method; |
| bool skip_this; |
| bool fast_path = |
| cu_->compiler_driver->ComputeInvokeInfo(mir_graph_->GetCurrentDexCompilationUnit(), |
| current_dalvik_offset_, |
| true, true, |
| &info->type, &target_method, |
| &vtable_idx, |
| &direct_code, &direct_method) && !SLOW_INVOKE_PATH; |
| if (info->type == kInterface) { |
| next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck; |
| skip_this = fast_path; |
| } else if (info->type == kDirect) { |
| if (fast_path) { |
| p_null_ck = &null_ck; |
| } |
| next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP; |
| skip_this = false; |
| } else if (info->type == kStatic) { |
| next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP; |
| skip_this = false; |
| } else if (info->type == kSuper) { |
| DCHECK(!fast_path); // Fast path is a direct call. |
| next_call_insn = NextSuperCallInsnSP; |
| skip_this = false; |
| } else { |
| DCHECK_EQ(info->type, kVirtual); |
| next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP; |
| skip_this = fast_path; |
| } |
| if (!info->is_range) { |
| call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck, |
| next_call_insn, target_method, |
| vtable_idx, direct_code, direct_method, |
| original_type, skip_this); |
| } else { |
| call_state = GenDalvikArgsRange(info, call_state, p_null_ck, |
| next_call_insn, target_method, vtable_idx, |
| direct_code, direct_method, original_type, |
| skip_this); |
| } |
| // Finish up any of the call sequence not interleaved in arg loading |
| while (call_state >= 0) { |
| call_state = next_call_insn(cu_, info, call_state, target_method, |
| vtable_idx, direct_code, direct_method, |
| original_type); |
| } |
| LIR* call_inst; |
| if (cu_->instruction_set != kX86) { |
| call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt)); |
| } else { |
| if (fast_path) { |
| if (direct_code == static_cast<unsigned int>(-1)) { |
| // We can have the linker fixup a call relative. |
| call_inst = |
| reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup( |
| target_method.dex_method_index, info->type); |
| } else { |
| call_inst = OpMem(kOpBlx, TargetReg(kArg0), |
| mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value()); |
| } |
| } else { |
| ThreadOffset trampoline(-1); |
| switch (info->type) { |
| case kInterface: |
| trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); |
| break; |
| case kDirect: |
| trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); |
| break; |
| case kStatic: |
| trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); |
| break; |
| case kSuper: |
| trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); |
| break; |
| case kVirtual: |
| trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected invoke type"; |
| } |
| call_inst = OpThreadMem(kOpBlx, trampoline); |
| } |
| } |
| MarkSafepointPC(call_inst); |
| |
| ClobberCallerSave(); |
| if (info->result.location != kLocInvalid) { |
| // We have a following MOVE_RESULT - do it now. |
| if (info->result.wide) { |
| RegLocation ret_loc = GetReturnWide(info->result.fp); |
| StoreValueWide(info->result, ret_loc); |
| } else { |
| RegLocation ret_loc = GetReturn(info->result.fp); |
| StoreValue(info->result, ret_loc); |
| } |
| } |
| } |
| |
| } // namespace art |