blob: 7bb9d65d9a2c9c99f12314c537fa8cf00c0929ef [file] [log] [blame]
Maarten Lankhorste9417592014-07-01 12:57:14 +02001/*
2 * Fence mechanism for dma-buf and to allow for asynchronous dma access
3 *
4 * Copyright (C) 2012 Canonical Ltd
5 * Copyright (C) 2012 Texas Instruments
6 *
7 * Authors:
8 * Rob Clark <robdclark@gmail.com>
9 * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 2 as published by
13 * the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 */
20
21#include <linux/slab.h>
22#include <linux/export.h>
23#include <linux/atomic.h>
24#include <linux/fence.h>
25
26#define CREATE_TRACE_POINTS
27#include <trace/events/fence.h>
28
29EXPORT_TRACEPOINT_SYMBOL(fence_annotate_wait_on);
30EXPORT_TRACEPOINT_SYMBOL(fence_emit);
31
Thierry Redinge9f3b792014-08-08 12:42:32 +020032/*
Maarten Lankhorste9417592014-07-01 12:57:14 +020033 * fence context counter: each execution context should have its own
34 * fence context, this allows checking if fences belong to the same
35 * context or not. One device can have multiple separate contexts,
36 * and they're used if some engine can run independently of another.
37 */
38static atomic_t fence_context_counter = ATOMIC_INIT(0);
39
40/**
41 * fence_context_alloc - allocate an array of fence contexts
42 * @num: [in] amount of contexts to allocate
43 *
44 * This function will return the first index of the number of fences allocated.
45 * The fence context is used for setting fence->context to a unique number.
46 */
47unsigned fence_context_alloc(unsigned num)
48{
49 BUG_ON(!num);
50 return atomic_add_return(num, &fence_context_counter) - num;
51}
52EXPORT_SYMBOL(fence_context_alloc);
53
54/**
55 * fence_signal_locked - signal completion of a fence
56 * @fence: the fence to signal
57 *
58 * Signal completion for software callbacks on a fence, this will unblock
59 * fence_wait() calls and run all the callbacks added with
60 * fence_add_callback(). Can be called multiple times, but since a fence
61 * can only go from unsignaled to signaled state, it will only be effective
62 * the first time.
63 *
64 * Unlike fence_signal, this function must be called with fence->lock held.
65 */
66int fence_signal_locked(struct fence *fence)
67{
68 struct fence_cb *cur, *tmp;
69 int ret = 0;
70
71 if (WARN_ON(!fence))
72 return -EINVAL;
73
74 if (!ktime_to_ns(fence->timestamp)) {
75 fence->timestamp = ktime_get();
76 smp_mb__before_atomic();
77 }
78
79 if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
80 ret = -EINVAL;
81
82 /*
83 * we might have raced with the unlocked fence_signal,
84 * still run through all callbacks
85 */
86 } else
87 trace_fence_signaled(fence);
88
89 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
90 list_del_init(&cur->node);
91 cur->func(fence, cur);
92 }
93 return ret;
94}
95EXPORT_SYMBOL(fence_signal_locked);
96
97/**
98 * fence_signal - signal completion of a fence
99 * @fence: the fence to signal
100 *
101 * Signal completion for software callbacks on a fence, this will unblock
102 * fence_wait() calls and run all the callbacks added with
103 * fence_add_callback(). Can be called multiple times, but since a fence
104 * can only go from unsignaled to signaled state, it will only be effective
105 * the first time.
106 */
107int fence_signal(struct fence *fence)
108{
109 unsigned long flags;
110
111 if (!fence)
112 return -EINVAL;
113
114 if (!ktime_to_ns(fence->timestamp)) {
115 fence->timestamp = ktime_get();
116 smp_mb__before_atomic();
117 }
118
119 if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
120 return -EINVAL;
121
122 trace_fence_signaled(fence);
123
124 if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
125 struct fence_cb *cur, *tmp;
126
127 spin_lock_irqsave(fence->lock, flags);
128 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
129 list_del_init(&cur->node);
130 cur->func(fence, cur);
131 }
132 spin_unlock_irqrestore(fence->lock, flags);
133 }
134 return 0;
135}
136EXPORT_SYMBOL(fence_signal);
137
138/**
139 * fence_wait_timeout - sleep until the fence gets signaled
140 * or until timeout elapses
141 * @fence: [in] the fence to wait on
142 * @intr: [in] if true, do an interruptible wait
143 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
144 *
145 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
146 * remaining timeout in jiffies on success. Other error values may be
147 * returned on custom implementations.
148 *
149 * Performs a synchronous wait on this fence. It is assumed the caller
150 * directly or indirectly (buf-mgr between reservation and committing)
151 * holds a reference to the fence, otherwise the fence might be
152 * freed before return, resulting in undefined behavior.
153 */
154signed long
155fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
156{
157 signed long ret;
158
159 if (WARN_ON(timeout < 0))
160 return -EINVAL;
161
162 trace_fence_wait_start(fence);
163 ret = fence->ops->wait(fence, intr, timeout);
164 trace_fence_wait_end(fence);
165 return ret;
166}
167EXPORT_SYMBOL(fence_wait_timeout);
168
169void fence_release(struct kref *kref)
170{
171 struct fence *fence =
172 container_of(kref, struct fence, refcount);
173
174 trace_fence_destroy(fence);
175
176 BUG_ON(!list_empty(&fence->cb_list));
177
178 if (fence->ops->release)
179 fence->ops->release(fence);
180 else
181 fence_free(fence);
182}
183EXPORT_SYMBOL(fence_release);
184
185void fence_free(struct fence *fence)
186{
Maarten Lankhorst3c3b1772014-07-01 12:58:00 +0200187 kfree_rcu(fence, rcu);
Maarten Lankhorste9417592014-07-01 12:57:14 +0200188}
189EXPORT_SYMBOL(fence_free);
190
191/**
192 * fence_enable_sw_signaling - enable signaling on fence
193 * @fence: [in] the fence to enable
194 *
195 * this will request for sw signaling to be enabled, to make the fence
196 * complete as soon as possible
197 */
198void fence_enable_sw_signaling(struct fence *fence)
199{
200 unsigned long flags;
201
202 if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
203 !test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
204 trace_fence_enable_signal(fence);
205
206 spin_lock_irqsave(fence->lock, flags);
207
208 if (!fence->ops->enable_signaling(fence))
209 fence_signal_locked(fence);
210
211 spin_unlock_irqrestore(fence->lock, flags);
212 }
213}
214EXPORT_SYMBOL(fence_enable_sw_signaling);
215
216/**
217 * fence_add_callback - add a callback to be called when the fence
218 * is signaled
219 * @fence: [in] the fence to wait on
220 * @cb: [in] the callback to register
221 * @func: [in] the function to call
222 *
223 * cb will be initialized by fence_add_callback, no initialization
224 * by the caller is required. Any number of callbacks can be registered
225 * to a fence, but a callback can only be registered to one fence at a time.
226 *
227 * Note that the callback can be called from an atomic context. If
228 * fence is already signaled, this function will return -ENOENT (and
229 * *not* call the callback)
230 *
231 * Add a software callback to the fence. Same restrictions apply to
232 * refcount as it does to fence_wait, however the caller doesn't need to
233 * keep a refcount to fence afterwards: when software access is enabled,
234 * the creator of the fence is required to keep the fence alive until
235 * after it signals with fence_signal. The callback itself can be called
236 * from irq context.
237 *
238 */
239int fence_add_callback(struct fence *fence, struct fence_cb *cb,
240 fence_func_t func)
241{
242 unsigned long flags;
243 int ret = 0;
244 bool was_set;
245
246 if (WARN_ON(!fence || !func))
247 return -EINVAL;
248
249 if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
250 INIT_LIST_HEAD(&cb->node);
251 return -ENOENT;
252 }
253
254 spin_lock_irqsave(fence->lock, flags);
255
256 was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
257
258 if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
259 ret = -ENOENT;
260 else if (!was_set) {
261 trace_fence_enable_signal(fence);
262
263 if (!fence->ops->enable_signaling(fence)) {
264 fence_signal_locked(fence);
265 ret = -ENOENT;
266 }
267 }
268
269 if (!ret) {
270 cb->func = func;
271 list_add_tail(&cb->node, &fence->cb_list);
272 } else
273 INIT_LIST_HEAD(&cb->node);
274 spin_unlock_irqrestore(fence->lock, flags);
275
276 return ret;
277}
278EXPORT_SYMBOL(fence_add_callback);
279
280/**
281 * fence_remove_callback - remove a callback from the signaling list
282 * @fence: [in] the fence to wait on
283 * @cb: [in] the callback to remove
284 *
285 * Remove a previously queued callback from the fence. This function returns
286 * true if the callback is succesfully removed, or false if the fence has
287 * already been signaled.
288 *
289 * *WARNING*:
290 * Cancelling a callback should only be done if you really know what you're
291 * doing, since deadlocks and race conditions could occur all too easily. For
292 * this reason, it should only ever be done on hardware lockup recovery,
293 * with a reference held to the fence.
294 */
295bool
296fence_remove_callback(struct fence *fence, struct fence_cb *cb)
297{
298 unsigned long flags;
299 bool ret;
300
301 spin_lock_irqsave(fence->lock, flags);
302
303 ret = !list_empty(&cb->node);
304 if (ret)
305 list_del_init(&cb->node);
306
307 spin_unlock_irqrestore(fence->lock, flags);
308
309 return ret;
310}
311EXPORT_SYMBOL(fence_remove_callback);
312
313struct default_wait_cb {
314 struct fence_cb base;
315 struct task_struct *task;
316};
317
318static void
319fence_default_wait_cb(struct fence *fence, struct fence_cb *cb)
320{
321 struct default_wait_cb *wait =
322 container_of(cb, struct default_wait_cb, base);
323
324 wake_up_state(wait->task, TASK_NORMAL);
325}
326
327/**
328 * fence_default_wait - default sleep until the fence gets signaled
329 * or until timeout elapses
330 * @fence: [in] the fence to wait on
331 * @intr: [in] if true, do an interruptible wait
332 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
333 *
334 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
335 * remaining timeout in jiffies on success.
336 */
337signed long
338fence_default_wait(struct fence *fence, bool intr, signed long timeout)
339{
340 struct default_wait_cb cb;
341 unsigned long flags;
342 signed long ret = timeout;
343 bool was_set;
344
345 if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
346 return timeout;
347
348 spin_lock_irqsave(fence->lock, flags);
349
350 if (intr && signal_pending(current)) {
351 ret = -ERESTARTSYS;
352 goto out;
353 }
354
355 was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
356
357 if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 goto out;
359
360 if (!was_set) {
361 trace_fence_enable_signal(fence);
362
363 if (!fence->ops->enable_signaling(fence)) {
364 fence_signal_locked(fence);
365 goto out;
366 }
367 }
368
369 cb.base.func = fence_default_wait_cb;
370 cb.task = current;
371 list_add(&cb.base.node, &fence->cb_list);
372
373 while (!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
374 if (intr)
375 __set_current_state(TASK_INTERRUPTIBLE);
376 else
377 __set_current_state(TASK_UNINTERRUPTIBLE);
378 spin_unlock_irqrestore(fence->lock, flags);
379
380 ret = schedule_timeout(ret);
381
382 spin_lock_irqsave(fence->lock, flags);
383 if (ret > 0 && intr && signal_pending(current))
384 ret = -ERESTARTSYS;
385 }
386
387 if (!list_empty(&cb.base.node))
388 list_del(&cb.base.node);
389 __set_current_state(TASK_RUNNING);
390
391out:
392 spin_unlock_irqrestore(fence->lock, flags);
393 return ret;
394}
395EXPORT_SYMBOL(fence_default_wait);
396
397/**
398 * fence_init - Initialize a custom fence.
399 * @fence: [in] the fence to initialize
400 * @ops: [in] the fence_ops for operations on this fence
401 * @lock: [in] the irqsafe spinlock to use for locking this fence
402 * @context: [in] the execution context this fence is run on
403 * @seqno: [in] a linear increasing sequence number for this context
404 *
405 * Initializes an allocated fence, the caller doesn't have to keep its
406 * refcount after committing with this fence, but it will need to hold a
407 * refcount again if fence_ops.enable_signaling gets called. This can
408 * be used for other implementing other types of fence.
409 *
410 * context and seqno are used for easy comparison between fences, allowing
411 * to check which fence is later by simply using fence_later.
412 */
413void
414fence_init(struct fence *fence, const struct fence_ops *ops,
415 spinlock_t *lock, unsigned context, unsigned seqno)
416{
417 BUG_ON(!lock);
418 BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
419 !ops->get_driver_name || !ops->get_timeline_name);
420
421 kref_init(&fence->refcount);
422 fence->ops = ops;
423 INIT_LIST_HEAD(&fence->cb_list);
424 fence->lock = lock;
425 fence->context = context;
426 fence->seqno = seqno;
427 fence->flags = 0UL;
428
429 trace_fence_init(fence);
430}
431EXPORT_SYMBOL(fence_init);