blob: dab57374e1feeb439bc24c46a667694479c2634c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Nathan Scott7b718762005-11-02 14:58:39 +11002 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110022#include "xfs_inum.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070023#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_sb.h"
David Chinnerda353b02007-08-28 14:00:13 +100026#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070027#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_trans_priv.h"
30#include "xfs_extfree_item.h"
31
32
33kmem_zone_t *xfs_efi_zone;
34kmem_zone_t *xfs_efd_zone;
35
36STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
Linus Torvalds1da177e2005-04-16 15:20:36 -070037
Christoph Hellwig7d795ca2005-06-21 15:41:19 +100038void
39xfs_efi_item_free(xfs_efi_log_item_t *efip)
40{
41 int nexts = efip->efi_format.efi_nextents;
42
43 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
Denys Vlasenkof0e2d932008-05-19 16:31:57 +100044 kmem_free(efip);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +100045 } else {
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48}
Linus Torvalds1da177e2005-04-16 15:20:36 -070049
50/*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55/*ARGSUSED*/
56STATIC uint
57xfs_efi_item_size(xfs_efi_log_item_t *efip)
58{
59 return 1;
60}
61
62/*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69STATIC void
70xfs_efi_item_format(xfs_efi_log_item_t *efip,
71 xfs_log_iovec_t *log_vector)
72{
73 uint size;
74
75 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76
77 efip->efi_format.efi_type = XFS_LI_EFI;
78
79 size = sizeof(xfs_efi_log_format_t);
80 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 efip->efi_format.efi_size = 1;
82
83 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
84 log_vector->i_len = size;
Tim Shimmin7e9c6392005-09-02 16:42:05 +100085 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
Linus Torvalds1da177e2005-04-16 15:20:36 -070086 ASSERT(size >= sizeof(xfs_efi_log_format_t));
87}
88
89
90/*
91 * Pinning has no meaning for an efi item, so just return.
92 */
93/*ARGSUSED*/
94STATIC void
95xfs_efi_item_pin(xfs_efi_log_item_t *efip)
96{
97 return;
98}
99
100
101/*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
107/*ARGSUSED*/
108STATIC void
109xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
110{
David Chinnerfc1829f2008-10-30 17:39:46 +1100111 xfs_mount_t *mp;
112 struct xfs_ail *ailp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
114 mp = efip->efi_item.li_mountp;
David Chinnerfc1829f2008-10-30 17:39:46 +1100115 ailp = efip->efi_item.li_ailp;
116 spin_lock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117 if (efip->efi_flags & XFS_EFI_CANCELED) {
118 /*
119 * xfs_trans_delete_ail() drops the AIL lock.
120 */
Donald Douwsma287f3da2007-10-11 17:36:05 +1000121 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000122 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123 } else {
124 efip->efi_flags |= XFS_EFI_COMMITTED;
David Chinnerfc1829f2008-10-30 17:39:46 +1100125 spin_unlock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700126 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127}
128
129/*
130 * like unpin only we have to also clear the xaction descriptor
131 * pointing the log item if we free the item. This routine duplicates
132 * unpin because efi_flags is protected by the AIL lock. Freeing
133 * the descriptor and then calling unpin would force us to drop the AIL
134 * lock which would open up a race condition.
135 */
136STATIC void
137xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
138{
David Chinnerfc1829f2008-10-30 17:39:46 +1100139 xfs_mount_t *mp;
140 struct xfs_ail *ailp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141 xfs_log_item_desc_t *lidp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142
143 mp = efip->efi_item.li_mountp;
David Chinnerfc1829f2008-10-30 17:39:46 +1100144 ailp = efip->efi_item.li_ailp;
145 spin_lock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 if (efip->efi_flags & XFS_EFI_CANCELED) {
147 /*
148 * free the xaction descriptor pointing to this item
149 */
150 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
151 xfs_trans_free_item(tp, lidp);
152 /*
153 * pull the item off the AIL.
154 * xfs_trans_delete_ail() drops the AIL lock.
155 */
Donald Douwsma287f3da2007-10-11 17:36:05 +1000156 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000157 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 } else {
159 efip->efi_flags |= XFS_EFI_COMMITTED;
David Chinnerfc1829f2008-10-30 17:39:46 +1100160 spin_unlock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162}
163
164/*
165 * Efi items have no locking or pushing. However, since EFIs are
166 * pulled from the AIL when their corresponding EFDs are committed
167 * to disk, their situation is very similar to being pinned. Return
168 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
169 * This should help in getting the EFI out of the AIL.
170 */
171/*ARGSUSED*/
172STATIC uint
173xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
174{
175 return XFS_ITEM_PINNED;
176}
177
178/*
179 * Efi items have no locking, so just return.
180 */
181/*ARGSUSED*/
182STATIC void
183xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
184{
185 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
Eric Sandeen065d3122006-09-28 11:02:44 +1000186 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return;
188}
189
190/*
191 * The EFI is logged only once and cannot be moved in the log, so
192 * simply return the lsn at which it's been logged. The canceled
193 * flag is not paid any attention here. Checking for that is delayed
194 * until the EFI is unpinned.
195 */
196/*ARGSUSED*/
197STATIC xfs_lsn_t
198xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
199{
200 return lsn;
201}
202
203/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204 * There isn't much you can do to push on an efi item. It is simply
205 * stuck waiting for all of its corresponding efd items to be
206 * committed to disk.
207 */
208/*ARGSUSED*/
209STATIC void
210xfs_efi_item_push(xfs_efi_log_item_t *efip)
211{
212 return;
213}
214
215/*
216 * The EFI dependency tracking op doesn't do squat. It can't because
217 * it doesn't know where the free extent is coming from. The dependency
218 * tracking has to be handled by the "enclosing" metadata object. For
219 * example, for inodes, the inode is locked throughout the extent freeing
220 * so the dependency should be recorded there.
221 */
222/*ARGSUSED*/
223STATIC void
224xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
225{
226 return;
227}
228
229/*
230 * This is the ops vector shared by all efi log items.
231 */
David Chinner7989cb82007-02-10 18:34:56 +1100232static struct xfs_item_ops xfs_efi_item_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700233 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
234 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
235 xfs_efi_item_format,
236 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
237 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
238 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
239 xfs_efi_item_unpin_remove,
240 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
241 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
242 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
243 xfs_efi_item_committed,
244 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245 .iop_pushbuf = NULL,
246 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
247 xfs_efi_item_committing
248};
249
250
251/*
252 * Allocate and initialize an efi item with the given number of extents.
253 */
254xfs_efi_log_item_t *
255xfs_efi_init(xfs_mount_t *mp,
256 uint nextents)
257
258{
259 xfs_efi_log_item_t *efip;
260 uint size;
261
262 ASSERT(nextents > 0);
263 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
264 size = (uint)(sizeof(xfs_efi_log_item_t) +
265 ((nextents - 1) * sizeof(xfs_extent_t)));
266 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
267 } else {
268 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
269 KM_SLEEP);
270 }
271
272 efip->efi_item.li_type = XFS_LI_EFI;
273 efip->efi_item.li_ops = &xfs_efi_item_ops;
274 efip->efi_item.li_mountp = mp;
David Chinnerfc1829f2008-10-30 17:39:46 +1100275 efip->efi_item.li_ailp = mp->m_ail;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276 efip->efi_format.efi_nextents = nextents;
277 efip->efi_format.efi_id = (__psint_t)(void*)efip;
278
279 return (efip);
280}
281
282/*
Tim Shimmin6d192a92006-06-09 14:55:38 +1000283 * Copy an EFI format buffer from the given buf, and into the destination
284 * EFI format structure.
285 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
286 * one of which will be the native format for this kernel.
287 * It will handle the conversion of formats if necessary.
288 */
289int
290xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
291{
292 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
293 uint i;
294 uint len = sizeof(xfs_efi_log_format_t) +
295 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
296 uint len32 = sizeof(xfs_efi_log_format_32_t) +
297 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
298 uint len64 = sizeof(xfs_efi_log_format_64_t) +
299 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
300
301 if (buf->i_len == len) {
302 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
303 return 0;
304 } else if (buf->i_len == len32) {
305 xfs_efi_log_format_32_t *src_efi_fmt_32 =
306 (xfs_efi_log_format_32_t *)buf->i_addr;
307
308 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
309 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
310 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
311 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
312 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
313 dst_efi_fmt->efi_extents[i].ext_start =
314 src_efi_fmt_32->efi_extents[i].ext_start;
315 dst_efi_fmt->efi_extents[i].ext_len =
316 src_efi_fmt_32->efi_extents[i].ext_len;
317 }
318 return 0;
319 } else if (buf->i_len == len64) {
320 xfs_efi_log_format_64_t *src_efi_fmt_64 =
321 (xfs_efi_log_format_64_t *)buf->i_addr;
322
323 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
324 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
325 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
326 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
327 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
328 dst_efi_fmt->efi_extents[i].ext_start =
329 src_efi_fmt_64->efi_extents[i].ext_start;
330 dst_efi_fmt->efi_extents[i].ext_len =
331 src_efi_fmt_64->efi_extents[i].ext_len;
332 }
333 return 0;
334 }
335 return EFSCORRUPTED;
336}
337
338/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700339 * This is called by the efd item code below to release references to
340 * the given efi item. Each efd calls this with the number of
341 * extents that it has logged, and when the sum of these reaches
342 * the total number of extents logged by this efi item we can free
343 * the efi item.
344 *
345 * Freeing the efi item requires that we remove it from the AIL.
346 * We'll use the AIL lock to protect our counters as well as
347 * the removal from the AIL.
348 */
349void
350xfs_efi_release(xfs_efi_log_item_t *efip,
351 uint nextents)
352{
David Chinnerfc1829f2008-10-30 17:39:46 +1100353 xfs_mount_t *mp;
354 struct xfs_ail *ailp;
355 int extents_left;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700356
357 mp = efip->efi_item.li_mountp;
David Chinnerfc1829f2008-10-30 17:39:46 +1100358 ailp = efip->efi_item.li_ailp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700359 ASSERT(efip->efi_next_extent > 0);
360 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
361
David Chinnerfc1829f2008-10-30 17:39:46 +1100362 spin_lock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 ASSERT(efip->efi_next_extent >= nextents);
364 efip->efi_next_extent -= nextents;
365 extents_left = efip->efi_next_extent;
366 if (extents_left == 0) {
367 /*
368 * xfs_trans_delete_ail() drops the AIL lock.
369 */
Donald Douwsma287f3da2007-10-11 17:36:05 +1000370 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000371 xfs_efi_item_free(efip);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372 } else {
David Chinnerfc1829f2008-10-30 17:39:46 +1100373 spin_unlock(&ailp->xa_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375}
376
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000377STATIC void
378xfs_efd_item_free(xfs_efd_log_item_t *efdp)
379{
380 int nexts = efdp->efd_format.efd_nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000382 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
Denys Vlasenkof0e2d932008-05-19 16:31:57 +1000383 kmem_free(efdp);
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000384 } else {
385 kmem_zone_free(xfs_efd_zone, efdp);
386 }
387}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
389/*
390 * This returns the number of iovecs needed to log the given efd item.
391 * We only need 1 iovec for an efd item. It just logs the efd_log_format
392 * structure.
393 */
394/*ARGSUSED*/
395STATIC uint
396xfs_efd_item_size(xfs_efd_log_item_t *efdp)
397{
398 return 1;
399}
400
401/*
402 * This is called to fill in the vector of log iovecs for the
403 * given efd log item. We use only 1 iovec, and we point that
404 * at the efd_log_format structure embedded in the efd item.
405 * It is at this point that we assert that all of the extent
406 * slots in the efd item have been filled.
407 */
408STATIC void
409xfs_efd_item_format(xfs_efd_log_item_t *efdp,
410 xfs_log_iovec_t *log_vector)
411{
412 uint size;
413
414 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
415
416 efdp->efd_format.efd_type = XFS_LI_EFD;
417
418 size = sizeof(xfs_efd_log_format_t);
419 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
420 efdp->efd_format.efd_size = 1;
421
422 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
423 log_vector->i_len = size;
Tim Shimmin7e9c6392005-09-02 16:42:05 +1000424 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 ASSERT(size >= sizeof(xfs_efd_log_format_t));
426}
427
428
429/*
430 * Pinning has no meaning for an efd item, so just return.
431 */
432/*ARGSUSED*/
433STATIC void
434xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
435{
436 return;
437}
438
439
440/*
441 * Since pinning has no meaning for an efd item, unpinning does
442 * not either.
443 */
444/*ARGSUSED*/
445STATIC void
446xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
447{
448 return;
449}
450
451/*ARGSUSED*/
452STATIC void
453xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
454{
455 return;
456}
457
458/*
459 * Efd items have no locking, so just return success.
460 */
461/*ARGSUSED*/
462STATIC uint
463xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
464{
465 return XFS_ITEM_LOCKED;
466}
467
468/*
469 * Efd items have no locking or pushing, so return failure
470 * so that the caller doesn't bother with us.
471 */
472/*ARGSUSED*/
473STATIC void
474xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
475{
476 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
Eric Sandeen065d3122006-09-28 11:02:44 +1000477 xfs_efd_item_free(efdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478 return;
479}
480
481/*
482 * When the efd item is committed to disk, all we need to do
483 * is delete our reference to our partner efi item and then
484 * free ourselves. Since we're freeing ourselves we must
485 * return -1 to keep the transaction code from further referencing
486 * this item.
487 */
488/*ARGSUSED*/
489STATIC xfs_lsn_t
490xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
491{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700492 /*
493 * If we got a log I/O error, it's always the case that the LR with the
494 * EFI got unpinned and freed before the EFD got aborted.
495 */
496 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
497 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
498
Christoph Hellwig7d795ca2005-06-21 15:41:19 +1000499 xfs_efd_item_free(efdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700500 return (xfs_lsn_t)-1;
501}
502
503/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504 * There isn't much you can do to push on an efd item. It is simply
505 * stuck waiting for the log to be flushed to disk.
506 */
507/*ARGSUSED*/
508STATIC void
509xfs_efd_item_push(xfs_efd_log_item_t *efdp)
510{
511 return;
512}
513
514/*
515 * The EFD dependency tracking op doesn't do squat. It can't because
516 * it doesn't know where the free extent is coming from. The dependency
517 * tracking has to be handled by the "enclosing" metadata object. For
518 * example, for inodes, the inode is locked throughout the extent freeing
519 * so the dependency should be recorded there.
520 */
521/*ARGSUSED*/
522STATIC void
523xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
524{
525 return;
526}
527
528/*
529 * This is the ops vector shared by all efd log items.
530 */
David Chinner7989cb82007-02-10 18:34:56 +1100531static struct xfs_item_ops xfs_efd_item_ops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
533 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
534 xfs_efd_item_format,
535 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
536 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
537 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
538 xfs_efd_item_unpin_remove,
539 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
540 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
541 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
542 xfs_efd_item_committed,
543 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544 .iop_pushbuf = NULL,
545 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
546 xfs_efd_item_committing
547};
548
549
550/*
551 * Allocate and initialize an efd item with the given number of extents.
552 */
553xfs_efd_log_item_t *
554xfs_efd_init(xfs_mount_t *mp,
555 xfs_efi_log_item_t *efip,
556 uint nextents)
557
558{
559 xfs_efd_log_item_t *efdp;
560 uint size;
561
562 ASSERT(nextents > 0);
563 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
564 size = (uint)(sizeof(xfs_efd_log_item_t) +
565 ((nextents - 1) * sizeof(xfs_extent_t)));
566 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
567 } else {
568 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
569 KM_SLEEP);
570 }
571
572 efdp->efd_item.li_type = XFS_LI_EFD;
573 efdp->efd_item.li_ops = &xfs_efd_item_ops;
574 efdp->efd_item.li_mountp = mp;
David Chinnerfc1829f2008-10-30 17:39:46 +1100575 efdp->efd_item.li_ailp = mp->m_ail;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700576 efdp->efd_efip = efip;
577 efdp->efd_format.efd_nextents = nextents;
578 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
579
580 return (efdp);
581}