blob: 0cf04f3e7bf850f29cacd822fa8bc40abefbd775 [file] [log] [blame]
Alex Deucher8cc1a532013-04-09 12:41:24 -04001/*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24#include <linux/firmware.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27#include <linux/module.h>
28#include "drmP.h"
29#include "radeon.h"
Alex Deucher6f2043c2013-04-09 12:43:41 -040030#include "radeon_asic.h"
Alex Deucher8cc1a532013-04-09 12:41:24 -040031#include "cikd.h"
32#include "atom.h"
Alex Deucher841cf442012-12-18 21:47:44 -050033#include "cik_blit_shaders.h"
Alex Deucher8cc1a532013-04-09 12:41:24 -040034
Alex Deucher02c81322012-12-18 21:43:07 -050035/* GFX */
36#define CIK_PFP_UCODE_SIZE 2144
37#define CIK_ME_UCODE_SIZE 2144
38#define CIK_CE_UCODE_SIZE 2144
39/* compute */
40#define CIK_MEC_UCODE_SIZE 4192
41/* interrupts */
42#define BONAIRE_RLC_UCODE_SIZE 2048
43#define KB_RLC_UCODE_SIZE 2560
44#define KV_RLC_UCODE_SIZE 2560
45/* gddr controller */
46#define CIK_MC_UCODE_SIZE 7866
47
48MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin");
49MODULE_FIRMWARE("radeon/BONAIRE_me.bin");
50MODULE_FIRMWARE("radeon/BONAIRE_ce.bin");
51MODULE_FIRMWARE("radeon/BONAIRE_mec.bin");
52MODULE_FIRMWARE("radeon/BONAIRE_mc.bin");
53MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin");
54MODULE_FIRMWARE("radeon/KAVERI_pfp.bin");
55MODULE_FIRMWARE("radeon/KAVERI_me.bin");
56MODULE_FIRMWARE("radeon/KAVERI_ce.bin");
57MODULE_FIRMWARE("radeon/KAVERI_mec.bin");
58MODULE_FIRMWARE("radeon/KAVERI_rlc.bin");
59MODULE_FIRMWARE("radeon/KABINI_pfp.bin");
60MODULE_FIRMWARE("radeon/KABINI_me.bin");
61MODULE_FIRMWARE("radeon/KABINI_ce.bin");
62MODULE_FIRMWARE("radeon/KABINI_mec.bin");
63MODULE_FIRMWARE("radeon/KABINI_rlc.bin");
64
Alex Deucher6f2043c2013-04-09 12:43:41 -040065extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
66extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
Alex Deucher1c491652013-04-09 12:45:26 -040067extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc);
Alex Deucher6f2043c2013-04-09 12:43:41 -040068
Alex Deucherbc8273f2012-06-29 19:44:04 -040069#define BONAIRE_IO_MC_REGS_SIZE 36
70
71static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] =
72{
73 {0x00000070, 0x04400000},
74 {0x00000071, 0x80c01803},
75 {0x00000072, 0x00004004},
76 {0x00000073, 0x00000100},
77 {0x00000074, 0x00ff0000},
78 {0x00000075, 0x34000000},
79 {0x00000076, 0x08000014},
80 {0x00000077, 0x00cc08ec},
81 {0x00000078, 0x00000400},
82 {0x00000079, 0x00000000},
83 {0x0000007a, 0x04090000},
84 {0x0000007c, 0x00000000},
85 {0x0000007e, 0x4408a8e8},
86 {0x0000007f, 0x00000304},
87 {0x00000080, 0x00000000},
88 {0x00000082, 0x00000001},
89 {0x00000083, 0x00000002},
90 {0x00000084, 0xf3e4f400},
91 {0x00000085, 0x052024e3},
92 {0x00000087, 0x00000000},
93 {0x00000088, 0x01000000},
94 {0x0000008a, 0x1c0a0000},
95 {0x0000008b, 0xff010000},
96 {0x0000008d, 0xffffefff},
97 {0x0000008e, 0xfff3efff},
98 {0x0000008f, 0xfff3efbf},
99 {0x00000092, 0xf7ffffff},
100 {0x00000093, 0xffffff7f},
101 {0x00000095, 0x00101101},
102 {0x00000096, 0x00000fff},
103 {0x00000097, 0x00116fff},
104 {0x00000098, 0x60010000},
105 {0x00000099, 0x10010000},
106 {0x0000009a, 0x00006000},
107 {0x0000009b, 0x00001000},
108 {0x0000009f, 0x00b48000}
109};
110
111/* ucode loading */
112/**
113 * ci_mc_load_microcode - load MC ucode into the hw
114 *
115 * @rdev: radeon_device pointer
116 *
117 * Load the GDDR MC ucode into the hw (CIK).
118 * Returns 0 on success, error on failure.
119 */
120static int ci_mc_load_microcode(struct radeon_device *rdev)
121{
122 const __be32 *fw_data;
123 u32 running, blackout = 0;
124 u32 *io_mc_regs;
125 int i, ucode_size, regs_size;
126
127 if (!rdev->mc_fw)
128 return -EINVAL;
129
130 switch (rdev->family) {
131 case CHIP_BONAIRE:
132 default:
133 io_mc_regs = (u32 *)&bonaire_io_mc_regs;
134 ucode_size = CIK_MC_UCODE_SIZE;
135 regs_size = BONAIRE_IO_MC_REGS_SIZE;
136 break;
137 }
138
139 running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK;
140
141 if (running == 0) {
142 if (running) {
143 blackout = RREG32(MC_SHARED_BLACKOUT_CNTL);
144 WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1);
145 }
146
147 /* reset the engine and set to writable */
148 WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
149 WREG32(MC_SEQ_SUP_CNTL, 0x00000010);
150
151 /* load mc io regs */
152 for (i = 0; i < regs_size; i++) {
153 WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]);
154 WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]);
155 }
156 /* load the MC ucode */
157 fw_data = (const __be32 *)rdev->mc_fw->data;
158 for (i = 0; i < ucode_size; i++)
159 WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++));
160
161 /* put the engine back into the active state */
162 WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
163 WREG32(MC_SEQ_SUP_CNTL, 0x00000004);
164 WREG32(MC_SEQ_SUP_CNTL, 0x00000001);
165
166 /* wait for training to complete */
167 for (i = 0; i < rdev->usec_timeout; i++) {
168 if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0)
169 break;
170 udelay(1);
171 }
172 for (i = 0; i < rdev->usec_timeout; i++) {
173 if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1)
174 break;
175 udelay(1);
176 }
177
178 if (running)
179 WREG32(MC_SHARED_BLACKOUT_CNTL, blackout);
180 }
181
182 return 0;
183}
184
Alex Deucher02c81322012-12-18 21:43:07 -0500185/**
186 * cik_init_microcode - load ucode images from disk
187 *
188 * @rdev: radeon_device pointer
189 *
190 * Use the firmware interface to load the ucode images into
191 * the driver (not loaded into hw).
192 * Returns 0 on success, error on failure.
193 */
194static int cik_init_microcode(struct radeon_device *rdev)
195{
196 struct platform_device *pdev;
197 const char *chip_name;
198 size_t pfp_req_size, me_req_size, ce_req_size,
199 mec_req_size, rlc_req_size, mc_req_size;
200 char fw_name[30];
201 int err;
202
203 DRM_DEBUG("\n");
204
205 pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
206 err = IS_ERR(pdev);
207 if (err) {
208 printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
209 return -EINVAL;
210 }
211
212 switch (rdev->family) {
213 case CHIP_BONAIRE:
214 chip_name = "BONAIRE";
215 pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
216 me_req_size = CIK_ME_UCODE_SIZE * 4;
217 ce_req_size = CIK_CE_UCODE_SIZE * 4;
218 mec_req_size = CIK_MEC_UCODE_SIZE * 4;
219 rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4;
220 mc_req_size = CIK_MC_UCODE_SIZE * 4;
221 break;
222 case CHIP_KAVERI:
223 chip_name = "KAVERI";
224 pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
225 me_req_size = CIK_ME_UCODE_SIZE * 4;
226 ce_req_size = CIK_CE_UCODE_SIZE * 4;
227 mec_req_size = CIK_MEC_UCODE_SIZE * 4;
228 rlc_req_size = KV_RLC_UCODE_SIZE * 4;
229 break;
230 case CHIP_KABINI:
231 chip_name = "KABINI";
232 pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
233 me_req_size = CIK_ME_UCODE_SIZE * 4;
234 ce_req_size = CIK_CE_UCODE_SIZE * 4;
235 mec_req_size = CIK_MEC_UCODE_SIZE * 4;
236 rlc_req_size = KB_RLC_UCODE_SIZE * 4;
237 break;
238 default: BUG();
239 }
240
241 DRM_INFO("Loading %s Microcode\n", chip_name);
242
243 snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
244 err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev);
245 if (err)
246 goto out;
247 if (rdev->pfp_fw->size != pfp_req_size) {
248 printk(KERN_ERR
249 "cik_cp: Bogus length %zu in firmware \"%s\"\n",
250 rdev->pfp_fw->size, fw_name);
251 err = -EINVAL;
252 goto out;
253 }
254
255 snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
256 err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
257 if (err)
258 goto out;
259 if (rdev->me_fw->size != me_req_size) {
260 printk(KERN_ERR
261 "cik_cp: Bogus length %zu in firmware \"%s\"\n",
262 rdev->me_fw->size, fw_name);
263 err = -EINVAL;
264 }
265
266 snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
267 err = request_firmware(&rdev->ce_fw, fw_name, &pdev->dev);
268 if (err)
269 goto out;
270 if (rdev->ce_fw->size != ce_req_size) {
271 printk(KERN_ERR
272 "cik_cp: Bogus length %zu in firmware \"%s\"\n",
273 rdev->ce_fw->size, fw_name);
274 err = -EINVAL;
275 }
276
277 snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name);
278 err = request_firmware(&rdev->mec_fw, fw_name, &pdev->dev);
279 if (err)
280 goto out;
281 if (rdev->mec_fw->size != mec_req_size) {
282 printk(KERN_ERR
283 "cik_cp: Bogus length %zu in firmware \"%s\"\n",
284 rdev->mec_fw->size, fw_name);
285 err = -EINVAL;
286 }
287
288 snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
289 err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev);
290 if (err)
291 goto out;
292 if (rdev->rlc_fw->size != rlc_req_size) {
293 printk(KERN_ERR
294 "cik_rlc: Bogus length %zu in firmware \"%s\"\n",
295 rdev->rlc_fw->size, fw_name);
296 err = -EINVAL;
297 }
298
299 /* No MC ucode on APUs */
300 if (!(rdev->flags & RADEON_IS_IGP)) {
301 snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name);
302 err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev);
303 if (err)
304 goto out;
305 if (rdev->mc_fw->size != mc_req_size) {
306 printk(KERN_ERR
307 "cik_mc: Bogus length %zu in firmware \"%s\"\n",
308 rdev->mc_fw->size, fw_name);
309 err = -EINVAL;
310 }
311 }
312
313out:
314 platform_device_unregister(pdev);
315
316 if (err) {
317 if (err != -EINVAL)
318 printk(KERN_ERR
319 "cik_cp: Failed to load firmware \"%s\"\n",
320 fw_name);
321 release_firmware(rdev->pfp_fw);
322 rdev->pfp_fw = NULL;
323 release_firmware(rdev->me_fw);
324 rdev->me_fw = NULL;
325 release_firmware(rdev->ce_fw);
326 rdev->ce_fw = NULL;
327 release_firmware(rdev->rlc_fw);
328 rdev->rlc_fw = NULL;
329 release_firmware(rdev->mc_fw);
330 rdev->mc_fw = NULL;
331 }
332 return err;
333}
334
Alex Deucher8cc1a532013-04-09 12:41:24 -0400335/*
336 * Core functions
337 */
338/**
339 * cik_tiling_mode_table_init - init the hw tiling table
340 *
341 * @rdev: radeon_device pointer
342 *
343 * Starting with SI, the tiling setup is done globally in a
344 * set of 32 tiling modes. Rather than selecting each set of
345 * parameters per surface as on older asics, we just select
346 * which index in the tiling table we want to use, and the
347 * surface uses those parameters (CIK).
348 */
349static void cik_tiling_mode_table_init(struct radeon_device *rdev)
350{
351 const u32 num_tile_mode_states = 32;
352 const u32 num_secondary_tile_mode_states = 16;
353 u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
354 u32 num_pipe_configs;
355 u32 num_rbs = rdev->config.cik.max_backends_per_se *
356 rdev->config.cik.max_shader_engines;
357
358 switch (rdev->config.cik.mem_row_size_in_kb) {
359 case 1:
360 split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
361 break;
362 case 2:
363 default:
364 split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
365 break;
366 case 4:
367 split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
368 break;
369 }
370
371 num_pipe_configs = rdev->config.cik.max_tile_pipes;
372 if (num_pipe_configs > 8)
373 num_pipe_configs = 8; /* ??? */
374
375 if (num_pipe_configs == 8) {
376 for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
377 switch (reg_offset) {
378 case 0:
379 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
380 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
381 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
382 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
383 break;
384 case 1:
385 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
386 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
387 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
388 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
389 break;
390 case 2:
391 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
392 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
393 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
394 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
395 break;
396 case 3:
397 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
398 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
399 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
400 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
401 break;
402 case 4:
403 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
404 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
405 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
406 TILE_SPLIT(split_equal_to_row_size));
407 break;
408 case 5:
409 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
410 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
411 break;
412 case 6:
413 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
414 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
415 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
416 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
417 break;
418 case 7:
419 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
420 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
421 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
422 TILE_SPLIT(split_equal_to_row_size));
423 break;
424 case 8:
425 gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
426 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
427 break;
428 case 9:
429 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
430 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
431 break;
432 case 10:
433 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
434 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
435 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
436 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
437 break;
438 case 11:
439 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
440 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
441 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
442 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
443 break;
444 case 12:
445 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
446 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
447 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
448 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
449 break;
450 case 13:
451 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
452 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
453 break;
454 case 14:
455 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
456 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
457 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
458 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
459 break;
460 case 16:
461 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
462 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
463 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
464 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
465 break;
466 case 17:
467 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
468 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
469 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
470 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
471 break;
472 case 27:
473 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
474 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
475 break;
476 case 28:
477 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
478 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
479 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
480 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
481 break;
482 case 29:
483 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
484 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
485 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
486 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
487 break;
488 case 30:
489 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
490 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
491 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
492 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
493 break;
494 default:
495 gb_tile_moden = 0;
496 break;
497 }
498 WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
499 }
500 for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
501 switch (reg_offset) {
502 case 0:
503 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
504 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
505 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
506 NUM_BANKS(ADDR_SURF_16_BANK));
507 break;
508 case 1:
509 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
510 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
511 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
512 NUM_BANKS(ADDR_SURF_16_BANK));
513 break;
514 case 2:
515 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
516 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
517 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
518 NUM_BANKS(ADDR_SURF_16_BANK));
519 break;
520 case 3:
521 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
522 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
523 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
524 NUM_BANKS(ADDR_SURF_16_BANK));
525 break;
526 case 4:
527 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
528 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
529 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
530 NUM_BANKS(ADDR_SURF_8_BANK));
531 break;
532 case 5:
533 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
534 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
535 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
536 NUM_BANKS(ADDR_SURF_4_BANK));
537 break;
538 case 6:
539 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
540 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
541 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
542 NUM_BANKS(ADDR_SURF_2_BANK));
543 break;
544 case 8:
545 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
546 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
547 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
548 NUM_BANKS(ADDR_SURF_16_BANK));
549 break;
550 case 9:
551 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
552 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
553 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
554 NUM_BANKS(ADDR_SURF_16_BANK));
555 break;
556 case 10:
557 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
558 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
559 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
560 NUM_BANKS(ADDR_SURF_16_BANK));
561 break;
562 case 11:
563 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
564 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
565 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
566 NUM_BANKS(ADDR_SURF_16_BANK));
567 break;
568 case 12:
569 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
570 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
571 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
572 NUM_BANKS(ADDR_SURF_8_BANK));
573 break;
574 case 13:
575 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
576 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
577 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
578 NUM_BANKS(ADDR_SURF_4_BANK));
579 break;
580 case 14:
581 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
582 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
583 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
584 NUM_BANKS(ADDR_SURF_2_BANK));
585 break;
586 default:
587 gb_tile_moden = 0;
588 break;
589 }
590 WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
591 }
592 } else if (num_pipe_configs == 4) {
593 if (num_rbs == 4) {
594 for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
595 switch (reg_offset) {
596 case 0:
597 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
598 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
599 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
600 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
601 break;
602 case 1:
603 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
604 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
605 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
606 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
607 break;
608 case 2:
609 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
610 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
611 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
612 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
613 break;
614 case 3:
615 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
616 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
617 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
618 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
619 break;
620 case 4:
621 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
622 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
623 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
624 TILE_SPLIT(split_equal_to_row_size));
625 break;
626 case 5:
627 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
628 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
629 break;
630 case 6:
631 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
632 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
633 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
634 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
635 break;
636 case 7:
637 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
638 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
639 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
640 TILE_SPLIT(split_equal_to_row_size));
641 break;
642 case 8:
643 gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
644 PIPE_CONFIG(ADDR_SURF_P4_16x16));
645 break;
646 case 9:
647 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
648 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
649 break;
650 case 10:
651 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
652 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
653 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
654 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
655 break;
656 case 11:
657 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
658 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
659 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
660 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
661 break;
662 case 12:
663 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
664 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
665 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
666 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
667 break;
668 case 13:
669 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
670 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
671 break;
672 case 14:
673 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
674 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
675 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
676 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
677 break;
678 case 16:
679 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
680 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
681 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
682 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
683 break;
684 case 17:
685 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
686 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
687 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
688 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
689 break;
690 case 27:
691 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
692 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
693 break;
694 case 28:
695 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
696 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
697 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
698 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
699 break;
700 case 29:
701 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
702 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
703 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
704 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
705 break;
706 case 30:
707 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
708 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
709 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
710 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
711 break;
712 default:
713 gb_tile_moden = 0;
714 break;
715 }
716 WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
717 }
718 } else if (num_rbs < 4) {
719 for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
720 switch (reg_offset) {
721 case 0:
722 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
723 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
724 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
725 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
726 break;
727 case 1:
728 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
729 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
730 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
731 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
732 break;
733 case 2:
734 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
735 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
736 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
737 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
738 break;
739 case 3:
740 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
741 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
742 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
743 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
744 break;
745 case 4:
746 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
747 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
748 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
749 TILE_SPLIT(split_equal_to_row_size));
750 break;
751 case 5:
752 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
753 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
754 break;
755 case 6:
756 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
757 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
758 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
759 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
760 break;
761 case 7:
762 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
763 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
764 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
765 TILE_SPLIT(split_equal_to_row_size));
766 break;
767 case 8:
768 gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
769 PIPE_CONFIG(ADDR_SURF_P4_8x16));
770 break;
771 case 9:
772 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
773 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
774 break;
775 case 10:
776 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
777 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
778 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
779 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
780 break;
781 case 11:
782 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
783 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
784 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
785 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
786 break;
787 case 12:
788 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
789 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
790 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
791 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
792 break;
793 case 13:
794 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
795 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
796 break;
797 case 14:
798 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
799 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
800 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
801 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
802 break;
803 case 16:
804 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
805 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
806 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
807 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
808 break;
809 case 17:
810 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
811 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
812 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
813 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
814 break;
815 case 27:
816 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
817 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
818 break;
819 case 28:
820 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
821 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
822 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
823 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
824 break;
825 case 29:
826 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
827 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
828 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
829 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
830 break;
831 case 30:
832 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
833 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
834 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
835 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
836 break;
837 default:
838 gb_tile_moden = 0;
839 break;
840 }
841 WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
842 }
843 }
844 for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
845 switch (reg_offset) {
846 case 0:
847 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
848 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
849 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
850 NUM_BANKS(ADDR_SURF_16_BANK));
851 break;
852 case 1:
853 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
854 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
855 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
856 NUM_BANKS(ADDR_SURF_16_BANK));
857 break;
858 case 2:
859 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
860 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
861 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
862 NUM_BANKS(ADDR_SURF_16_BANK));
863 break;
864 case 3:
865 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
866 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
867 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
868 NUM_BANKS(ADDR_SURF_16_BANK));
869 break;
870 case 4:
871 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
872 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
873 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
874 NUM_BANKS(ADDR_SURF_16_BANK));
875 break;
876 case 5:
877 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
878 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
879 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
880 NUM_BANKS(ADDR_SURF_8_BANK));
881 break;
882 case 6:
883 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
884 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
885 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
886 NUM_BANKS(ADDR_SURF_4_BANK));
887 break;
888 case 8:
889 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
890 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
891 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
892 NUM_BANKS(ADDR_SURF_16_BANK));
893 break;
894 case 9:
895 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
896 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
897 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
898 NUM_BANKS(ADDR_SURF_16_BANK));
899 break;
900 case 10:
901 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
902 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
903 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
904 NUM_BANKS(ADDR_SURF_16_BANK));
905 break;
906 case 11:
907 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
908 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
909 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
910 NUM_BANKS(ADDR_SURF_16_BANK));
911 break;
912 case 12:
913 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
914 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
915 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
916 NUM_BANKS(ADDR_SURF_16_BANK));
917 break;
918 case 13:
919 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
920 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
921 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
922 NUM_BANKS(ADDR_SURF_8_BANK));
923 break;
924 case 14:
925 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
926 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
927 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
928 NUM_BANKS(ADDR_SURF_4_BANK));
929 break;
930 default:
931 gb_tile_moden = 0;
932 break;
933 }
934 WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
935 }
936 } else if (num_pipe_configs == 2) {
937 for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
938 switch (reg_offset) {
939 case 0:
940 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
941 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
942 PIPE_CONFIG(ADDR_SURF_P2) |
943 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
944 break;
945 case 1:
946 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
947 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
948 PIPE_CONFIG(ADDR_SURF_P2) |
949 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
950 break;
951 case 2:
952 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
953 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
954 PIPE_CONFIG(ADDR_SURF_P2) |
955 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
956 break;
957 case 3:
958 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
959 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
960 PIPE_CONFIG(ADDR_SURF_P2) |
961 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
962 break;
963 case 4:
964 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
965 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
966 PIPE_CONFIG(ADDR_SURF_P2) |
967 TILE_SPLIT(split_equal_to_row_size));
968 break;
969 case 5:
970 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
971 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
972 break;
973 case 6:
974 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
975 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
976 PIPE_CONFIG(ADDR_SURF_P2) |
977 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
978 break;
979 case 7:
980 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
981 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
982 PIPE_CONFIG(ADDR_SURF_P2) |
983 TILE_SPLIT(split_equal_to_row_size));
984 break;
985 case 8:
986 gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED);
987 break;
988 case 9:
989 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
990 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
991 break;
992 case 10:
993 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
994 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
995 PIPE_CONFIG(ADDR_SURF_P2) |
996 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
997 break;
998 case 11:
999 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
1000 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
1001 PIPE_CONFIG(ADDR_SURF_P2) |
1002 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1003 break;
1004 case 12:
1005 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
1006 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
1007 PIPE_CONFIG(ADDR_SURF_P2) |
1008 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1009 break;
1010 case 13:
1011 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
1012 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
1013 break;
1014 case 14:
1015 gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
1016 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
1017 PIPE_CONFIG(ADDR_SURF_P2) |
1018 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1019 break;
1020 case 16:
1021 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
1022 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
1023 PIPE_CONFIG(ADDR_SURF_P2) |
1024 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1025 break;
1026 case 17:
1027 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
1028 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
1029 PIPE_CONFIG(ADDR_SURF_P2) |
1030 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1031 break;
1032 case 27:
1033 gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
1034 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
1035 break;
1036 case 28:
1037 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
1038 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
1039 PIPE_CONFIG(ADDR_SURF_P2) |
1040 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1041 break;
1042 case 29:
1043 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
1044 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
1045 PIPE_CONFIG(ADDR_SURF_P2) |
1046 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1047 break;
1048 case 30:
1049 gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
1050 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
1051 PIPE_CONFIG(ADDR_SURF_P2) |
1052 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
1053 break;
1054 default:
1055 gb_tile_moden = 0;
1056 break;
1057 }
1058 WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
1059 }
1060 for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
1061 switch (reg_offset) {
1062 case 0:
1063 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
1064 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
1065 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1066 NUM_BANKS(ADDR_SURF_16_BANK));
1067 break;
1068 case 1:
1069 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
1070 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
1071 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1072 NUM_BANKS(ADDR_SURF_16_BANK));
1073 break;
1074 case 2:
1075 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1076 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
1077 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1078 NUM_BANKS(ADDR_SURF_16_BANK));
1079 break;
1080 case 3:
1081 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1082 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1083 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1084 NUM_BANKS(ADDR_SURF_16_BANK));
1085 break;
1086 case 4:
1087 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1088 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1089 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1090 NUM_BANKS(ADDR_SURF_16_BANK));
1091 break;
1092 case 5:
1093 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1094 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1095 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1096 NUM_BANKS(ADDR_SURF_16_BANK));
1097 break;
1098 case 6:
1099 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1100 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1101 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
1102 NUM_BANKS(ADDR_SURF_8_BANK));
1103 break;
1104 case 8:
1105 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
1106 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
1107 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1108 NUM_BANKS(ADDR_SURF_16_BANK));
1109 break;
1110 case 9:
1111 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
1112 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
1113 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1114 NUM_BANKS(ADDR_SURF_16_BANK));
1115 break;
1116 case 10:
1117 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
1118 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
1119 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1120 NUM_BANKS(ADDR_SURF_16_BANK));
1121 break;
1122 case 11:
1123 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
1124 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
1125 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1126 NUM_BANKS(ADDR_SURF_16_BANK));
1127 break;
1128 case 12:
1129 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1130 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
1131 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1132 NUM_BANKS(ADDR_SURF_16_BANK));
1133 break;
1134 case 13:
1135 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1136 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1137 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
1138 NUM_BANKS(ADDR_SURF_16_BANK));
1139 break;
1140 case 14:
1141 gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
1142 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
1143 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
1144 NUM_BANKS(ADDR_SURF_8_BANK));
1145 break;
1146 default:
1147 gb_tile_moden = 0;
1148 break;
1149 }
1150 WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
1151 }
1152 } else
1153 DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs);
1154}
1155
1156/**
1157 * cik_select_se_sh - select which SE, SH to address
1158 *
1159 * @rdev: radeon_device pointer
1160 * @se_num: shader engine to address
1161 * @sh_num: sh block to address
1162 *
1163 * Select which SE, SH combinations to address. Certain
1164 * registers are instanced per SE or SH. 0xffffffff means
1165 * broadcast to all SEs or SHs (CIK).
1166 */
1167static void cik_select_se_sh(struct radeon_device *rdev,
1168 u32 se_num, u32 sh_num)
1169{
1170 u32 data = INSTANCE_BROADCAST_WRITES;
1171
1172 if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
1173 data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
1174 else if (se_num == 0xffffffff)
1175 data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
1176 else if (sh_num == 0xffffffff)
1177 data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
1178 else
1179 data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
1180 WREG32(GRBM_GFX_INDEX, data);
1181}
1182
1183/**
1184 * cik_create_bitmask - create a bitmask
1185 *
1186 * @bit_width: length of the mask
1187 *
1188 * create a variable length bit mask (CIK).
1189 * Returns the bitmask.
1190 */
1191static u32 cik_create_bitmask(u32 bit_width)
1192{
1193 u32 i, mask = 0;
1194
1195 for (i = 0; i < bit_width; i++) {
1196 mask <<= 1;
1197 mask |= 1;
1198 }
1199 return mask;
1200}
1201
1202/**
1203 * cik_select_se_sh - select which SE, SH to address
1204 *
1205 * @rdev: radeon_device pointer
1206 * @max_rb_num: max RBs (render backends) for the asic
1207 * @se_num: number of SEs (shader engines) for the asic
1208 * @sh_per_se: number of SH blocks per SE for the asic
1209 *
1210 * Calculates the bitmask of disabled RBs (CIK).
1211 * Returns the disabled RB bitmask.
1212 */
1213static u32 cik_get_rb_disabled(struct radeon_device *rdev,
1214 u32 max_rb_num, u32 se_num,
1215 u32 sh_per_se)
1216{
1217 u32 data, mask;
1218
1219 data = RREG32(CC_RB_BACKEND_DISABLE);
1220 if (data & 1)
1221 data &= BACKEND_DISABLE_MASK;
1222 else
1223 data = 0;
1224 data |= RREG32(GC_USER_RB_BACKEND_DISABLE);
1225
1226 data >>= BACKEND_DISABLE_SHIFT;
1227
1228 mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se);
1229
1230 return data & mask;
1231}
1232
1233/**
1234 * cik_setup_rb - setup the RBs on the asic
1235 *
1236 * @rdev: radeon_device pointer
1237 * @se_num: number of SEs (shader engines) for the asic
1238 * @sh_per_se: number of SH blocks per SE for the asic
1239 * @max_rb_num: max RBs (render backends) for the asic
1240 *
1241 * Configures per-SE/SH RB registers (CIK).
1242 */
1243static void cik_setup_rb(struct radeon_device *rdev,
1244 u32 se_num, u32 sh_per_se,
1245 u32 max_rb_num)
1246{
1247 int i, j;
1248 u32 data, mask;
1249 u32 disabled_rbs = 0;
1250 u32 enabled_rbs = 0;
1251
1252 for (i = 0; i < se_num; i++) {
1253 for (j = 0; j < sh_per_se; j++) {
1254 cik_select_se_sh(rdev, i, j);
1255 data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se);
1256 disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH);
1257 }
1258 }
1259 cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
1260
1261 mask = 1;
1262 for (i = 0; i < max_rb_num; i++) {
1263 if (!(disabled_rbs & mask))
1264 enabled_rbs |= mask;
1265 mask <<= 1;
1266 }
1267
1268 for (i = 0; i < se_num; i++) {
1269 cik_select_se_sh(rdev, i, 0xffffffff);
1270 data = 0;
1271 for (j = 0; j < sh_per_se; j++) {
1272 switch (enabled_rbs & 3) {
1273 case 1:
1274 data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
1275 break;
1276 case 2:
1277 data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
1278 break;
1279 case 3:
1280 default:
1281 data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
1282 break;
1283 }
1284 enabled_rbs >>= 2;
1285 }
1286 WREG32(PA_SC_RASTER_CONFIG, data);
1287 }
1288 cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
1289}
1290
1291/**
1292 * cik_gpu_init - setup the 3D engine
1293 *
1294 * @rdev: radeon_device pointer
1295 *
1296 * Configures the 3D engine and tiling configuration
1297 * registers so that the 3D engine is usable.
1298 */
1299static void cik_gpu_init(struct radeon_device *rdev)
1300{
1301 u32 gb_addr_config = RREG32(GB_ADDR_CONFIG);
1302 u32 mc_shared_chmap, mc_arb_ramcfg;
1303 u32 hdp_host_path_cntl;
1304 u32 tmp;
1305 int i, j;
1306
1307 switch (rdev->family) {
1308 case CHIP_BONAIRE:
1309 rdev->config.cik.max_shader_engines = 2;
1310 rdev->config.cik.max_tile_pipes = 4;
1311 rdev->config.cik.max_cu_per_sh = 7;
1312 rdev->config.cik.max_sh_per_se = 1;
1313 rdev->config.cik.max_backends_per_se = 2;
1314 rdev->config.cik.max_texture_channel_caches = 4;
1315 rdev->config.cik.max_gprs = 256;
1316 rdev->config.cik.max_gs_threads = 32;
1317 rdev->config.cik.max_hw_contexts = 8;
1318
1319 rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
1320 rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
1321 rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
1322 rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
1323 gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
1324 break;
1325 case CHIP_KAVERI:
1326 /* TODO */
1327 break;
1328 case CHIP_KABINI:
1329 default:
1330 rdev->config.cik.max_shader_engines = 1;
1331 rdev->config.cik.max_tile_pipes = 2;
1332 rdev->config.cik.max_cu_per_sh = 2;
1333 rdev->config.cik.max_sh_per_se = 1;
1334 rdev->config.cik.max_backends_per_se = 1;
1335 rdev->config.cik.max_texture_channel_caches = 2;
1336 rdev->config.cik.max_gprs = 256;
1337 rdev->config.cik.max_gs_threads = 16;
1338 rdev->config.cik.max_hw_contexts = 8;
1339
1340 rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
1341 rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
1342 rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
1343 rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
1344 gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
1345 break;
1346 }
1347
1348 /* Initialize HDP */
1349 for (i = 0, j = 0; i < 32; i++, j += 0x18) {
1350 WREG32((0x2c14 + j), 0x00000000);
1351 WREG32((0x2c18 + j), 0x00000000);
1352 WREG32((0x2c1c + j), 0x00000000);
1353 WREG32((0x2c20 + j), 0x00000000);
1354 WREG32((0x2c24 + j), 0x00000000);
1355 }
1356
1357 WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
1358
1359 WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
1360
1361 mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
1362 mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
1363
1364 rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes;
1365 rdev->config.cik.mem_max_burst_length_bytes = 256;
1366 tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
1367 rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
1368 if (rdev->config.cik.mem_row_size_in_kb > 4)
1369 rdev->config.cik.mem_row_size_in_kb = 4;
1370 /* XXX use MC settings? */
1371 rdev->config.cik.shader_engine_tile_size = 32;
1372 rdev->config.cik.num_gpus = 1;
1373 rdev->config.cik.multi_gpu_tile_size = 64;
1374
1375 /* fix up row size */
1376 gb_addr_config &= ~ROW_SIZE_MASK;
1377 switch (rdev->config.cik.mem_row_size_in_kb) {
1378 case 1:
1379 default:
1380 gb_addr_config |= ROW_SIZE(0);
1381 break;
1382 case 2:
1383 gb_addr_config |= ROW_SIZE(1);
1384 break;
1385 case 4:
1386 gb_addr_config |= ROW_SIZE(2);
1387 break;
1388 }
1389
1390 /* setup tiling info dword. gb_addr_config is not adequate since it does
1391 * not have bank info, so create a custom tiling dword.
1392 * bits 3:0 num_pipes
1393 * bits 7:4 num_banks
1394 * bits 11:8 group_size
1395 * bits 15:12 row_size
1396 */
1397 rdev->config.cik.tile_config = 0;
1398 switch (rdev->config.cik.num_tile_pipes) {
1399 case 1:
1400 rdev->config.cik.tile_config |= (0 << 0);
1401 break;
1402 case 2:
1403 rdev->config.cik.tile_config |= (1 << 0);
1404 break;
1405 case 4:
1406 rdev->config.cik.tile_config |= (2 << 0);
1407 break;
1408 case 8:
1409 default:
1410 /* XXX what about 12? */
1411 rdev->config.cik.tile_config |= (3 << 0);
1412 break;
1413 }
1414 if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT)
1415 rdev->config.cik.tile_config |= 1 << 4;
1416 else
1417 rdev->config.cik.tile_config |= 0 << 4;
1418 rdev->config.cik.tile_config |=
1419 ((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
1420 rdev->config.cik.tile_config |=
1421 ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;
1422
1423 WREG32(GB_ADDR_CONFIG, gb_addr_config);
1424 WREG32(HDP_ADDR_CONFIG, gb_addr_config);
1425 WREG32(DMIF_ADDR_CALC, gb_addr_config);
1426
1427 cik_tiling_mode_table_init(rdev);
1428
1429 cik_setup_rb(rdev, rdev->config.cik.max_shader_engines,
1430 rdev->config.cik.max_sh_per_se,
1431 rdev->config.cik.max_backends_per_se);
1432
1433 /* set HW defaults for 3D engine */
1434 WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));
1435
1436 WREG32(SX_DEBUG_1, 0x20);
1437
1438 WREG32(TA_CNTL_AUX, 0x00010000);
1439
1440 tmp = RREG32(SPI_CONFIG_CNTL);
1441 tmp |= 0x03000000;
1442 WREG32(SPI_CONFIG_CNTL, tmp);
1443
1444 WREG32(SQ_CONFIG, 1);
1445
1446 WREG32(DB_DEBUG, 0);
1447
1448 tmp = RREG32(DB_DEBUG2) & ~0xf00fffff;
1449 tmp |= 0x00000400;
1450 WREG32(DB_DEBUG2, tmp);
1451
1452 tmp = RREG32(DB_DEBUG3) & ~0x0002021c;
1453 tmp |= 0x00020200;
1454 WREG32(DB_DEBUG3, tmp);
1455
1456 tmp = RREG32(CB_HW_CONTROL) & ~0x00010000;
1457 tmp |= 0x00018208;
1458 WREG32(CB_HW_CONTROL, tmp);
1459
1460 WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
1461
1462 WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) |
1463 SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) |
1464 SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) |
1465 SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size)));
1466
1467 WREG32(VGT_NUM_INSTANCES, 1);
1468
1469 WREG32(CP_PERFMON_CNTL, 0);
1470
1471 WREG32(SQ_CONFIG, 0);
1472
1473 WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
1474 FORCE_EOV_MAX_REZ_CNT(255)));
1475
1476 WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
1477 AUTO_INVLD_EN(ES_AND_GS_AUTO));
1478
1479 WREG32(VGT_GS_VERTEX_REUSE, 16);
1480 WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
1481
1482 tmp = RREG32(HDP_MISC_CNTL);
1483 tmp |= HDP_FLUSH_INVALIDATE_CACHE;
1484 WREG32(HDP_MISC_CNTL, tmp);
1485
1486 hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
1487 WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
1488
1489 WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
1490 WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER);
1491
1492 udelay(50);
1493}
1494
Alex Deucher841cf442012-12-18 21:47:44 -05001495/*
Alex Deucher2cae3bc2012-07-05 11:45:40 -04001496 * GPU scratch registers helpers function.
1497 */
1498/**
1499 * cik_scratch_init - setup driver info for CP scratch regs
1500 *
1501 * @rdev: radeon_device pointer
1502 *
1503 * Set up the number and offset of the CP scratch registers.
1504 * NOTE: use of CP scratch registers is a legacy inferface and
1505 * is not used by default on newer asics (r6xx+). On newer asics,
1506 * memory buffers are used for fences rather than scratch regs.
1507 */
1508static void cik_scratch_init(struct radeon_device *rdev)
1509{
1510 int i;
1511
1512 rdev->scratch.num_reg = 7;
1513 rdev->scratch.reg_base = SCRATCH_REG0;
1514 for (i = 0; i < rdev->scratch.num_reg; i++) {
1515 rdev->scratch.free[i] = true;
1516 rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
1517 }
1518}
1519
1520/**
Alex Deucherfbc832c2012-07-20 14:41:35 -04001521 * cik_ring_test - basic gfx ring test
1522 *
1523 * @rdev: radeon_device pointer
1524 * @ring: radeon_ring structure holding ring information
1525 *
1526 * Allocate a scratch register and write to it using the gfx ring (CIK).
1527 * Provides a basic gfx ring test to verify that the ring is working.
1528 * Used by cik_cp_gfx_resume();
1529 * Returns 0 on success, error on failure.
1530 */
1531int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
1532{
1533 uint32_t scratch;
1534 uint32_t tmp = 0;
1535 unsigned i;
1536 int r;
1537
1538 r = radeon_scratch_get(rdev, &scratch);
1539 if (r) {
1540 DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
1541 return r;
1542 }
1543 WREG32(scratch, 0xCAFEDEAD);
1544 r = radeon_ring_lock(rdev, ring, 3);
1545 if (r) {
1546 DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r);
1547 radeon_scratch_free(rdev, scratch);
1548 return r;
1549 }
1550 radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
1551 radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2));
1552 radeon_ring_write(ring, 0xDEADBEEF);
1553 radeon_ring_unlock_commit(rdev, ring);
1554 for (i = 0; i < rdev->usec_timeout; i++) {
1555 tmp = RREG32(scratch);
1556 if (tmp == 0xDEADBEEF)
1557 break;
1558 DRM_UDELAY(1);
1559 }
1560 if (i < rdev->usec_timeout) {
1561 DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
1562 } else {
1563 DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
1564 ring->idx, scratch, tmp);
1565 r = -EINVAL;
1566 }
1567 radeon_scratch_free(rdev, scratch);
1568 return r;
1569}
1570
1571/**
Alex Deucher2cae3bc2012-07-05 11:45:40 -04001572 * cik_fence_ring_emit - emit a fence on the gfx ring
1573 *
1574 * @rdev: radeon_device pointer
1575 * @fence: radeon fence object
1576 *
1577 * Emits a fence sequnce number on the gfx ring and flushes
1578 * GPU caches.
1579 */
1580void cik_fence_ring_emit(struct radeon_device *rdev,
1581 struct radeon_fence *fence)
1582{
1583 struct radeon_ring *ring = &rdev->ring[fence->ring];
1584 u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
1585
1586 /* EVENT_WRITE_EOP - flush caches, send int */
1587 radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
1588 radeon_ring_write(ring, (EOP_TCL1_ACTION_EN |
1589 EOP_TC_ACTION_EN |
1590 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
1591 EVENT_INDEX(5)));
1592 radeon_ring_write(ring, addr & 0xfffffffc);
1593 radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2));
1594 radeon_ring_write(ring, fence->seq);
1595 radeon_ring_write(ring, 0);
1596 /* HDP flush */
1597 /* We should be using the new WAIT_REG_MEM special op packet here
1598 * but it causes the CP to hang
1599 */
1600 radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
1601 radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
1602 WRITE_DATA_DST_SEL(0)));
1603 radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
1604 radeon_ring_write(ring, 0);
1605 radeon_ring_write(ring, 0);
1606}
1607
1608void cik_semaphore_ring_emit(struct radeon_device *rdev,
1609 struct radeon_ring *ring,
1610 struct radeon_semaphore *semaphore,
1611 bool emit_wait)
1612{
1613 uint64_t addr = semaphore->gpu_addr;
1614 unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;
1615
1616 radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1));
1617 radeon_ring_write(ring, addr & 0xffffffff);
1618 radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel);
1619}
1620
1621/*
1622 * IB stuff
1623 */
1624/**
1625 * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring
1626 *
1627 * @rdev: radeon_device pointer
1628 * @ib: radeon indirect buffer object
1629 *
1630 * Emits an DE (drawing engine) or CE (constant engine) IB
1631 * on the gfx ring. IBs are usually generated by userspace
1632 * acceleration drivers and submitted to the kernel for
1633 * sheduling on the ring. This function schedules the IB
1634 * on the gfx ring for execution by the GPU.
1635 */
1636void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
1637{
1638 struct radeon_ring *ring = &rdev->ring[ib->ring];
1639 u32 header, control = INDIRECT_BUFFER_VALID;
1640
1641 if (ib->is_const_ib) {
1642 /* set switch buffer packet before const IB */
1643 radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
1644 radeon_ring_write(ring, 0);
1645
1646 header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
1647 } else {
1648 u32 next_rptr;
1649 if (ring->rptr_save_reg) {
1650 next_rptr = ring->wptr + 3 + 4;
1651 radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
1652 radeon_ring_write(ring, ((ring->rptr_save_reg -
1653 PACKET3_SET_UCONFIG_REG_START) >> 2));
1654 radeon_ring_write(ring, next_rptr);
1655 } else if (rdev->wb.enabled) {
1656 next_rptr = ring->wptr + 5 + 4;
1657 radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
1658 radeon_ring_write(ring, WRITE_DATA_DST_SEL(1));
1659 radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
1660 radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
1661 radeon_ring_write(ring, next_rptr);
1662 }
1663
1664 header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
1665 }
1666
1667 control |= ib->length_dw |
1668 (ib->vm ? (ib->vm->id << 24) : 0);
1669
1670 radeon_ring_write(ring, header);
1671 radeon_ring_write(ring,
1672#ifdef __BIG_ENDIAN
1673 (2 << 0) |
1674#endif
1675 (ib->gpu_addr & 0xFFFFFFFC));
1676 radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
1677 radeon_ring_write(ring, control);
1678}
1679
Alex Deucherfbc832c2012-07-20 14:41:35 -04001680/**
1681 * cik_ib_test - basic gfx ring IB test
1682 *
1683 * @rdev: radeon_device pointer
1684 * @ring: radeon_ring structure holding ring information
1685 *
1686 * Allocate an IB and execute it on the gfx ring (CIK).
1687 * Provides a basic gfx ring test to verify that IBs are working.
1688 * Returns 0 on success, error on failure.
1689 */
1690int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
1691{
1692 struct radeon_ib ib;
1693 uint32_t scratch;
1694 uint32_t tmp = 0;
1695 unsigned i;
1696 int r;
1697
1698 r = radeon_scratch_get(rdev, &scratch);
1699 if (r) {
1700 DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
1701 return r;
1702 }
1703 WREG32(scratch, 0xCAFEDEAD);
1704 r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
1705 if (r) {
1706 DRM_ERROR("radeon: failed to get ib (%d).\n", r);
1707 return r;
1708 }
1709 ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
1710 ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2);
1711 ib.ptr[2] = 0xDEADBEEF;
1712 ib.length_dw = 3;
1713 r = radeon_ib_schedule(rdev, &ib, NULL);
1714 if (r) {
1715 radeon_scratch_free(rdev, scratch);
1716 radeon_ib_free(rdev, &ib);
1717 DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
1718 return r;
1719 }
1720 r = radeon_fence_wait(ib.fence, false);
1721 if (r) {
1722 DRM_ERROR("radeon: fence wait failed (%d).\n", r);
1723 return r;
1724 }
1725 for (i = 0; i < rdev->usec_timeout; i++) {
1726 tmp = RREG32(scratch);
1727 if (tmp == 0xDEADBEEF)
1728 break;
1729 DRM_UDELAY(1);
1730 }
1731 if (i < rdev->usec_timeout) {
1732 DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
1733 } else {
1734 DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
1735 scratch, tmp);
1736 r = -EINVAL;
1737 }
1738 radeon_scratch_free(rdev, scratch);
1739 radeon_ib_free(rdev, &ib);
1740 return r;
1741}
1742
Alex Deucher2cae3bc2012-07-05 11:45:40 -04001743/*
Alex Deucher841cf442012-12-18 21:47:44 -05001744 * CP.
1745 * On CIK, gfx and compute now have independant command processors.
1746 *
1747 * GFX
1748 * Gfx consists of a single ring and can process both gfx jobs and
1749 * compute jobs. The gfx CP consists of three microengines (ME):
1750 * PFP - Pre-Fetch Parser
1751 * ME - Micro Engine
1752 * CE - Constant Engine
1753 * The PFP and ME make up what is considered the Drawing Engine (DE).
1754 * The CE is an asynchronous engine used for updating buffer desciptors
1755 * used by the DE so that they can be loaded into cache in parallel
1756 * while the DE is processing state update packets.
1757 *
1758 * Compute
1759 * The compute CP consists of two microengines (ME):
1760 * MEC1 - Compute MicroEngine 1
1761 * MEC2 - Compute MicroEngine 2
1762 * Each MEC supports 4 compute pipes and each pipe supports 8 queues.
1763 * The queues are exposed to userspace and are programmed directly
1764 * by the compute runtime.
1765 */
1766/**
1767 * cik_cp_gfx_enable - enable/disable the gfx CP MEs
1768 *
1769 * @rdev: radeon_device pointer
1770 * @enable: enable or disable the MEs
1771 *
1772 * Halts or unhalts the gfx MEs.
1773 */
1774static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable)
1775{
1776 if (enable)
1777 WREG32(CP_ME_CNTL, 0);
1778 else {
1779 WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
1780 rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
1781 }
1782 udelay(50);
1783}
1784
1785/**
1786 * cik_cp_gfx_load_microcode - load the gfx CP ME ucode
1787 *
1788 * @rdev: radeon_device pointer
1789 *
1790 * Loads the gfx PFP, ME, and CE ucode.
1791 * Returns 0 for success, -EINVAL if the ucode is not available.
1792 */
1793static int cik_cp_gfx_load_microcode(struct radeon_device *rdev)
1794{
1795 const __be32 *fw_data;
1796 int i;
1797
1798 if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw)
1799 return -EINVAL;
1800
1801 cik_cp_gfx_enable(rdev, false);
1802
1803 /* PFP */
1804 fw_data = (const __be32 *)rdev->pfp_fw->data;
1805 WREG32(CP_PFP_UCODE_ADDR, 0);
1806 for (i = 0; i < CIK_PFP_UCODE_SIZE; i++)
1807 WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
1808 WREG32(CP_PFP_UCODE_ADDR, 0);
1809
1810 /* CE */
1811 fw_data = (const __be32 *)rdev->ce_fw->data;
1812 WREG32(CP_CE_UCODE_ADDR, 0);
1813 for (i = 0; i < CIK_CE_UCODE_SIZE; i++)
1814 WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++));
1815 WREG32(CP_CE_UCODE_ADDR, 0);
1816
1817 /* ME */
1818 fw_data = (const __be32 *)rdev->me_fw->data;
1819 WREG32(CP_ME_RAM_WADDR, 0);
1820 for (i = 0; i < CIK_ME_UCODE_SIZE; i++)
1821 WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
1822 WREG32(CP_ME_RAM_WADDR, 0);
1823
1824 WREG32(CP_PFP_UCODE_ADDR, 0);
1825 WREG32(CP_CE_UCODE_ADDR, 0);
1826 WREG32(CP_ME_RAM_WADDR, 0);
1827 WREG32(CP_ME_RAM_RADDR, 0);
1828 return 0;
1829}
1830
1831/**
1832 * cik_cp_gfx_start - start the gfx ring
1833 *
1834 * @rdev: radeon_device pointer
1835 *
1836 * Enables the ring and loads the clear state context and other
1837 * packets required to init the ring.
1838 * Returns 0 for success, error for failure.
1839 */
1840static int cik_cp_gfx_start(struct radeon_device *rdev)
1841{
1842 struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
1843 int r, i;
1844
1845 /* init the CP */
1846 WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1);
1847 WREG32(CP_ENDIAN_SWAP, 0);
1848 WREG32(CP_DEVICE_ID, 1);
1849
1850 cik_cp_gfx_enable(rdev, true);
1851
1852 r = radeon_ring_lock(rdev, ring, cik_default_size + 17);
1853 if (r) {
1854 DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
1855 return r;
1856 }
1857
1858 /* init the CE partitions. CE only used for gfx on CIK */
1859 radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
1860 radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
1861 radeon_ring_write(ring, 0xc000);
1862 radeon_ring_write(ring, 0xc000);
1863
1864 /* setup clear context state */
1865 radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
1866 radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
1867
1868 radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
1869 radeon_ring_write(ring, 0x80000000);
1870 radeon_ring_write(ring, 0x80000000);
1871
1872 for (i = 0; i < cik_default_size; i++)
1873 radeon_ring_write(ring, cik_default_state[i]);
1874
1875 radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
1876 radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
1877
1878 /* set clear context state */
1879 radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
1880 radeon_ring_write(ring, 0);
1881
1882 radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
1883 radeon_ring_write(ring, 0x00000316);
1884 radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
1885 radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */
1886
1887 radeon_ring_unlock_commit(rdev, ring);
1888
1889 return 0;
1890}
1891
1892/**
1893 * cik_cp_gfx_fini - stop the gfx ring
1894 *
1895 * @rdev: radeon_device pointer
1896 *
1897 * Stop the gfx ring and tear down the driver ring
1898 * info.
1899 */
1900static void cik_cp_gfx_fini(struct radeon_device *rdev)
1901{
1902 cik_cp_gfx_enable(rdev, false);
1903 radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
1904}
1905
1906/**
1907 * cik_cp_gfx_resume - setup the gfx ring buffer registers
1908 *
1909 * @rdev: radeon_device pointer
1910 *
1911 * Program the location and size of the gfx ring buffer
1912 * and test it to make sure it's working.
1913 * Returns 0 for success, error for failure.
1914 */
1915static int cik_cp_gfx_resume(struct radeon_device *rdev)
1916{
1917 struct radeon_ring *ring;
1918 u32 tmp;
1919 u32 rb_bufsz;
1920 u64 rb_addr;
1921 int r;
1922
1923 WREG32(CP_SEM_WAIT_TIMER, 0x0);
1924 WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);
1925
1926 /* Set the write pointer delay */
1927 WREG32(CP_RB_WPTR_DELAY, 0);
1928
1929 /* set the RB to use vmid 0 */
1930 WREG32(CP_RB_VMID, 0);
1931
1932 WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);
1933
1934 /* ring 0 - compute and gfx */
1935 /* Set ring buffer size */
1936 ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
1937 rb_bufsz = drm_order(ring->ring_size / 8);
1938 tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
1939#ifdef __BIG_ENDIAN
1940 tmp |= BUF_SWAP_32BIT;
1941#endif
1942 WREG32(CP_RB0_CNTL, tmp);
1943
1944 /* Initialize the ring buffer's read and write pointers */
1945 WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
1946 ring->wptr = 0;
1947 WREG32(CP_RB0_WPTR, ring->wptr);
1948
1949 /* set the wb address wether it's enabled or not */
1950 WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC);
1951 WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);
1952
1953 /* scratch register shadowing is no longer supported */
1954 WREG32(SCRATCH_UMSK, 0);
1955
1956 if (!rdev->wb.enabled)
1957 tmp |= RB_NO_UPDATE;
1958
1959 mdelay(1);
1960 WREG32(CP_RB0_CNTL, tmp);
1961
1962 rb_addr = ring->gpu_addr >> 8;
1963 WREG32(CP_RB0_BASE, rb_addr);
1964 WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr));
1965
1966 ring->rptr = RREG32(CP_RB0_RPTR);
1967
1968 /* start the ring */
1969 cik_cp_gfx_start(rdev);
1970 rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true;
1971 r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
1972 if (r) {
1973 rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
1974 return r;
1975 }
1976 return 0;
1977}
1978
1979/**
1980 * cik_cp_compute_enable - enable/disable the compute CP MEs
1981 *
1982 * @rdev: radeon_device pointer
1983 * @enable: enable or disable the MEs
1984 *
1985 * Halts or unhalts the compute MEs.
1986 */
1987static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable)
1988{
1989 if (enable)
1990 WREG32(CP_MEC_CNTL, 0);
1991 else
1992 WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT));
1993 udelay(50);
1994}
1995
1996/**
1997 * cik_cp_compute_load_microcode - load the compute CP ME ucode
1998 *
1999 * @rdev: radeon_device pointer
2000 *
2001 * Loads the compute MEC1&2 ucode.
2002 * Returns 0 for success, -EINVAL if the ucode is not available.
2003 */
2004static int cik_cp_compute_load_microcode(struct radeon_device *rdev)
2005{
2006 const __be32 *fw_data;
2007 int i;
2008
2009 if (!rdev->mec_fw)
2010 return -EINVAL;
2011
2012 cik_cp_compute_enable(rdev, false);
2013
2014 /* MEC1 */
2015 fw_data = (const __be32 *)rdev->mec_fw->data;
2016 WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
2017 for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
2018 WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++));
2019 WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
2020
2021 if (rdev->family == CHIP_KAVERI) {
2022 /* MEC2 */
2023 fw_data = (const __be32 *)rdev->mec_fw->data;
2024 WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
2025 for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
2026 WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++));
2027 WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
2028 }
2029
2030 return 0;
2031}
2032
2033/**
2034 * cik_cp_compute_start - start the compute queues
2035 *
2036 * @rdev: radeon_device pointer
2037 *
2038 * Enable the compute queues.
2039 * Returns 0 for success, error for failure.
2040 */
2041static int cik_cp_compute_start(struct radeon_device *rdev)
2042{
2043 //todo
2044 return 0;
2045}
2046
2047/**
2048 * cik_cp_compute_fini - stop the compute queues
2049 *
2050 * @rdev: radeon_device pointer
2051 *
2052 * Stop the compute queues and tear down the driver queue
2053 * info.
2054 */
2055static void cik_cp_compute_fini(struct radeon_device *rdev)
2056{
2057 cik_cp_compute_enable(rdev, false);
2058 //todo
2059}
2060
2061/**
2062 * cik_cp_compute_resume - setup the compute queue registers
2063 *
2064 * @rdev: radeon_device pointer
2065 *
2066 * Program the compute queues and test them to make sure they
2067 * are working.
2068 * Returns 0 for success, error for failure.
2069 */
2070static int cik_cp_compute_resume(struct radeon_device *rdev)
2071{
2072 int r;
2073
2074 //todo
2075 r = cik_cp_compute_start(rdev);
2076 if (r)
2077 return r;
2078 return 0;
2079}
2080
2081/* XXX temporary wrappers to handle both compute and gfx */
2082/* XXX */
2083static void cik_cp_enable(struct radeon_device *rdev, bool enable)
2084{
2085 cik_cp_gfx_enable(rdev, enable);
2086 cik_cp_compute_enable(rdev, enable);
2087}
2088
2089/* XXX */
2090static int cik_cp_load_microcode(struct radeon_device *rdev)
2091{
2092 int r;
2093
2094 r = cik_cp_gfx_load_microcode(rdev);
2095 if (r)
2096 return r;
2097 r = cik_cp_compute_load_microcode(rdev);
2098 if (r)
2099 return r;
2100
2101 return 0;
2102}
2103
2104/* XXX */
2105static void cik_cp_fini(struct radeon_device *rdev)
2106{
2107 cik_cp_gfx_fini(rdev);
2108 cik_cp_compute_fini(rdev);
2109}
2110
2111/* XXX */
2112static int cik_cp_resume(struct radeon_device *rdev)
2113{
2114 int r;
2115
2116 /* Reset all cp blocks */
2117 WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
2118 RREG32(GRBM_SOFT_RESET);
2119 mdelay(15);
2120 WREG32(GRBM_SOFT_RESET, 0);
2121 RREG32(GRBM_SOFT_RESET);
2122
2123 r = cik_cp_load_microcode(rdev);
2124 if (r)
2125 return r;
2126
2127 r = cik_cp_gfx_resume(rdev);
2128 if (r)
2129 return r;
2130 r = cik_cp_compute_resume(rdev);
2131 if (r)
2132 return r;
2133
2134 return 0;
2135}
2136
Alex Deucher6f2043c2013-04-09 12:43:41 -04002137/**
2138 * cik_gpu_is_lockup - check if the 3D engine is locked up
2139 *
2140 * @rdev: radeon_device pointer
2141 * @ring: radeon_ring structure holding ring information
2142 *
2143 * Check if the 3D engine is locked up (CIK).
2144 * Returns true if the engine is locked, false if not.
2145 */
2146bool cik_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
2147{
2148 u32 srbm_status, srbm_status2;
2149 u32 grbm_status, grbm_status2;
2150 u32 grbm_status_se0, grbm_status_se1, grbm_status_se2, grbm_status_se3;
2151
2152 srbm_status = RREG32(SRBM_STATUS);
2153 srbm_status2 = RREG32(SRBM_STATUS2);
2154 grbm_status = RREG32(GRBM_STATUS);
2155 grbm_status2 = RREG32(GRBM_STATUS2);
2156 grbm_status_se0 = RREG32(GRBM_STATUS_SE0);
2157 grbm_status_se1 = RREG32(GRBM_STATUS_SE1);
2158 grbm_status_se2 = RREG32(GRBM_STATUS_SE2);
2159 grbm_status_se3 = RREG32(GRBM_STATUS_SE3);
2160 if (!(grbm_status & GUI_ACTIVE)) {
2161 radeon_ring_lockup_update(ring);
2162 return false;
2163 }
2164 /* force CP activities */
2165 radeon_ring_force_activity(rdev, ring);
2166 return radeon_ring_test_lockup(rdev, ring);
2167}
2168
2169/**
2170 * cik_gfx_gpu_soft_reset - soft reset the 3D engine and CPG
2171 *
2172 * @rdev: radeon_device pointer
2173 *
2174 * Soft reset the GFX engine and CPG blocks (CIK).
2175 * XXX: deal with reseting RLC and CPF
2176 * Returns 0 for success.
2177 */
2178static int cik_gfx_gpu_soft_reset(struct radeon_device *rdev)
2179{
2180 struct evergreen_mc_save save;
2181 u32 grbm_reset = 0;
2182
2183 if (!(RREG32(GRBM_STATUS) & GUI_ACTIVE))
2184 return 0;
2185
2186 dev_info(rdev->dev, "GPU GFX softreset \n");
2187 dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
2188 RREG32(GRBM_STATUS));
2189 dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
2190 RREG32(GRBM_STATUS2));
2191 dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
2192 RREG32(GRBM_STATUS_SE0));
2193 dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
2194 RREG32(GRBM_STATUS_SE1));
2195 dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
2196 RREG32(GRBM_STATUS_SE2));
2197 dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
2198 RREG32(GRBM_STATUS_SE3));
2199 dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
2200 RREG32(SRBM_STATUS));
2201 dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
2202 RREG32(SRBM_STATUS2));
2203 evergreen_mc_stop(rdev, &save);
2204 if (radeon_mc_wait_for_idle(rdev)) {
2205 dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
2206 }
2207 /* Disable CP parsing/prefetching */
2208 WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);
2209
2210 /* reset all the gfx block and all CPG blocks */
2211 grbm_reset = SOFT_RESET_CPG | SOFT_RESET_GFX;
2212
2213 dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
2214 WREG32(GRBM_SOFT_RESET, grbm_reset);
2215 (void)RREG32(GRBM_SOFT_RESET);
2216 udelay(50);
2217 WREG32(GRBM_SOFT_RESET, 0);
2218 (void)RREG32(GRBM_SOFT_RESET);
2219 /* Wait a little for things to settle down */
2220 udelay(50);
2221 dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
2222 RREG32(GRBM_STATUS));
2223 dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
2224 RREG32(GRBM_STATUS2));
2225 dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
2226 RREG32(GRBM_STATUS_SE0));
2227 dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
2228 RREG32(GRBM_STATUS_SE1));
2229 dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
2230 RREG32(GRBM_STATUS_SE2));
2231 dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
2232 RREG32(GRBM_STATUS_SE3));
2233 dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
2234 RREG32(SRBM_STATUS));
2235 dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
2236 RREG32(SRBM_STATUS2));
2237 evergreen_mc_resume(rdev, &save);
2238 return 0;
2239}
2240
2241/**
2242 * cik_compute_gpu_soft_reset - soft reset CPC
2243 *
2244 * @rdev: radeon_device pointer
2245 *
2246 * Soft reset the CPC blocks (CIK).
2247 * XXX: deal with reseting RLC and CPF
2248 * Returns 0 for success.
2249 */
2250static int cik_compute_gpu_soft_reset(struct radeon_device *rdev)
2251{
2252 struct evergreen_mc_save save;
2253 u32 grbm_reset = 0;
2254
2255 dev_info(rdev->dev, "GPU compute softreset \n");
2256 dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
2257 RREG32(GRBM_STATUS));
2258 dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
2259 RREG32(GRBM_STATUS2));
2260 dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
2261 RREG32(GRBM_STATUS_SE0));
2262 dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
2263 RREG32(GRBM_STATUS_SE1));
2264 dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
2265 RREG32(GRBM_STATUS_SE2));
2266 dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
2267 RREG32(GRBM_STATUS_SE3));
2268 dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
2269 RREG32(SRBM_STATUS));
2270 dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
2271 RREG32(SRBM_STATUS2));
2272 evergreen_mc_stop(rdev, &save);
2273 if (radeon_mc_wait_for_idle(rdev)) {
2274 dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
2275 }
2276 /* Disable CP parsing/prefetching */
2277 WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT);
2278
2279 /* reset all the CPC blocks */
2280 grbm_reset = SOFT_RESET_CPG;
2281
2282 dev_info(rdev->dev, " GRBM_SOFT_RESET=0x%08X\n", grbm_reset);
2283 WREG32(GRBM_SOFT_RESET, grbm_reset);
2284 (void)RREG32(GRBM_SOFT_RESET);
2285 udelay(50);
2286 WREG32(GRBM_SOFT_RESET, 0);
2287 (void)RREG32(GRBM_SOFT_RESET);
2288 /* Wait a little for things to settle down */
2289 udelay(50);
2290 dev_info(rdev->dev, " GRBM_STATUS=0x%08X\n",
2291 RREG32(GRBM_STATUS));
2292 dev_info(rdev->dev, " GRBM_STATUS2=0x%08X\n",
2293 RREG32(GRBM_STATUS2));
2294 dev_info(rdev->dev, " GRBM_STATUS_SE0=0x%08X\n",
2295 RREG32(GRBM_STATUS_SE0));
2296 dev_info(rdev->dev, " GRBM_STATUS_SE1=0x%08X\n",
2297 RREG32(GRBM_STATUS_SE1));
2298 dev_info(rdev->dev, " GRBM_STATUS_SE2=0x%08X\n",
2299 RREG32(GRBM_STATUS_SE2));
2300 dev_info(rdev->dev, " GRBM_STATUS_SE3=0x%08X\n",
2301 RREG32(GRBM_STATUS_SE3));
2302 dev_info(rdev->dev, " SRBM_STATUS=0x%08X\n",
2303 RREG32(SRBM_STATUS));
2304 dev_info(rdev->dev, " SRBM_STATUS2=0x%08X\n",
2305 RREG32(SRBM_STATUS2));
2306 evergreen_mc_resume(rdev, &save);
2307 return 0;
2308}
2309
2310/**
2311 * cik_asic_reset - soft reset compute and gfx
2312 *
2313 * @rdev: radeon_device pointer
2314 *
2315 * Soft reset the CPC blocks (CIK).
2316 * XXX: make this more fine grained and only reset
2317 * what is necessary.
2318 * Returns 0 for success.
2319 */
2320int cik_asic_reset(struct radeon_device *rdev)
2321{
2322 int r;
2323
2324 r = cik_compute_gpu_soft_reset(rdev);
2325 if (r)
2326 dev_info(rdev->dev, "Compute reset failed!\n");
2327
2328 return cik_gfx_gpu_soft_reset(rdev);
2329}
Alex Deucher1c491652013-04-09 12:45:26 -04002330
2331/* MC */
2332/**
2333 * cik_mc_program - program the GPU memory controller
2334 *
2335 * @rdev: radeon_device pointer
2336 *
2337 * Set the location of vram, gart, and AGP in the GPU's
2338 * physical address space (CIK).
2339 */
2340static void cik_mc_program(struct radeon_device *rdev)
2341{
2342 struct evergreen_mc_save save;
2343 u32 tmp;
2344 int i, j;
2345
2346 /* Initialize HDP */
2347 for (i = 0, j = 0; i < 32; i++, j += 0x18) {
2348 WREG32((0x2c14 + j), 0x00000000);
2349 WREG32((0x2c18 + j), 0x00000000);
2350 WREG32((0x2c1c + j), 0x00000000);
2351 WREG32((0x2c20 + j), 0x00000000);
2352 WREG32((0x2c24 + j), 0x00000000);
2353 }
2354 WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);
2355
2356 evergreen_mc_stop(rdev, &save);
2357 if (radeon_mc_wait_for_idle(rdev)) {
2358 dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
2359 }
2360 /* Lockout access through VGA aperture*/
2361 WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
2362 /* Update configuration */
2363 WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
2364 rdev->mc.vram_start >> 12);
2365 WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
2366 rdev->mc.vram_end >> 12);
2367 WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
2368 rdev->vram_scratch.gpu_addr >> 12);
2369 tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
2370 tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
2371 WREG32(MC_VM_FB_LOCATION, tmp);
2372 /* XXX double check these! */
2373 WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
2374 WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
2375 WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
2376 WREG32(MC_VM_AGP_BASE, 0);
2377 WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
2378 WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
2379 if (radeon_mc_wait_for_idle(rdev)) {
2380 dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
2381 }
2382 evergreen_mc_resume(rdev, &save);
2383 /* we need to own VRAM, so turn off the VGA renderer here
2384 * to stop it overwriting our objects */
2385 rv515_vga_render_disable(rdev);
2386}
2387
2388/**
2389 * cik_mc_init - initialize the memory controller driver params
2390 *
2391 * @rdev: radeon_device pointer
2392 *
2393 * Look up the amount of vram, vram width, and decide how to place
2394 * vram and gart within the GPU's physical address space (CIK).
2395 * Returns 0 for success.
2396 */
2397static int cik_mc_init(struct radeon_device *rdev)
2398{
2399 u32 tmp;
2400 int chansize, numchan;
2401
2402 /* Get VRAM informations */
2403 rdev->mc.vram_is_ddr = true;
2404 tmp = RREG32(MC_ARB_RAMCFG);
2405 if (tmp & CHANSIZE_MASK) {
2406 chansize = 64;
2407 } else {
2408 chansize = 32;
2409 }
2410 tmp = RREG32(MC_SHARED_CHMAP);
2411 switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
2412 case 0:
2413 default:
2414 numchan = 1;
2415 break;
2416 case 1:
2417 numchan = 2;
2418 break;
2419 case 2:
2420 numchan = 4;
2421 break;
2422 case 3:
2423 numchan = 8;
2424 break;
2425 case 4:
2426 numchan = 3;
2427 break;
2428 case 5:
2429 numchan = 6;
2430 break;
2431 case 6:
2432 numchan = 10;
2433 break;
2434 case 7:
2435 numchan = 12;
2436 break;
2437 case 8:
2438 numchan = 16;
2439 break;
2440 }
2441 rdev->mc.vram_width = numchan * chansize;
2442 /* Could aper size report 0 ? */
2443 rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
2444 rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
2445 /* size in MB on si */
2446 rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
2447 rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
2448 rdev->mc.visible_vram_size = rdev->mc.aper_size;
2449 si_vram_gtt_location(rdev, &rdev->mc);
2450 radeon_update_bandwidth_info(rdev);
2451
2452 return 0;
2453}
2454
2455/*
2456 * GART
2457 * VMID 0 is the physical GPU addresses as used by the kernel.
2458 * VMIDs 1-15 are used for userspace clients and are handled
2459 * by the radeon vm/hsa code.
2460 */
2461/**
2462 * cik_pcie_gart_tlb_flush - gart tlb flush callback
2463 *
2464 * @rdev: radeon_device pointer
2465 *
2466 * Flush the TLB for the VMID 0 page table (CIK).
2467 */
2468void cik_pcie_gart_tlb_flush(struct radeon_device *rdev)
2469{
2470 /* flush hdp cache */
2471 WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0);
2472
2473 /* bits 0-15 are the VM contexts0-15 */
2474 WREG32(VM_INVALIDATE_REQUEST, 0x1);
2475}
2476
2477/**
2478 * cik_pcie_gart_enable - gart enable
2479 *
2480 * @rdev: radeon_device pointer
2481 *
2482 * This sets up the TLBs, programs the page tables for VMID0,
2483 * sets up the hw for VMIDs 1-15 which are allocated on
2484 * demand, and sets up the global locations for the LDS, GDS,
2485 * and GPUVM for FSA64 clients (CIK).
2486 * Returns 0 for success, errors for failure.
2487 */
2488static int cik_pcie_gart_enable(struct radeon_device *rdev)
2489{
2490 int r, i;
2491
2492 if (rdev->gart.robj == NULL) {
2493 dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
2494 return -EINVAL;
2495 }
2496 r = radeon_gart_table_vram_pin(rdev);
2497 if (r)
2498 return r;
2499 radeon_gart_restore(rdev);
2500 /* Setup TLB control */
2501 WREG32(MC_VM_MX_L1_TLB_CNTL,
2502 (0xA << 7) |
2503 ENABLE_L1_TLB |
2504 SYSTEM_ACCESS_MODE_NOT_IN_SYS |
2505 ENABLE_ADVANCED_DRIVER_MODEL |
2506 SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
2507 /* Setup L2 cache */
2508 WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
2509 ENABLE_L2_FRAGMENT_PROCESSING |
2510 ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
2511 ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
2512 EFFECTIVE_L2_QUEUE_SIZE(7) |
2513 CONTEXT1_IDENTITY_ACCESS_MODE(1));
2514 WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
2515 WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
2516 L2_CACHE_BIGK_FRAGMENT_SIZE(6));
2517 /* setup context0 */
2518 WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
2519 WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
2520 WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
2521 WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
2522 (u32)(rdev->dummy_page.addr >> 12));
2523 WREG32(VM_CONTEXT0_CNTL2, 0);
2524 WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
2525 RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));
2526
2527 WREG32(0x15D4, 0);
2528 WREG32(0x15D8, 0);
2529 WREG32(0x15DC, 0);
2530
2531 /* empty context1-15 */
2532 /* FIXME start with 4G, once using 2 level pt switch to full
2533 * vm size space
2534 */
2535 /* set vm size, must be a multiple of 4 */
2536 WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
2537 WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn);
2538 for (i = 1; i < 16; i++) {
2539 if (i < 8)
2540 WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
2541 rdev->gart.table_addr >> 12);
2542 else
2543 WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
2544 rdev->gart.table_addr >> 12);
2545 }
2546
2547 /* enable context1-15 */
2548 WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
2549 (u32)(rdev->dummy_page.addr >> 12));
Alex Deuchera00024b2012-09-18 16:06:01 -04002550 WREG32(VM_CONTEXT1_CNTL2, 4);
Alex Deucher1c491652013-04-09 12:45:26 -04002551 WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
Alex Deuchera00024b2012-09-18 16:06:01 -04002552 RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
2553 RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
2554 DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
2555 DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
2556 PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
2557 PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
2558 VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
2559 VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
2560 READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
2561 READ_PROTECTION_FAULT_ENABLE_DEFAULT |
2562 WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
2563 WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);
Alex Deucher1c491652013-04-09 12:45:26 -04002564
2565 /* TC cache setup ??? */
2566 WREG32(TC_CFG_L1_LOAD_POLICY0, 0);
2567 WREG32(TC_CFG_L1_LOAD_POLICY1, 0);
2568 WREG32(TC_CFG_L1_STORE_POLICY, 0);
2569
2570 WREG32(TC_CFG_L2_LOAD_POLICY0, 0);
2571 WREG32(TC_CFG_L2_LOAD_POLICY1, 0);
2572 WREG32(TC_CFG_L2_STORE_POLICY0, 0);
2573 WREG32(TC_CFG_L2_STORE_POLICY1, 0);
2574 WREG32(TC_CFG_L2_ATOMIC_POLICY, 0);
2575
2576 WREG32(TC_CFG_L1_VOLATILE, 0);
2577 WREG32(TC_CFG_L2_VOLATILE, 0);
2578
2579 if (rdev->family == CHIP_KAVERI) {
2580 u32 tmp = RREG32(CHUB_CONTROL);
2581 tmp &= ~BYPASS_VM;
2582 WREG32(CHUB_CONTROL, tmp);
2583 }
2584
2585 /* XXX SH_MEM regs */
2586 /* where to put LDS, scratch, GPUVM in FSA64 space */
2587 for (i = 0; i < 16; i++) {
2588 WREG32(SRBM_GFX_CNTL, VMID(i));
2589 WREG32(SH_MEM_CONFIG, 0);
2590 WREG32(SH_MEM_APE1_BASE, 1);
2591 WREG32(SH_MEM_APE1_LIMIT, 0);
2592 WREG32(SH_MEM_BASES, 0);
2593 }
2594 WREG32(SRBM_GFX_CNTL, 0);
2595
2596 cik_pcie_gart_tlb_flush(rdev);
2597 DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
2598 (unsigned)(rdev->mc.gtt_size >> 20),
2599 (unsigned long long)rdev->gart.table_addr);
2600 rdev->gart.ready = true;
2601 return 0;
2602}
2603
2604/**
2605 * cik_pcie_gart_disable - gart disable
2606 *
2607 * @rdev: radeon_device pointer
2608 *
2609 * This disables all VM page table (CIK).
2610 */
2611static void cik_pcie_gart_disable(struct radeon_device *rdev)
2612{
2613 /* Disable all tables */
2614 WREG32(VM_CONTEXT0_CNTL, 0);
2615 WREG32(VM_CONTEXT1_CNTL, 0);
2616 /* Setup TLB control */
2617 WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
2618 SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
2619 /* Setup L2 cache */
2620 WREG32(VM_L2_CNTL,
2621 ENABLE_L2_FRAGMENT_PROCESSING |
2622 ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
2623 ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
2624 EFFECTIVE_L2_QUEUE_SIZE(7) |
2625 CONTEXT1_IDENTITY_ACCESS_MODE(1));
2626 WREG32(VM_L2_CNTL2, 0);
2627 WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
2628 L2_CACHE_BIGK_FRAGMENT_SIZE(6));
2629 radeon_gart_table_vram_unpin(rdev);
2630}
2631
2632/**
2633 * cik_pcie_gart_fini - vm fini callback
2634 *
2635 * @rdev: radeon_device pointer
2636 *
2637 * Tears down the driver GART/VM setup (CIK).
2638 */
2639static void cik_pcie_gart_fini(struct radeon_device *rdev)
2640{
2641 cik_pcie_gart_disable(rdev);
2642 radeon_gart_table_vram_free(rdev);
2643 radeon_gart_fini(rdev);
2644}
2645
2646/* vm parser */
2647/**
2648 * cik_ib_parse - vm ib_parse callback
2649 *
2650 * @rdev: radeon_device pointer
2651 * @ib: indirect buffer pointer
2652 *
2653 * CIK uses hw IB checking so this is a nop (CIK).
2654 */
2655int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
2656{
2657 return 0;
2658}
2659
2660/*
2661 * vm
2662 * VMID 0 is the physical GPU addresses as used by the kernel.
2663 * VMIDs 1-15 are used for userspace clients and are handled
2664 * by the radeon vm/hsa code.
2665 */
2666/**
2667 * cik_vm_init - cik vm init callback
2668 *
2669 * @rdev: radeon_device pointer
2670 *
2671 * Inits cik specific vm parameters (number of VMs, base of vram for
2672 * VMIDs 1-15) (CIK).
2673 * Returns 0 for success.
2674 */
2675int cik_vm_init(struct radeon_device *rdev)
2676{
2677 /* number of VMs */
2678 rdev->vm_manager.nvm = 16;
2679 /* base offset of vram pages */
2680 if (rdev->flags & RADEON_IS_IGP) {
2681 u64 tmp = RREG32(MC_VM_FB_OFFSET);
2682 tmp <<= 22;
2683 rdev->vm_manager.vram_base_offset = tmp;
2684 } else
2685 rdev->vm_manager.vram_base_offset = 0;
2686
2687 return 0;
2688}
2689
2690/**
2691 * cik_vm_fini - cik vm fini callback
2692 *
2693 * @rdev: radeon_device pointer
2694 *
2695 * Tear down any asic specific VM setup (CIK).
2696 */
2697void cik_vm_fini(struct radeon_device *rdev)
2698{
2699}
2700