blob: dc42ffc838254351fcc925914902ebf4b47cef0e [file] [log] [blame]
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
4 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
5 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
6 */
7#include <linux/dma-direct.h>
8#include <linux/dma-noncoherent.h>
9#include <linux/dma-contiguous.h>
10#include <linux/highmem.h>
11
12#include <asm/cache.h>
13#include <asm/cpu-type.h>
14#include <asm/dma-coherence.h>
15#include <asm/io.h>
16
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020017/*
18 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
19 * fill random cachelines with stale data at any time, requiring an extra
20 * flush post-DMA.
21 *
22 * Warning on the terminology - Linux calls an uncached area coherent; MIPS
23 * terminology calls memory areas with hardware maintained coherency coherent.
24 *
25 * Note that the R14000 and R16000 should also be checked for in this condition.
26 * However this function is only called on non-I/O-coherent systems and only the
27 * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
28 * SGI IP32 aka O2.
29 */
Christoph Hellwig56e35f92019-11-07 18:03:11 +010030static inline bool cpu_needs_post_dma_flush(void)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020031{
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020032 switch (boot_cpu_type()) {
33 case CPU_R10000:
34 case CPU_R12000:
35 case CPU_BMIPS5000:
36 return true;
37 default:
38 /*
39 * Presence of MAARs suggests that the CPU supports
40 * speculatively prefetching data, and therefore requires
41 * the post-DMA flush/invalidate.
42 */
43 return cpu_has_maar;
44 }
45}
46
Christoph Hellwig2e96e042019-04-28 13:57:39 -050047void arch_dma_prep_coherent(struct page *page, size_t size)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020048{
Christoph Hellwig2e96e042019-04-28 13:57:39 -050049 dma_cache_wback_inv((unsigned long)page_address(page), size);
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020050}
51
Christoph Hellwig2e96e042019-04-28 13:57:39 -050052void *uncached_kernel_address(void *addr)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020053{
Christoph Hellwig2e96e042019-04-28 13:57:39 -050054 return (void *)(__pa(addr) + UNCAC_BASE);
55}
56
57void *cached_kernel_address(void *addr)
58{
59 return __va(addr) - UNCAC_BASE;
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020060}
61
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +020062static inline void dma_sync_virt(void *addr, size_t size,
63 enum dma_data_direction dir)
64{
65 switch (dir) {
66 case DMA_TO_DEVICE:
67 dma_cache_wback((unsigned long)addr, size);
68 break;
69
70 case DMA_FROM_DEVICE:
71 dma_cache_inv((unsigned long)addr, size);
72 break;
73
74 case DMA_BIDIRECTIONAL:
75 dma_cache_wback_inv((unsigned long)addr, size);
76 break;
77
78 default:
79 BUG();
80 }
81}
82
83/*
84 * A single sg entry may refer to multiple physically contiguous pages. But
85 * we still need to process highmem pages individually. If highmem is not
86 * configured then the bulk of this loop gets optimized out.
87 */
88static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
89 enum dma_data_direction dir)
90{
91 struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
92 unsigned long offset = paddr & ~PAGE_MASK;
93 size_t left = size;
94
95 do {
96 size_t len = left;
97
98 if (PageHighMem(page)) {
99 void *addr;
100
Paul Burtond411da02019-02-15 22:03:04 +0000101 if (offset + len > PAGE_SIZE)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200102 len = PAGE_SIZE - offset;
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200103
104 addr = kmap_atomic(page);
105 dma_sync_virt(addr + offset, len, dir);
106 kunmap_atomic(addr);
107 } else
108 dma_sync_virt(page_address(page) + offset, size, dir);
109 offset = 0;
110 page++;
111 left -= len;
112 } while (left);
113}
114
Christoph Hellwig56e35f92019-11-07 18:03:11 +0100115void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
116 enum dma_data_direction dir)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200117{
Christoph Hellwigbc3ec752018-09-08 11:22:43 +0200118 dma_sync_phys(paddr, size, dir);
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200119}
120
Hauke Mehrtensf263f2a2018-12-09 16:49:57 +0100121#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU
Christoph Hellwig56e35f92019-11-07 18:03:11 +0100122void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
123 enum dma_data_direction dir)
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200124{
Christoph Hellwig56e35f92019-11-07 18:03:11 +0100125 if (cpu_needs_post_dma_flush())
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200126 dma_sync_phys(paddr, size, dir);
127}
Hauke Mehrtensf263f2a2018-12-09 16:49:57 +0100128#endif
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200129
130void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
131 enum dma_data_direction direction)
132{
133 BUG_ON(direction == DMA_NONE);
134
Christoph Hellwigbc3ec752018-09-08 11:22:43 +0200135 dma_sync_virt(vaddr, size, direction);
Christoph Hellwigf8c55dc2018-06-15 13:08:46 +0200136}
Christoph Hellwig347cb6a2019-01-07 13:36:20 -0500137
138#ifdef CONFIG_DMA_PERDEV_COHERENT
139void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
140 const struct iommu_ops *iommu, bool coherent)
141{
142 dev->dma_coherent = coherent;
143}
144#endif