blob: 50b7937bab32fe6b16e2a53a2ddeada8d3710144 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001// SPDX-License-Identifier: GPL-2.0
Johannes Weinera5289102014-04-03 14:47:51 -07002/*
3 * Workingset detection
4 *
5 * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6 */
7
8#include <linux/memcontrol.h>
9#include <linux/writeback.h>
Hugh Dickins3a4f8a02017-02-24 14:59:36 -080010#include <linux/shmem_fs.h>
Johannes Weinera5289102014-04-03 14:47:51 -070011#include <linux/pagemap.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/swap.h>
Johannes Weiner14b46872016-12-12 16:43:52 -080015#include <linux/dax.h>
Johannes Weinera5289102014-04-03 14:47:51 -070016#include <linux/fs.h>
17#include <linux/mm.h>
18
19/*
20 * Double CLOCK lists
21 *
Mel Gorman1e6b10852016-07-28 15:46:08 -070022 * Per node, two clock lists are maintained for file pages: the
Johannes Weinera5289102014-04-03 14:47:51 -070023 * inactive and the active list. Freshly faulted pages start out at
24 * the head of the inactive list and page reclaim scans pages from the
25 * tail. Pages that are accessed multiple times on the inactive list
26 * are promoted to the active list, to protect them from reclaim,
27 * whereas active pages are demoted to the inactive list when the
28 * active list grows too big.
29 *
30 * fault ------------------------+
31 * |
32 * +--------------+ | +-------------+
33 * reclaim <- | inactive | <-+-- demotion | active | <--+
34 * +--------------+ +-------------+ |
35 * | |
36 * +-------------- promotion ------------------+
37 *
38 *
39 * Access frequency and refault distance
40 *
41 * A workload is thrashing when its pages are frequently used but they
42 * are evicted from the inactive list every time before another access
43 * would have promoted them to the active list.
44 *
45 * In cases where the average access distance between thrashing pages
46 * is bigger than the size of memory there is nothing that can be
47 * done - the thrashing set could never fit into memory under any
48 * circumstance.
49 *
50 * However, the average access distance could be bigger than the
51 * inactive list, yet smaller than the size of memory. In this case,
52 * the set could fit into memory if it weren't for the currently
53 * active pages - which may be used more, hopefully less frequently:
54 *
55 * +-memory available to cache-+
56 * | |
57 * +-inactive------+-active----+
58 * a b | c d e f g h i | J K L M N |
59 * +---------------+-----------+
60 *
61 * It is prohibitively expensive to accurately track access frequency
62 * of pages. But a reasonable approximation can be made to measure
63 * thrashing on the inactive list, after which refaulting pages can be
64 * activated optimistically to compete with the existing active pages.
65 *
66 * Approximating inactive page access frequency - Observations:
67 *
68 * 1. When a page is accessed for the first time, it is added to the
69 * head of the inactive list, slides every existing inactive page
70 * towards the tail by one slot, and pushes the current tail page
71 * out of memory.
72 *
73 * 2. When a page is accessed for the second time, it is promoted to
74 * the active list, shrinking the inactive list by one slot. This
75 * also slides all inactive pages that were faulted into the cache
76 * more recently than the activated page towards the tail of the
77 * inactive list.
78 *
79 * Thus:
80 *
81 * 1. The sum of evictions and activations between any two points in
82 * time indicate the minimum number of inactive pages accessed in
83 * between.
84 *
85 * 2. Moving one inactive page N page slots towards the tail of the
86 * list requires at least N inactive page accesses.
87 *
88 * Combining these:
89 *
90 * 1. When a page is finally evicted from memory, the number of
91 * inactive pages accessed while the page was in cache is at least
92 * the number of page slots on the inactive list.
93 *
94 * 2. In addition, measuring the sum of evictions and activations (E)
95 * at the time of a page's eviction, and comparing it to another
96 * reading (R) at the time the page faults back into memory tells
97 * the minimum number of accesses while the page was not cached.
98 * This is called the refault distance.
99 *
100 * Because the first access of the page was the fault and the second
101 * access the refault, we combine the in-cache distance with the
102 * out-of-cache distance to get the complete minimum access distance
103 * of this page:
104 *
105 * NR_inactive + (R - E)
106 *
107 * And knowing the minimum access distance of a page, we can easily
108 * tell if the page would be able to stay in cache assuming all page
109 * slots in the cache were available:
110 *
111 * NR_inactive + (R - E) <= NR_inactive + NR_active
112 *
113 * which can be further simplified to
114 *
115 * (R - E) <= NR_active
116 *
117 * Put into words, the refault distance (out-of-cache) can be seen as
118 * a deficit in inactive list space (in-cache). If the inactive list
119 * had (R - E) more page slots, the page would not have been evicted
120 * in between accesses, but activated instead. And on a full system,
121 * the only thing eating into inactive list space is active pages.
122 *
123 *
Johannes Weiner1899ad12018-10-26 15:06:04 -0700124 * Refaulting inactive pages
Johannes Weinera5289102014-04-03 14:47:51 -0700125 *
126 * All that is known about the active list is that the pages have been
127 * accessed more than once in the past. This means that at any given
128 * time there is actually a good chance that pages on the active list
129 * are no longer in active use.
130 *
131 * So when a refault distance of (R - E) is observed and there are at
132 * least (R - E) active pages, the refaulting page is activated
133 * optimistically in the hope that (R - E) active pages are actually
134 * used less frequently than the refaulting page - or even not used at
135 * all anymore.
136 *
Johannes Weiner1899ad12018-10-26 15:06:04 -0700137 * That means if inactive cache is refaulting with a suitable refault
138 * distance, we assume the cache workingset is transitioning and put
139 * pressure on the current active list.
140 *
Johannes Weinera5289102014-04-03 14:47:51 -0700141 * If this is wrong and demotion kicks in, the pages which are truly
142 * used more frequently will be reactivated while the less frequently
143 * used once will be evicted from memory.
144 *
145 * But if this is right, the stale pages will be pushed out of memory
146 * and the used pages get to stay in cache.
147 *
Johannes Weiner1899ad12018-10-26 15:06:04 -0700148 * Refaulting active pages
149 *
150 * If on the other hand the refaulting pages have recently been
151 * deactivated, it means that the active list is no longer protecting
152 * actively used cache from reclaim. The cache is NOT transitioning to
153 * a different workingset; the existing workingset is thrashing in the
154 * space allocated to the page cache.
155 *
Johannes Weinera5289102014-04-03 14:47:51 -0700156 *
157 * Implementation
158 *
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700159 * For each node's LRU lists, a counter for inactive evictions and
160 * activations is maintained (node->nonresident_age).
Johannes Weinera5289102014-04-03 14:47:51 -0700161 *
162 * On eviction, a snapshot of this counter (along with some bits to
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500163 * identify the node) is stored in the now empty page cache
Johannes Weinera5289102014-04-03 14:47:51 -0700164 * slot of the evicted page. This is called a shadow entry.
165 *
166 * On cache misses for which there are shadow entries, an eligible
167 * refault distance will immediately activate the refaulting page.
168 */
169
Matthew Wilcox3159f942017-11-03 13:30:42 -0400170#define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \
Johannes Weiner1899ad12018-10-26 15:06:04 -0700171 1 + NODES_SHIFT + MEM_CGROUP_ID_SHIFT)
Johannes Weiner689c94f2016-03-15 14:57:07 -0700172#define EVICTION_MASK (~0UL >> EVICTION_SHIFT)
173
Johannes Weiner612e4492016-03-15 14:57:13 -0700174/*
175 * Eviction timestamps need to be able to cover the full range of
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500176 * actionable refaults. However, bits are tight in the xarray
Johannes Weiner612e4492016-03-15 14:57:13 -0700177 * entry, and after storing the identifier for the lruvec there might
178 * not be enough left to represent every single actionable refault. In
179 * that case, we have to sacrifice granularity for distance, and group
180 * evictions into coarser buckets by shaving off lower timestamp bits.
181 */
182static unsigned int bucket_order __read_mostly;
183
Johannes Weiner1899ad12018-10-26 15:06:04 -0700184static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
185 bool workingset)
Johannes Weinera5289102014-04-03 14:47:51 -0700186{
Johannes Weiner612e4492016-03-15 14:57:13 -0700187 eviction >>= bucket_order;
Matthew Wilcox3159f942017-11-03 13:30:42 -0400188 eviction &= EVICTION_MASK;
Johannes Weiner23047a92016-03-15 14:57:16 -0700189 eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700190 eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
Johannes Weiner1899ad12018-10-26 15:06:04 -0700191 eviction = (eviction << 1) | workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700192
Matthew Wilcox3159f942017-11-03 13:30:42 -0400193 return xa_mk_value(eviction);
Johannes Weinera5289102014-04-03 14:47:51 -0700194}
195
Mel Gorman1e6b10852016-07-28 15:46:08 -0700196static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
Johannes Weiner1899ad12018-10-26 15:06:04 -0700197 unsigned long *evictionp, bool *workingsetp)
Johannes Weinera5289102014-04-03 14:47:51 -0700198{
Matthew Wilcox3159f942017-11-03 13:30:42 -0400199 unsigned long entry = xa_to_value(shadow);
Mel Gorman1e6b10852016-07-28 15:46:08 -0700200 int memcgid, nid;
Johannes Weiner1899ad12018-10-26 15:06:04 -0700201 bool workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700202
Johannes Weiner1899ad12018-10-26 15:06:04 -0700203 workingset = entry & 1;
204 entry >>= 1;
Johannes Weinera5289102014-04-03 14:47:51 -0700205 nid = entry & ((1UL << NODES_SHIFT) - 1);
206 entry >>= NODES_SHIFT;
Johannes Weiner23047a92016-03-15 14:57:16 -0700207 memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
208 entry >>= MEM_CGROUP_ID_SHIFT;
Johannes Weinera5289102014-04-03 14:47:51 -0700209
Johannes Weiner23047a92016-03-15 14:57:16 -0700210 *memcgidp = memcgid;
Mel Gorman1e6b10852016-07-28 15:46:08 -0700211 *pgdat = NODE_DATA(nid);
Johannes Weiner612e4492016-03-15 14:57:13 -0700212 *evictionp = entry << bucket_order;
Johannes Weiner1899ad12018-10-26 15:06:04 -0700213 *workingsetp = workingset;
Johannes Weinera5289102014-04-03 14:47:51 -0700214}
215
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700216/**
217 * workingset_age_nonresident - age non-resident entries as LRU ages
218 * @memcg: the lruvec that was aged
219 * @nr_pages: the number of pages to count
220 *
221 * As in-memory pages are aged, non-resident pages need to be aged as
222 * well, in order for the refault distances later on to be comparable
223 * to the in-memory dimensions. This function allows reclaim and LRU
224 * operations to drive the non-resident aging along in parallel.
225 */
226void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
Johannes Weinerb9107182019-11-30 17:55:59 -0800227{
228 /*
229 * Reclaiming a cgroup means reclaiming all its children in a
230 * round-robin fashion. That means that each cgroup has an LRU
231 * order that is composed of the LRU orders of its child
232 * cgroups; and every page has an LRU position not just in the
233 * cgroup that owns it, but in all of that group's ancestors.
234 *
235 * So when the physical inactive list of a leaf cgroup ages,
236 * the virtual inactive lists of all its parents, including
237 * the root cgroup's, age as well.
238 */
239 do {
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700240 atomic_long_add(nr_pages, &lruvec->nonresident_age);
241 } while ((lruvec = parent_lruvec(lruvec)));
Johannes Weinerb9107182019-11-30 17:55:59 -0800242}
243
Johannes Weinera5289102014-04-03 14:47:51 -0700244/**
245 * workingset_eviction - note the eviction of a page from memory
Johannes Weinerb9107182019-11-30 17:55:59 -0800246 * @target_memcg: the cgroup that is causing the reclaim
Johannes Weinera5289102014-04-03 14:47:51 -0700247 * @page: the page being evicted
248 *
Andrey Ryabinina7ca12f2019-03-05 15:49:35 -0800249 * Returns a shadow entry to be stored in @page->mapping->i_pages in place
Johannes Weinera5289102014-04-03 14:47:51 -0700250 * of the evicted @page so that a later refault can be detected.
251 */
Johannes Weinerb9107182019-11-30 17:55:59 -0800252void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg)
Johannes Weinera5289102014-04-03 14:47:51 -0700253{
Mel Gorman1e6b10852016-07-28 15:46:08 -0700254 struct pglist_data *pgdat = page_pgdat(page);
Johannes Weinera5289102014-04-03 14:47:51 -0700255 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700256 struct lruvec *lruvec;
Johannes Weinerb9107182019-11-30 17:55:59 -0800257 int memcgid;
Johannes Weinera5289102014-04-03 14:47:51 -0700258
Johannes Weiner23047a92016-03-15 14:57:16 -0700259 /* Page is fully exclusive and pins page->mem_cgroup */
260 VM_BUG_ON_PAGE(PageLRU(page), page);
261 VM_BUG_ON_PAGE(page_count(page), page);
262 VM_BUG_ON_PAGE(!PageLocked(page), page);
263
Johannes Weinerb9107182019-11-30 17:55:59 -0800264 lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700265 workingset_age_nonresident(lruvec, hpage_nr_pages(page));
Johannes Weinerb9107182019-11-30 17:55:59 -0800266 /* XXX: target_memcg can be NULL, go through lruvec */
267 memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700268 eviction = atomic_long_read(&lruvec->nonresident_age);
Johannes Weiner1899ad12018-10-26 15:06:04 -0700269 return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page));
Johannes Weinera5289102014-04-03 14:47:51 -0700270}
271
272/**
273 * workingset_refault - evaluate the refault of a previously evicted page
Johannes Weiner1899ad12018-10-26 15:06:04 -0700274 * @page: the freshly allocated replacement page
Johannes Weinera5289102014-04-03 14:47:51 -0700275 * @shadow: shadow entry of the evicted page
276 *
277 * Calculates and evaluates the refault distance of the previously
Johannes Weinerb9107182019-11-30 17:55:59 -0800278 * evicted page in the context of the node and the memcg whose memory
279 * pressure caused the eviction.
Johannes Weinera5289102014-04-03 14:47:51 -0700280 */
Johannes Weiner1899ad12018-10-26 15:06:04 -0700281void workingset_refault(struct page *page, void *shadow)
Johannes Weinera5289102014-04-03 14:47:51 -0700282{
Johannes Weinerb9107182019-11-30 17:55:59 -0800283 struct mem_cgroup *eviction_memcg;
284 struct lruvec *eviction_lruvec;
Johannes Weinera5289102014-04-03 14:47:51 -0700285 unsigned long refault_distance;
Johannes Weiner34e58ca2020-06-03 16:02:43 -0700286 unsigned long workingset_size;
Johannes Weiner1899ad12018-10-26 15:06:04 -0700287 struct pglist_data *pgdat;
Johannes Weiner23047a92016-03-15 14:57:16 -0700288 struct mem_cgroup *memcg;
Johannes Weiner162453b2016-03-15 14:57:10 -0700289 unsigned long eviction;
Johannes Weiner23047a92016-03-15 14:57:16 -0700290 struct lruvec *lruvec;
Johannes Weiner162453b2016-03-15 14:57:10 -0700291 unsigned long refault;
Johannes Weiner1899ad12018-10-26 15:06:04 -0700292 bool workingset;
Johannes Weiner23047a92016-03-15 14:57:16 -0700293 int memcgid;
Johannes Weinera5289102014-04-03 14:47:51 -0700294
Johannes Weiner1899ad12018-10-26 15:06:04 -0700295 unpack_shadow(shadow, &memcgid, &pgdat, &eviction, &workingset);
Johannes Weiner162453b2016-03-15 14:57:10 -0700296
Johannes Weiner23047a92016-03-15 14:57:16 -0700297 rcu_read_lock();
298 /*
299 * Look up the memcg associated with the stored ID. It might
300 * have been deleted since the page's eviction.
301 *
302 * Note that in rare events the ID could have been recycled
303 * for a new cgroup that refaults a shared page. This is
304 * impossible to tell from the available data. However, this
305 * should be a rare and limited disturbance, and activations
306 * are always speculative anyway. Ultimately, it's the aging
307 * algorithm's job to shake out the minimum access frequency
308 * for the active cache.
309 *
310 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
311 * would be better if the root_mem_cgroup existed in all
312 * configurations instead.
313 */
Johannes Weinerb9107182019-11-30 17:55:59 -0800314 eviction_memcg = mem_cgroup_from_id(memcgid);
315 if (!mem_cgroup_disabled() && !eviction_memcg)
Johannes Weiner1899ad12018-10-26 15:06:04 -0700316 goto out;
Johannes Weinerb9107182019-11-30 17:55:59 -0800317 eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700318 refault = atomic_long_read(&eviction_lruvec->nonresident_age);
Johannes Weiner162453b2016-03-15 14:57:10 -0700319
320 /*
Johannes Weiner1899ad12018-10-26 15:06:04 -0700321 * Calculate the refault distance
Johannes Weiner162453b2016-03-15 14:57:10 -0700322 *
Johannes Weiner1899ad12018-10-26 15:06:04 -0700323 * The unsigned subtraction here gives an accurate distance
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700324 * across nonresident_age overflows in most cases. There is a
Johannes Weiner1899ad12018-10-26 15:06:04 -0700325 * special case: usually, shadow entries have a short lifetime
326 * and are either refaulted or reclaimed along with the inode
327 * before they get too old. But it is not impossible for the
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700328 * nonresident_age to lap a shadow entry in the field, which
329 * can then result in a false small refault distance, leading
330 * to a false activation should this old entry actually
331 * refault again. However, earlier kernels used to deactivate
Johannes Weiner1899ad12018-10-26 15:06:04 -0700332 * unconditionally with *every* reclaim invocation for the
333 * longest time, so the occasional inappropriate activation
334 * leading to pressure on the active list is not a problem.
Johannes Weiner162453b2016-03-15 14:57:10 -0700335 */
336 refault_distance = (refault - eviction) & EVICTION_MASK;
337
Johannes Weinerb9107182019-11-30 17:55:59 -0800338 /*
339 * The activation decision for this page is made at the level
340 * where the eviction occurred, as that is where the LRU order
341 * during page reclaim is being determined.
342 *
343 * However, the cgroup that will own the page is the one that
344 * is actually experiencing the refault event.
345 */
346 memcg = page_memcg(page);
347 lruvec = mem_cgroup_lruvec(memcg, pgdat);
348
Johannes Weiner00f3ca22017-07-06 15:40:52 -0700349 inc_lruvec_state(lruvec, WORKINGSET_REFAULT);
Johannes Weinera5289102014-04-03 14:47:51 -0700350
Johannes Weiner1899ad12018-10-26 15:06:04 -0700351 /*
352 * Compare the distance to the existing workingset size. We
Johannes Weiner34e58ca2020-06-03 16:02:43 -0700353 * don't activate pages that couldn't stay resident even if
354 * all the memory was available to the page cache. Whether
355 * cache can compete with anon or not depends on having swap.
Johannes Weiner1899ad12018-10-26 15:06:04 -0700356 */
Johannes Weiner34e58ca2020-06-03 16:02:43 -0700357 workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
358 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) {
359 workingset_size += lruvec_page_state(eviction_lruvec,
360 NR_INACTIVE_ANON);
361 workingset_size += lruvec_page_state(eviction_lruvec,
362 NR_ACTIVE_ANON);
363 }
364 if (refault_distance > workingset_size)
Johannes Weiner1899ad12018-10-26 15:06:04 -0700365 goto out;
366
367 SetPageActive(page);
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700368 workingset_age_nonresident(lruvec, hpage_nr_pages(page));
Johannes Weiner1899ad12018-10-26 15:06:04 -0700369 inc_lruvec_state(lruvec, WORKINGSET_ACTIVATE);
370
371 /* Page was active prior to eviction */
372 if (workingset) {
373 SetPageWorkingset(page);
Johannes Weiner314b57f2020-06-03 16:03:03 -0700374 /* XXX: Move to lru_cache_add() when it supports new vs putback */
375 spin_lock_irq(&page_pgdat(page)->lru_lock);
Johannes Weiner96f8bf42020-06-03 16:03:09 -0700376 lru_note_cost_page(page);
Johannes Weiner314b57f2020-06-03 16:03:03 -0700377 spin_unlock_irq(&page_pgdat(page)->lru_lock);
Johannes Weiner1899ad12018-10-26 15:06:04 -0700378 inc_lruvec_state(lruvec, WORKINGSET_RESTORE);
Johannes Weinera5289102014-04-03 14:47:51 -0700379 }
Johannes Weiner1899ad12018-10-26 15:06:04 -0700380out:
Johannes Weiner2a2e4882017-05-03 14:55:03 -0700381 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700382}
383
384/**
385 * workingset_activation - note a page activation
386 * @page: page that is being activated
387 */
388void workingset_activation(struct page *page)
389{
Johannes Weiner55779ec2016-07-28 15:45:10 -0700390 struct mem_cgroup *memcg;
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700391 struct lruvec *lruvec;
Johannes Weiner23047a92016-03-15 14:57:16 -0700392
Johannes Weiner55779ec2016-07-28 15:45:10 -0700393 rcu_read_lock();
Johannes Weiner23047a92016-03-15 14:57:16 -0700394 /*
395 * Filter non-memcg pages here, e.g. unmap can call
396 * mark_page_accessed() on VDSO pages.
397 *
398 * XXX: See workingset_refault() - this should return
399 * root_mem_cgroup even for !CONFIG_MEMCG.
400 */
Johannes Weiner55779ec2016-07-28 15:45:10 -0700401 memcg = page_memcg_rcu(page);
402 if (!mem_cgroup_disabled() && !memcg)
Johannes Weiner23047a92016-03-15 14:57:16 -0700403 goto out;
Johannes Weiner31d8fca2020-06-25 20:30:31 -0700404 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
405 workingset_age_nonresident(lruvec, hpage_nr_pages(page));
Johannes Weiner23047a92016-03-15 14:57:16 -0700406out:
Johannes Weiner55779ec2016-07-28 15:45:10 -0700407 rcu_read_unlock();
Johannes Weinera5289102014-04-03 14:47:51 -0700408}
Johannes Weiner449dd692014-04-03 14:47:56 -0700409
410/*
411 * Shadow entries reflect the share of the working set that does not
412 * fit into memory, so their number depends on the access pattern of
413 * the workload. In most cases, they will refault or get reclaimed
414 * along with the inode, but a (malicious) workload that streams
415 * through files with a total size several times that of available
416 * memory, while preventing the inodes from being reclaimed, can
417 * create excessive amounts of shadow nodes. To keep a lid on this,
418 * track shadow nodes and reclaim them when they grow way past the
419 * point where they would still be useful.
420 */
421
Johannes Weiner14b46872016-12-12 16:43:52 -0800422static struct list_lru shadow_nodes;
423
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500424void workingset_update_node(struct xa_node *node)
Johannes Weiner14b46872016-12-12 16:43:52 -0800425{
Johannes Weiner14b46872016-12-12 16:43:52 -0800426 /*
427 * Track non-empty nodes that contain only shadow entries;
428 * unlink those that contain pages or are being freed.
429 *
430 * Avoid acquiring the list_lru lock when the nodes are
431 * already where they should be. The list_empty() test is safe
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700432 * as node->private_list is protected by the i_pages lock.
Johannes Weiner14b46872016-12-12 16:43:52 -0800433 */
Johannes Weiner68d48e62018-10-26 15:06:39 -0700434 VM_WARN_ON_ONCE(!irqs_disabled()); /* For __inc_lruvec_page_state */
435
Matthew Wilcox01959df2017-11-09 09:23:56 -0500436 if (node->count && node->count == node->nr_values) {
Johannes Weiner68d48e62018-10-26 15:06:39 -0700437 if (list_empty(&node->private_list)) {
Johannes Weiner14b46872016-12-12 16:43:52 -0800438 list_lru_add(&shadow_nodes, &node->private_list);
Roman Gushchinec9f0232019-08-13 15:37:41 -0700439 __inc_lruvec_slab_state(node, WORKINGSET_NODES);
Johannes Weiner68d48e62018-10-26 15:06:39 -0700440 }
Johannes Weiner14b46872016-12-12 16:43:52 -0800441 } else {
Johannes Weiner68d48e62018-10-26 15:06:39 -0700442 if (!list_empty(&node->private_list)) {
Johannes Weiner14b46872016-12-12 16:43:52 -0800443 list_lru_del(&shadow_nodes, &node->private_list);
Roman Gushchinec9f0232019-08-13 15:37:41 -0700444 __dec_lruvec_slab_state(node, WORKINGSET_NODES);
Johannes Weiner68d48e62018-10-26 15:06:39 -0700445 }
Johannes Weiner14b46872016-12-12 16:43:52 -0800446 }
447}
Johannes Weiner449dd692014-04-03 14:47:56 -0700448
449static unsigned long count_shadow_nodes(struct shrinker *shrinker,
450 struct shrink_control *sc)
451{
Johannes Weiner449dd692014-04-03 14:47:56 -0700452 unsigned long max_nodes;
Johannes Weiner14b46872016-12-12 16:43:52 -0800453 unsigned long nodes;
Johannes Weiner95f9ab22018-10-26 15:05:59 -0700454 unsigned long pages;
Johannes Weiner449dd692014-04-03 14:47:56 -0700455
Johannes Weiner14b46872016-12-12 16:43:52 -0800456 nodes = list_lru_shrink_count(&shadow_nodes, sc);
Johannes Weiner449dd692014-04-03 14:47:56 -0700457
Johannes Weiner449dd692014-04-03 14:47:56 -0700458 /*
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500459 * Approximate a reasonable limit for the nodes
Johannes Weinerb5388992016-12-12 16:43:58 -0800460 * containing shadow entries. We don't need to keep more
461 * shadow entries than possible pages on the active list,
462 * since refault distances bigger than that are dismissed.
463 *
464 * The size of the active list converges toward 100% of
465 * overall page cache as memory grows, with only a tiny
466 * inactive list. Assume the total cache size for that.
467 *
468 * Nodes might be sparsely populated, with only one shadow
469 * entry in the extreme case. Obviously, we cannot keep one
470 * node for every eligible shadow entry, so compromise on a
471 * worst-case density of 1/8th. Below that, not all eligible
472 * refaults can be detected anymore.
Johannes Weiner449dd692014-04-03 14:47:56 -0700473 *
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500474 * On 64-bit with 7 xa_nodes per page and 64 slots
Johannes Weiner449dd692014-04-03 14:47:56 -0700475 * each, this will reclaim shadow entries when they consume
Johannes Weinerb5388992016-12-12 16:43:58 -0800476 * ~1.8% of available memory:
Johannes Weiner449dd692014-04-03 14:47:56 -0700477 *
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500478 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
Johannes Weiner449dd692014-04-03 14:47:56 -0700479 */
Johannes Weiner95f9ab22018-10-26 15:05:59 -0700480#ifdef CONFIG_MEMCG
Johannes Weinerb5388992016-12-12 16:43:58 -0800481 if (sc->memcg) {
Johannes Weiner95f9ab22018-10-26 15:05:59 -0700482 struct lruvec *lruvec;
Johannes Weiner2b487e52019-05-13 17:18:05 -0700483 int i;
Johannes Weiner95f9ab22018-10-26 15:05:59 -0700484
Johannes Weiner867e5e12019-11-30 17:55:34 -0800485 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
Johannes Weiner2b487e52019-05-13 17:18:05 -0700486 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
Johannes Weiner205b20c2019-05-14 15:47:06 -0700487 pages += lruvec_page_state_local(lruvec,
488 NR_LRU_BASE + i);
489 pages += lruvec_page_state_local(lruvec, NR_SLAB_RECLAIMABLE);
490 pages += lruvec_page_state_local(lruvec, NR_SLAB_UNRECLAIMABLE);
Johannes Weiner95f9ab22018-10-26 15:05:59 -0700491 } else
492#endif
493 pages = node_present_pages(sc->nid);
494
Linus Torvaldsdad4f142018-10-28 11:35:40 -0700495 max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
Johannes Weiner449dd692014-04-03 14:47:56 -0700496
Kirill Tkhai9b996462018-08-17 15:48:21 -0700497 if (!nodes)
498 return SHRINK_EMPTY;
499
Johannes Weiner14b46872016-12-12 16:43:52 -0800500 if (nodes <= max_nodes)
Johannes Weiner449dd692014-04-03 14:47:56 -0700501 return 0;
Johannes Weiner14b46872016-12-12 16:43:52 -0800502 return nodes - max_nodes;
Johannes Weiner449dd692014-04-03 14:47:56 -0700503}
504
505static enum lru_status shadow_lru_isolate(struct list_head *item,
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800506 struct list_lru_one *lru,
Johannes Weiner449dd692014-04-03 14:47:56 -0700507 spinlock_t *lru_lock,
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500508 void *arg) __must_hold(lru_lock)
Johannes Weiner449dd692014-04-03 14:47:56 -0700509{
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500510 struct xa_node *node = container_of(item, struct xa_node, private_list);
511 XA_STATE(xas, node->array, 0);
Johannes Weiner449dd692014-04-03 14:47:56 -0700512 struct address_space *mapping;
Johannes Weiner449dd692014-04-03 14:47:56 -0700513 int ret;
514
515 /*
516 * Page cache insertions and deletions synchroneously maintain
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700517 * the shadow node LRU under the i_pages lock and the
Johannes Weiner449dd692014-04-03 14:47:56 -0700518 * lru_lock. Because the page cache tree is emptied before
519 * the inode can be destroyed, holding the lru_lock pins any
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500520 * address_space that has nodes on the LRU.
Johannes Weiner449dd692014-04-03 14:47:56 -0700521 *
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700522 * We can then safely transition to the i_pages lock to
Johannes Weiner449dd692014-04-03 14:47:56 -0700523 * pin only the address_space of the particular node we want
524 * to reclaim, take the node off-LRU, and drop the lru_lock.
525 */
526
Matthew Wilcox01959df2017-11-09 09:23:56 -0500527 mapping = container_of(node->array, struct address_space, i_pages);
Johannes Weiner449dd692014-04-03 14:47:56 -0700528
529 /* Coming from the list, invert the lock order */
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700530 if (!xa_trylock(&mapping->i_pages)) {
Sebastian Andrzej Siewior6ca342d2018-08-17 15:46:08 -0700531 spin_unlock_irq(lru_lock);
Johannes Weiner449dd692014-04-03 14:47:56 -0700532 ret = LRU_RETRY;
533 goto out;
534 }
535
Vladimir Davydov3f97b162015-02-12 14:59:35 -0800536 list_lru_isolate(lru, item);
Roman Gushchinec9f0232019-08-13 15:37:41 -0700537 __dec_lruvec_slab_state(node, WORKINGSET_NODES);
Johannes Weiner68d48e62018-10-26 15:06:39 -0700538
Johannes Weiner449dd692014-04-03 14:47:56 -0700539 spin_unlock(lru_lock);
540
541 /*
542 * The nodes should only contain one or more shadow entries,
543 * no pages, so we expect to be able to remove them all and
544 * delete and free the empty node afterwards.
545 */
Matthew Wilcox01959df2017-11-09 09:23:56 -0500546 if (WARN_ON_ONCE(!node->nr_values))
Johannes Weinerb9368872016-12-12 16:43:38 -0800547 goto out_invalid;
Matthew Wilcox01959df2017-11-09 09:23:56 -0500548 if (WARN_ON_ONCE(node->count != node->nr_values))
Johannes Weinerb9368872016-12-12 16:43:38 -0800549 goto out_invalid;
Matthew Wilcoxa97e7902017-11-24 14:24:59 -0500550 mapping->nrexceptional -= node->nr_values;
551 xas.xa_node = xa_parent_locked(&mapping->i_pages, node);
552 xas.xa_offset = node->offset;
553 xas.xa_shift = node->shift + XA_CHUNK_SHIFT;
554 xas_set_update(&xas, workingset_update_node);
555 /*
556 * We could store a shadow entry here which was the minimum of the
557 * shadow entries we were tracking ...
558 */
559 xas_store(&xas, NULL);
Roman Gushchinec9f0232019-08-13 15:37:41 -0700560 __inc_lruvec_slab_state(node, WORKINGSET_NODERECLAIM);
Johannes Weiner449dd692014-04-03 14:47:56 -0700561
Johannes Weinerb9368872016-12-12 16:43:38 -0800562out_invalid:
Sebastian Andrzej Siewior6ca342d2018-08-17 15:46:08 -0700563 xa_unlock_irq(&mapping->i_pages);
Johannes Weiner449dd692014-04-03 14:47:56 -0700564 ret = LRU_REMOVED_RETRY;
565out:
Johannes Weiner449dd692014-04-03 14:47:56 -0700566 cond_resched();
Sebastian Andrzej Siewior6ca342d2018-08-17 15:46:08 -0700567 spin_lock_irq(lru_lock);
Johannes Weiner449dd692014-04-03 14:47:56 -0700568 return ret;
569}
570
571static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
572 struct shrink_control *sc)
573{
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700574 /* list_lru lock nests inside the IRQ-safe i_pages lock */
Sebastian Andrzej Siewior6b51e882018-08-17 15:49:55 -0700575 return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
576 NULL);
Johannes Weiner449dd692014-04-03 14:47:56 -0700577}
578
579static struct shrinker workingset_shadow_shrinker = {
580 .count_objects = count_shadow_nodes,
581 .scan_objects = scan_shadow_nodes,
Johannes Weiner4b85afb2018-10-26 15:06:42 -0700582 .seeks = 0, /* ->count reports only fully expendable nodes */
Vladimir Davydov0a6b76d2016-03-17 14:18:42 -0700583 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
Johannes Weiner449dd692014-04-03 14:47:56 -0700584};
585
586/*
587 * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
Matthew Wilcoxb93b0162018-04-10 16:36:56 -0700588 * i_pages lock.
Johannes Weiner449dd692014-04-03 14:47:56 -0700589 */
590static struct lock_class_key shadow_nodes_key;
591
592static int __init workingset_init(void)
593{
Johannes Weiner612e4492016-03-15 14:57:13 -0700594 unsigned int timestamp_bits;
595 unsigned int max_order;
Johannes Weiner449dd692014-04-03 14:47:56 -0700596 int ret;
597
Johannes Weiner612e4492016-03-15 14:57:13 -0700598 BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
599 /*
600 * Calculate the eviction bucket size to cover the longest
601 * actionable refault distance, which is currently half of
602 * memory (totalram_pages/2). However, memory hotplug may add
603 * some more pages at runtime, so keep working with up to
604 * double the initial memory by using totalram_pages as-is.
605 */
606 timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
Arun KSca79b0c2018-12-28 00:34:29 -0800607 max_order = fls_long(totalram_pages() - 1);
Johannes Weiner612e4492016-03-15 14:57:13 -0700608 if (max_order > timestamp_bits)
609 bucket_order = max_order - timestamp_bits;
Anton Blanchardd3d36c42016-07-14 12:07:41 -0700610 pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
Johannes Weiner612e4492016-03-15 14:57:13 -0700611 timestamp_bits, max_order, bucket_order);
612
Kirill Tkhai39887652018-08-17 15:47:41 -0700613 ret = prealloc_shrinker(&workingset_shadow_shrinker);
Johannes Weiner449dd692014-04-03 14:47:56 -0700614 if (ret)
615 goto err;
Kirill Tkhaic92e8e12018-08-17 15:47:50 -0700616 ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
617 &workingset_shadow_shrinker);
Johannes Weiner449dd692014-04-03 14:47:56 -0700618 if (ret)
619 goto err_list_lru;
Kirill Tkhai39887652018-08-17 15:47:41 -0700620 register_shrinker_prepared(&workingset_shadow_shrinker);
Johannes Weiner449dd692014-04-03 14:47:56 -0700621 return 0;
622err_list_lru:
Kirill Tkhai39887652018-08-17 15:47:41 -0700623 free_prealloced_shrinker(&workingset_shadow_shrinker);
Johannes Weiner449dd692014-04-03 14:47:56 -0700624err:
625 return ret;
626}
627module_init(workingset_init);