blob: ea5888688f9471735395537eeab09c31472fc21f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/pagemap.h>
33#include <linux/quotaops.h>
34#include <linux/string.h>
35#include <linux/buffer_head.h>
36#include <linux/writeback.h>
37#include <linux/mpage.h>
38#include <linux/uio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static inline int ext3_inode_is_fast_symlink(struct inode *inode)
48{
49 int ea_blocks = EXT3_I(inode)->i_file_acl ?
50 (inode->i_sb->s_blocksize >> 9) : 0;
51
52 return (S_ISLNK(inode->i_mode) &&
53 inode->i_blocks - ea_blocks == 0);
54}
55
56/* The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
64
65int ext3_forget(handle_t *handle, int is_metadata,
66 struct inode *inode, struct buffer_head *bh,
67 int blocknr)
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __FUNCTION__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
107 * Work out how many blocks we need to progress with the next chunk of a
108 * truncate transaction.
109 */
110
111static unsigned long blocks_for_truncate(struct inode *inode)
112{
113 unsigned long needed;
114
115 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116
117 /* Give ourselves just enough room to cope with inodes in which
118 * i_blocks is corrupt: we've seen disk corruptions in the past
119 * which resulted in random data in an inode which looked enough
120 * like a regular file for ext3 to try to delete it. Things
121 * will go a bit crazy if that happens, but at least we should
122 * try not to panic the whole kernel. */
123 if (needed < 2)
124 needed = 2;
125
126 /* But we need to bound the transaction so we don't overflow the
127 * journal. */
128 if (needed > EXT3_MAX_TRANS_DATA)
129 needed = EXT3_MAX_TRANS_DATA;
130
131 return EXT3_DATA_TRANS_BLOCKS + needed;
132}
133
134/*
135 * Truncate transactions can be complex and absolutely huge. So we need to
136 * be able to restart the transaction at a conventient checkpoint to make
137 * sure we don't overflow the journal.
138 *
139 * start_transaction gets us a new handle for a truncate transaction,
140 * and extend_transaction tries to extend the existing one a bit. If
141 * extend fails, we need to propagate the failure up and restart the
142 * transaction in the top-level truncate loop. --sct
143 */
144
145static handle_t *start_transaction(struct inode *inode)
146{
147 handle_t *result;
148
149 result = ext3_journal_start(inode, blocks_for_truncate(inode));
150 if (!IS_ERR(result))
151 return result;
152
153 ext3_std_error(inode->i_sb, PTR_ERR(result));
154 return result;
155}
156
157/*
158 * Try to extend this transaction for the purposes of truncation.
159 *
160 * Returns 0 if we managed to create more room. If we can't create more
161 * room, and the transaction must be restarted we return 1.
162 */
163static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
164{
165 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
166 return 0;
167 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
168 return 0;
169 return 1;
170}
171
172/*
173 * Restart the transaction associated with *handle. This does a commit,
174 * so before we call here everything must be consistently dirtied against
175 * this transaction.
176 */
177static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
178{
179 jbd_debug(2, "restarting handle %p\n", handle);
180 return ext3_journal_restart(handle, blocks_for_truncate(inode));
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
186void ext3_delete_inode (struct inode * inode)
187{
188 handle_t *handle;
189
190 if (is_bad_inode(inode))
191 goto no_delete;
192
193 handle = start_transaction(inode);
194 if (IS_ERR(handle)) {
195 /* If we're going to skip the normal cleanup, we still
196 * need to make sure that the in-core orphan linked list
197 * is properly cleaned up. */
198 ext3_orphan_del(NULL, inode);
199 goto no_delete;
200 }
201
202 if (IS_SYNC(inode))
203 handle->h_sync = 1;
204 inode->i_size = 0;
205 if (inode->i_blocks)
206 ext3_truncate(inode);
207 /*
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
214 */
215 ext3_orphan_del(handle, inode);
216 EXT3_I(inode)->i_dtime = get_seconds();
217
218 /*
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
223 * fails.
224 */
225 if (ext3_mark_inode_dirty(handle, inode))
226 /* If that failed, just do the required in-core inode clear. */
227 clear_inode(inode);
228 else
229 ext3_free_inode(handle, inode);
230 ext3_journal_stop(handle);
231 return;
232no_delete:
233 clear_inode(inode); /* We must guarantee clearing of inode... */
234}
235
236static int ext3_alloc_block (handle_t *handle,
237 struct inode * inode, unsigned long goal, int *err)
238{
239 unsigned long result;
240
241 result = ext3_new_block(handle, inode, goal, err);
242 return result;
243}
244
245
246typedef struct {
247 __le32 *p;
248 __le32 key;
249 struct buffer_head *bh;
250} Indirect;
251
252static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
253{
254 p->key = *(p->p = v);
255 p->bh = bh;
256}
257
258static inline int verify_chain(Indirect *from, Indirect *to)
259{
260 while (from <= to && from->key == *from->p)
261 from++;
262 return (from > to);
263}
264
265/**
266 * ext3_block_to_path - parse the block number into array of offsets
267 * @inode: inode in question (we are only interested in its superblock)
268 * @i_block: block number to be parsed
269 * @offsets: array to store the offsets in
270 * @boundary: set this non-zero if the referred-to block is likely to be
271 * followed (on disk) by an indirect block.
272 *
273 * To store the locations of file's data ext3 uses a data structure common
274 * for UNIX filesystems - tree of pointers anchored in the inode, with
275 * data blocks at leaves and indirect blocks in intermediate nodes.
276 * This function translates the block number into path in that tree -
277 * return value is the path length and @offsets[n] is the offset of
278 * pointer to (n+1)th node in the nth one. If @block is out of range
279 * (negative or too large) warning is printed and zero returned.
280 *
281 * Note: function doesn't find node addresses, so no IO is needed. All
282 * we need to know is the capacity of indirect blocks (taken from the
283 * inode->i_sb).
284 */
285
286/*
287 * Portability note: the last comparison (check that we fit into triple
288 * indirect block) is spelled differently, because otherwise on an
289 * architecture with 32-bit longs and 8Kb pages we might get into trouble
290 * if our filesystem had 8Kb blocks. We might use long long, but that would
291 * kill us on x86. Oh, well, at least the sign propagation does not matter -
292 * i_block would have to be negative in the very beginning, so we would not
293 * get there at all.
294 */
295
296static int ext3_block_to_path(struct inode *inode,
297 long i_block, int offsets[4], int *boundary)
298{
299 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT3_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
307 if (i_block < 0) {
308 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
309 } else if (i_block < direct_blocks) {
310 offsets[n++] = i_block;
311 final = direct_blocks;
312 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
313 offsets[n++] = EXT3_IND_BLOCK;
314 offsets[n++] = i_block;
315 final = ptrs;
316 } else if ((i_block -= indirect_blocks) < double_blocks) {
317 offsets[n++] = EXT3_DIND_BLOCK;
318 offsets[n++] = i_block >> ptrs_bits;
319 offsets[n++] = i_block & (ptrs - 1);
320 final = ptrs;
321 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
322 offsets[n++] = EXT3_TIND_BLOCK;
323 offsets[n++] = i_block >> (ptrs_bits * 2);
324 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
325 offsets[n++] = i_block & (ptrs - 1);
326 final = ptrs;
327 } else {
328 ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
329 }
330 if (boundary)
331 *boundary = (i_block & (ptrs - 1)) == (final - 1);
332 return n;
333}
334
335/**
336 * ext3_get_branch - read the chain of indirect blocks leading to data
337 * @inode: inode in question
338 * @depth: depth of the chain (1 - direct pointer, etc.)
339 * @offsets: offsets of pointers in inode/indirect blocks
340 * @chain: place to store the result
341 * @err: here we store the error value
342 *
343 * Function fills the array of triples <key, p, bh> and returns %NULL
344 * if everything went OK or the pointer to the last filled triple
345 * (incomplete one) otherwise. Upon the return chain[i].key contains
346 * the number of (i+1)-th block in the chain (as it is stored in memory,
347 * i.e. little-endian 32-bit), chain[i].p contains the address of that
348 * number (it points into struct inode for i==0 and into the bh->b_data
349 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
350 * block for i>0 and NULL for i==0. In other words, it holds the block
351 * numbers of the chain, addresses they were taken from (and where we can
352 * verify that chain did not change) and buffer_heads hosting these
353 * numbers.
354 *
355 * Function stops when it stumbles upon zero pointer (absent block)
356 * (pointer to last triple returned, *@err == 0)
357 * or when it gets an IO error reading an indirect block
358 * (ditto, *@err == -EIO)
359 * or when it notices that chain had been changed while it was reading
360 * (ditto, *@err == -EAGAIN)
361 * or when it reads all @depth-1 indirect blocks successfully and finds
362 * the whole chain, all way to the data (returns %NULL, *err == 0).
363 */
364static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
365 Indirect chain[4], int *err)
366{
367 struct super_block *sb = inode->i_sb;
368 Indirect *p = chain;
369 struct buffer_head *bh;
370
371 *err = 0;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
374 if (!p->key)
375 goto no_block;
376 while (--depth) {
377 bh = sb_bread(sb, le32_to_cpu(p->key));
378 if (!bh)
379 goto failure;
380 /* Reader: pointers */
381 if (!verify_chain(chain, p))
382 goto changed;
383 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
384 /* Reader: end */
385 if (!p->key)
386 goto no_block;
387 }
388 return NULL;
389
390changed:
391 brelse(bh);
392 *err = -EAGAIN;
393 goto no_block;
394failure:
395 *err = -EIO;
396no_block:
397 return p;
398}
399
400/**
401 * ext3_find_near - find a place for allocation with sufficient locality
402 * @inode: owner
403 * @ind: descriptor of indirect block.
404 *
405 * This function returns the prefered place for block allocation.
406 * It is used when heuristic for sequential allocation fails.
407 * Rules are:
408 * + if there is a block to the left of our position - allocate near it.
409 * + if pointer will live in indirect block - allocate near that block.
410 * + if pointer will live in inode - allocate in the same
411 * cylinder group.
412 *
413 * In the latter case we colour the starting block by the callers PID to
414 * prevent it from clashing with concurrent allocations for a different inode
415 * in the same block group. The PID is used here so that functionally related
416 * files will be close-by on-disk.
417 *
418 * Caller must make sure that @ind is valid and will stay that way.
419 */
420
421static unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
422{
423 struct ext3_inode_info *ei = EXT3_I(inode);
424 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
425 __le32 *p;
426 unsigned long bg_start;
427 unsigned long colour;
428
429 /* Try to find previous block */
430 for (p = ind->p - 1; p >= start; p--)
431 if (*p)
432 return le32_to_cpu(*p);
433
434 /* No such thing, so let's try location of indirect block */
435 if (ind->bh)
436 return ind->bh->b_blocknr;
437
438 /*
439 * It is going to be refered from inode itself? OK, just put it into
440 * the same cylinder group then.
441 */
442 bg_start = (ei->i_block_group * EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
443 le32_to_cpu(EXT3_SB(inode->i_sb)->s_es->s_first_data_block);
444 colour = (current->pid % 16) *
445 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
446 return bg_start + colour;
447}
448
449/**
450 * ext3_find_goal - find a prefered place for allocation.
451 * @inode: owner
452 * @block: block we want
453 * @chain: chain of indirect blocks
454 * @partial: pointer to the last triple within a chain
455 * @goal: place to store the result.
456 *
457 * Normally this function find the prefered place for block allocation,
Mingming Caofe55c452005-05-01 08:59:20 -0700458 * stores it in *@goal and returns zero.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459 */
460
Mingming Caofe55c452005-05-01 08:59:20 -0700461static unsigned long ext3_find_goal(struct inode *inode, long block,
462 Indirect chain[4], Indirect *partial)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463{
464 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
465
466 /*
467 * try the heuristic for sequential allocation,
468 * failing that at least try to get decent locality.
469 */
470 if (block_i && (block == block_i->last_alloc_logical_block + 1)
471 && (block_i->last_alloc_physical_block != 0)) {
Mingming Caofe55c452005-05-01 08:59:20 -0700472 return block_i->last_alloc_physical_block + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 }
474
Mingming Caofe55c452005-05-01 08:59:20 -0700475 return ext3_find_near(inode, partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476}
477
478/**
479 * ext3_alloc_branch - allocate and set up a chain of blocks.
480 * @inode: owner
481 * @num: depth of the chain (number of blocks to allocate)
482 * @offsets: offsets (in the blocks) to store the pointers to next.
483 * @branch: place to store the chain in.
484 *
485 * This function allocates @num blocks, zeroes out all but the last one,
486 * links them into chain and (if we are synchronous) writes them to disk.
487 * In other words, it prepares a branch that can be spliced onto the
488 * inode. It stores the information about that chain in the branch[], in
489 * the same format as ext3_get_branch() would do. We are calling it after
490 * we had read the existing part of chain and partial points to the last
491 * triple of that (one with zero ->key). Upon the exit we have the same
492 * picture as after the successful ext3_get_block(), excpet that in one
493 * place chain is disconnected - *branch->p is still zero (we did not
494 * set the last link), but branch->key contains the number that should
495 * be placed into *branch->p to fill that gap.
496 *
497 * If allocation fails we free all blocks we've allocated (and forget
498 * their buffer_heads) and return the error value the from failed
499 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
500 * as described above and return 0.
501 */
502
503static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
504 int num,
505 unsigned long goal,
506 int *offsets,
507 Indirect *branch)
508{
509 int blocksize = inode->i_sb->s_blocksize;
510 int n = 0, keys = 0;
511 int err = 0;
512 int i;
513 int parent = ext3_alloc_block(handle, inode, goal, &err);
514
515 branch[0].key = cpu_to_le32(parent);
516 if (parent) {
517 for (n = 1; n < num; n++) {
518 struct buffer_head *bh;
519 /* Allocate the next block */
520 int nr = ext3_alloc_block(handle, inode, parent, &err);
521 if (!nr)
522 break;
523 branch[n].key = cpu_to_le32(nr);
524 keys = n+1;
525
526 /*
527 * Get buffer_head for parent block, zero it out
528 * and set the pointer to new one, then send
529 * parent to disk.
530 */
531 bh = sb_getblk(inode->i_sb, parent);
532 branch[n].bh = bh;
533 lock_buffer(bh);
534 BUFFER_TRACE(bh, "call get_create_access");
535 err = ext3_journal_get_create_access(handle, bh);
536 if (err) {
537 unlock_buffer(bh);
538 brelse(bh);
539 break;
540 }
541
542 memset(bh->b_data, 0, blocksize);
543 branch[n].p = (__le32*) bh->b_data + offsets[n];
544 *branch[n].p = branch[n].key;
545 BUFFER_TRACE(bh, "marking uptodate");
546 set_buffer_uptodate(bh);
547 unlock_buffer(bh);
548
549 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
550 err = ext3_journal_dirty_metadata(handle, bh);
551 if (err)
552 break;
553
554 parent = nr;
555 }
556 }
557 if (n == num)
558 return 0;
559
560 /* Allocation failed, free what we already allocated */
561 for (i = 1; i < keys; i++) {
562 BUFFER_TRACE(branch[i].bh, "call journal_forget");
563 ext3_journal_forget(handle, branch[i].bh);
564 }
565 for (i = 0; i < keys; i++)
566 ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
567 return err;
568}
569
570/**
571 * ext3_splice_branch - splice the allocated branch onto inode.
572 * @inode: owner
573 * @block: (logical) number of block we are adding
574 * @chain: chain of indirect blocks (with a missing link - see
575 * ext3_alloc_branch)
576 * @where: location of missing link
577 * @num: number of blocks we are adding
578 *
Mingming Caofe55c452005-05-01 08:59:20 -0700579 * This function fills the missing link and does all housekeeping needed in
Linus Torvalds1da177e2005-04-16 15:20:36 -0700580 * inode (->i_blocks, etc.). In case of success we end up with the full
Mingming Caofe55c452005-05-01 08:59:20 -0700581 * chain to new block and return 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700582 */
583
584static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
585 Indirect chain[4], Indirect *where, int num)
586{
587 int i;
588 int err = 0;
589 struct ext3_block_alloc_info *block_i = EXT3_I(inode)->i_block_alloc_info;
590
591 /*
592 * If we're splicing into a [td]indirect block (as opposed to the
593 * inode) then we need to get write access to the [td]indirect block
594 * before the splice.
595 */
596 if (where->bh) {
597 BUFFER_TRACE(where->bh, "get_write_access");
598 err = ext3_journal_get_write_access(handle, where->bh);
599 if (err)
600 goto err_out;
601 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 /* That's it */
603
604 *where->p = where->key;
605
606 /*
607 * update the most recently allocated logical & physical block
608 * in i_block_alloc_info, to assist find the proper goal block for next
609 * allocation
610 */
611 if (block_i) {
612 block_i->last_alloc_logical_block = block;
613 block_i->last_alloc_physical_block = le32_to_cpu(where[num-1].key);
614 }
615
616 /* We are done with atomic stuff, now do the rest of housekeeping */
617
618 inode->i_ctime = CURRENT_TIME_SEC;
619 ext3_mark_inode_dirty(handle, inode);
620
621 /* had we spliced it onto indirect block? */
622 if (where->bh) {
623 /*
624 * akpm: If we spliced it onto an indirect block, we haven't
625 * altered the inode. Note however that if it is being spliced
626 * onto an indirect block at the very end of the file (the
627 * file is growing) then we *will* alter the inode to reflect
628 * the new i_size. But that is not done here - it is done in
629 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
630 */
631 jbd_debug(5, "splicing indirect only\n");
632 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
633 err = ext3_journal_dirty_metadata(handle, where->bh);
634 if (err)
635 goto err_out;
636 } else {
637 /*
638 * OK, we spliced it into the inode itself on a direct block.
639 * Inode was dirtied above.
640 */
641 jbd_debug(5, "splicing direct\n");
642 }
643 return err;
644
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645err_out:
646 for (i = 1; i < num; i++) {
647 BUFFER_TRACE(where[i].bh, "call journal_forget");
648 ext3_journal_forget(handle, where[i].bh);
649 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650 return err;
651}
652
653/*
654 * Allocation strategy is simple: if we have to allocate something, we will
655 * have to go the whole way to leaf. So let's do it before attaching anything
656 * to tree, set linkage between the newborn blocks, write them if sync is
657 * required, recheck the path, free and repeat if check fails, otherwise
658 * set the last missing link (that will protect us from any truncate-generated
659 * removals - all blocks on the path are immune now) and possibly force the
660 * write on the parent block.
661 * That has a nice additional property: no special recovery from the failed
662 * allocations is needed - we simply release blocks and do not touch anything
663 * reachable from inode.
664 *
665 * akpm: `handle' can be NULL if create == 0.
666 *
667 * The BKL may not be held on entry here. Be sure to take it early.
668 */
669
670static int
671ext3_get_block_handle(handle_t *handle, struct inode *inode, sector_t iblock,
672 struct buffer_head *bh_result, int create, int extend_disksize)
673{
674 int err = -EIO;
675 int offsets[4];
676 Indirect chain[4];
677 Indirect *partial;
678 unsigned long goal;
679 int left;
680 int boundary = 0;
Mingming Caofe55c452005-05-01 08:59:20 -0700681 const int depth = ext3_block_to_path(inode, iblock, offsets, &boundary);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682 struct ext3_inode_info *ei = EXT3_I(inode);
683
684 J_ASSERT(handle != NULL || create == 0);
685
686 if (depth == 0)
687 goto out;
688
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
690
691 /* Simplest case - block found, no allocation needed */
692 if (!partial) {
693 clear_buffer_new(bh_result);
Mingming Caofe55c452005-05-01 08:59:20 -0700694 goto got_it;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695 }
696
697 /* Next simple case - plain lookup or failed read of indirect block */
Mingming Caofe55c452005-05-01 08:59:20 -0700698 if (!create || err == -EIO)
699 goto cleanup;
700
701 down(&ei->truncate_sem);
702
703 /*
704 * If the indirect block is missing while we are reading
705 * the chain(ext3_get_branch() returns -EAGAIN err), or
706 * if the chain has been changed after we grab the semaphore,
707 * (either because another process truncated this branch, or
708 * another get_block allocated this branch) re-grab the chain to see if
709 * the request block has been allocated or not.
710 *
711 * Since we already block the truncate/other get_block
712 * at this point, we will have the current copy of the chain when we
713 * splice the branch into the tree.
714 */
715 if (err == -EAGAIN || !verify_chain(chain, partial)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 while (partial > chain) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700717 brelse(partial->bh);
718 partial--;
719 }
Mingming Caofe55c452005-05-01 08:59:20 -0700720 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
721 if (!partial) {
722 up(&ei->truncate_sem);
723 if (err)
724 goto cleanup;
725 clear_buffer_new(bh_result);
726 goto got_it;
727 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 }
729
730 /*
Mingming Caofe55c452005-05-01 08:59:20 -0700731 * Okay, we need to do block allocation. Lazily initialize the block
732 * allocation info here if necessary
733 */
734 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700735 ext3_init_block_alloc_info(inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736
Mingming Caofe55c452005-05-01 08:59:20 -0700737 goal = ext3_find_goal(inode, iblock, chain, partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700738
739 left = (chain + depth) - partial;
740
741 /*
742 * Block out ext3_truncate while we alter the tree
743 */
744 err = ext3_alloc_branch(handle, inode, left, goal,
Mingming Caofe55c452005-05-01 08:59:20 -0700745 offsets + (partial - chain), partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746
Mingming Caofe55c452005-05-01 08:59:20 -0700747 /*
748 * The ext3_splice_branch call will free and forget any buffers
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749 * on the new chain if there is a failure, but that risks using
750 * up transaction credits, especially for bitmaps where the
751 * credits cannot be returned. Can we handle this somehow? We
Mingming Caofe55c452005-05-01 08:59:20 -0700752 * may need to return -EAGAIN upwards in the worst case. --sct
753 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754 if (!err)
755 err = ext3_splice_branch(handle, inode, iblock, chain,
756 partial, left);
Mingming Caofe55c452005-05-01 08:59:20 -0700757 /*
758 * i_disksize growing is protected by truncate_sem. Don't forget to
759 * protect it if you're about to implement concurrent
760 * ext3_get_block() -bzzz
761 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700762 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
763 ei->i_disksize = inode->i_size;
764 up(&ei->truncate_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765 if (err)
766 goto cleanup;
767
768 set_buffer_new(bh_result);
Mingming Caofe55c452005-05-01 08:59:20 -0700769got_it:
770 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
771 if (boundary)
772 set_buffer_boundary(bh_result);
773 /* Clean up and exit */
774 partial = chain + depth - 1; /* the whole chain */
775cleanup:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700776 while (partial > chain) {
Mingming Caofe55c452005-05-01 08:59:20 -0700777 BUFFER_TRACE(partial->bh, "call brelse");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778 brelse(partial->bh);
779 partial--;
780 }
Mingming Caofe55c452005-05-01 08:59:20 -0700781 BUFFER_TRACE(bh_result, "returned");
782out:
783 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784}
785
786static int ext3_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh_result, int create)
788{
789 handle_t *handle = NULL;
790 int ret;
791
792 if (create) {
793 handle = ext3_journal_current_handle();
794 J_ASSERT(handle != 0);
795 }
796 ret = ext3_get_block_handle(handle, inode, iblock,
797 bh_result, create, 1);
798 return ret;
799}
800
801#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
802
803static int
804ext3_direct_io_get_blocks(struct inode *inode, sector_t iblock,
805 unsigned long max_blocks, struct buffer_head *bh_result,
806 int create)
807{
808 handle_t *handle = journal_current_handle();
809 int ret = 0;
810
811 if (!handle)
812 goto get_block; /* A read */
813
814 if (handle->h_transaction->t_state == T_LOCKED) {
815 /*
816 * Huge direct-io writes can hold off commits for long
817 * periods of time. Let this commit run.
818 */
819 ext3_journal_stop(handle);
820 handle = ext3_journal_start(inode, DIO_CREDITS);
821 if (IS_ERR(handle))
822 ret = PTR_ERR(handle);
823 goto get_block;
824 }
825
826 if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
827 /*
828 * Getting low on buffer credits...
829 */
830 ret = ext3_journal_extend(handle, DIO_CREDITS);
831 if (ret > 0) {
832 /*
833 * Couldn't extend the transaction. Start a new one.
834 */
835 ret = ext3_journal_restart(handle, DIO_CREDITS);
836 }
837 }
838
839get_block:
840 if (ret == 0)
841 ret = ext3_get_block_handle(handle, inode, iblock,
842 bh_result, create, 0);
843 bh_result->b_size = (1 << inode->i_blkbits);
844 return ret;
845}
846
847static int ext3_writepages_get_block(struct inode *inode, sector_t iblock,
848 struct buffer_head *bh, int create)
849{
850 return ext3_direct_io_get_blocks(inode, iblock, 1, bh, create);
851}
852
853/*
854 * `handle' can be NULL if create is zero
855 */
856struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
857 long block, int create, int * errp)
858{
859 struct buffer_head dummy;
860 int fatal = 0, err;
861
862 J_ASSERT(handle != NULL || create == 0);
863
864 dummy.b_state = 0;
865 dummy.b_blocknr = -1000;
866 buffer_trace_init(&dummy.b_history);
867 *errp = ext3_get_block_handle(handle, inode, block, &dummy, create, 1);
868 if (!*errp && buffer_mapped(&dummy)) {
869 struct buffer_head *bh;
870 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
871 if (buffer_new(&dummy)) {
872 J_ASSERT(create != 0);
873 J_ASSERT(handle != 0);
874
875 /* Now that we do not always journal data, we
876 should keep in mind whether this should
877 always journal the new buffer as metadata.
878 For now, regular file writes use
879 ext3_get_block instead, so it's not a
880 problem. */
881 lock_buffer(bh);
882 BUFFER_TRACE(bh, "call get_create_access");
883 fatal = ext3_journal_get_create_access(handle, bh);
884 if (!fatal && !buffer_uptodate(bh)) {
885 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
886 set_buffer_uptodate(bh);
887 }
888 unlock_buffer(bh);
889 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
890 err = ext3_journal_dirty_metadata(handle, bh);
891 if (!fatal)
892 fatal = err;
893 } else {
894 BUFFER_TRACE(bh, "not a new buffer");
895 }
896 if (fatal) {
897 *errp = fatal;
898 brelse(bh);
899 bh = NULL;
900 }
901 return bh;
902 }
903 return NULL;
904}
905
906struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
907 int block, int create, int *err)
908{
909 struct buffer_head * bh;
910
911 bh = ext3_getblk(handle, inode, block, create, err);
912 if (!bh)
913 return bh;
914 if (buffer_uptodate(bh))
915 return bh;
916 ll_rw_block(READ, 1, &bh);
917 wait_on_buffer(bh);
918 if (buffer_uptodate(bh))
919 return bh;
920 put_bh(bh);
921 *err = -EIO;
922 return NULL;
923}
924
925static int walk_page_buffers( handle_t *handle,
926 struct buffer_head *head,
927 unsigned from,
928 unsigned to,
929 int *partial,
930 int (*fn)( handle_t *handle,
931 struct buffer_head *bh))
932{
933 struct buffer_head *bh;
934 unsigned block_start, block_end;
935 unsigned blocksize = head->b_size;
936 int err, ret = 0;
937 struct buffer_head *next;
938
939 for ( bh = head, block_start = 0;
940 ret == 0 && (bh != head || !block_start);
941 block_start = block_end, bh = next)
942 {
943 next = bh->b_this_page;
944 block_end = block_start + blocksize;
945 if (block_end <= from || block_start >= to) {
946 if (partial && !buffer_uptodate(bh))
947 *partial = 1;
948 continue;
949 }
950 err = (*fn)(handle, bh);
951 if (!ret)
952 ret = err;
953 }
954 return ret;
955}
956
957/*
958 * To preserve ordering, it is essential that the hole instantiation and
959 * the data write be encapsulated in a single transaction. We cannot
960 * close off a transaction and start a new one between the ext3_get_block()
961 * and the commit_write(). So doing the journal_start at the start of
962 * prepare_write() is the right place.
963 *
964 * Also, this function can nest inside ext3_writepage() ->
965 * block_write_full_page(). In that case, we *know* that ext3_writepage()
966 * has generated enough buffer credits to do the whole page. So we won't
967 * block on the journal in that case, which is good, because the caller may
968 * be PF_MEMALLOC.
969 *
970 * By accident, ext3 can be reentered when a transaction is open via
971 * quota file writes. If we were to commit the transaction while thus
972 * reentered, there can be a deadlock - we would be holding a quota
973 * lock, and the commit would never complete if another thread had a
974 * transaction open and was blocking on the quota lock - a ranking
975 * violation.
976 *
977 * So what we do is to rely on the fact that journal_stop/journal_start
978 * will _not_ run commit under these circumstances because handle->h_ref
979 * is elevated. We'll still have enough credits for the tiny quotafile
980 * write.
981 */
982
983static int do_journal_get_write_access(handle_t *handle,
984 struct buffer_head *bh)
985{
986 if (!buffer_mapped(bh) || buffer_freed(bh))
987 return 0;
988 return ext3_journal_get_write_access(handle, bh);
989}
990
991static int ext3_prepare_write(struct file *file, struct page *page,
992 unsigned from, unsigned to)
993{
994 struct inode *inode = page->mapping->host;
995 int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
996 handle_t *handle;
997 int retries = 0;
998
999retry:
1000 handle = ext3_journal_start(inode, needed_blocks);
1001 if (IS_ERR(handle)) {
1002 ret = PTR_ERR(handle);
1003 goto out;
1004 }
1005 if (test_opt(inode->i_sb, NOBH))
1006 ret = nobh_prepare_write(page, from, to, ext3_get_block);
1007 else
1008 ret = block_prepare_write(page, from, to, ext3_get_block);
1009 if (ret)
1010 goto prepare_write_failed;
1011
1012 if (ext3_should_journal_data(inode)) {
1013 ret = walk_page_buffers(handle, page_buffers(page),
1014 from, to, NULL, do_journal_get_write_access);
1015 }
1016prepare_write_failed:
1017 if (ret)
1018 ext3_journal_stop(handle);
1019 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1020 goto retry;
1021out:
1022 return ret;
1023}
1024
1025int
1026ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1027{
1028 int err = journal_dirty_data(handle, bh);
1029 if (err)
1030 ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1031 bh, handle,err);
1032 return err;
1033}
1034
1035/* For commit_write() in data=journal mode */
1036static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1037{
1038 if (!buffer_mapped(bh) || buffer_freed(bh))
1039 return 0;
1040 set_buffer_uptodate(bh);
1041 return ext3_journal_dirty_metadata(handle, bh);
1042}
1043
1044/*
1045 * We need to pick up the new inode size which generic_commit_write gave us
1046 * `file' can be NULL - eg, when called from page_symlink().
1047 *
1048 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1049 * buffers are managed internally.
1050 */
1051
1052static int ext3_ordered_commit_write(struct file *file, struct page *page,
1053 unsigned from, unsigned to)
1054{
1055 handle_t *handle = ext3_journal_current_handle();
1056 struct inode *inode = page->mapping->host;
1057 int ret = 0, ret2;
1058
1059 ret = walk_page_buffers(handle, page_buffers(page),
1060 from, to, NULL, ext3_journal_dirty_data);
1061
1062 if (ret == 0) {
1063 /*
1064 * generic_commit_write() will run mark_inode_dirty() if i_size
1065 * changes. So let's piggyback the i_disksize mark_inode_dirty
1066 * into that.
1067 */
1068 loff_t new_i_size;
1069
1070 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1071 if (new_i_size > EXT3_I(inode)->i_disksize)
1072 EXT3_I(inode)->i_disksize = new_i_size;
1073 ret = generic_commit_write(file, page, from, to);
1074 }
1075 ret2 = ext3_journal_stop(handle);
1076 if (!ret)
1077 ret = ret2;
1078 return ret;
1079}
1080
1081static int ext3_writeback_commit_write(struct file *file, struct page *page,
1082 unsigned from, unsigned to)
1083{
1084 handle_t *handle = ext3_journal_current_handle();
1085 struct inode *inode = page->mapping->host;
1086 int ret = 0, ret2;
1087 loff_t new_i_size;
1088
1089 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1090 if (new_i_size > EXT3_I(inode)->i_disksize)
1091 EXT3_I(inode)->i_disksize = new_i_size;
1092
1093 if (test_opt(inode->i_sb, NOBH))
1094 ret = nobh_commit_write(file, page, from, to);
1095 else
1096 ret = generic_commit_write(file, page, from, to);
1097
1098 ret2 = ext3_journal_stop(handle);
1099 if (!ret)
1100 ret = ret2;
1101 return ret;
1102}
1103
1104static int ext3_journalled_commit_write(struct file *file,
1105 struct page *page, unsigned from, unsigned to)
1106{
1107 handle_t *handle = ext3_journal_current_handle();
1108 struct inode *inode = page->mapping->host;
1109 int ret = 0, ret2;
1110 int partial = 0;
1111 loff_t pos;
1112
1113 /*
1114 * Here we duplicate the generic_commit_write() functionality
1115 */
1116 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1117
1118 ret = walk_page_buffers(handle, page_buffers(page), from,
1119 to, &partial, commit_write_fn);
1120 if (!partial)
1121 SetPageUptodate(page);
1122 if (pos > inode->i_size)
1123 i_size_write(inode, pos);
1124 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1125 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1126 EXT3_I(inode)->i_disksize = inode->i_size;
1127 ret2 = ext3_mark_inode_dirty(handle, inode);
1128 if (!ret)
1129 ret = ret2;
1130 }
1131 ret2 = ext3_journal_stop(handle);
1132 if (!ret)
1133 ret = ret2;
1134 return ret;
1135}
1136
1137/*
1138 * bmap() is special. It gets used by applications such as lilo and by
1139 * the swapper to find the on-disk block of a specific piece of data.
1140 *
1141 * Naturally, this is dangerous if the block concerned is still in the
1142 * journal. If somebody makes a swapfile on an ext3 data-journaling
1143 * filesystem and enables swap, then they may get a nasty shock when the
1144 * data getting swapped to that swapfile suddenly gets overwritten by
1145 * the original zero's written out previously to the journal and
1146 * awaiting writeback in the kernel's buffer cache.
1147 *
1148 * So, if we see any bmap calls here on a modified, data-journaled file,
1149 * take extra steps to flush any blocks which might be in the cache.
1150 */
1151static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1152{
1153 struct inode *inode = mapping->host;
1154 journal_t *journal;
1155 int err;
1156
1157 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1158 /*
1159 * This is a REALLY heavyweight approach, but the use of
1160 * bmap on dirty files is expected to be extremely rare:
1161 * only if we run lilo or swapon on a freshly made file
1162 * do we expect this to happen.
1163 *
1164 * (bmap requires CAP_SYS_RAWIO so this does not
1165 * represent an unprivileged user DOS attack --- we'd be
1166 * in trouble if mortal users could trigger this path at
1167 * will.)
1168 *
1169 * NB. EXT3_STATE_JDATA is not set on files other than
1170 * regular files. If somebody wants to bmap a directory
1171 * or symlink and gets confused because the buffer
1172 * hasn't yet been flushed to disk, they deserve
1173 * everything they get.
1174 */
1175
1176 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1177 journal = EXT3_JOURNAL(inode);
1178 journal_lock_updates(journal);
1179 err = journal_flush(journal);
1180 journal_unlock_updates(journal);
1181
1182 if (err)
1183 return 0;
1184 }
1185
1186 return generic_block_bmap(mapping,block,ext3_get_block);
1187}
1188
1189static int bget_one(handle_t *handle, struct buffer_head *bh)
1190{
1191 get_bh(bh);
1192 return 0;
1193}
1194
1195static int bput_one(handle_t *handle, struct buffer_head *bh)
1196{
1197 put_bh(bh);
1198 return 0;
1199}
1200
1201static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1202{
1203 if (buffer_mapped(bh))
1204 return ext3_journal_dirty_data(handle, bh);
1205 return 0;
1206}
1207
1208/*
1209 * Note that we always start a transaction even if we're not journalling
1210 * data. This is to preserve ordering: any hole instantiation within
1211 * __block_write_full_page -> ext3_get_block() should be journalled
1212 * along with the data so we don't crash and then get metadata which
1213 * refers to old data.
1214 *
1215 * In all journalling modes block_write_full_page() will start the I/O.
1216 *
1217 * Problem:
1218 *
1219 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1220 * ext3_writepage()
1221 *
1222 * Similar for:
1223 *
1224 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1225 *
1226 * Same applies to ext3_get_block(). We will deadlock on various things like
1227 * lock_journal and i_truncate_sem.
1228 *
1229 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1230 * allocations fail.
1231 *
1232 * 16May01: If we're reentered then journal_current_handle() will be
1233 * non-zero. We simply *return*.
1234 *
1235 * 1 July 2001: @@@ FIXME:
1236 * In journalled data mode, a data buffer may be metadata against the
1237 * current transaction. But the same file is part of a shared mapping
1238 * and someone does a writepage() on it.
1239 *
1240 * We will move the buffer onto the async_data list, but *after* it has
1241 * been dirtied. So there's a small window where we have dirty data on
1242 * BJ_Metadata.
1243 *
1244 * Note that this only applies to the last partial page in the file. The
1245 * bit which block_write_full_page() uses prepare/commit for. (That's
1246 * broken code anyway: it's wrong for msync()).
1247 *
1248 * It's a rare case: affects the final partial page, for journalled data
1249 * where the file is subject to bith write() and writepage() in the same
1250 * transction. To fix it we'll need a custom block_write_full_page().
1251 * We'll probably need that anyway for journalling writepage() output.
1252 *
1253 * We don't honour synchronous mounts for writepage(). That would be
1254 * disastrous. Any write() or metadata operation will sync the fs for
1255 * us.
1256 *
1257 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1258 * we don't need to open a transaction here.
1259 */
1260static int ext3_ordered_writepage(struct page *page,
1261 struct writeback_control *wbc)
1262{
1263 struct inode *inode = page->mapping->host;
1264 struct buffer_head *page_bufs;
1265 handle_t *handle = NULL;
1266 int ret = 0;
1267 int err;
1268
1269 J_ASSERT(PageLocked(page));
1270
1271 /*
1272 * We give up here if we're reentered, because it might be for a
1273 * different filesystem.
1274 */
1275 if (ext3_journal_current_handle())
1276 goto out_fail;
1277
1278 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1279
1280 if (IS_ERR(handle)) {
1281 ret = PTR_ERR(handle);
1282 goto out_fail;
1283 }
1284
1285 if (!page_has_buffers(page)) {
1286 create_empty_buffers(page, inode->i_sb->s_blocksize,
1287 (1 << BH_Dirty)|(1 << BH_Uptodate));
1288 }
1289 page_bufs = page_buffers(page);
1290 walk_page_buffers(handle, page_bufs, 0,
1291 PAGE_CACHE_SIZE, NULL, bget_one);
1292
1293 ret = block_write_full_page(page, ext3_get_block, wbc);
1294
1295 /*
1296 * The page can become unlocked at any point now, and
1297 * truncate can then come in and change things. So we
1298 * can't touch *page from now on. But *page_bufs is
1299 * safe due to elevated refcount.
1300 */
1301
1302 /*
1303 * And attach them to the current transaction. But only if
1304 * block_write_full_page() succeeded. Otherwise they are unmapped,
1305 * and generally junk.
1306 */
1307 if (ret == 0) {
1308 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1309 NULL, journal_dirty_data_fn);
1310 if (!ret)
1311 ret = err;
1312 }
1313 walk_page_buffers(handle, page_bufs, 0,
1314 PAGE_CACHE_SIZE, NULL, bput_one);
1315 err = ext3_journal_stop(handle);
1316 if (!ret)
1317 ret = err;
1318 return ret;
1319
1320out_fail:
1321 redirty_page_for_writepage(wbc, page);
1322 unlock_page(page);
1323 return ret;
1324}
1325
1326static int
1327ext3_writeback_writepage_helper(struct page *page,
1328 struct writeback_control *wbc)
1329{
1330 return block_write_full_page(page, ext3_get_block, wbc);
1331}
1332
1333static int
1334ext3_writeback_writepages(struct address_space *mapping,
1335 struct writeback_control *wbc)
1336{
1337 struct inode *inode = mapping->host;
1338 handle_t *handle = NULL;
1339 int err, ret = 0;
1340
1341 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1342 return ret;
1343
1344 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1345 if (IS_ERR(handle)) {
1346 ret = PTR_ERR(handle);
1347 return ret;
1348 }
1349
1350 ret = __mpage_writepages(mapping, wbc, ext3_writepages_get_block,
1351 ext3_writeback_writepage_helper);
1352
1353 /*
1354 * Need to reaquire the handle since ext3_writepages_get_block()
1355 * can restart the handle
1356 */
1357 handle = journal_current_handle();
1358
1359 err = ext3_journal_stop(handle);
1360 if (!ret)
1361 ret = err;
1362 return ret;
1363}
1364
1365static int ext3_writeback_writepage(struct page *page,
1366 struct writeback_control *wbc)
1367{
1368 struct inode *inode = page->mapping->host;
1369 handle_t *handle = NULL;
1370 int ret = 0;
1371 int err;
1372
1373 if (ext3_journal_current_handle())
1374 goto out_fail;
1375
1376 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1377 if (IS_ERR(handle)) {
1378 ret = PTR_ERR(handle);
1379 goto out_fail;
1380 }
1381
1382 if (test_opt(inode->i_sb, NOBH))
1383 ret = nobh_writepage(page, ext3_get_block, wbc);
1384 else
1385 ret = block_write_full_page(page, ext3_get_block, wbc);
1386
1387 err = ext3_journal_stop(handle);
1388 if (!ret)
1389 ret = err;
1390 return ret;
1391
1392out_fail:
1393 redirty_page_for_writepage(wbc, page);
1394 unlock_page(page);
1395 return ret;
1396}
1397
1398static int ext3_journalled_writepage(struct page *page,
1399 struct writeback_control *wbc)
1400{
1401 struct inode *inode = page->mapping->host;
1402 handle_t *handle = NULL;
1403 int ret = 0;
1404 int err;
1405
1406 if (ext3_journal_current_handle())
1407 goto no_write;
1408
1409 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1410 if (IS_ERR(handle)) {
1411 ret = PTR_ERR(handle);
1412 goto no_write;
1413 }
1414
1415 if (!page_has_buffers(page) || PageChecked(page)) {
1416 /*
1417 * It's mmapped pagecache. Add buffers and journal it. There
1418 * doesn't seem much point in redirtying the page here.
1419 */
1420 ClearPageChecked(page);
1421 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1422 ext3_get_block);
1423 if (ret != 0)
1424 goto out_unlock;
1425 ret = walk_page_buffers(handle, page_buffers(page), 0,
1426 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1427
1428 err = walk_page_buffers(handle, page_buffers(page), 0,
1429 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1430 if (ret == 0)
1431 ret = err;
1432 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1433 unlock_page(page);
1434 } else {
1435 /*
1436 * It may be a page full of checkpoint-mode buffers. We don't
1437 * really know unless we go poke around in the buffer_heads.
1438 * But block_write_full_page will do the right thing.
1439 */
1440 ret = block_write_full_page(page, ext3_get_block, wbc);
1441 }
1442 err = ext3_journal_stop(handle);
1443 if (!ret)
1444 ret = err;
1445out:
1446 return ret;
1447
1448no_write:
1449 redirty_page_for_writepage(wbc, page);
1450out_unlock:
1451 unlock_page(page);
1452 goto out;
1453}
1454
1455static int ext3_readpage(struct file *file, struct page *page)
1456{
1457 return mpage_readpage(page, ext3_get_block);
1458}
1459
1460static int
1461ext3_readpages(struct file *file, struct address_space *mapping,
1462 struct list_head *pages, unsigned nr_pages)
1463{
1464 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1465}
1466
1467static int ext3_invalidatepage(struct page *page, unsigned long offset)
1468{
1469 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1470
1471 /*
1472 * If it's a full truncate we just forget about the pending dirtying
1473 */
1474 if (offset == 0)
1475 ClearPageChecked(page);
1476
1477 return journal_invalidatepage(journal, page, offset);
1478}
1479
1480static int ext3_releasepage(struct page *page, int wait)
1481{
1482 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1483
1484 WARN_ON(PageChecked(page));
1485 if (!page_has_buffers(page))
1486 return 0;
1487 return journal_try_to_free_buffers(journal, page, wait);
1488}
1489
1490/*
1491 * If the O_DIRECT write will extend the file then add this inode to the
1492 * orphan list. So recovery will truncate it back to the original size
1493 * if the machine crashes during the write.
1494 *
1495 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1496 * crashes then stale disk data _may_ be exposed inside the file.
1497 */
1498static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1499 const struct iovec *iov, loff_t offset,
1500 unsigned long nr_segs)
1501{
1502 struct file *file = iocb->ki_filp;
1503 struct inode *inode = file->f_mapping->host;
1504 struct ext3_inode_info *ei = EXT3_I(inode);
1505 handle_t *handle = NULL;
1506 ssize_t ret;
1507 int orphan = 0;
1508 size_t count = iov_length(iov, nr_segs);
1509
1510 if (rw == WRITE) {
1511 loff_t final_size = offset + count;
1512
1513 handle = ext3_journal_start(inode, DIO_CREDITS);
1514 if (IS_ERR(handle)) {
1515 ret = PTR_ERR(handle);
1516 goto out;
1517 }
1518 if (final_size > inode->i_size) {
1519 ret = ext3_orphan_add(handle, inode);
1520 if (ret)
1521 goto out_stop;
1522 orphan = 1;
1523 ei->i_disksize = inode->i_size;
1524 }
1525 }
1526
1527 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1528 offset, nr_segs,
1529 ext3_direct_io_get_blocks, NULL);
1530
1531 /*
1532 * Reacquire the handle: ext3_direct_io_get_block() can restart the
1533 * transaction
1534 */
1535 handle = journal_current_handle();
1536
1537out_stop:
1538 if (handle) {
1539 int err;
1540
1541 if (orphan && inode->i_nlink)
1542 ext3_orphan_del(handle, inode);
1543 if (orphan && ret > 0) {
1544 loff_t end = offset + ret;
1545 if (end > inode->i_size) {
1546 ei->i_disksize = end;
1547 i_size_write(inode, end);
1548 /*
1549 * We're going to return a positive `ret'
1550 * here due to non-zero-length I/O, so there's
1551 * no way of reporting error returns from
1552 * ext3_mark_inode_dirty() to userspace. So
1553 * ignore it.
1554 */
1555 ext3_mark_inode_dirty(handle, inode);
1556 }
1557 }
1558 err = ext3_journal_stop(handle);
1559 if (ret == 0)
1560 ret = err;
1561 }
1562out:
1563 return ret;
1564}
1565
1566/*
1567 * Pages can be marked dirty completely asynchronously from ext3's journalling
1568 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1569 * much here because ->set_page_dirty is called under VFS locks. The page is
1570 * not necessarily locked.
1571 *
1572 * We cannot just dirty the page and leave attached buffers clean, because the
1573 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1574 * or jbddirty because all the journalling code will explode.
1575 *
1576 * So what we do is to mark the page "pending dirty" and next time writepage
1577 * is called, propagate that into the buffers appropriately.
1578 */
1579static int ext3_journalled_set_page_dirty(struct page *page)
1580{
1581 SetPageChecked(page);
1582 return __set_page_dirty_nobuffers(page);
1583}
1584
1585static struct address_space_operations ext3_ordered_aops = {
1586 .readpage = ext3_readpage,
1587 .readpages = ext3_readpages,
1588 .writepage = ext3_ordered_writepage,
1589 .sync_page = block_sync_page,
1590 .prepare_write = ext3_prepare_write,
1591 .commit_write = ext3_ordered_commit_write,
1592 .bmap = ext3_bmap,
1593 .invalidatepage = ext3_invalidatepage,
1594 .releasepage = ext3_releasepage,
1595 .direct_IO = ext3_direct_IO,
1596};
1597
1598static struct address_space_operations ext3_writeback_aops = {
1599 .readpage = ext3_readpage,
1600 .readpages = ext3_readpages,
1601 .writepage = ext3_writeback_writepage,
1602 .writepages = ext3_writeback_writepages,
1603 .sync_page = block_sync_page,
1604 .prepare_write = ext3_prepare_write,
1605 .commit_write = ext3_writeback_commit_write,
1606 .bmap = ext3_bmap,
1607 .invalidatepage = ext3_invalidatepage,
1608 .releasepage = ext3_releasepage,
1609 .direct_IO = ext3_direct_IO,
1610};
1611
1612static struct address_space_operations ext3_journalled_aops = {
1613 .readpage = ext3_readpage,
1614 .readpages = ext3_readpages,
1615 .writepage = ext3_journalled_writepage,
1616 .sync_page = block_sync_page,
1617 .prepare_write = ext3_prepare_write,
1618 .commit_write = ext3_journalled_commit_write,
1619 .set_page_dirty = ext3_journalled_set_page_dirty,
1620 .bmap = ext3_bmap,
1621 .invalidatepage = ext3_invalidatepage,
1622 .releasepage = ext3_releasepage,
1623};
1624
1625void ext3_set_aops(struct inode *inode)
1626{
1627 if (ext3_should_order_data(inode))
1628 inode->i_mapping->a_ops = &ext3_ordered_aops;
1629 else if (ext3_should_writeback_data(inode))
1630 inode->i_mapping->a_ops = &ext3_writeback_aops;
1631 else
1632 inode->i_mapping->a_ops = &ext3_journalled_aops;
1633}
1634
1635/*
1636 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1637 * up to the end of the block which corresponds to `from'.
1638 * This required during truncate. We need to physically zero the tail end
1639 * of that block so it doesn't yield old data if the file is later grown.
1640 */
1641static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1642 struct address_space *mapping, loff_t from)
1643{
1644 unsigned long index = from >> PAGE_CACHE_SHIFT;
1645 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1646 unsigned blocksize, iblock, length, pos;
1647 struct inode *inode = mapping->host;
1648 struct buffer_head *bh;
1649 int err = 0;
1650 void *kaddr;
1651
1652 blocksize = inode->i_sb->s_blocksize;
1653 length = blocksize - (offset & (blocksize - 1));
1654 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1655
1656 /*
1657 * For "nobh" option, we can only work if we don't need to
1658 * read-in the page - otherwise we create buffers to do the IO.
1659 */
1660 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH)) {
1661 if (PageUptodate(page)) {
1662 kaddr = kmap_atomic(page, KM_USER0);
1663 memset(kaddr + offset, 0, length);
1664 flush_dcache_page(page);
1665 kunmap_atomic(kaddr, KM_USER0);
1666 set_page_dirty(page);
1667 goto unlock;
1668 }
1669 }
1670
1671 if (!page_has_buffers(page))
1672 create_empty_buffers(page, blocksize, 0);
1673
1674 /* Find the buffer that contains "offset" */
1675 bh = page_buffers(page);
1676 pos = blocksize;
1677 while (offset >= pos) {
1678 bh = bh->b_this_page;
1679 iblock++;
1680 pos += blocksize;
1681 }
1682
1683 err = 0;
1684 if (buffer_freed(bh)) {
1685 BUFFER_TRACE(bh, "freed: skip");
1686 goto unlock;
1687 }
1688
1689 if (!buffer_mapped(bh)) {
1690 BUFFER_TRACE(bh, "unmapped");
1691 ext3_get_block(inode, iblock, bh, 0);
1692 /* unmapped? It's a hole - nothing to do */
1693 if (!buffer_mapped(bh)) {
1694 BUFFER_TRACE(bh, "still unmapped");
1695 goto unlock;
1696 }
1697 }
1698
1699 /* Ok, it's mapped. Make sure it's up-to-date */
1700 if (PageUptodate(page))
1701 set_buffer_uptodate(bh);
1702
1703 if (!buffer_uptodate(bh)) {
1704 err = -EIO;
1705 ll_rw_block(READ, 1, &bh);
1706 wait_on_buffer(bh);
1707 /* Uhhuh. Read error. Complain and punt. */
1708 if (!buffer_uptodate(bh))
1709 goto unlock;
1710 }
1711
1712 if (ext3_should_journal_data(inode)) {
1713 BUFFER_TRACE(bh, "get write access");
1714 err = ext3_journal_get_write_access(handle, bh);
1715 if (err)
1716 goto unlock;
1717 }
1718
1719 kaddr = kmap_atomic(page, KM_USER0);
1720 memset(kaddr + offset, 0, length);
1721 flush_dcache_page(page);
1722 kunmap_atomic(kaddr, KM_USER0);
1723
1724 BUFFER_TRACE(bh, "zeroed end of block");
1725
1726 err = 0;
1727 if (ext3_should_journal_data(inode)) {
1728 err = ext3_journal_dirty_metadata(handle, bh);
1729 } else {
1730 if (ext3_should_order_data(inode))
1731 err = ext3_journal_dirty_data(handle, bh);
1732 mark_buffer_dirty(bh);
1733 }
1734
1735unlock:
1736 unlock_page(page);
1737 page_cache_release(page);
1738 return err;
1739}
1740
1741/*
1742 * Probably it should be a library function... search for first non-zero word
1743 * or memcmp with zero_page, whatever is better for particular architecture.
1744 * Linus?
1745 */
1746static inline int all_zeroes(__le32 *p, __le32 *q)
1747{
1748 while (p < q)
1749 if (*p++)
1750 return 0;
1751 return 1;
1752}
1753
1754/**
1755 * ext3_find_shared - find the indirect blocks for partial truncation.
1756 * @inode: inode in question
1757 * @depth: depth of the affected branch
1758 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1759 * @chain: place to store the pointers to partial indirect blocks
1760 * @top: place to the (detached) top of branch
1761 *
1762 * This is a helper function used by ext3_truncate().
1763 *
1764 * When we do truncate() we may have to clean the ends of several
1765 * indirect blocks but leave the blocks themselves alive. Block is
1766 * partially truncated if some data below the new i_size is refered
1767 * from it (and it is on the path to the first completely truncated
1768 * data block, indeed). We have to free the top of that path along
1769 * with everything to the right of the path. Since no allocation
1770 * past the truncation point is possible until ext3_truncate()
1771 * finishes, we may safely do the latter, but top of branch may
1772 * require special attention - pageout below the truncation point
1773 * might try to populate it.
1774 *
1775 * We atomically detach the top of branch from the tree, store the
1776 * block number of its root in *@top, pointers to buffer_heads of
1777 * partially truncated blocks - in @chain[].bh and pointers to
1778 * their last elements that should not be removed - in
1779 * @chain[].p. Return value is the pointer to last filled element
1780 * of @chain.
1781 *
1782 * The work left to caller to do the actual freeing of subtrees:
1783 * a) free the subtree starting from *@top
1784 * b) free the subtrees whose roots are stored in
1785 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1786 * c) free the subtrees growing from the inode past the @chain[0].
1787 * (no partially truncated stuff there). */
1788
1789static Indirect *ext3_find_shared(struct inode *inode,
1790 int depth,
1791 int offsets[4],
1792 Indirect chain[4],
1793 __le32 *top)
1794{
1795 Indirect *partial, *p;
1796 int k, err;
1797
1798 *top = 0;
1799 /* Make k index the deepest non-null offest + 1 */
1800 for (k = depth; k > 1 && !offsets[k-1]; k--)
1801 ;
1802 partial = ext3_get_branch(inode, k, offsets, chain, &err);
1803 /* Writer: pointers */
1804 if (!partial)
1805 partial = chain + k-1;
1806 /*
1807 * If the branch acquired continuation since we've looked at it -
1808 * fine, it should all survive and (new) top doesn't belong to us.
1809 */
1810 if (!partial->key && *partial->p)
1811 /* Writer: end */
1812 goto no_top;
1813 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1814 ;
1815 /*
1816 * OK, we've found the last block that must survive. The rest of our
1817 * branch should be detached before unlocking. However, if that rest
1818 * of branch is all ours and does not grow immediately from the inode
1819 * it's easier to cheat and just decrement partial->p.
1820 */
1821 if (p == chain + k - 1 && p > chain) {
1822 p->p--;
1823 } else {
1824 *top = *p->p;
1825 /* Nope, don't do this in ext3. Must leave the tree intact */
1826#if 0
1827 *p->p = 0;
1828#endif
1829 }
1830 /* Writer: end */
1831
1832 while(partial > p)
1833 {
1834 brelse(partial->bh);
1835 partial--;
1836 }
1837no_top:
1838 return partial;
1839}
1840
1841/*
1842 * Zero a number of block pointers in either an inode or an indirect block.
1843 * If we restart the transaction we must again get write access to the
1844 * indirect block for further modification.
1845 *
1846 * We release `count' blocks on disk, but (last - first) may be greater
1847 * than `count' because there can be holes in there.
1848 */
1849static void
1850ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1851 unsigned long block_to_free, unsigned long count,
1852 __le32 *first, __le32 *last)
1853{
1854 __le32 *p;
1855 if (try_to_extend_transaction(handle, inode)) {
1856 if (bh) {
1857 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1858 ext3_journal_dirty_metadata(handle, bh);
1859 }
1860 ext3_mark_inode_dirty(handle, inode);
1861 ext3_journal_test_restart(handle, inode);
1862 if (bh) {
1863 BUFFER_TRACE(bh, "retaking write access");
1864 ext3_journal_get_write_access(handle, bh);
1865 }
1866 }
1867
1868 /*
1869 * Any buffers which are on the journal will be in memory. We find
1870 * them on the hash table so journal_revoke() will run journal_forget()
1871 * on them. We've already detached each block from the file, so
1872 * bforget() in journal_forget() should be safe.
1873 *
1874 * AKPM: turn on bforget in journal_forget()!!!
1875 */
1876 for (p = first; p < last; p++) {
1877 u32 nr = le32_to_cpu(*p);
1878 if (nr) {
1879 struct buffer_head *bh;
1880
1881 *p = 0;
1882 bh = sb_find_get_block(inode->i_sb, nr);
1883 ext3_forget(handle, 0, inode, bh, nr);
1884 }
1885 }
1886
1887 ext3_free_blocks(handle, inode, block_to_free, count);
1888}
1889
1890/**
1891 * ext3_free_data - free a list of data blocks
1892 * @handle: handle for this transaction
1893 * @inode: inode we are dealing with
1894 * @this_bh: indirect buffer_head which contains *@first and *@last
1895 * @first: array of block numbers
1896 * @last: points immediately past the end of array
1897 *
1898 * We are freeing all blocks refered from that array (numbers are stored as
1899 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1900 *
1901 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1902 * blocks are contiguous then releasing them at one time will only affect one
1903 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1904 * actually use a lot of journal space.
1905 *
1906 * @this_bh will be %NULL if @first and @last point into the inode's direct
1907 * block pointers.
1908 */
1909static void ext3_free_data(handle_t *handle, struct inode *inode,
1910 struct buffer_head *this_bh,
1911 __le32 *first, __le32 *last)
1912{
1913 unsigned long block_to_free = 0; /* Starting block # of a run */
1914 unsigned long count = 0; /* Number of blocks in the run */
1915 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1916 corresponding to
1917 block_to_free */
1918 unsigned long nr; /* Current block # */
1919 __le32 *p; /* Pointer into inode/ind
1920 for current block */
1921 int err;
1922
1923 if (this_bh) { /* For indirect block */
1924 BUFFER_TRACE(this_bh, "get_write_access");
1925 err = ext3_journal_get_write_access(handle, this_bh);
1926 /* Important: if we can't update the indirect pointers
1927 * to the blocks, we can't free them. */
1928 if (err)
1929 return;
1930 }
1931
1932 for (p = first; p < last; p++) {
1933 nr = le32_to_cpu(*p);
1934 if (nr) {
1935 /* accumulate blocks to free if they're contiguous */
1936 if (count == 0) {
1937 block_to_free = nr;
1938 block_to_free_p = p;
1939 count = 1;
1940 } else if (nr == block_to_free + count) {
1941 count++;
1942 } else {
1943 ext3_clear_blocks(handle, inode, this_bh,
1944 block_to_free,
1945 count, block_to_free_p, p);
1946 block_to_free = nr;
1947 block_to_free_p = p;
1948 count = 1;
1949 }
1950 }
1951 }
1952
1953 if (count > 0)
1954 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1955 count, block_to_free_p, p);
1956
1957 if (this_bh) {
1958 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1959 ext3_journal_dirty_metadata(handle, this_bh);
1960 }
1961}
1962
1963/**
1964 * ext3_free_branches - free an array of branches
1965 * @handle: JBD handle for this transaction
1966 * @inode: inode we are dealing with
1967 * @parent_bh: the buffer_head which contains *@first and *@last
1968 * @first: array of block numbers
1969 * @last: pointer immediately past the end of array
1970 * @depth: depth of the branches to free
1971 *
1972 * We are freeing all blocks refered from these branches (numbers are
1973 * stored as little-endian 32-bit) and updating @inode->i_blocks
1974 * appropriately.
1975 */
1976static void ext3_free_branches(handle_t *handle, struct inode *inode,
1977 struct buffer_head *parent_bh,
1978 __le32 *first, __le32 *last, int depth)
1979{
1980 unsigned long nr;
1981 __le32 *p;
1982
1983 if (is_handle_aborted(handle))
1984 return;
1985
1986 if (depth--) {
1987 struct buffer_head *bh;
1988 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1989 p = last;
1990 while (--p >= first) {
1991 nr = le32_to_cpu(*p);
1992 if (!nr)
1993 continue; /* A hole */
1994
1995 /* Go read the buffer for the next level down */
1996 bh = sb_bread(inode->i_sb, nr);
1997
1998 /*
1999 * A read failure? Report error and clear slot
2000 * (should be rare).
2001 */
2002 if (!bh) {
2003 ext3_error(inode->i_sb, "ext3_free_branches",
2004 "Read failure, inode=%ld, block=%ld",
2005 inode->i_ino, nr);
2006 continue;
2007 }
2008
2009 /* This zaps the entire block. Bottom up. */
2010 BUFFER_TRACE(bh, "free child branches");
2011 ext3_free_branches(handle, inode, bh,
2012 (__le32*)bh->b_data,
2013 (__le32*)bh->b_data + addr_per_block,
2014 depth);
2015
2016 /*
2017 * We've probably journalled the indirect block several
2018 * times during the truncate. But it's no longer
2019 * needed and we now drop it from the transaction via
2020 * journal_revoke().
2021 *
2022 * That's easy if it's exclusively part of this
2023 * transaction. But if it's part of the committing
2024 * transaction then journal_forget() will simply
2025 * brelse() it. That means that if the underlying
2026 * block is reallocated in ext3_get_block(),
2027 * unmap_underlying_metadata() will find this block
2028 * and will try to get rid of it. damn, damn.
2029 *
2030 * If this block has already been committed to the
2031 * journal, a revoke record will be written. And
2032 * revoke records must be emitted *before* clearing
2033 * this block's bit in the bitmaps.
2034 */
2035 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2036
2037 /*
2038 * Everything below this this pointer has been
2039 * released. Now let this top-of-subtree go.
2040 *
2041 * We want the freeing of this indirect block to be
2042 * atomic in the journal with the updating of the
2043 * bitmap block which owns it. So make some room in
2044 * the journal.
2045 *
2046 * We zero the parent pointer *after* freeing its
2047 * pointee in the bitmaps, so if extend_transaction()
2048 * for some reason fails to put the bitmap changes and
2049 * the release into the same transaction, recovery
2050 * will merely complain about releasing a free block,
2051 * rather than leaking blocks.
2052 */
2053 if (is_handle_aborted(handle))
2054 return;
2055 if (try_to_extend_transaction(handle, inode)) {
2056 ext3_mark_inode_dirty(handle, inode);
2057 ext3_journal_test_restart(handle, inode);
2058 }
2059
2060 ext3_free_blocks(handle, inode, nr, 1);
2061
2062 if (parent_bh) {
2063 /*
2064 * The block which we have just freed is
2065 * pointed to by an indirect block: journal it
2066 */
2067 BUFFER_TRACE(parent_bh, "get_write_access");
2068 if (!ext3_journal_get_write_access(handle,
2069 parent_bh)){
2070 *p = 0;
2071 BUFFER_TRACE(parent_bh,
2072 "call ext3_journal_dirty_metadata");
2073 ext3_journal_dirty_metadata(handle,
2074 parent_bh);
2075 }
2076 }
2077 }
2078 } else {
2079 /* We have reached the bottom of the tree. */
2080 BUFFER_TRACE(parent_bh, "free data blocks");
2081 ext3_free_data(handle, inode, parent_bh, first, last);
2082 }
2083}
2084
2085/*
2086 * ext3_truncate()
2087 *
2088 * We block out ext3_get_block() block instantiations across the entire
2089 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2090 * simultaneously on behalf of the same inode.
2091 *
2092 * As we work through the truncate and commmit bits of it to the journal there
2093 * is one core, guiding principle: the file's tree must always be consistent on
2094 * disk. We must be able to restart the truncate after a crash.
2095 *
2096 * The file's tree may be transiently inconsistent in memory (although it
2097 * probably isn't), but whenever we close off and commit a journal transaction,
2098 * the contents of (the filesystem + the journal) must be consistent and
2099 * restartable. It's pretty simple, really: bottom up, right to left (although
2100 * left-to-right works OK too).
2101 *
2102 * Note that at recovery time, journal replay occurs *before* the restart of
2103 * truncate against the orphan inode list.
2104 *
2105 * The committed inode has the new, desired i_size (which is the same as
2106 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2107 * that this inode's truncate did not complete and it will again call
2108 * ext3_truncate() to have another go. So there will be instantiated blocks
2109 * to the right of the truncation point in a crashed ext3 filesystem. But
2110 * that's fine - as long as they are linked from the inode, the post-crash
2111 * ext3_truncate() run will find them and release them.
2112 */
2113
2114void ext3_truncate(struct inode * inode)
2115{
2116 handle_t *handle;
2117 struct ext3_inode_info *ei = EXT3_I(inode);
2118 __le32 *i_data = ei->i_data;
2119 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2120 struct address_space *mapping = inode->i_mapping;
2121 int offsets[4];
2122 Indirect chain[4];
2123 Indirect *partial;
2124 __le32 nr = 0;
2125 int n;
2126 long last_block;
2127 unsigned blocksize = inode->i_sb->s_blocksize;
2128 struct page *page;
2129
2130 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2131 S_ISLNK(inode->i_mode)))
2132 return;
2133 if (ext3_inode_is_fast_symlink(inode))
2134 return;
2135 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2136 return;
2137
2138 /*
2139 * We have to lock the EOF page here, because lock_page() nests
2140 * outside journal_start().
2141 */
2142 if ((inode->i_size & (blocksize - 1)) == 0) {
2143 /* Block boundary? Nothing to do */
2144 page = NULL;
2145 } else {
2146 page = grab_cache_page(mapping,
2147 inode->i_size >> PAGE_CACHE_SHIFT);
2148 if (!page)
2149 return;
2150 }
2151
2152 handle = start_transaction(inode);
2153 if (IS_ERR(handle)) {
2154 if (page) {
2155 clear_highpage(page);
2156 flush_dcache_page(page);
2157 unlock_page(page);
2158 page_cache_release(page);
2159 }
2160 return; /* AKPM: return what? */
2161 }
2162
2163 last_block = (inode->i_size + blocksize-1)
2164 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2165
2166 if (page)
2167 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2168
2169 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2170 if (n == 0)
2171 goto out_stop; /* error */
2172
2173 /*
2174 * OK. This truncate is going to happen. We add the inode to the
2175 * orphan list, so that if this truncate spans multiple transactions,
2176 * and we crash, we will resume the truncate when the filesystem
2177 * recovers. It also marks the inode dirty, to catch the new size.
2178 *
2179 * Implication: the file must always be in a sane, consistent
2180 * truncatable state while each transaction commits.
2181 */
2182 if (ext3_orphan_add(handle, inode))
2183 goto out_stop;
2184
2185 /*
2186 * The orphan list entry will now protect us from any crash which
2187 * occurs before the truncate completes, so it is now safe to propagate
2188 * the new, shorter inode size (held for now in i_size) into the
2189 * on-disk inode. We do this via i_disksize, which is the value which
2190 * ext3 *really* writes onto the disk inode.
2191 */
2192 ei->i_disksize = inode->i_size;
2193
2194 /*
2195 * From here we block out all ext3_get_block() callers who want to
2196 * modify the block allocation tree.
2197 */
2198 down(&ei->truncate_sem);
2199
2200 if (n == 1) { /* direct blocks */
2201 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2202 i_data + EXT3_NDIR_BLOCKS);
2203 goto do_indirects;
2204 }
2205
2206 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2207 /* Kill the top of shared branch (not detached) */
2208 if (nr) {
2209 if (partial == chain) {
2210 /* Shared branch grows from the inode */
2211 ext3_free_branches(handle, inode, NULL,
2212 &nr, &nr+1, (chain+n-1) - partial);
2213 *partial->p = 0;
2214 /*
2215 * We mark the inode dirty prior to restart,
2216 * and prior to stop. No need for it here.
2217 */
2218 } else {
2219 /* Shared branch grows from an indirect block */
2220 BUFFER_TRACE(partial->bh, "get_write_access");
2221 ext3_free_branches(handle, inode, partial->bh,
2222 partial->p,
2223 partial->p+1, (chain+n-1) - partial);
2224 }
2225 }
2226 /* Clear the ends of indirect blocks on the shared branch */
2227 while (partial > chain) {
2228 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2229 (__le32*)partial->bh->b_data+addr_per_block,
2230 (chain+n-1) - partial);
2231 BUFFER_TRACE(partial->bh, "call brelse");
2232 brelse (partial->bh);
2233 partial--;
2234 }
2235do_indirects:
2236 /* Kill the remaining (whole) subtrees */
2237 switch (offsets[0]) {
2238 default:
2239 nr = i_data[EXT3_IND_BLOCK];
2240 if (nr) {
2241 ext3_free_branches(handle, inode, NULL,
2242 &nr, &nr+1, 1);
2243 i_data[EXT3_IND_BLOCK] = 0;
2244 }
2245 case EXT3_IND_BLOCK:
2246 nr = i_data[EXT3_DIND_BLOCK];
2247 if (nr) {
2248 ext3_free_branches(handle, inode, NULL,
2249 &nr, &nr+1, 2);
2250 i_data[EXT3_DIND_BLOCK] = 0;
2251 }
2252 case EXT3_DIND_BLOCK:
2253 nr = i_data[EXT3_TIND_BLOCK];
2254 if (nr) {
2255 ext3_free_branches(handle, inode, NULL,
2256 &nr, &nr+1, 3);
2257 i_data[EXT3_TIND_BLOCK] = 0;
2258 }
2259 case EXT3_TIND_BLOCK:
2260 ;
2261 }
2262
2263 ext3_discard_reservation(inode);
2264
2265 up(&ei->truncate_sem);
2266 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2267 ext3_mark_inode_dirty(handle, inode);
2268
2269 /* In a multi-transaction truncate, we only make the final
2270 * transaction synchronous */
2271 if (IS_SYNC(inode))
2272 handle->h_sync = 1;
2273out_stop:
2274 /*
2275 * If this was a simple ftruncate(), and the file will remain alive
2276 * then we need to clear up the orphan record which we created above.
2277 * However, if this was a real unlink then we were called by
2278 * ext3_delete_inode(), and we allow that function to clean up the
2279 * orphan info for us.
2280 */
2281 if (inode->i_nlink)
2282 ext3_orphan_del(handle, inode);
2283
2284 ext3_journal_stop(handle);
2285}
2286
2287static unsigned long ext3_get_inode_block(struct super_block *sb,
2288 unsigned long ino, struct ext3_iloc *iloc)
2289{
2290 unsigned long desc, group_desc, block_group;
2291 unsigned long offset, block;
2292 struct buffer_head *bh;
2293 struct ext3_group_desc * gdp;
2294
2295
2296 if ((ino != EXT3_ROOT_INO &&
2297 ino != EXT3_JOURNAL_INO &&
2298 ino != EXT3_RESIZE_INO &&
2299 ino < EXT3_FIRST_INO(sb)) ||
2300 ino > le32_to_cpu(
2301 EXT3_SB(sb)->s_es->s_inodes_count)) {
2302 ext3_error (sb, "ext3_get_inode_block",
2303 "bad inode number: %lu", ino);
2304 return 0;
2305 }
2306 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2307 if (block_group >= EXT3_SB(sb)->s_groups_count) {
2308 ext3_error (sb, "ext3_get_inode_block",
2309 "group >= groups count");
2310 return 0;
2311 }
2312 smp_rmb();
2313 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2314 desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2315 bh = EXT3_SB(sb)->s_group_desc[group_desc];
2316 if (!bh) {
2317 ext3_error (sb, "ext3_get_inode_block",
2318 "Descriptor not loaded");
2319 return 0;
2320 }
2321
2322 gdp = (struct ext3_group_desc *) bh->b_data;
2323 /*
2324 * Figure out the offset within the block group inode table
2325 */
2326 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2327 EXT3_INODE_SIZE(sb);
2328 block = le32_to_cpu(gdp[desc].bg_inode_table) +
2329 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2330
2331 iloc->block_group = block_group;
2332 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2333 return block;
2334}
2335
2336/*
2337 * ext3_get_inode_loc returns with an extra refcount against the inode's
2338 * underlying buffer_head on success. If 'in_mem' is true, we have all
2339 * data in memory that is needed to recreate the on-disk version of this
2340 * inode.
2341 */
2342static int __ext3_get_inode_loc(struct inode *inode,
2343 struct ext3_iloc *iloc, int in_mem)
2344{
2345 unsigned long block;
2346 struct buffer_head *bh;
2347
2348 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2349 if (!block)
2350 return -EIO;
2351
2352 bh = sb_getblk(inode->i_sb, block);
2353 if (!bh) {
2354 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2355 "unable to read inode block - "
2356 "inode=%lu, block=%lu", inode->i_ino, block);
2357 return -EIO;
2358 }
2359 if (!buffer_uptodate(bh)) {
2360 lock_buffer(bh);
2361 if (buffer_uptodate(bh)) {
2362 /* someone brought it uptodate while we waited */
2363 unlock_buffer(bh);
2364 goto has_buffer;
2365 }
2366
2367 /*
2368 * If we have all information of the inode in memory and this
2369 * is the only valid inode in the block, we need not read the
2370 * block.
2371 */
2372 if (in_mem) {
2373 struct buffer_head *bitmap_bh;
2374 struct ext3_group_desc *desc;
2375 int inodes_per_buffer;
2376 int inode_offset, i;
2377 int block_group;
2378 int start;
2379
2380 block_group = (inode->i_ino - 1) /
2381 EXT3_INODES_PER_GROUP(inode->i_sb);
2382 inodes_per_buffer = bh->b_size /
2383 EXT3_INODE_SIZE(inode->i_sb);
2384 inode_offset = ((inode->i_ino - 1) %
2385 EXT3_INODES_PER_GROUP(inode->i_sb));
2386 start = inode_offset & ~(inodes_per_buffer - 1);
2387
2388 /* Is the inode bitmap in cache? */
2389 desc = ext3_get_group_desc(inode->i_sb,
2390 block_group, NULL);
2391 if (!desc)
2392 goto make_io;
2393
2394 bitmap_bh = sb_getblk(inode->i_sb,
2395 le32_to_cpu(desc->bg_inode_bitmap));
2396 if (!bitmap_bh)
2397 goto make_io;
2398
2399 /*
2400 * If the inode bitmap isn't in cache then the
2401 * optimisation may end up performing two reads instead
2402 * of one, so skip it.
2403 */
2404 if (!buffer_uptodate(bitmap_bh)) {
2405 brelse(bitmap_bh);
2406 goto make_io;
2407 }
2408 for (i = start; i < start + inodes_per_buffer; i++) {
2409 if (i == inode_offset)
2410 continue;
2411 if (ext3_test_bit(i, bitmap_bh->b_data))
2412 break;
2413 }
2414 brelse(bitmap_bh);
2415 if (i == start + inodes_per_buffer) {
2416 /* all other inodes are free, so skip I/O */
2417 memset(bh->b_data, 0, bh->b_size);
2418 set_buffer_uptodate(bh);
2419 unlock_buffer(bh);
2420 goto has_buffer;
2421 }
2422 }
2423
2424make_io:
2425 /*
2426 * There are other valid inodes in the buffer, this inode
2427 * has in-inode xattrs, or we don't have this inode in memory.
2428 * Read the block from disk.
2429 */
2430 get_bh(bh);
2431 bh->b_end_io = end_buffer_read_sync;
2432 submit_bh(READ, bh);
2433 wait_on_buffer(bh);
2434 if (!buffer_uptodate(bh)) {
2435 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2436 "unable to read inode block - "
2437 "inode=%lu, block=%lu",
2438 inode->i_ino, block);
2439 brelse(bh);
2440 return -EIO;
2441 }
2442 }
2443has_buffer:
2444 iloc->bh = bh;
2445 return 0;
2446}
2447
2448int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2449{
2450 /* We have all inode data except xattrs in memory here. */
2451 return __ext3_get_inode_loc(inode, iloc,
2452 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2453}
2454
2455void ext3_set_inode_flags(struct inode *inode)
2456{
2457 unsigned int flags = EXT3_I(inode)->i_flags;
2458
2459 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2460 if (flags & EXT3_SYNC_FL)
2461 inode->i_flags |= S_SYNC;
2462 if (flags & EXT3_APPEND_FL)
2463 inode->i_flags |= S_APPEND;
2464 if (flags & EXT3_IMMUTABLE_FL)
2465 inode->i_flags |= S_IMMUTABLE;
2466 if (flags & EXT3_NOATIME_FL)
2467 inode->i_flags |= S_NOATIME;
2468 if (flags & EXT3_DIRSYNC_FL)
2469 inode->i_flags |= S_DIRSYNC;
2470}
2471
2472void ext3_read_inode(struct inode * inode)
2473{
2474 struct ext3_iloc iloc;
2475 struct ext3_inode *raw_inode;
2476 struct ext3_inode_info *ei = EXT3_I(inode);
2477 struct buffer_head *bh;
2478 int block;
2479
2480#ifdef CONFIG_EXT3_FS_POSIX_ACL
2481 ei->i_acl = EXT3_ACL_NOT_CACHED;
2482 ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2483#endif
2484 ei->i_block_alloc_info = NULL;
2485
2486 if (__ext3_get_inode_loc(inode, &iloc, 0))
2487 goto bad_inode;
2488 bh = iloc.bh;
2489 raw_inode = ext3_raw_inode(&iloc);
2490 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2491 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2492 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2493 if(!(test_opt (inode->i_sb, NO_UID32))) {
2494 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2495 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2496 }
2497 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2498 inode->i_size = le32_to_cpu(raw_inode->i_size);
2499 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
2500 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
2501 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
2502 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2503
2504 ei->i_state = 0;
2505 ei->i_dir_start_lookup = 0;
2506 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2507 /* We now have enough fields to check if the inode was active or not.
2508 * This is needed because nfsd might try to access dead inodes
2509 * the test is that same one that e2fsck uses
2510 * NeilBrown 1999oct15
2511 */
2512 if (inode->i_nlink == 0) {
2513 if (inode->i_mode == 0 ||
2514 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2515 /* this inode is deleted */
2516 brelse (bh);
2517 goto bad_inode;
2518 }
2519 /* The only unlinked inodes we let through here have
2520 * valid i_mode and are being read by the orphan
2521 * recovery code: that's fine, we're about to complete
2522 * the process of deleting those. */
2523 }
2524 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size
2525 * (for stat), not the fs block
2526 * size */
2527 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2528 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2529#ifdef EXT3_FRAGMENTS
2530 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2531 ei->i_frag_no = raw_inode->i_frag;
2532 ei->i_frag_size = raw_inode->i_fsize;
2533#endif
2534 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2535 if (!S_ISREG(inode->i_mode)) {
2536 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2537 } else {
2538 inode->i_size |=
2539 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2540 }
2541 ei->i_disksize = inode->i_size;
2542 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2543 ei->i_block_group = iloc.block_group;
2544 /*
2545 * NOTE! The in-memory inode i_data array is in little-endian order
2546 * even on big-endian machines: we do NOT byteswap the block numbers!
2547 */
2548 for (block = 0; block < EXT3_N_BLOCKS; block++)
2549 ei->i_data[block] = raw_inode->i_block[block];
2550 INIT_LIST_HEAD(&ei->i_orphan);
2551
2552 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2553 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2554 /*
2555 * When mke2fs creates big inodes it does not zero out
2556 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2557 * so ignore those first few inodes.
2558 */
2559 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2560 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2561 EXT3_INODE_SIZE(inode->i_sb))
2562 goto bad_inode;
2563 if (ei->i_extra_isize == 0) {
2564 /* The extra space is currently unused. Use it. */
2565 ei->i_extra_isize = sizeof(struct ext3_inode) -
2566 EXT3_GOOD_OLD_INODE_SIZE;
2567 } else {
2568 __le32 *magic = (void *)raw_inode +
2569 EXT3_GOOD_OLD_INODE_SIZE +
2570 ei->i_extra_isize;
2571 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2572 ei->i_state |= EXT3_STATE_XATTR;
2573 }
2574 } else
2575 ei->i_extra_isize = 0;
2576
2577 if (S_ISREG(inode->i_mode)) {
2578 inode->i_op = &ext3_file_inode_operations;
2579 inode->i_fop = &ext3_file_operations;
2580 ext3_set_aops(inode);
2581 } else if (S_ISDIR(inode->i_mode)) {
2582 inode->i_op = &ext3_dir_inode_operations;
2583 inode->i_fop = &ext3_dir_operations;
2584 } else if (S_ISLNK(inode->i_mode)) {
2585 if (ext3_inode_is_fast_symlink(inode))
2586 inode->i_op = &ext3_fast_symlink_inode_operations;
2587 else {
2588 inode->i_op = &ext3_symlink_inode_operations;
2589 ext3_set_aops(inode);
2590 }
2591 } else {
2592 inode->i_op = &ext3_special_inode_operations;
2593 if (raw_inode->i_block[0])
2594 init_special_inode(inode, inode->i_mode,
2595 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2596 else
2597 init_special_inode(inode, inode->i_mode,
2598 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2599 }
2600 brelse (iloc.bh);
2601 ext3_set_inode_flags(inode);
2602 return;
2603
2604bad_inode:
2605 make_bad_inode(inode);
2606 return;
2607}
2608
2609/*
2610 * Post the struct inode info into an on-disk inode location in the
2611 * buffer-cache. This gobbles the caller's reference to the
2612 * buffer_head in the inode location struct.
2613 *
2614 * The caller must have write access to iloc->bh.
2615 */
2616static int ext3_do_update_inode(handle_t *handle,
2617 struct inode *inode,
2618 struct ext3_iloc *iloc)
2619{
2620 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2621 struct ext3_inode_info *ei = EXT3_I(inode);
2622 struct buffer_head *bh = iloc->bh;
2623 int err = 0, rc, block;
2624
2625 /* For fields not not tracking in the in-memory inode,
2626 * initialise them to zero for new inodes. */
2627 if (ei->i_state & EXT3_STATE_NEW)
2628 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2629
2630 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2631 if(!(test_opt(inode->i_sb, NO_UID32))) {
2632 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2633 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2634/*
2635 * Fix up interoperability with old kernels. Otherwise, old inodes get
2636 * re-used with the upper 16 bits of the uid/gid intact
2637 */
2638 if(!ei->i_dtime) {
2639 raw_inode->i_uid_high =
2640 cpu_to_le16(high_16_bits(inode->i_uid));
2641 raw_inode->i_gid_high =
2642 cpu_to_le16(high_16_bits(inode->i_gid));
2643 } else {
2644 raw_inode->i_uid_high = 0;
2645 raw_inode->i_gid_high = 0;
2646 }
2647 } else {
2648 raw_inode->i_uid_low =
2649 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2650 raw_inode->i_gid_low =
2651 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2652 raw_inode->i_uid_high = 0;
2653 raw_inode->i_gid_high = 0;
2654 }
2655 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2656 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2657 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2658 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2659 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2660 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2661 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2662 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2663#ifdef EXT3_FRAGMENTS
2664 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2665 raw_inode->i_frag = ei->i_frag_no;
2666 raw_inode->i_fsize = ei->i_frag_size;
2667#endif
2668 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2669 if (!S_ISREG(inode->i_mode)) {
2670 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2671 } else {
2672 raw_inode->i_size_high =
2673 cpu_to_le32(ei->i_disksize >> 32);
2674 if (ei->i_disksize > 0x7fffffffULL) {
2675 struct super_block *sb = inode->i_sb;
2676 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2677 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2678 EXT3_SB(sb)->s_es->s_rev_level ==
2679 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2680 /* If this is the first large file
2681 * created, add a flag to the superblock.
2682 */
2683 err = ext3_journal_get_write_access(handle,
2684 EXT3_SB(sb)->s_sbh);
2685 if (err)
2686 goto out_brelse;
2687 ext3_update_dynamic_rev(sb);
2688 EXT3_SET_RO_COMPAT_FEATURE(sb,
2689 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2690 sb->s_dirt = 1;
2691 handle->h_sync = 1;
2692 err = ext3_journal_dirty_metadata(handle,
2693 EXT3_SB(sb)->s_sbh);
2694 }
2695 }
2696 }
2697 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2698 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2699 if (old_valid_dev(inode->i_rdev)) {
2700 raw_inode->i_block[0] =
2701 cpu_to_le32(old_encode_dev(inode->i_rdev));
2702 raw_inode->i_block[1] = 0;
2703 } else {
2704 raw_inode->i_block[0] = 0;
2705 raw_inode->i_block[1] =
2706 cpu_to_le32(new_encode_dev(inode->i_rdev));
2707 raw_inode->i_block[2] = 0;
2708 }
2709 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2710 raw_inode->i_block[block] = ei->i_data[block];
2711
2712 if (EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE)
2713 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2714
2715 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2716 rc = ext3_journal_dirty_metadata(handle, bh);
2717 if (!err)
2718 err = rc;
2719 ei->i_state &= ~EXT3_STATE_NEW;
2720
2721out_brelse:
2722 brelse (bh);
2723 ext3_std_error(inode->i_sb, err);
2724 return err;
2725}
2726
2727/*
2728 * ext3_write_inode()
2729 *
2730 * We are called from a few places:
2731 *
2732 * - Within generic_file_write() for O_SYNC files.
2733 * Here, there will be no transaction running. We wait for any running
2734 * trasnaction to commit.
2735 *
2736 * - Within sys_sync(), kupdate and such.
2737 * We wait on commit, if tol to.
2738 *
2739 * - Within prune_icache() (PF_MEMALLOC == true)
2740 * Here we simply return. We can't afford to block kswapd on the
2741 * journal commit.
2742 *
2743 * In all cases it is actually safe for us to return without doing anything,
2744 * because the inode has been copied into a raw inode buffer in
2745 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2746 * knfsd.
2747 *
2748 * Note that we are absolutely dependent upon all inode dirtiers doing the
2749 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2750 * which we are interested.
2751 *
2752 * It would be a bug for them to not do this. The code:
2753 *
2754 * mark_inode_dirty(inode)
2755 * stuff();
2756 * inode->i_size = expr;
2757 *
2758 * is in error because a kswapd-driven write_inode() could occur while
2759 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2760 * will no longer be on the superblock's dirty inode list.
2761 */
2762int ext3_write_inode(struct inode *inode, int wait)
2763{
2764 if (current->flags & PF_MEMALLOC)
2765 return 0;
2766
2767 if (ext3_journal_current_handle()) {
2768 jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2769 dump_stack();
2770 return -EIO;
2771 }
2772
2773 if (!wait)
2774 return 0;
2775
2776 return ext3_force_commit(inode->i_sb);
2777}
2778
2779/*
2780 * ext3_setattr()
2781 *
2782 * Called from notify_change.
2783 *
2784 * We want to trap VFS attempts to truncate the file as soon as
2785 * possible. In particular, we want to make sure that when the VFS
2786 * shrinks i_size, we put the inode on the orphan list and modify
2787 * i_disksize immediately, so that during the subsequent flushing of
2788 * dirty pages and freeing of disk blocks, we can guarantee that any
2789 * commit will leave the blocks being flushed in an unused state on
2790 * disk. (On recovery, the inode will get truncated and the blocks will
2791 * be freed, so we have a strong guarantee that no future commit will
2792 * leave these blocks visible to the user.)
2793 *
2794 * Called with inode->sem down.
2795 */
2796int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2797{
2798 struct inode *inode = dentry->d_inode;
2799 int error, rc = 0;
2800 const unsigned int ia_valid = attr->ia_valid;
2801
2802 error = inode_change_ok(inode, attr);
2803 if (error)
2804 return error;
2805
2806 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2807 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2808 handle_t *handle;
2809
2810 /* (user+group)*(old+new) structure, inode write (sb,
2811 * inode block, ? - but truncate inode update has it) */
2812 handle = ext3_journal_start(inode, 4*EXT3_QUOTA_INIT_BLOCKS+3);
2813 if (IS_ERR(handle)) {
2814 error = PTR_ERR(handle);
2815 goto err_out;
2816 }
2817 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2818 if (error) {
2819 ext3_journal_stop(handle);
2820 return error;
2821 }
2822 /* Update corresponding info in inode so that everything is in
2823 * one transaction */
2824 if (attr->ia_valid & ATTR_UID)
2825 inode->i_uid = attr->ia_uid;
2826 if (attr->ia_valid & ATTR_GID)
2827 inode->i_gid = attr->ia_gid;
2828 error = ext3_mark_inode_dirty(handle, inode);
2829 ext3_journal_stop(handle);
2830 }
2831
2832 if (S_ISREG(inode->i_mode) &&
2833 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2834 handle_t *handle;
2835
2836 handle = ext3_journal_start(inode, 3);
2837 if (IS_ERR(handle)) {
2838 error = PTR_ERR(handle);
2839 goto err_out;
2840 }
2841
2842 error = ext3_orphan_add(handle, inode);
2843 EXT3_I(inode)->i_disksize = attr->ia_size;
2844 rc = ext3_mark_inode_dirty(handle, inode);
2845 if (!error)
2846 error = rc;
2847 ext3_journal_stop(handle);
2848 }
2849
2850 rc = inode_setattr(inode, attr);
2851
2852 /* If inode_setattr's call to ext3_truncate failed to get a
2853 * transaction handle at all, we need to clean up the in-core
2854 * orphan list manually. */
2855 if (inode->i_nlink)
2856 ext3_orphan_del(NULL, inode);
2857
2858 if (!rc && (ia_valid & ATTR_MODE))
2859 rc = ext3_acl_chmod(inode);
2860
2861err_out:
2862 ext3_std_error(inode->i_sb, error);
2863 if (!error)
2864 error = rc;
2865 return error;
2866}
2867
2868
2869/*
2870 * akpm: how many blocks doth make a writepage()?
2871 *
2872 * With N blocks per page, it may be:
2873 * N data blocks
2874 * 2 indirect block
2875 * 2 dindirect
2876 * 1 tindirect
2877 * N+5 bitmap blocks (from the above)
2878 * N+5 group descriptor summary blocks
2879 * 1 inode block
2880 * 1 superblock.
2881 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2882 *
2883 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2884 *
2885 * With ordered or writeback data it's the same, less the N data blocks.
2886 *
2887 * If the inode's direct blocks can hold an integral number of pages then a
2888 * page cannot straddle two indirect blocks, and we can only touch one indirect
2889 * and dindirect block, and the "5" above becomes "3".
2890 *
2891 * This still overestimates under most circumstances. If we were to pass the
2892 * start and end offsets in here as well we could do block_to_path() on each
2893 * block and work out the exact number of indirects which are touched. Pah.
2894 */
2895
2896static int ext3_writepage_trans_blocks(struct inode *inode)
2897{
2898 int bpp = ext3_journal_blocks_per_page(inode);
2899 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2900 int ret;
2901
2902 if (ext3_should_journal_data(inode))
2903 ret = 3 * (bpp + indirects) + 2;
2904 else
2905 ret = 2 * (bpp + indirects) + 2;
2906
2907#ifdef CONFIG_QUOTA
2908 /* We know that structure was already allocated during DQUOT_INIT so
2909 * we will be updating only the data blocks + inodes */
2910 ret += 2*EXT3_QUOTA_TRANS_BLOCKS;
2911#endif
2912
2913 return ret;
2914}
2915
2916/*
2917 * The caller must have previously called ext3_reserve_inode_write().
2918 * Give this, we know that the caller already has write access to iloc->bh.
2919 */
2920int ext3_mark_iloc_dirty(handle_t *handle,
2921 struct inode *inode, struct ext3_iloc *iloc)
2922{
2923 int err = 0;
2924
2925 /* the do_update_inode consumes one bh->b_count */
2926 get_bh(iloc->bh);
2927
2928 /* ext3_do_update_inode() does journal_dirty_metadata */
2929 err = ext3_do_update_inode(handle, inode, iloc);
2930 put_bh(iloc->bh);
2931 return err;
2932}
2933
2934/*
2935 * On success, We end up with an outstanding reference count against
2936 * iloc->bh. This _must_ be cleaned up later.
2937 */
2938
2939int
2940ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2941 struct ext3_iloc *iloc)
2942{
2943 int err = 0;
2944 if (handle) {
2945 err = ext3_get_inode_loc(inode, iloc);
2946 if (!err) {
2947 BUFFER_TRACE(iloc->bh, "get_write_access");
2948 err = ext3_journal_get_write_access(handle, iloc->bh);
2949 if (err) {
2950 brelse(iloc->bh);
2951 iloc->bh = NULL;
2952 }
2953 }
2954 }
2955 ext3_std_error(inode->i_sb, err);
2956 return err;
2957}
2958
2959/*
2960 * akpm: What we do here is to mark the in-core inode as clean
2961 * with respect to inode dirtiness (it may still be data-dirty).
2962 * This means that the in-core inode may be reaped by prune_icache
2963 * without having to perform any I/O. This is a very good thing,
2964 * because *any* task may call prune_icache - even ones which
2965 * have a transaction open against a different journal.
2966 *
2967 * Is this cheating? Not really. Sure, we haven't written the
2968 * inode out, but prune_icache isn't a user-visible syncing function.
2969 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2970 * we start and wait on commits.
2971 *
2972 * Is this efficient/effective? Well, we're being nice to the system
2973 * by cleaning up our inodes proactively so they can be reaped
2974 * without I/O. But we are potentially leaving up to five seconds'
2975 * worth of inodes floating about which prune_icache wants us to
2976 * write out. One way to fix that would be to get prune_icache()
2977 * to do a write_super() to free up some memory. It has the desired
2978 * effect.
2979 */
2980int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2981{
2982 struct ext3_iloc iloc;
2983 int err;
2984
2985 might_sleep();
2986 err = ext3_reserve_inode_write(handle, inode, &iloc);
2987 if (!err)
2988 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2989 return err;
2990}
2991
2992/*
2993 * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2994 *
2995 * We're really interested in the case where a file is being extended.
2996 * i_size has been changed by generic_commit_write() and we thus need
2997 * to include the updated inode in the current transaction.
2998 *
2999 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3000 * are allocated to the file.
3001 *
3002 * If the inode is marked synchronous, we don't honour that here - doing
3003 * so would cause a commit on atime updates, which we don't bother doing.
3004 * We handle synchronous inodes at the highest possible level.
3005 */
3006void ext3_dirty_inode(struct inode *inode)
3007{
3008 handle_t *current_handle = ext3_journal_current_handle();
3009 handle_t *handle;
3010
3011 handle = ext3_journal_start(inode, 2);
3012 if (IS_ERR(handle))
3013 goto out;
3014 if (current_handle &&
3015 current_handle->h_transaction != handle->h_transaction) {
3016 /* This task has a transaction open against a different fs */
3017 printk(KERN_EMERG "%s: transactions do not match!\n",
3018 __FUNCTION__);
3019 } else {
3020 jbd_debug(5, "marking dirty. outer handle=%p\n",
3021 current_handle);
3022 ext3_mark_inode_dirty(handle, inode);
3023 }
3024 ext3_journal_stop(handle);
3025out:
3026 return;
3027}
3028
3029#ifdef AKPM
3030/*
3031 * Bind an inode's backing buffer_head into this transaction, to prevent
3032 * it from being flushed to disk early. Unlike
3033 * ext3_reserve_inode_write, this leaves behind no bh reference and
3034 * returns no iloc structure, so the caller needs to repeat the iloc
3035 * lookup to mark the inode dirty later.
3036 */
3037static inline int
3038ext3_pin_inode(handle_t *handle, struct inode *inode)
3039{
3040 struct ext3_iloc iloc;
3041
3042 int err = 0;
3043 if (handle) {
3044 err = ext3_get_inode_loc(inode, &iloc);
3045 if (!err) {
3046 BUFFER_TRACE(iloc.bh, "get_write_access");
3047 err = journal_get_write_access(handle, iloc.bh);
3048 if (!err)
3049 err = ext3_journal_dirty_metadata(handle,
3050 iloc.bh);
3051 brelse(iloc.bh);
3052 }
3053 }
3054 ext3_std_error(inode->i_sb, err);
3055 return err;
3056}
3057#endif
3058
3059int ext3_change_inode_journal_flag(struct inode *inode, int val)
3060{
3061 journal_t *journal;
3062 handle_t *handle;
3063 int err;
3064
3065 /*
3066 * We have to be very careful here: changing a data block's
3067 * journaling status dynamically is dangerous. If we write a
3068 * data block to the journal, change the status and then delete
3069 * that block, we risk forgetting to revoke the old log record
3070 * from the journal and so a subsequent replay can corrupt data.
3071 * So, first we make sure that the journal is empty and that
3072 * nobody is changing anything.
3073 */
3074
3075 journal = EXT3_JOURNAL(inode);
3076 if (is_journal_aborted(journal) || IS_RDONLY(inode))
3077 return -EROFS;
3078
3079 journal_lock_updates(journal);
3080 journal_flush(journal);
3081
3082 /*
3083 * OK, there are no updates running now, and all cached data is
3084 * synced to disk. We are now in a completely consistent state
3085 * which doesn't have anything in the journal, and we know that
3086 * no filesystem updates are running, so it is safe to modify
3087 * the inode's in-core data-journaling state flag now.
3088 */
3089
3090 if (val)
3091 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3092 else
3093 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3094 ext3_set_aops(inode);
3095
3096 journal_unlock_updates(journal);
3097
3098 /* Finally we can mark the inode as dirty. */
3099
3100 handle = ext3_journal_start(inode, 1);
3101 if (IS_ERR(handle))
3102 return PTR_ERR(handle);
3103
3104 err = ext3_mark_inode_dirty(handle, inode);
3105 handle->h_sync = 1;
3106 ext3_journal_stop(handle);
3107 ext3_std_error(inode->i_sb, err);
3108
3109 return err;
3110}