blob: 0fa70a9618d7ad603d482f7570419bd81b6aa46b [file] [log] [blame]
Paul Mackerrasb4072df2012-11-23 22:37:50 +00001/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
8
9#include <linux/types.h>
10#include <linux/string.h>
11#include <linux/kvm.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <asm/opal.h>
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +053015#include <asm/mce.h>
Mahesh Salgaonkarfd7bacb2016-05-15 09:44:26 +053016#include <asm/machdep.h>
17#include <asm/cputhreads.h>
18#include <asm/hmi.h>
Paul Mackerrasb4072df2012-11-23 22:37:50 +000019
20/* SRR1 bits for machine check on POWER7 */
21#define SRR1_MC_LDSTERR (1ul << (63-42))
22#define SRR1_MC_IFETCH_SH (63-45)
23#define SRR1_MC_IFETCH_MASK 0x7
24#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
25#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
26#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
27#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
28
29/* DSISR bits for machine check on POWER7 */
30#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
31#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
32#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
33#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
34#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
35
36/* POWER7 SLB flush and reload */
37static void reload_slb(struct kvm_vcpu *vcpu)
38{
39 struct slb_shadow *slb;
40 unsigned long i, n;
41
42 /* First clear out SLB */
43 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
44
45 /* Do they have an SLB shadow buffer registered? */
46 slb = vcpu->arch.slb_shadow.pinned_addr;
47 if (!slb)
48 return;
49
50 /* Sanity check */
Alexander Graf02407552014-06-11 10:34:19 +020051 n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
Paul Mackerrasb4072df2012-11-23 22:37:50 +000052 if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
53 return;
54
55 /* Load up the SLB from that */
56 for (i = 0; i < n; ++i) {
Alexander Graf02407552014-06-11 10:34:19 +020057 unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
58 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
Paul Mackerrasb4072df2012-11-23 22:37:50 +000059
60 rb = (rb & ~0xFFFul) | i; /* insert entry number */
61 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
62 }
63}
64
Paul Mackerrasb4072df2012-11-23 22:37:50 +000065/*
66 * On POWER7, see if we can handle a machine check that occurred inside
67 * the guest in real mode, without switching to the host partition.
68 *
69 * Returns: 0 => exit guest, 1 => deliver machine check to guest
70 */
71static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
72{
73 unsigned long srr1 = vcpu->arch.shregs.msr;
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +053074 struct machine_check_event mce_evt;
Paul Mackerrasb4072df2012-11-23 22:37:50 +000075 long handled = 1;
76
77 if (srr1 & SRR1_MC_LDSTERR) {
78 /* error on load/store */
79 unsigned long dsisr = vcpu->arch.shregs.dsisr;
80
81 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
82 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
83 /* flush and reload SLB; flushes D-ERAT too */
84 reload_slb(vcpu);
85 dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
86 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
87 }
88 if (dsisr & DSISR_MC_TLB_MULTI) {
Mahesh Salgaonkar04407052013-10-30 20:04:56 +053089 if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
Mahesh Salgaonkar45706bb2014-12-19 08:41:05 +053090 cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
Paul Mackerrasb4072df2012-11-23 22:37:50 +000091 dsisr &= ~DSISR_MC_TLB_MULTI;
92 }
93 /* Any other errors we don't understand? */
94 if (dsisr & 0xffffffffUL)
95 handled = 0;
96 }
97
98 switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
99 case 0:
100 break;
101 case SRR1_MC_IFETCH_SLBPAR:
102 case SRR1_MC_IFETCH_SLBMULTI:
103 case SRR1_MC_IFETCH_SLBPARMULTI:
104 reload_slb(vcpu);
105 break;
106 case SRR1_MC_IFETCH_TLBMULTI:
Mahesh Salgaonkar04407052013-10-30 20:04:56 +0530107 if (cur_cpu_spec && cur_cpu_spec->flush_tlb)
Mahesh Salgaonkar45706bb2014-12-19 08:41:05 +0530108 cur_cpu_spec->flush_tlb(TLB_INVAL_SCOPE_LPID);
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000109 break;
110 default:
111 handled = 0;
112 }
113
114 /*
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +0530115 * See if we have already handled the condition in the linux host.
116 * We assume that if the condition is recovered then linux host
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000117 * will have generated an error log event that we will pick
118 * up and log later.
Mahesh Salgaonkar74845bc2014-06-11 14:18:21 +0530119 * Don't release mce event now. We will queue up the event so that
120 * we can log the MCE event info on host console.
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000121 */
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +0530122 if (!get_mce_event(&mce_evt, MCE_EVENT_DONTRELEASE))
123 goto out;
124
125 if (mce_evt.version == MCE_V1 &&
126 (mce_evt.severity == MCE_SEV_NO_ERROR ||
127 mce_evt.disposition == MCE_DISPOSITION_RECOVERED))
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000128 handled = 1;
129
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +0530130out:
131 /*
Mahesh Salgaonkar74845bc2014-06-11 14:18:21 +0530132 * We are now going enter guest either through machine check
133 * interrupt (for unhandled errors) or will continue from
134 * current HSRR0 (for handled errors) in guest. Hence
135 * queue up the event so that we can log it from host console later.
Mahesh Salgaonkar36df96f2013-10-30 20:05:40 +0530136 */
Mahesh Salgaonkar74845bc2014-06-11 14:18:21 +0530137 machine_check_queue_event();
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000138
139 return handled;
140}
141
142long kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
143{
Paul Mackerrasc17b98c2014-12-03 13:30:38 +1100144 return kvmppc_realmode_mc_power7(vcpu);
Paul Mackerrasb4072df2012-11-23 22:37:50 +0000145}
Mahesh Salgaonkarfd7bacb2016-05-15 09:44:26 +0530146
147/* Check if dynamic split is in force and return subcore size accordingly. */
148static inline int kvmppc_cur_subcore_size(void)
149{
150 if (local_paca->kvm_hstate.kvm_split_mode)
151 return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
152
153 return threads_per_subcore;
154}
155
156void kvmppc_subcore_enter_guest(void)
157{
158 int thread_id, subcore_id;
159
160 thread_id = cpu_thread_in_core(local_paca->paca_index);
161 subcore_id = thread_id / kvmppc_cur_subcore_size();
162
163 local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
164}
165
166void kvmppc_subcore_exit_guest(void)
167{
168 int thread_id, subcore_id;
169
170 thread_id = cpu_thread_in_core(local_paca->paca_index);
171 subcore_id = thread_id / kvmppc_cur_subcore_size();
172
173 local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
174}
175
176static bool kvmppc_tb_resync_required(void)
177{
178 if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
179 &local_paca->sibling_subcore_state->flags))
180 return false;
181
182 return true;
183}
184
185static void kvmppc_tb_resync_done(void)
186{
187 clear_bit(CORE_TB_RESYNC_REQ_BIT,
188 &local_paca->sibling_subcore_state->flags);
189}
190
191/*
192 * kvmppc_realmode_hmi_handler() is called only by primary thread during
193 * guest exit path.
194 *
195 * There are multiple reasons why HMI could occur, one of them is
196 * Timebase (TB) error. If this HMI is due to TB error, then TB would
197 * have been in stopped state. The opal hmi handler Will fix it and
198 * restore the TB value with host timebase value. For HMI caused due
199 * to non-TB errors, opal hmi handler will not touch/restore TB register
200 * and hence there won't be any change in TB value.
201 *
202 * Since we are not sure about the cause of this HMI, we can't be sure
203 * about the content of TB register whether it holds guest or host timebase
204 * value. Hence the idea is to resync the TB on every HMI, so that we
205 * know about the exact state of the TB value. Resync TB call will
206 * restore TB to host timebase.
207 *
208 * Things to consider:
209 * - On TB error, HMI interrupt is reported on all the threads of the core
210 * that has encountered TB error irrespective of split-core mode.
211 * - The very first thread on the core that get chance to fix TB error
212 * would rsync the TB with local chipTOD value.
213 * - The resync TB is a core level action i.e. it will sync all the TBs
214 * in that core independent of split-core mode. This means if we trigger
215 * TB sync from a thread from one subcore, it would affect TB values of
216 * sibling subcores of the same core.
217 *
218 * All threads need to co-ordinate before making opal hmi handler.
219 * All threads will use sibling_subcore_state->in_guest[] (shared by all
220 * threads in the core) in paca which holds information about whether
221 * sibling subcores are in Guest mode or host mode. The in_guest[] array
222 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
223 * subcore status. Only primary threads from each subcore is responsible
224 * to set/unset its designated array element while entering/exiting the
225 * guset.
226 *
227 * After invoking opal hmi handler call, one of the thread (of entire core)
228 * will need to resync the TB. Bit 63 from subcore state bitmap flags
229 * (sibling_subcore_state->flags) will be used to co-ordinate between
230 * primary threads to decide who takes up the responsibility.
231 *
232 * This is what we do:
233 * - Primary thread from each subcore tries to set resync required bit[63]
234 * of paca->sibling_subcore_state->flags.
235 * - The first primary thread that is able to set the flag takes the
236 * responsibility of TB resync. (Let us call it as thread leader)
237 * - All other threads which are in host will call
238 * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
239 * paca->sibling_subcore_state to get cleared.
240 * - All the primary thread will clear its subcore status from subcore
241 * state in_guest[] array respectively.
242 * - Once all primary threads clear in_guest[0-3], all of them will invoke
243 * opal hmi handler.
244 * - Now all threads will wait for TB resync to complete by invoking
245 * wait_for_tb_resync() except the thread leader.
246 * - Thread leader will do a TB resync by invoking opal_resync_timebase()
247 * call and the it will clear the resync required bit.
248 * - All other threads will now come out of resync wait loop and proceed
249 * with individual execution.
250 * - On return of this function, primary thread will signal all
251 * secondary threads to proceed.
252 * - All secondary threads will eventually call opal hmi handler on
253 * their exit path.
254 */
255
256long kvmppc_realmode_hmi_handler(void)
257{
258 int ptid = local_paca->kvm_hstate.ptid;
259 bool resync_req;
260
261 /* This is only called on primary thread. */
262 BUG_ON(ptid != 0);
263 __this_cpu_inc(irq_stat.hmi_exceptions);
264
265 /*
266 * By now primary thread has already completed guest->host
267 * partition switch but haven't signaled secondaries yet.
268 * All the secondary threads on this subcore is waiting
269 * for primary thread to signal them to go ahead.
270 *
271 * For threads from subcore which isn't in guest, they all will
272 * wait until all other subcores on this core exit the guest.
273 *
274 * Now set the resync required bit. If you are the first to
275 * set this bit then kvmppc_tb_resync_required() function will
276 * return true. For rest all other subcores
277 * kvmppc_tb_resync_required() will return false.
278 *
279 * If resync_req == true, then this thread is responsible to
280 * initiate TB resync after hmi handler has completed.
281 * All other threads on this core will wait until this thread
282 * clears the resync required bit flag.
283 */
284 resync_req = kvmppc_tb_resync_required();
285
286 /* Reset the subcore status to indicate it has exited guest */
287 kvmppc_subcore_exit_guest();
288
289 /*
290 * Wait for other subcores on this core to exit the guest.
291 * All the primary threads and threads from subcore that are
292 * not in guest will wait here until all subcores are out
293 * of guest context.
294 */
295 wait_for_subcore_guest_exit();
296
297 /*
298 * At this point we are sure that primary threads from each
299 * subcore on this core have completed guest->host partition
300 * switch. Now it is safe to call HMI handler.
301 */
302 if (ppc_md.hmi_exception_early)
303 ppc_md.hmi_exception_early(NULL);
304
305 /*
306 * Check if this thread is responsible to resync TB.
307 * All other threads will wait until this thread completes the
308 * TB resync.
309 */
310 if (resync_req) {
311 opal_resync_timebase();
312 /* Reset TB resync req bit */
313 kvmppc_tb_resync_done();
314 } else {
315 wait_for_tb_resync();
316 }
317 return 0;
318}