Cristian Dumitrescu | 35149b2 | 2020-08-28 10:26:28 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright(c) 2020 Intel Corporation. */ |
| 3 | |
| 4 | #define _GNU_SOURCE |
| 5 | #include <poll.h> |
| 6 | #include <pthread.h> |
| 7 | #include <signal.h> |
| 8 | #include <sched.h> |
| 9 | #include <stdio.h> |
| 10 | #include <stdlib.h> |
| 11 | #include <string.h> |
| 12 | #include <sys/mman.h> |
| 13 | #include <sys/resource.h> |
| 14 | #include <sys/socket.h> |
| 15 | #include <sys/types.h> |
| 16 | #include <time.h> |
| 17 | #include <unistd.h> |
| 18 | #include <getopt.h> |
| 19 | #include <netinet/ether.h> |
| 20 | #include <net/if.h> |
| 21 | |
| 22 | #include <linux/bpf.h> |
| 23 | #include <linux/if_link.h> |
| 24 | #include <linux/if_xdp.h> |
| 25 | |
| 26 | #include <bpf/libbpf.h> |
| 27 | #include <bpf/xsk.h> |
| 28 | #include <bpf/bpf.h> |
| 29 | |
Andrii Nakryiko | c58f981 | 2021-12-01 15:28:23 -0800 | [diff] [blame] | 30 | /* libbpf APIs for AF_XDP are deprecated starting from v0.7 */ |
| 31 | #pragma GCC diagnostic ignored "-Wdeprecated-declarations" |
| 32 | |
Cristian Dumitrescu | 35149b2 | 2020-08-28 10:26:28 +0200 | [diff] [blame] | 33 | #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) |
| 34 | |
| 35 | typedef __u64 u64; |
| 36 | typedef __u32 u32; |
| 37 | typedef __u16 u16; |
| 38 | typedef __u8 u8; |
| 39 | |
| 40 | /* This program illustrates the packet forwarding between multiple AF_XDP |
| 41 | * sockets in multi-threaded environment. All threads are sharing a common |
| 42 | * buffer pool, with each socket having its own private buffer cache. |
| 43 | * |
| 44 | * Example 1: Single thread handling two sockets. The packets received by socket |
| 45 | * A (interface IFA, queue QA) are forwarded to socket B (interface IFB, queue |
| 46 | * QB), while the packets received by socket B are forwarded to socket A. The |
| 47 | * thread is running on CPU core X: |
| 48 | * |
| 49 | * ./xsk_fwd -i IFA -q QA -i IFB -q QB -c X |
| 50 | * |
| 51 | * Example 2: Two threads, each handling two sockets. The thread running on CPU |
| 52 | * core X forwards all the packets received by socket A to socket B, and all the |
| 53 | * packets received by socket B to socket A. The thread running on CPU core Y is |
| 54 | * performing the same packet forwarding between sockets C and D: |
| 55 | * |
| 56 | * ./xsk_fwd -i IFA -q QA -i IFB -q QB -i IFC -q QC -i IFD -q QD |
| 57 | * -c CX -c CY |
| 58 | */ |
| 59 | |
| 60 | /* |
| 61 | * Buffer pool and buffer cache |
| 62 | * |
| 63 | * For packet forwarding, the packet buffers are typically allocated from the |
| 64 | * pool for packet reception and freed back to the pool for further reuse once |
| 65 | * the packet transmission is completed. |
| 66 | * |
| 67 | * The buffer pool is shared between multiple threads. In order to minimize the |
| 68 | * access latency to the shared buffer pool, each thread creates one (or |
| 69 | * several) buffer caches, which, unlike the buffer pool, are private to the |
| 70 | * thread that creates them and therefore cannot be shared with other threads. |
| 71 | * The access to the shared pool is only needed either (A) when the cache gets |
| 72 | * empty due to repeated buffer allocations and it needs to be replenished from |
| 73 | * the pool, or (B) when the cache gets full due to repeated buffer free and it |
| 74 | * needs to be flushed back to the pull. |
| 75 | * |
| 76 | * In a packet forwarding system, a packet received on any input port can |
| 77 | * potentially be transmitted on any output port, depending on the forwarding |
| 78 | * configuration. For AF_XDP sockets, for this to work with zero-copy of the |
| 79 | * packet buffers when, it is required that the buffer pool memory fits into the |
| 80 | * UMEM area shared by all the sockets. |
| 81 | */ |
| 82 | |
| 83 | struct bpool_params { |
| 84 | u32 n_buffers; |
| 85 | u32 buffer_size; |
| 86 | int mmap_flags; |
| 87 | |
| 88 | u32 n_users_max; |
| 89 | u32 n_buffers_per_slab; |
| 90 | }; |
| 91 | |
| 92 | /* This buffer pool implementation organizes the buffers into equally sized |
| 93 | * slabs of *n_buffers_per_slab*. Initially, there are *n_slabs* slabs in the |
| 94 | * pool that are completely filled with buffer pointers (full slabs). |
| 95 | * |
| 96 | * Each buffer cache has a slab for buffer allocation and a slab for buffer |
| 97 | * free, with both of these slabs initially empty. When the cache's allocation |
| 98 | * slab goes empty, it is swapped with one of the available full slabs from the |
| 99 | * pool, if any is available. When the cache's free slab goes full, it is |
| 100 | * swapped for one of the empty slabs from the pool, which is guaranteed to |
| 101 | * succeed. |
| 102 | * |
| 103 | * Partially filled slabs never get traded between the cache and the pool |
| 104 | * (except when the cache itself is destroyed), which enables fast operation |
| 105 | * through pointer swapping. |
| 106 | */ |
| 107 | struct bpool { |
| 108 | struct bpool_params params; |
| 109 | pthread_mutex_t lock; |
| 110 | void *addr; |
| 111 | |
| 112 | u64 **slabs; |
| 113 | u64 **slabs_reserved; |
| 114 | u64 *buffers; |
| 115 | u64 *buffers_reserved; |
| 116 | |
| 117 | u64 n_slabs; |
| 118 | u64 n_slabs_reserved; |
| 119 | u64 n_buffers; |
| 120 | |
| 121 | u64 n_slabs_available; |
| 122 | u64 n_slabs_reserved_available; |
| 123 | |
| 124 | struct xsk_umem_config umem_cfg; |
| 125 | struct xsk_ring_prod umem_fq; |
| 126 | struct xsk_ring_cons umem_cq; |
| 127 | struct xsk_umem *umem; |
| 128 | }; |
| 129 | |
| 130 | static struct bpool * |
| 131 | bpool_init(struct bpool_params *params, |
| 132 | struct xsk_umem_config *umem_cfg) |
| 133 | { |
| 134 | struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY}; |
| 135 | u64 n_slabs, n_slabs_reserved, n_buffers, n_buffers_reserved; |
| 136 | u64 slabs_size, slabs_reserved_size; |
| 137 | u64 buffers_size, buffers_reserved_size; |
| 138 | u64 total_size, i; |
| 139 | struct bpool *bp; |
| 140 | u8 *p; |
| 141 | int status; |
| 142 | |
| 143 | /* mmap prep. */ |
| 144 | if (setrlimit(RLIMIT_MEMLOCK, &r)) |
| 145 | return NULL; |
| 146 | |
| 147 | /* bpool internals dimensioning. */ |
| 148 | n_slabs = (params->n_buffers + params->n_buffers_per_slab - 1) / |
| 149 | params->n_buffers_per_slab; |
| 150 | n_slabs_reserved = params->n_users_max * 2; |
| 151 | n_buffers = n_slabs * params->n_buffers_per_slab; |
| 152 | n_buffers_reserved = n_slabs_reserved * params->n_buffers_per_slab; |
| 153 | |
| 154 | slabs_size = n_slabs * sizeof(u64 *); |
| 155 | slabs_reserved_size = n_slabs_reserved * sizeof(u64 *); |
| 156 | buffers_size = n_buffers * sizeof(u64); |
| 157 | buffers_reserved_size = n_buffers_reserved * sizeof(u64); |
| 158 | |
| 159 | total_size = sizeof(struct bpool) + |
| 160 | slabs_size + slabs_reserved_size + |
| 161 | buffers_size + buffers_reserved_size; |
| 162 | |
| 163 | /* bpool memory allocation. */ |
| 164 | p = calloc(total_size, sizeof(u8)); |
| 165 | if (!p) |
| 166 | return NULL; |
| 167 | |
| 168 | /* bpool memory initialization. */ |
| 169 | bp = (struct bpool *)p; |
| 170 | memcpy(&bp->params, params, sizeof(*params)); |
| 171 | bp->params.n_buffers = n_buffers; |
| 172 | |
| 173 | bp->slabs = (u64 **)&p[sizeof(struct bpool)]; |
| 174 | bp->slabs_reserved = (u64 **)&p[sizeof(struct bpool) + |
| 175 | slabs_size]; |
| 176 | bp->buffers = (u64 *)&p[sizeof(struct bpool) + |
| 177 | slabs_size + slabs_reserved_size]; |
| 178 | bp->buffers_reserved = (u64 *)&p[sizeof(struct bpool) + |
| 179 | slabs_size + slabs_reserved_size + buffers_size]; |
| 180 | |
| 181 | bp->n_slabs = n_slabs; |
| 182 | bp->n_slabs_reserved = n_slabs_reserved; |
| 183 | bp->n_buffers = n_buffers; |
| 184 | |
| 185 | for (i = 0; i < n_slabs; i++) |
| 186 | bp->slabs[i] = &bp->buffers[i * params->n_buffers_per_slab]; |
| 187 | bp->n_slabs_available = n_slabs; |
| 188 | |
| 189 | for (i = 0; i < n_slabs_reserved; i++) |
| 190 | bp->slabs_reserved[i] = &bp->buffers_reserved[i * |
| 191 | params->n_buffers_per_slab]; |
| 192 | bp->n_slabs_reserved_available = n_slabs_reserved; |
| 193 | |
| 194 | for (i = 0; i < n_buffers; i++) |
| 195 | bp->buffers[i] = i * params->buffer_size; |
| 196 | |
| 197 | /* lock. */ |
| 198 | status = pthread_mutex_init(&bp->lock, NULL); |
| 199 | if (status) { |
| 200 | free(p); |
| 201 | return NULL; |
| 202 | } |
| 203 | |
| 204 | /* mmap. */ |
| 205 | bp->addr = mmap(NULL, |
| 206 | n_buffers * params->buffer_size, |
| 207 | PROT_READ | PROT_WRITE, |
| 208 | MAP_PRIVATE | MAP_ANONYMOUS | params->mmap_flags, |
| 209 | -1, |
| 210 | 0); |
| 211 | if (bp->addr == MAP_FAILED) { |
| 212 | pthread_mutex_destroy(&bp->lock); |
| 213 | free(p); |
| 214 | return NULL; |
| 215 | } |
| 216 | |
| 217 | /* umem. */ |
| 218 | status = xsk_umem__create(&bp->umem, |
| 219 | bp->addr, |
| 220 | bp->params.n_buffers * bp->params.buffer_size, |
| 221 | &bp->umem_fq, |
| 222 | &bp->umem_cq, |
| 223 | umem_cfg); |
| 224 | if (status) { |
| 225 | munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size); |
| 226 | pthread_mutex_destroy(&bp->lock); |
| 227 | free(p); |
| 228 | return NULL; |
| 229 | } |
| 230 | memcpy(&bp->umem_cfg, umem_cfg, sizeof(*umem_cfg)); |
| 231 | |
| 232 | return bp; |
| 233 | } |
| 234 | |
| 235 | static void |
| 236 | bpool_free(struct bpool *bp) |
| 237 | { |
| 238 | if (!bp) |
| 239 | return; |
| 240 | |
| 241 | xsk_umem__delete(bp->umem); |
| 242 | munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size); |
| 243 | pthread_mutex_destroy(&bp->lock); |
| 244 | free(bp); |
| 245 | } |
| 246 | |
| 247 | struct bcache { |
| 248 | struct bpool *bp; |
| 249 | |
| 250 | u64 *slab_cons; |
| 251 | u64 *slab_prod; |
| 252 | |
| 253 | u64 n_buffers_cons; |
| 254 | u64 n_buffers_prod; |
| 255 | }; |
| 256 | |
| 257 | static u32 |
| 258 | bcache_slab_size(struct bcache *bc) |
| 259 | { |
| 260 | struct bpool *bp = bc->bp; |
| 261 | |
| 262 | return bp->params.n_buffers_per_slab; |
| 263 | } |
| 264 | |
| 265 | static struct bcache * |
| 266 | bcache_init(struct bpool *bp) |
| 267 | { |
| 268 | struct bcache *bc; |
| 269 | |
| 270 | bc = calloc(1, sizeof(struct bcache)); |
| 271 | if (!bc) |
| 272 | return NULL; |
| 273 | |
| 274 | bc->bp = bp; |
| 275 | bc->n_buffers_cons = 0; |
| 276 | bc->n_buffers_prod = 0; |
| 277 | |
| 278 | pthread_mutex_lock(&bp->lock); |
| 279 | if (bp->n_slabs_reserved_available == 0) { |
| 280 | pthread_mutex_unlock(&bp->lock); |
| 281 | free(bc); |
| 282 | return NULL; |
| 283 | } |
| 284 | |
| 285 | bc->slab_cons = bp->slabs_reserved[bp->n_slabs_reserved_available - 1]; |
| 286 | bc->slab_prod = bp->slabs_reserved[bp->n_slabs_reserved_available - 2]; |
| 287 | bp->n_slabs_reserved_available -= 2; |
| 288 | pthread_mutex_unlock(&bp->lock); |
| 289 | |
| 290 | return bc; |
| 291 | } |
| 292 | |
| 293 | static void |
| 294 | bcache_free(struct bcache *bc) |
| 295 | { |
| 296 | struct bpool *bp; |
| 297 | |
| 298 | if (!bc) |
| 299 | return; |
| 300 | |
| 301 | /* In order to keep this example simple, the case of freeing any |
| 302 | * existing buffers from the cache back to the pool is ignored. |
| 303 | */ |
| 304 | |
| 305 | bp = bc->bp; |
| 306 | pthread_mutex_lock(&bp->lock); |
| 307 | bp->slabs_reserved[bp->n_slabs_reserved_available] = bc->slab_prod; |
| 308 | bp->slabs_reserved[bp->n_slabs_reserved_available + 1] = bc->slab_cons; |
| 309 | bp->n_slabs_reserved_available += 2; |
| 310 | pthread_mutex_unlock(&bp->lock); |
| 311 | |
| 312 | free(bc); |
| 313 | } |
| 314 | |
| 315 | /* To work correctly, the implementation requires that the *n_buffers* input |
| 316 | * argument is never greater than the buffer pool's *n_buffers_per_slab*. This |
| 317 | * is typically the case, with one exception taking place when large number of |
| 318 | * buffers are allocated at init time (e.g. for the UMEM fill queue setup). |
| 319 | */ |
| 320 | static inline u32 |
| 321 | bcache_cons_check(struct bcache *bc, u32 n_buffers) |
| 322 | { |
| 323 | struct bpool *bp = bc->bp; |
| 324 | u64 n_buffers_per_slab = bp->params.n_buffers_per_slab; |
| 325 | u64 n_buffers_cons = bc->n_buffers_cons; |
| 326 | u64 n_slabs_available; |
| 327 | u64 *slab_full; |
| 328 | |
| 329 | /* |
| 330 | * Consumer slab is not empty: Use what's available locally. Do not |
| 331 | * look for more buffers from the pool when the ask can only be |
| 332 | * partially satisfied. |
| 333 | */ |
| 334 | if (n_buffers_cons) |
| 335 | return (n_buffers_cons < n_buffers) ? |
| 336 | n_buffers_cons : |
| 337 | n_buffers; |
| 338 | |
| 339 | /* |
| 340 | * Consumer slab is empty: look to trade the current consumer slab |
| 341 | * (full) for a full slab from the pool, if any is available. |
| 342 | */ |
| 343 | pthread_mutex_lock(&bp->lock); |
| 344 | n_slabs_available = bp->n_slabs_available; |
| 345 | if (!n_slabs_available) { |
| 346 | pthread_mutex_unlock(&bp->lock); |
| 347 | return 0; |
| 348 | } |
| 349 | |
| 350 | n_slabs_available--; |
| 351 | slab_full = bp->slabs[n_slabs_available]; |
| 352 | bp->slabs[n_slabs_available] = bc->slab_cons; |
| 353 | bp->n_slabs_available = n_slabs_available; |
| 354 | pthread_mutex_unlock(&bp->lock); |
| 355 | |
| 356 | bc->slab_cons = slab_full; |
| 357 | bc->n_buffers_cons = n_buffers_per_slab; |
| 358 | return n_buffers; |
| 359 | } |
| 360 | |
| 361 | static inline u64 |
| 362 | bcache_cons(struct bcache *bc) |
| 363 | { |
| 364 | u64 n_buffers_cons = bc->n_buffers_cons - 1; |
| 365 | u64 buffer; |
| 366 | |
| 367 | buffer = bc->slab_cons[n_buffers_cons]; |
| 368 | bc->n_buffers_cons = n_buffers_cons; |
| 369 | return buffer; |
| 370 | } |
| 371 | |
| 372 | static inline void |
| 373 | bcache_prod(struct bcache *bc, u64 buffer) |
| 374 | { |
| 375 | struct bpool *bp = bc->bp; |
| 376 | u64 n_buffers_per_slab = bp->params.n_buffers_per_slab; |
| 377 | u64 n_buffers_prod = bc->n_buffers_prod; |
| 378 | u64 n_slabs_available; |
| 379 | u64 *slab_empty; |
| 380 | |
| 381 | /* |
| 382 | * Producer slab is not yet full: store the current buffer to it. |
| 383 | */ |
| 384 | if (n_buffers_prod < n_buffers_per_slab) { |
| 385 | bc->slab_prod[n_buffers_prod] = buffer; |
| 386 | bc->n_buffers_prod = n_buffers_prod + 1; |
| 387 | return; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * Producer slab is full: trade the cache's current producer slab |
| 392 | * (full) for an empty slab from the pool, then store the current |
| 393 | * buffer to the new producer slab. As one full slab exists in the |
| 394 | * cache, it is guaranteed that there is at least one empty slab |
| 395 | * available in the pool. |
| 396 | */ |
| 397 | pthread_mutex_lock(&bp->lock); |
| 398 | n_slabs_available = bp->n_slabs_available; |
| 399 | slab_empty = bp->slabs[n_slabs_available]; |
| 400 | bp->slabs[n_slabs_available] = bc->slab_prod; |
| 401 | bp->n_slabs_available = n_slabs_available + 1; |
| 402 | pthread_mutex_unlock(&bp->lock); |
| 403 | |
| 404 | slab_empty[0] = buffer; |
| 405 | bc->slab_prod = slab_empty; |
| 406 | bc->n_buffers_prod = 1; |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * Port |
| 411 | * |
| 412 | * Each of the forwarding ports sits on top of an AF_XDP socket. In order for |
| 413 | * packet forwarding to happen with no packet buffer copy, all the sockets need |
| 414 | * to share the same UMEM area, which is used as the buffer pool memory. |
| 415 | */ |
| 416 | #ifndef MAX_BURST_RX |
| 417 | #define MAX_BURST_RX 64 |
| 418 | #endif |
| 419 | |
| 420 | #ifndef MAX_BURST_TX |
| 421 | #define MAX_BURST_TX 64 |
| 422 | #endif |
| 423 | |
| 424 | struct burst_rx { |
| 425 | u64 addr[MAX_BURST_RX]; |
| 426 | u32 len[MAX_BURST_RX]; |
| 427 | }; |
| 428 | |
| 429 | struct burst_tx { |
| 430 | u64 addr[MAX_BURST_TX]; |
| 431 | u32 len[MAX_BURST_TX]; |
| 432 | u32 n_pkts; |
| 433 | }; |
| 434 | |
| 435 | struct port_params { |
| 436 | struct xsk_socket_config xsk_cfg; |
| 437 | struct bpool *bp; |
| 438 | const char *iface; |
| 439 | u32 iface_queue; |
| 440 | }; |
| 441 | |
| 442 | struct port { |
| 443 | struct port_params params; |
| 444 | |
| 445 | struct bcache *bc; |
| 446 | |
| 447 | struct xsk_ring_cons rxq; |
| 448 | struct xsk_ring_prod txq; |
| 449 | struct xsk_ring_prod umem_fq; |
| 450 | struct xsk_ring_cons umem_cq; |
| 451 | struct xsk_socket *xsk; |
| 452 | int umem_fq_initialized; |
| 453 | |
| 454 | u64 n_pkts_rx; |
| 455 | u64 n_pkts_tx; |
| 456 | }; |
| 457 | |
| 458 | static void |
| 459 | port_free(struct port *p) |
| 460 | { |
| 461 | if (!p) |
| 462 | return; |
| 463 | |
| 464 | /* To keep this example simple, the code to free the buffers from the |
| 465 | * socket's receive and transmit queues, as well as from the UMEM fill |
| 466 | * and completion queues, is not included. |
| 467 | */ |
| 468 | |
| 469 | if (p->xsk) |
| 470 | xsk_socket__delete(p->xsk); |
| 471 | |
| 472 | bcache_free(p->bc); |
| 473 | |
| 474 | free(p); |
| 475 | } |
| 476 | |
| 477 | static struct port * |
| 478 | port_init(struct port_params *params) |
| 479 | { |
| 480 | struct port *p; |
| 481 | u32 umem_fq_size, pos = 0; |
| 482 | int status, i; |
| 483 | |
| 484 | /* Memory allocation and initialization. */ |
| 485 | p = calloc(sizeof(struct port), 1); |
| 486 | if (!p) |
| 487 | return NULL; |
| 488 | |
| 489 | memcpy(&p->params, params, sizeof(p->params)); |
| 490 | umem_fq_size = params->bp->umem_cfg.fill_size; |
| 491 | |
| 492 | /* bcache. */ |
| 493 | p->bc = bcache_init(params->bp); |
| 494 | if (!p->bc || |
| 495 | (bcache_slab_size(p->bc) < umem_fq_size) || |
| 496 | (bcache_cons_check(p->bc, umem_fq_size) < umem_fq_size)) { |
| 497 | port_free(p); |
| 498 | return NULL; |
| 499 | } |
| 500 | |
| 501 | /* xsk socket. */ |
| 502 | status = xsk_socket__create_shared(&p->xsk, |
| 503 | params->iface, |
| 504 | params->iface_queue, |
| 505 | params->bp->umem, |
| 506 | &p->rxq, |
| 507 | &p->txq, |
| 508 | &p->umem_fq, |
| 509 | &p->umem_cq, |
| 510 | ¶ms->xsk_cfg); |
| 511 | if (status) { |
| 512 | port_free(p); |
| 513 | return NULL; |
| 514 | } |
| 515 | |
| 516 | /* umem fq. */ |
| 517 | xsk_ring_prod__reserve(&p->umem_fq, umem_fq_size, &pos); |
| 518 | |
| 519 | for (i = 0; i < umem_fq_size; i++) |
| 520 | *xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) = |
| 521 | bcache_cons(p->bc); |
| 522 | |
| 523 | xsk_ring_prod__submit(&p->umem_fq, umem_fq_size); |
| 524 | p->umem_fq_initialized = 1; |
| 525 | |
| 526 | return p; |
| 527 | } |
| 528 | |
| 529 | static inline u32 |
| 530 | port_rx_burst(struct port *p, struct burst_rx *b) |
| 531 | { |
| 532 | u32 n_pkts, pos, i; |
| 533 | |
| 534 | /* Free buffers for FQ replenish. */ |
| 535 | n_pkts = ARRAY_SIZE(b->addr); |
| 536 | |
| 537 | n_pkts = bcache_cons_check(p->bc, n_pkts); |
| 538 | if (!n_pkts) |
| 539 | return 0; |
| 540 | |
| 541 | /* RXQ. */ |
| 542 | n_pkts = xsk_ring_cons__peek(&p->rxq, n_pkts, &pos); |
| 543 | if (!n_pkts) { |
| 544 | if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) { |
| 545 | struct pollfd pollfd = { |
| 546 | .fd = xsk_socket__fd(p->xsk), |
| 547 | .events = POLLIN, |
| 548 | }; |
| 549 | |
| 550 | poll(&pollfd, 1, 0); |
| 551 | } |
| 552 | return 0; |
| 553 | } |
| 554 | |
| 555 | for (i = 0; i < n_pkts; i++) { |
| 556 | b->addr[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->addr; |
| 557 | b->len[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->len; |
| 558 | } |
| 559 | |
| 560 | xsk_ring_cons__release(&p->rxq, n_pkts); |
| 561 | p->n_pkts_rx += n_pkts; |
| 562 | |
| 563 | /* UMEM FQ. */ |
| 564 | for ( ; ; ) { |
| 565 | int status; |
| 566 | |
| 567 | status = xsk_ring_prod__reserve(&p->umem_fq, n_pkts, &pos); |
| 568 | if (status == n_pkts) |
| 569 | break; |
| 570 | |
| 571 | if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) { |
| 572 | struct pollfd pollfd = { |
| 573 | .fd = xsk_socket__fd(p->xsk), |
| 574 | .events = POLLIN, |
| 575 | }; |
| 576 | |
| 577 | poll(&pollfd, 1, 0); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | for (i = 0; i < n_pkts; i++) |
| 582 | *xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) = |
| 583 | bcache_cons(p->bc); |
| 584 | |
| 585 | xsk_ring_prod__submit(&p->umem_fq, n_pkts); |
| 586 | |
| 587 | return n_pkts; |
| 588 | } |
| 589 | |
| 590 | static inline void |
| 591 | port_tx_burst(struct port *p, struct burst_tx *b) |
| 592 | { |
| 593 | u32 n_pkts, pos, i; |
| 594 | int status; |
| 595 | |
| 596 | /* UMEM CQ. */ |
| 597 | n_pkts = p->params.bp->umem_cfg.comp_size; |
| 598 | |
| 599 | n_pkts = xsk_ring_cons__peek(&p->umem_cq, n_pkts, &pos); |
| 600 | |
| 601 | for (i = 0; i < n_pkts; i++) { |
| 602 | u64 addr = *xsk_ring_cons__comp_addr(&p->umem_cq, pos + i); |
| 603 | |
| 604 | bcache_prod(p->bc, addr); |
| 605 | } |
| 606 | |
| 607 | xsk_ring_cons__release(&p->umem_cq, n_pkts); |
| 608 | |
| 609 | /* TXQ. */ |
| 610 | n_pkts = b->n_pkts; |
| 611 | |
| 612 | for ( ; ; ) { |
| 613 | status = xsk_ring_prod__reserve(&p->txq, n_pkts, &pos); |
| 614 | if (status == n_pkts) |
| 615 | break; |
| 616 | |
| 617 | if (xsk_ring_prod__needs_wakeup(&p->txq)) |
| 618 | sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT, |
| 619 | NULL, 0); |
| 620 | } |
| 621 | |
| 622 | for (i = 0; i < n_pkts; i++) { |
| 623 | xsk_ring_prod__tx_desc(&p->txq, pos + i)->addr = b->addr[i]; |
| 624 | xsk_ring_prod__tx_desc(&p->txq, pos + i)->len = b->len[i]; |
| 625 | } |
| 626 | |
| 627 | xsk_ring_prod__submit(&p->txq, n_pkts); |
| 628 | if (xsk_ring_prod__needs_wakeup(&p->txq)) |
| 629 | sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0); |
| 630 | p->n_pkts_tx += n_pkts; |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * Thread |
| 635 | * |
| 636 | * Packet forwarding threads. |
| 637 | */ |
| 638 | #ifndef MAX_PORTS_PER_THREAD |
| 639 | #define MAX_PORTS_PER_THREAD 16 |
| 640 | #endif |
| 641 | |
| 642 | struct thread_data { |
| 643 | struct port *ports_rx[MAX_PORTS_PER_THREAD]; |
| 644 | struct port *ports_tx[MAX_PORTS_PER_THREAD]; |
| 645 | u32 n_ports_rx; |
| 646 | struct burst_rx burst_rx; |
| 647 | struct burst_tx burst_tx[MAX_PORTS_PER_THREAD]; |
| 648 | u32 cpu_core_id; |
| 649 | int quit; |
| 650 | }; |
| 651 | |
| 652 | static void swap_mac_addresses(void *data) |
| 653 | { |
| 654 | struct ether_header *eth = (struct ether_header *)data; |
| 655 | struct ether_addr *src_addr = (struct ether_addr *)ð->ether_shost; |
| 656 | struct ether_addr *dst_addr = (struct ether_addr *)ð->ether_dhost; |
| 657 | struct ether_addr tmp; |
| 658 | |
| 659 | tmp = *src_addr; |
| 660 | *src_addr = *dst_addr; |
| 661 | *dst_addr = tmp; |
| 662 | } |
| 663 | |
| 664 | static void * |
| 665 | thread_func(void *arg) |
| 666 | { |
| 667 | struct thread_data *t = arg; |
| 668 | cpu_set_t cpu_cores; |
| 669 | u32 i; |
| 670 | |
| 671 | CPU_ZERO(&cpu_cores); |
| 672 | CPU_SET(t->cpu_core_id, &cpu_cores); |
| 673 | pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_cores); |
| 674 | |
| 675 | for (i = 0; !t->quit; i = (i + 1) & (t->n_ports_rx - 1)) { |
| 676 | struct port *port_rx = t->ports_rx[i]; |
| 677 | struct port *port_tx = t->ports_tx[i]; |
| 678 | struct burst_rx *brx = &t->burst_rx; |
| 679 | struct burst_tx *btx = &t->burst_tx[i]; |
| 680 | u32 n_pkts, j; |
| 681 | |
| 682 | /* RX. */ |
| 683 | n_pkts = port_rx_burst(port_rx, brx); |
| 684 | if (!n_pkts) |
| 685 | continue; |
| 686 | |
| 687 | /* Process & TX. */ |
| 688 | for (j = 0; j < n_pkts; j++) { |
| 689 | u64 addr = xsk_umem__add_offset_to_addr(brx->addr[j]); |
| 690 | u8 *pkt = xsk_umem__get_data(port_rx->params.bp->addr, |
| 691 | addr); |
| 692 | |
| 693 | swap_mac_addresses(pkt); |
| 694 | |
| 695 | btx->addr[btx->n_pkts] = brx->addr[j]; |
| 696 | btx->len[btx->n_pkts] = brx->len[j]; |
| 697 | btx->n_pkts++; |
| 698 | |
| 699 | if (btx->n_pkts == MAX_BURST_TX) { |
| 700 | port_tx_burst(port_tx, btx); |
| 701 | btx->n_pkts = 0; |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | return NULL; |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * Process |
| 711 | */ |
| 712 | static const struct bpool_params bpool_params_default = { |
| 713 | .n_buffers = 64 * 1024, |
| 714 | .buffer_size = XSK_UMEM__DEFAULT_FRAME_SIZE, |
| 715 | .mmap_flags = 0, |
| 716 | |
| 717 | .n_users_max = 16, |
| 718 | .n_buffers_per_slab = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2, |
| 719 | }; |
| 720 | |
| 721 | static const struct xsk_umem_config umem_cfg_default = { |
| 722 | .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2, |
| 723 | .comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS, |
| 724 | .frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE, |
| 725 | .frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM, |
| 726 | .flags = 0, |
| 727 | }; |
| 728 | |
| 729 | static const struct port_params port_params_default = { |
| 730 | .xsk_cfg = { |
| 731 | .rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS, |
| 732 | .tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS, |
| 733 | .libbpf_flags = 0, |
| 734 | .xdp_flags = XDP_FLAGS_DRV_MODE, |
| 735 | .bind_flags = XDP_USE_NEED_WAKEUP | XDP_ZEROCOPY, |
| 736 | }, |
| 737 | |
| 738 | .bp = NULL, |
| 739 | .iface = NULL, |
| 740 | .iface_queue = 0, |
| 741 | }; |
| 742 | |
| 743 | #ifndef MAX_PORTS |
| 744 | #define MAX_PORTS 64 |
| 745 | #endif |
| 746 | |
| 747 | #ifndef MAX_THREADS |
| 748 | #define MAX_THREADS 64 |
| 749 | #endif |
| 750 | |
| 751 | static struct bpool_params bpool_params; |
| 752 | static struct xsk_umem_config umem_cfg; |
| 753 | static struct bpool *bp; |
| 754 | |
| 755 | static struct port_params port_params[MAX_PORTS]; |
| 756 | static struct port *ports[MAX_PORTS]; |
| 757 | static u64 n_pkts_rx[MAX_PORTS]; |
| 758 | static u64 n_pkts_tx[MAX_PORTS]; |
| 759 | static int n_ports; |
| 760 | |
| 761 | static pthread_t threads[MAX_THREADS]; |
| 762 | static struct thread_data thread_data[MAX_THREADS]; |
| 763 | static int n_threads; |
| 764 | |
| 765 | static void |
| 766 | print_usage(char *prog_name) |
| 767 | { |
| 768 | const char *usage = |
| 769 | "Usage:\n" |
| 770 | "\t%s [ -b SIZE ] -c CORE -i INTERFACE [ -q QUEUE ]\n" |
| 771 | "\n" |
| 772 | "-c CORE CPU core to run a packet forwarding thread\n" |
| 773 | " on. May be invoked multiple times.\n" |
| 774 | "\n" |
| 775 | "-b SIZE Number of buffers in the buffer pool shared\n" |
| 776 | " by all the forwarding threads. Default: %u.\n" |
| 777 | "\n" |
| 778 | "-i INTERFACE Network interface. Each (INTERFACE, QUEUE)\n" |
| 779 | " pair specifies one forwarding port. May be\n" |
| 780 | " invoked multiple times.\n" |
| 781 | "\n" |
| 782 | "-q QUEUE Network interface queue for RX and TX. Each\n" |
| 783 | " (INTERFACE, QUEUE) pair specified one\n" |
| 784 | " forwarding port. Default: %u. May be invoked\n" |
| 785 | " multiple times.\n" |
| 786 | "\n"; |
| 787 | printf(usage, |
| 788 | prog_name, |
| 789 | bpool_params_default.n_buffers, |
| 790 | port_params_default.iface_queue); |
| 791 | } |
| 792 | |
| 793 | static int |
| 794 | parse_args(int argc, char **argv) |
| 795 | { |
| 796 | struct option lgopts[] = { |
| 797 | { NULL, 0, 0, 0 } |
| 798 | }; |
| 799 | int opt, option_index; |
| 800 | |
| 801 | /* Parse the input arguments. */ |
| 802 | for ( ; ;) { |
| 803 | opt = getopt_long(argc, argv, "c:i:q:", lgopts, &option_index); |
| 804 | if (opt == EOF) |
| 805 | break; |
| 806 | |
| 807 | switch (opt) { |
| 808 | case 'b': |
| 809 | bpool_params.n_buffers = atoi(optarg); |
| 810 | break; |
| 811 | |
| 812 | case 'c': |
| 813 | if (n_threads == MAX_THREADS) { |
| 814 | printf("Max number of threads (%d) reached.\n", |
| 815 | MAX_THREADS); |
| 816 | return -1; |
| 817 | } |
| 818 | |
| 819 | thread_data[n_threads].cpu_core_id = atoi(optarg); |
| 820 | n_threads++; |
| 821 | break; |
| 822 | |
| 823 | case 'i': |
| 824 | if (n_ports == MAX_PORTS) { |
| 825 | printf("Max number of ports (%d) reached.\n", |
| 826 | MAX_PORTS); |
| 827 | return -1; |
| 828 | } |
| 829 | |
| 830 | port_params[n_ports].iface = optarg; |
| 831 | port_params[n_ports].iface_queue = 0; |
| 832 | n_ports++; |
| 833 | break; |
| 834 | |
| 835 | case 'q': |
| 836 | if (n_ports == 0) { |
| 837 | printf("No port specified for queue.\n"); |
| 838 | return -1; |
| 839 | } |
| 840 | port_params[n_ports - 1].iface_queue = atoi(optarg); |
| 841 | break; |
| 842 | |
| 843 | default: |
| 844 | printf("Illegal argument.\n"); |
| 845 | return -1; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | optind = 1; /* reset getopt lib */ |
| 850 | |
| 851 | /* Check the input arguments. */ |
| 852 | if (!n_ports) { |
| 853 | printf("No ports specified.\n"); |
| 854 | return -1; |
| 855 | } |
| 856 | |
| 857 | if (!n_threads) { |
| 858 | printf("No threads specified.\n"); |
| 859 | return -1; |
| 860 | } |
| 861 | |
| 862 | if (n_ports % n_threads) { |
| 863 | printf("Ports cannot be evenly distributed to threads.\n"); |
| 864 | return -1; |
| 865 | } |
| 866 | |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | static void |
| 871 | print_port(u32 port_id) |
| 872 | { |
| 873 | struct port *port = ports[port_id]; |
| 874 | |
| 875 | printf("Port %u: interface = %s, queue = %u\n", |
| 876 | port_id, port->params.iface, port->params.iface_queue); |
| 877 | } |
| 878 | |
| 879 | static void |
| 880 | print_thread(u32 thread_id) |
| 881 | { |
| 882 | struct thread_data *t = &thread_data[thread_id]; |
| 883 | u32 i; |
| 884 | |
| 885 | printf("Thread %u (CPU core %u): ", |
| 886 | thread_id, t->cpu_core_id); |
| 887 | |
| 888 | for (i = 0; i < t->n_ports_rx; i++) { |
| 889 | struct port *port_rx = t->ports_rx[i]; |
| 890 | struct port *port_tx = t->ports_tx[i]; |
| 891 | |
| 892 | printf("(%s, %u) -> (%s, %u), ", |
| 893 | port_rx->params.iface, |
| 894 | port_rx->params.iface_queue, |
| 895 | port_tx->params.iface, |
| 896 | port_tx->params.iface_queue); |
| 897 | } |
| 898 | |
| 899 | printf("\n"); |
| 900 | } |
| 901 | |
| 902 | static void |
| 903 | print_port_stats_separator(void) |
| 904 | { |
| 905 | printf("+-%4s-+-%12s-+-%13s-+-%12s-+-%13s-+\n", |
| 906 | "----", |
| 907 | "------------", |
| 908 | "-------------", |
| 909 | "------------", |
| 910 | "-------------"); |
| 911 | } |
| 912 | |
| 913 | static void |
| 914 | print_port_stats_header(void) |
| 915 | { |
| 916 | print_port_stats_separator(); |
| 917 | printf("| %4s | %12s | %13s | %12s | %13s |\n", |
| 918 | "Port", |
| 919 | "RX packets", |
| 920 | "RX rate (pps)", |
| 921 | "TX packets", |
| 922 | "TX_rate (pps)"); |
| 923 | print_port_stats_separator(); |
| 924 | } |
| 925 | |
| 926 | static void |
| 927 | print_port_stats_trailer(void) |
| 928 | { |
| 929 | print_port_stats_separator(); |
| 930 | printf("\n"); |
| 931 | } |
| 932 | |
| 933 | static void |
| 934 | print_port_stats(int port_id, u64 ns_diff) |
| 935 | { |
| 936 | struct port *p = ports[port_id]; |
| 937 | double rx_pps, tx_pps; |
| 938 | |
| 939 | rx_pps = (p->n_pkts_rx - n_pkts_rx[port_id]) * 1000000000. / ns_diff; |
| 940 | tx_pps = (p->n_pkts_tx - n_pkts_tx[port_id]) * 1000000000. / ns_diff; |
| 941 | |
| 942 | printf("| %4d | %12llu | %13.0f | %12llu | %13.0f |\n", |
| 943 | port_id, |
| 944 | p->n_pkts_rx, |
| 945 | rx_pps, |
| 946 | p->n_pkts_tx, |
| 947 | tx_pps); |
| 948 | |
| 949 | n_pkts_rx[port_id] = p->n_pkts_rx; |
| 950 | n_pkts_tx[port_id] = p->n_pkts_tx; |
| 951 | } |
| 952 | |
| 953 | static void |
| 954 | print_port_stats_all(u64 ns_diff) |
| 955 | { |
| 956 | int i; |
| 957 | |
| 958 | print_port_stats_header(); |
| 959 | for (i = 0; i < n_ports; i++) |
| 960 | print_port_stats(i, ns_diff); |
| 961 | print_port_stats_trailer(); |
| 962 | } |
| 963 | |
| 964 | static int quit; |
| 965 | |
| 966 | static void |
| 967 | signal_handler(int sig) |
| 968 | { |
| 969 | quit = 1; |
| 970 | } |
| 971 | |
| 972 | static void remove_xdp_program(void) |
| 973 | { |
| 974 | int i; |
| 975 | |
| 976 | for (i = 0 ; i < n_ports; i++) |
| 977 | bpf_set_link_xdp_fd(if_nametoindex(port_params[i].iface), -1, |
| 978 | port_params[i].xsk_cfg.xdp_flags); |
| 979 | } |
| 980 | |
| 981 | int main(int argc, char **argv) |
| 982 | { |
| 983 | struct timespec time; |
| 984 | u64 ns0; |
| 985 | int i; |
| 986 | |
| 987 | /* Parse args. */ |
| 988 | memcpy(&bpool_params, &bpool_params_default, |
| 989 | sizeof(struct bpool_params)); |
| 990 | memcpy(&umem_cfg, &umem_cfg_default, |
| 991 | sizeof(struct xsk_umem_config)); |
| 992 | for (i = 0; i < MAX_PORTS; i++) |
| 993 | memcpy(&port_params[i], &port_params_default, |
| 994 | sizeof(struct port_params)); |
| 995 | |
| 996 | if (parse_args(argc, argv)) { |
| 997 | print_usage(argv[0]); |
| 998 | return -1; |
| 999 | } |
| 1000 | |
| 1001 | /* Buffer pool initialization. */ |
| 1002 | bp = bpool_init(&bpool_params, &umem_cfg); |
| 1003 | if (!bp) { |
| 1004 | printf("Buffer pool initialization failed.\n"); |
| 1005 | return -1; |
| 1006 | } |
| 1007 | printf("Buffer pool created successfully.\n"); |
| 1008 | |
| 1009 | /* Ports initialization. */ |
| 1010 | for (i = 0; i < MAX_PORTS; i++) |
| 1011 | port_params[i].bp = bp; |
| 1012 | |
| 1013 | for (i = 0; i < n_ports; i++) { |
| 1014 | ports[i] = port_init(&port_params[i]); |
| 1015 | if (!ports[i]) { |
| 1016 | printf("Port %d initialization failed.\n", i); |
| 1017 | return -1; |
| 1018 | } |
| 1019 | print_port(i); |
| 1020 | } |
| 1021 | printf("All ports created successfully.\n"); |
| 1022 | |
| 1023 | /* Threads. */ |
| 1024 | for (i = 0; i < n_threads; i++) { |
| 1025 | struct thread_data *t = &thread_data[i]; |
| 1026 | u32 n_ports_per_thread = n_ports / n_threads, j; |
| 1027 | |
| 1028 | for (j = 0; j < n_ports_per_thread; j++) { |
| 1029 | t->ports_rx[j] = ports[i * n_ports_per_thread + j]; |
| 1030 | t->ports_tx[j] = ports[i * n_ports_per_thread + |
| 1031 | (j + 1) % n_ports_per_thread]; |
| 1032 | } |
| 1033 | |
| 1034 | t->n_ports_rx = n_ports_per_thread; |
| 1035 | |
| 1036 | print_thread(i); |
| 1037 | } |
| 1038 | |
| 1039 | for (i = 0; i < n_threads; i++) { |
| 1040 | int status; |
| 1041 | |
| 1042 | status = pthread_create(&threads[i], |
| 1043 | NULL, |
| 1044 | thread_func, |
| 1045 | &thread_data[i]); |
| 1046 | if (status) { |
| 1047 | printf("Thread %d creation failed.\n", i); |
| 1048 | return -1; |
| 1049 | } |
| 1050 | } |
| 1051 | printf("All threads created successfully.\n"); |
| 1052 | |
| 1053 | /* Print statistics. */ |
| 1054 | signal(SIGINT, signal_handler); |
| 1055 | signal(SIGTERM, signal_handler); |
| 1056 | signal(SIGABRT, signal_handler); |
| 1057 | |
| 1058 | clock_gettime(CLOCK_MONOTONIC, &time); |
| 1059 | ns0 = time.tv_sec * 1000000000UL + time.tv_nsec; |
| 1060 | for ( ; !quit; ) { |
| 1061 | u64 ns1, ns_diff; |
| 1062 | |
| 1063 | sleep(1); |
| 1064 | clock_gettime(CLOCK_MONOTONIC, &time); |
| 1065 | ns1 = time.tv_sec * 1000000000UL + time.tv_nsec; |
| 1066 | ns_diff = ns1 - ns0; |
| 1067 | ns0 = ns1; |
| 1068 | |
| 1069 | print_port_stats_all(ns_diff); |
| 1070 | } |
| 1071 | |
| 1072 | /* Threads completion. */ |
| 1073 | printf("Quit.\n"); |
| 1074 | for (i = 0; i < n_threads; i++) |
| 1075 | thread_data[i].quit = 1; |
| 1076 | |
| 1077 | for (i = 0; i < n_threads; i++) |
| 1078 | pthread_join(threads[i], NULL); |
| 1079 | |
| 1080 | for (i = 0; i < n_ports; i++) |
| 1081 | port_free(ports[i]); |
| 1082 | |
| 1083 | bpool_free(bp); |
| 1084 | |
| 1085 | remove_xdp_program(); |
| 1086 | |
| 1087 | return 0; |
| 1088 | } |