blob: e070c316e8b76a7384efa33a6a34ec99fb9a8849 [file] [log] [blame]
LABBE Corentin6298e942015-07-17 16:39:41 +02001/*
2 * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC
3 *
4 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
5 *
6 * This file add support for AES cipher with 128,192,256 bits
7 * keysize in CBC and ECB mode.
8 * Add support also for DES and 3DES in CBC and ECB mode.
9 *
10 * You could find the datasheet in Documentation/arm/sunxi/README
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 */
17#include "sun4i-ss.h"
18
19static int sun4i_ss_opti_poll(struct ablkcipher_request *areq)
20{
21 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
22 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
23 struct sun4i_ss_ctx *ss = op->ss;
24 unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
25 struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
26 u32 mode = ctx->mode;
27 /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
28 u32 rx_cnt = SS_RX_DEFAULT;
29 u32 tx_cnt = 0;
30 u32 spaces;
31 u32 v;
32 int i, err = 0;
33 unsigned int ileft = areq->nbytes;
34 unsigned int oleft = areq->nbytes;
35 unsigned int todo;
36 struct sg_mapping_iter mi, mo;
37 unsigned int oi, oo; /* offset for in and out */
38
39 if (areq->nbytes == 0)
40 return 0;
41
42 if (!areq->info) {
43 dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
44 return -EINVAL;
45 }
46
47 if (!areq->src || !areq->dst) {
48 dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
49 return -EINVAL;
50 }
51
52 spin_lock_bh(&ss->slock);
53
54 for (i = 0; i < op->keylen; i += 4)
55 writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
56
57 if (areq->info) {
58 for (i = 0; i < 4 && i < ivsize / 4; i++) {
59 v = *(u32 *)(areq->info + i * 4);
60 writel(v, ss->base + SS_IV0 + i * 4);
61 }
62 }
63 writel(mode, ss->base + SS_CTL);
64
65 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
66 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
67 sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
68 SG_MITER_TO_SG | SG_MITER_ATOMIC);
69 sg_miter_next(&mi);
70 sg_miter_next(&mo);
71 if (!mi.addr || !mo.addr) {
72 dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
73 err = -EINVAL;
74 goto release_ss;
75 }
76
77 ileft = areq->nbytes / 4;
78 oleft = areq->nbytes / 4;
79 oi = 0;
80 oo = 0;
81 do {
82 todo = min3(rx_cnt, ileft, (mi.length - oi) / 4);
83 if (todo > 0) {
84 ileft -= todo;
85 writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo);
86 oi += todo * 4;
87 }
88 if (oi == mi.length) {
89 sg_miter_next(&mi);
90 oi = 0;
91 }
92
93 spaces = readl(ss->base + SS_FCSR);
94 rx_cnt = SS_RXFIFO_SPACES(spaces);
95 tx_cnt = SS_TXFIFO_SPACES(spaces);
96
97 todo = min3(tx_cnt, oleft, (mo.length - oo) / 4);
98 if (todo > 0) {
99 oleft -= todo;
100 readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
101 oo += todo * 4;
102 }
103 if (oo == mo.length) {
104 sg_miter_next(&mo);
105 oo = 0;
106 }
107 } while (mo.length > 0);
108
109 if (areq->info) {
110 for (i = 0; i < 4 && i < ivsize / 4; i++) {
111 v = readl(ss->base + SS_IV0 + i * 4);
112 *(u32 *)(areq->info + i * 4) = v;
113 }
114 }
115
116release_ss:
117 sg_miter_stop(&mi);
118 sg_miter_stop(&mo);
119 writel(0, ss->base + SS_CTL);
120 spin_unlock_bh(&ss->slock);
121 return err;
122}
123
124/* Generic function that support SG with size not multiple of 4 */
125static int sun4i_ss_cipher_poll(struct ablkcipher_request *areq)
126{
127 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
128 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
129 struct sun4i_ss_ctx *ss = op->ss;
130 int no_chunk = 1;
131 struct scatterlist *in_sg = areq->src;
132 struct scatterlist *out_sg = areq->dst;
133 unsigned int ivsize = crypto_ablkcipher_ivsize(tfm);
134 struct sun4i_cipher_req_ctx *ctx = ablkcipher_request_ctx(areq);
135 u32 mode = ctx->mode;
136 /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */
137 u32 rx_cnt = SS_RX_DEFAULT;
138 u32 tx_cnt = 0;
139 u32 v;
140 u32 spaces;
141 int i, err = 0;
142 unsigned int ileft = areq->nbytes;
143 unsigned int oleft = areq->nbytes;
144 unsigned int todo;
145 struct sg_mapping_iter mi, mo;
146 unsigned int oi, oo; /* offset for in and out */
147 char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */
148 char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */
149 unsigned int ob = 0; /* offset in buf */
150 unsigned int obo = 0; /* offset in bufo*/
151 unsigned int obl = 0; /* length of data in bufo */
152
153 if (areq->nbytes == 0)
154 return 0;
155
156 if (!areq->info) {
157 dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n");
158 return -EINVAL;
159 }
160
161 if (!areq->src || !areq->dst) {
162 dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n");
163 return -EINVAL;
164 }
165
166 /*
167 * if we have only SGs with size multiple of 4,
168 * we can use the SS optimized function
169 */
170 while (in_sg && no_chunk == 1) {
171 if ((in_sg->length % 4) != 0)
172 no_chunk = 0;
173 in_sg = sg_next(in_sg);
174 }
175 while (out_sg && no_chunk == 1) {
176 if ((out_sg->length % 4) != 0)
177 no_chunk = 0;
178 out_sg = sg_next(out_sg);
179 }
180
181 if (no_chunk == 1)
182 return sun4i_ss_opti_poll(areq);
183
184 spin_lock_bh(&ss->slock);
185
186 for (i = 0; i < op->keylen; i += 4)
187 writel(*(op->key + i / 4), ss->base + SS_KEY0 + i);
188
189 if (areq->info) {
190 for (i = 0; i < 4 && i < ivsize / 4; i++) {
191 v = *(u32 *)(areq->info + i * 4);
192 writel(v, ss->base + SS_IV0 + i * 4);
193 }
194 }
195 writel(mode, ss->base + SS_CTL);
196
197 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
198 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
199 sg_miter_start(&mo, areq->dst, sg_nents(areq->dst),
200 SG_MITER_TO_SG | SG_MITER_ATOMIC);
201 sg_miter_next(&mi);
202 sg_miter_next(&mo);
203 if (!mi.addr || !mo.addr) {
204 dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n");
205 err = -EINVAL;
206 goto release_ss;
207 }
208 ileft = areq->nbytes;
209 oleft = areq->nbytes;
210 oi = 0;
211 oo = 0;
212
213 while (oleft > 0) {
214 if (ileft > 0) {
215 /*
216 * todo is the number of consecutive 4byte word that we
217 * can read from current SG
218 */
219 todo = min3(rx_cnt, ileft / 4, (mi.length - oi) / 4);
220 if (todo > 0 && ob == 0) {
221 writesl(ss->base + SS_RXFIFO, mi.addr + oi,
222 todo);
223 ileft -= todo * 4;
224 oi += todo * 4;
225 } else {
226 /*
227 * not enough consecutive bytes, so we need to
228 * linearize in buf. todo is in bytes
229 * After that copy, if we have a multiple of 4
230 * we need to be able to write all buf in one
231 * pass, so it is why we min() with rx_cnt
232 */
233 todo = min3(rx_cnt * 4 - ob, ileft,
234 mi.length - oi);
235 memcpy(buf + ob, mi.addr + oi, todo);
236 ileft -= todo;
237 oi += todo;
238 ob += todo;
239 if (ob % 4 == 0) {
240 writesl(ss->base + SS_RXFIFO, buf,
241 ob / 4);
242 ob = 0;
243 }
244 }
245 if (oi == mi.length) {
246 sg_miter_next(&mi);
247 oi = 0;
248 }
249 }
250
251 spaces = readl(ss->base + SS_FCSR);
252 rx_cnt = SS_RXFIFO_SPACES(spaces);
253 tx_cnt = SS_TXFIFO_SPACES(spaces);
254 dev_dbg(ss->dev, "%x %u/%u %u/%u cnt=%u %u/%u %u/%u cnt=%u %u %u\n",
255 mode,
256 oi, mi.length, ileft, areq->nbytes, rx_cnt,
257 oo, mo.length, oleft, areq->nbytes, tx_cnt,
258 todo, ob);
259
260 if (tx_cnt == 0)
261 continue;
262 /* todo in 4bytes word */
263 todo = min3(tx_cnt, oleft / 4, (mo.length - oo) / 4);
264 if (todo > 0) {
265 readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo);
266 oleft -= todo * 4;
267 oo += todo * 4;
268 if (oo == mo.length) {
269 sg_miter_next(&mo);
270 oo = 0;
271 }
272 } else {
273 /*
274 * read obl bytes in bufo, we read at maximum for
275 * emptying the device
276 */
277 readsl(ss->base + SS_TXFIFO, bufo, tx_cnt);
278 obl = tx_cnt * 4;
279 obo = 0;
280 do {
281 /*
282 * how many bytes we can copy ?
283 * no more than remaining SG size
284 * no more than remaining buffer
285 * no need to test against oleft
286 */
287 todo = min(mo.length - oo, obl - obo);
288 memcpy(mo.addr + oo, bufo + obo, todo);
289 oleft -= todo;
290 obo += todo;
291 oo += todo;
292 if (oo == mo.length) {
293 sg_miter_next(&mo);
294 oo = 0;
295 }
296 } while (obo < obl);
297 /* bufo must be fully used here */
298 }
299 }
300 if (areq->info) {
301 for (i = 0; i < 4 && i < ivsize / 4; i++) {
302 v = readl(ss->base + SS_IV0 + i * 4);
303 *(u32 *)(areq->info + i * 4) = v;
304 }
305 }
306
307release_ss:
308 sg_miter_stop(&mi);
309 sg_miter_stop(&mo);
310 writel(0, ss->base + SS_CTL);
311 spin_unlock_bh(&ss->slock);
312
313 return err;
314}
315
316/* CBC AES */
317int sun4i_ss_cbc_aes_encrypt(struct ablkcipher_request *areq)
318{
319 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
320 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
321 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
322
323 rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
324 op->keymode;
325 return sun4i_ss_cipher_poll(areq);
326}
327
328int sun4i_ss_cbc_aes_decrypt(struct ablkcipher_request *areq)
329{
330 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
331 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
332 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
333
334 rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
335 op->keymode;
336 return sun4i_ss_cipher_poll(areq);
337}
338
339/* ECB AES */
340int sun4i_ss_ecb_aes_encrypt(struct ablkcipher_request *areq)
341{
342 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
343 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
344 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
345
346 rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
347 op->keymode;
348 return sun4i_ss_cipher_poll(areq);
349}
350
351int sun4i_ss_ecb_aes_decrypt(struct ablkcipher_request *areq)
352{
353 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
354 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
355 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
356
357 rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
358 op->keymode;
359 return sun4i_ss_cipher_poll(areq);
360}
361
362/* CBC DES */
363int sun4i_ss_cbc_des_encrypt(struct ablkcipher_request *areq)
364{
365 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
366 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
367 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
368
369 rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
370 op->keymode;
371 return sun4i_ss_cipher_poll(areq);
372}
373
374int sun4i_ss_cbc_des_decrypt(struct ablkcipher_request *areq)
375{
376 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
377 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
378 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
379
380 rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
381 op->keymode;
382 return sun4i_ss_cipher_poll(areq);
383}
384
385/* ECB DES */
386int sun4i_ss_ecb_des_encrypt(struct ablkcipher_request *areq)
387{
388 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
389 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
390 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
391
392 rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
393 op->keymode;
394 return sun4i_ss_cipher_poll(areq);
395}
396
397int sun4i_ss_ecb_des_decrypt(struct ablkcipher_request *areq)
398{
399 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
400 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
401 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
402
403 rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
404 op->keymode;
405 return sun4i_ss_cipher_poll(areq);
406}
407
408/* CBC 3DES */
409int sun4i_ss_cbc_des3_encrypt(struct ablkcipher_request *areq)
410{
411 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
412 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
413 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
414
415 rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION |
416 op->keymode;
417 return sun4i_ss_cipher_poll(areq);
418}
419
420int sun4i_ss_cbc_des3_decrypt(struct ablkcipher_request *areq)
421{
422 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
423 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
424 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
425
426 rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION |
427 op->keymode;
428 return sun4i_ss_cipher_poll(areq);
429}
430
431/* ECB 3DES */
432int sun4i_ss_ecb_des3_encrypt(struct ablkcipher_request *areq)
433{
434 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
435 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
436 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
437
438 rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION |
439 op->keymode;
440 return sun4i_ss_cipher_poll(areq);
441}
442
443int sun4i_ss_ecb_des3_decrypt(struct ablkcipher_request *areq)
444{
445 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(areq);
446 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
447 struct sun4i_cipher_req_ctx *rctx = ablkcipher_request_ctx(areq);
448
449 rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION |
450 op->keymode;
451 return sun4i_ss_cipher_poll(areq);
452}
453
454int sun4i_ss_cipher_init(struct crypto_tfm *tfm)
455{
456 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
457 struct crypto_alg *alg = tfm->__crt_alg;
458 struct sun4i_ss_alg_template *algt;
459
460 memset(op, 0, sizeof(struct sun4i_tfm_ctx));
461
462 algt = container_of(alg, struct sun4i_ss_alg_template, alg.crypto);
463 op->ss = algt->ss;
464
465 tfm->crt_ablkcipher.reqsize = sizeof(struct sun4i_cipher_req_ctx);
466
467 return 0;
468}
469
470/* check and set the AES key, prepare the mode to be used */
471int sun4i_ss_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
472 unsigned int keylen)
473{
474 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
475 struct sun4i_ss_ctx *ss = op->ss;
476
477 switch (keylen) {
478 case 128 / 8:
479 op->keymode = SS_AES_128BITS;
480 break;
481 case 192 / 8:
482 op->keymode = SS_AES_192BITS;
483 break;
484 case 256 / 8:
485 op->keymode = SS_AES_256BITS;
486 break;
487 default:
488 dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen);
489 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
490 return -EINVAL;
491 }
492 op->keylen = keylen;
493 memcpy(op->key, key, keylen);
494 return 0;
495}
496
497/* check and set the DES key, prepare the mode to be used */
498int sun4i_ss_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
499 unsigned int keylen)
500{
501 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
502 struct sun4i_ss_ctx *ss = op->ss;
503 u32 flags;
504 u32 tmp[DES_EXPKEY_WORDS];
505 int ret;
506
507 if (unlikely(keylen != DES_KEY_SIZE)) {
508 dev_err(ss->dev, "Invalid keylen %u\n", keylen);
509 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
510 return -EINVAL;
511 }
512
513 flags = crypto_ablkcipher_get_flags(tfm);
514
515 ret = des_ekey(tmp, key);
516 if (unlikely(ret == 0) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
517 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
518 dev_dbg(ss->dev, "Weak key %u\n", keylen);
519 return -EINVAL;
520 }
521
522 op->keylen = keylen;
523 memcpy(op->key, key, keylen);
524 return 0;
525}
526
527/* check and set the 3DES key, prepare the mode to be used */
528int sun4i_ss_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
529 unsigned int keylen)
530{
531 struct sun4i_tfm_ctx *op = crypto_ablkcipher_ctx(tfm);
532 struct sun4i_ss_ctx *ss = op->ss;
533
534 if (unlikely(keylen != 3 * DES_KEY_SIZE)) {
535 dev_err(ss->dev, "Invalid keylen %u\n", keylen);
536 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
537 return -EINVAL;
538 }
539 op->keylen = keylen;
540 memcpy(op->key, key, keylen);
541 return 0;
542}