Leo Yan | c535077 | 2018-02-26 09:19:12 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | #include <linux/version.h> |
| 4 | #include <linux/ptrace.h> |
| 5 | #include <uapi/linux/bpf.h> |
Toke Høiland-Jørgensen | 7cf245a | 2020-01-20 14:06:49 +0100 | [diff] [blame] | 6 | #include <bpf/bpf_helpers.h> |
Leo Yan | c535077 | 2018-02-26 09:19:12 +0800 | [diff] [blame] | 7 | |
| 8 | /* |
| 9 | * The CPU number, cstate number and pstate number are based |
| 10 | * on 96boards Hikey with octa CA53 CPUs. |
| 11 | * |
| 12 | * Every CPU have three idle states for cstate: |
| 13 | * WFI, CPU_OFF, CLUSTER_OFF |
| 14 | * |
| 15 | * Every CPU have 5 operating points: |
| 16 | * 208MHz, 432MHz, 729MHz, 960MHz, 1200MHz |
| 17 | * |
| 18 | * This code is based on these assumption and other platforms |
| 19 | * need to adjust these definitions. |
| 20 | */ |
| 21 | #define MAX_CPU 8 |
| 22 | #define MAX_PSTATE_ENTRIES 5 |
| 23 | #define MAX_CSTATE_ENTRIES 3 |
| 24 | |
| 25 | static int cpu_opps[] = { 208000, 432000, 729000, 960000, 1200000 }; |
| 26 | |
| 27 | /* |
| 28 | * my_map structure is used to record cstate and pstate index and |
| 29 | * timestamp (Idx, Ts), when new event incoming we need to update |
| 30 | * combination for new state index and timestamp (Idx`, Ts`). |
| 31 | * |
| 32 | * Based on (Idx, Ts) and (Idx`, Ts`) we can calculate the time |
| 33 | * interval for the previous state: Duration(Idx) = Ts` - Ts. |
| 34 | * |
| 35 | * Every CPU has one below array for recording state index and |
| 36 | * timestamp, and record for cstate and pstate saperately: |
| 37 | * |
| 38 | * +--------------------------+ |
| 39 | * | cstate timestamp | |
| 40 | * +--------------------------+ |
| 41 | * | cstate index | |
| 42 | * +--------------------------+ |
| 43 | * | pstate timestamp | |
| 44 | * +--------------------------+ |
| 45 | * | pstate index | |
| 46 | * +--------------------------+ |
| 47 | */ |
| 48 | #define MAP_OFF_CSTATE_TIME 0 |
| 49 | #define MAP_OFF_CSTATE_IDX 1 |
| 50 | #define MAP_OFF_PSTATE_TIME 2 |
| 51 | #define MAP_OFF_PSTATE_IDX 3 |
| 52 | #define MAP_OFF_NUM 4 |
| 53 | |
Daniel T. Lee | f0c328f | 2020-08-23 17:53:34 +0900 | [diff] [blame] | 54 | struct { |
| 55 | __uint(type, BPF_MAP_TYPE_ARRAY); |
| 56 | __type(key, u32); |
| 57 | __type(value, u64); |
| 58 | __uint(max_entries, MAX_CPU * MAP_OFF_NUM); |
| 59 | } my_map SEC(".maps"); |
Leo Yan | c535077 | 2018-02-26 09:19:12 +0800 | [diff] [blame] | 60 | |
| 61 | /* cstate_duration records duration time for every idle state per CPU */ |
Daniel T. Lee | f0c328f | 2020-08-23 17:53:34 +0900 | [diff] [blame] | 62 | struct { |
| 63 | __uint(type, BPF_MAP_TYPE_ARRAY); |
| 64 | __type(key, u32); |
| 65 | __type(value, u64); |
| 66 | __uint(max_entries, MAX_CPU * MAX_CSTATE_ENTRIES); |
| 67 | } cstate_duration SEC(".maps"); |
Leo Yan | c535077 | 2018-02-26 09:19:12 +0800 | [diff] [blame] | 68 | |
| 69 | /* pstate_duration records duration time for every operating point per CPU */ |
Daniel T. Lee | f0c328f | 2020-08-23 17:53:34 +0900 | [diff] [blame] | 70 | struct { |
| 71 | __uint(type, BPF_MAP_TYPE_ARRAY); |
| 72 | __type(key, u32); |
| 73 | __type(value, u64); |
| 74 | __uint(max_entries, MAX_CPU * MAX_PSTATE_ENTRIES); |
| 75 | } pstate_duration SEC(".maps"); |
Leo Yan | c535077 | 2018-02-26 09:19:12 +0800 | [diff] [blame] | 76 | |
| 77 | /* |
| 78 | * The trace events for cpu_idle and cpu_frequency are taken from: |
| 79 | * /sys/kernel/debug/tracing/events/power/cpu_idle/format |
| 80 | * /sys/kernel/debug/tracing/events/power/cpu_frequency/format |
| 81 | * |
| 82 | * These two events have same format, so define one common structure. |
| 83 | */ |
| 84 | struct cpu_args { |
| 85 | u64 pad; |
| 86 | u32 state; |
| 87 | u32 cpu_id; |
| 88 | }; |
| 89 | |
| 90 | /* calculate pstate index, returns MAX_PSTATE_ENTRIES for failure */ |
| 91 | static u32 find_cpu_pstate_idx(u32 frequency) |
| 92 | { |
| 93 | u32 i; |
| 94 | |
| 95 | for (i = 0; i < sizeof(cpu_opps) / sizeof(u32); i++) { |
| 96 | if (frequency == cpu_opps[i]) |
| 97 | return i; |
| 98 | } |
| 99 | |
| 100 | return i; |
| 101 | } |
| 102 | |
| 103 | SEC("tracepoint/power/cpu_idle") |
| 104 | int bpf_prog1(struct cpu_args *ctx) |
| 105 | { |
| 106 | u64 *cts, *pts, *cstate, *pstate, prev_state, cur_ts, delta; |
| 107 | u32 key, cpu, pstate_idx; |
| 108 | u64 *val; |
| 109 | |
| 110 | if (ctx->cpu_id > MAX_CPU) |
| 111 | return 0; |
| 112 | |
| 113 | cpu = ctx->cpu_id; |
| 114 | |
| 115 | key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_TIME; |
| 116 | cts = bpf_map_lookup_elem(&my_map, &key); |
| 117 | if (!cts) |
| 118 | return 0; |
| 119 | |
| 120 | key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_IDX; |
| 121 | cstate = bpf_map_lookup_elem(&my_map, &key); |
| 122 | if (!cstate) |
| 123 | return 0; |
| 124 | |
| 125 | key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_TIME; |
| 126 | pts = bpf_map_lookup_elem(&my_map, &key); |
| 127 | if (!pts) |
| 128 | return 0; |
| 129 | |
| 130 | key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_IDX; |
| 131 | pstate = bpf_map_lookup_elem(&my_map, &key); |
| 132 | if (!pstate) |
| 133 | return 0; |
| 134 | |
| 135 | prev_state = *cstate; |
| 136 | *cstate = ctx->state; |
| 137 | |
| 138 | if (!*cts) { |
| 139 | *cts = bpf_ktime_get_ns(); |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | cur_ts = bpf_ktime_get_ns(); |
| 144 | delta = cur_ts - *cts; |
| 145 | *cts = cur_ts; |
| 146 | |
| 147 | /* |
| 148 | * When state doesn't equal to (u32)-1, the cpu will enter |
| 149 | * one idle state; for this case we need to record interval |
| 150 | * for the pstate. |
| 151 | * |
| 152 | * OPP2 |
| 153 | * +---------------------+ |
| 154 | * OPP1 | | |
| 155 | * ---------+ | |
| 156 | * | Idle state |
| 157 | * +--------------- |
| 158 | * |
| 159 | * |<- pstate duration ->| |
| 160 | * ^ ^ |
| 161 | * pts cur_ts |
| 162 | */ |
| 163 | if (ctx->state != (u32)-1) { |
| 164 | |
| 165 | /* record pstate after have first cpu_frequency event */ |
| 166 | if (!*pts) |
| 167 | return 0; |
| 168 | |
| 169 | delta = cur_ts - *pts; |
| 170 | |
| 171 | pstate_idx = find_cpu_pstate_idx(*pstate); |
| 172 | if (pstate_idx >= MAX_PSTATE_ENTRIES) |
| 173 | return 0; |
| 174 | |
| 175 | key = cpu * MAX_PSTATE_ENTRIES + pstate_idx; |
| 176 | val = bpf_map_lookup_elem(&pstate_duration, &key); |
| 177 | if (val) |
| 178 | __sync_fetch_and_add((long *)val, delta); |
| 179 | |
| 180 | /* |
| 181 | * When state equal to (u32)-1, the cpu just exits from one |
| 182 | * specific idle state; for this case we need to record |
| 183 | * interval for the pstate. |
| 184 | * |
| 185 | * OPP2 |
| 186 | * -----------+ |
| 187 | * | OPP1 |
| 188 | * | +----------- |
| 189 | * | Idle state | |
| 190 | * +---------------------+ |
| 191 | * |
| 192 | * |<- cstate duration ->| |
| 193 | * ^ ^ |
| 194 | * cts cur_ts |
| 195 | */ |
| 196 | } else { |
| 197 | |
| 198 | key = cpu * MAX_CSTATE_ENTRIES + prev_state; |
| 199 | val = bpf_map_lookup_elem(&cstate_duration, &key); |
| 200 | if (val) |
| 201 | __sync_fetch_and_add((long *)val, delta); |
| 202 | } |
| 203 | |
| 204 | /* Update timestamp for pstate as new start time */ |
| 205 | if (*pts) |
| 206 | *pts = cur_ts; |
| 207 | |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | SEC("tracepoint/power/cpu_frequency") |
| 212 | int bpf_prog2(struct cpu_args *ctx) |
| 213 | { |
| 214 | u64 *pts, *cstate, *pstate, prev_state, cur_ts, delta; |
| 215 | u32 key, cpu, pstate_idx; |
| 216 | u64 *val; |
| 217 | |
| 218 | cpu = ctx->cpu_id; |
| 219 | |
| 220 | key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_TIME; |
| 221 | pts = bpf_map_lookup_elem(&my_map, &key); |
| 222 | if (!pts) |
| 223 | return 0; |
| 224 | |
| 225 | key = cpu * MAP_OFF_NUM + MAP_OFF_PSTATE_IDX; |
| 226 | pstate = bpf_map_lookup_elem(&my_map, &key); |
| 227 | if (!pstate) |
| 228 | return 0; |
| 229 | |
| 230 | key = cpu * MAP_OFF_NUM + MAP_OFF_CSTATE_IDX; |
| 231 | cstate = bpf_map_lookup_elem(&my_map, &key); |
| 232 | if (!cstate) |
| 233 | return 0; |
| 234 | |
| 235 | prev_state = *pstate; |
| 236 | *pstate = ctx->state; |
| 237 | |
| 238 | if (!*pts) { |
| 239 | *pts = bpf_ktime_get_ns(); |
| 240 | return 0; |
| 241 | } |
| 242 | |
| 243 | cur_ts = bpf_ktime_get_ns(); |
| 244 | delta = cur_ts - *pts; |
| 245 | *pts = cur_ts; |
| 246 | |
| 247 | /* When CPU is in idle, bail out to skip pstate statistics */ |
| 248 | if (*cstate != (u32)(-1)) |
| 249 | return 0; |
| 250 | |
| 251 | /* |
| 252 | * The cpu changes to another different OPP (in below diagram |
| 253 | * change frequency from OPP3 to OPP1), need recording interval |
| 254 | * for previous frequency OPP3 and update timestamp as start |
| 255 | * time for new frequency OPP1. |
| 256 | * |
| 257 | * OPP3 |
| 258 | * +---------------------+ |
| 259 | * OPP2 | | |
| 260 | * ---------+ | |
| 261 | * | OPP1 |
| 262 | * +--------------- |
| 263 | * |
| 264 | * |<- pstate duration ->| |
| 265 | * ^ ^ |
| 266 | * pts cur_ts |
| 267 | */ |
| 268 | pstate_idx = find_cpu_pstate_idx(*pstate); |
| 269 | if (pstate_idx >= MAX_PSTATE_ENTRIES) |
| 270 | return 0; |
| 271 | |
| 272 | key = cpu * MAX_PSTATE_ENTRIES + pstate_idx; |
| 273 | val = bpf_map_lookup_elem(&pstate_duration, &key); |
| 274 | if (val) |
| 275 | __sync_fetch_and_add((long *)val, delta); |
| 276 | |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | char _license[] SEC("license") = "GPL"; |
| 281 | u32 _version SEC("version") = LINUX_VERSION_CODE; |