Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 1 | perf.data format |
| 2 | |
| 3 | Uptodate as of v4.7 |
| 4 | |
| 5 | This document describes the on-disk perf.data format, generated by perf record |
| 6 | or perf inject and consumed by the other perf tools. |
| 7 | |
| 8 | On a high level perf.data contains the events generated by the PMUs, plus metadata. |
| 9 | |
| 10 | All fields are in native-endian of the machine that generated the perf.data. |
| 11 | |
| 12 | When perf is writing to a pipe it uses a special version of the file |
| 13 | format that does not rely on seeking to adjust data offsets. This |
David Carrillo-Cisneros | 6d13491 | 2017-04-10 13:14:28 -0700 | [diff] [blame] | 14 | format is described in "Pipe-mode data" section. The pipe data version can be |
| 15 | augmented with additional events using perf inject. |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 16 | |
| 17 | The file starts with a perf_header: |
| 18 | |
| 19 | struct perf_header { |
| 20 | char magic[8]; /* PERFILE2 */ |
| 21 | uint64_t size; /* size of the header */ |
| 22 | uint64_t attr_size; /* size of an attribute in attrs */ |
| 23 | struct perf_file_section attrs; |
| 24 | struct perf_file_section data; |
| 25 | struct perf_file_section event_types; |
| 26 | uint64_t flags; |
| 27 | uint64_t flags1[3]; |
| 28 | }; |
| 29 | |
| 30 | The magic number identifies the perf file and the version. Current perf versions |
| 31 | use PERFILE2. Old perf versions generated a version 1 format (PERFFILE). Version 1 |
| 32 | is not described here. The magic number also identifies the endian. When the |
| 33 | magic value is 64bit byte swapped compared the file is in non-native |
| 34 | endian. |
| 35 | |
| 36 | A perf_file_section contains a pointer to another section of the perf file. |
| 37 | The header contains three such pointers: for attributes, data and event types. |
| 38 | |
| 39 | struct perf_file_section { |
| 40 | uint64_t offset; /* offset from start of file */ |
| 41 | uint64_t size; /* size of the section */ |
| 42 | }; |
| 43 | |
| 44 | Flags section: |
| 45 | |
| 46 | The header is followed by different optional headers, described by the bits set |
| 47 | in flags. Only headers for which the bit is set are included. Each header |
| 48 | consists of a perf_file_section located after the initial header. |
| 49 | The respective perf_file_section points to the data of the additional |
| 50 | header and defines its size. |
| 51 | |
| 52 | Some headers consist of strings, which are defined like this: |
| 53 | |
| 54 | struct perf_header_string { |
| 55 | uint32_t len; |
| 56 | char string[len]; /* zero terminated */ |
| 57 | }; |
| 58 | |
| 59 | Some headers consist of a sequence of strings, which start with a |
| 60 | |
| 61 | struct perf_header_string_list { |
| 62 | uint32_t nr; |
| 63 | struct perf_header_string strings[nr]; /* variable length records */ |
| 64 | }; |
| 65 | |
| 66 | The bits are the flags bits in a 256 bit bitmap starting with |
| 67 | flags. These define the valid bits: |
| 68 | |
| 69 | HEADER_RESERVED = 0, /* always cleared */ |
| 70 | HEADER_FIRST_FEATURE = 1, |
| 71 | HEADER_TRACING_DATA = 1, |
| 72 | |
| 73 | Describe me. |
| 74 | |
| 75 | HEADER_BUILD_ID = 2, |
| 76 | |
| 77 | The header consists of an sequence of build_id_event. The size of each record |
| 78 | is defined by header.size (see perf_event.h). Each event defines a ELF build id |
| 79 | for a executable file name for a pid. An ELF build id is a unique identifier |
| 80 | assigned by the linker to an executable. |
| 81 | |
| 82 | struct build_id_event { |
| 83 | struct perf_event_header header; |
| 84 | pid_t pid; |
| 85 | uint8_t build_id[24]; |
| 86 | char filename[header.size - offsetof(struct build_id_event, filename)]; |
| 87 | }; |
| 88 | |
| 89 | HEADER_HOSTNAME = 3, |
| 90 | |
| 91 | A perf_header_string with the hostname where the data was collected |
| 92 | (uname -n) |
| 93 | |
| 94 | HEADER_OSRELEASE = 4, |
| 95 | |
| 96 | A perf_header_string with the os release where the data was collected |
| 97 | (uname -r) |
| 98 | |
| 99 | HEADER_VERSION = 5, |
| 100 | |
| 101 | A perf_header_string with the perf user tool version where the |
| 102 | data was collected. This is the same as the version of the source tree |
| 103 | the perf tool was built from. |
| 104 | |
| 105 | HEADER_ARCH = 6, |
| 106 | |
| 107 | A perf_header_string with the CPU architecture (uname -m) |
| 108 | |
| 109 | HEADER_NRCPUS = 7, |
| 110 | |
| 111 | A structure defining the number of CPUs. |
| 112 | |
| 113 | struct nr_cpus { |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 114 | uint32_t nr_cpus_available; /* CPUs not yet onlined */ |
Arnaldo Carvalho de Melo | 18a7057 | 2018-05-25 16:37:36 -0300 | [diff] [blame] | 115 | uint32_t nr_cpus_online; |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 116 | }; |
| 117 | |
| 118 | HEADER_CPUDESC = 8, |
| 119 | |
| 120 | A perf_header_string with description of the CPU. On x86 this is the model name |
| 121 | in /proc/cpuinfo |
| 122 | |
| 123 | HEADER_CPUID = 9, |
| 124 | |
| 125 | A perf_header_string with the exact CPU type. On x86 this is |
| 126 | vendor,family,model,stepping. For example: GenuineIntel,6,69,1 |
| 127 | |
| 128 | HEADER_TOTAL_MEM = 10, |
| 129 | |
| 130 | An uint64_t with the total memory in bytes. |
| 131 | |
| 132 | HEADER_CMDLINE = 11, |
| 133 | |
| 134 | A perf_header_string with the perf command line used to collect the data. |
| 135 | |
| 136 | HEADER_EVENT_DESC = 12, |
| 137 | |
| 138 | Another description of the perf_event_attrs, more detailed than header.attrs |
| 139 | including IDs and names. See perf_event.h or the man page for a description |
| 140 | of a struct perf_event_attr. |
| 141 | |
| 142 | struct { |
| 143 | uint32_t nr; /* number of events */ |
| 144 | uint32_t attr_size; /* size of each perf_event_attr */ |
| 145 | struct { |
| 146 | struct perf_event_attr attr; /* size of attr_size */ |
| 147 | uint32_t nr_ids; |
| 148 | struct perf_header_string event_string; |
| 149 | uint64_t ids[nr_ids]; |
| 150 | } events[nr]; /* Variable length records */ |
| 151 | }; |
| 152 | |
| 153 | HEADER_CPU_TOPOLOGY = 13, |
| 154 | |
| 155 | String lists defining the core and CPU threads topology. |
Thomas Richter | 0c71113 | 2018-05-28 09:44:33 +0200 | [diff] [blame] | 156 | The string lists are followed by a variable length array |
| 157 | which contains core_id and socket_id of each cpu. |
| 158 | The number of entries can be determined by the size of the |
| 159 | section minus the sizes of both string lists. |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 160 | |
| 161 | struct { |
| 162 | struct perf_header_string_list cores; /* Variable length */ |
| 163 | struct perf_header_string_list threads; /* Variable length */ |
Thomas Richter | 0c71113 | 2018-05-28 09:44:33 +0200 | [diff] [blame] | 164 | struct { |
| 165 | uint32_t core_id; |
| 166 | uint32_t socket_id; |
| 167 | } cpus[nr]; /* Variable length records */ |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 168 | }; |
| 169 | |
| 170 | Example: |
| 171 | sibling cores : 0-3 |
| 172 | sibling threads : 0-1 |
| 173 | sibling threads : 2-3 |
| 174 | |
| 175 | HEADER_NUMA_TOPOLOGY = 14, |
| 176 | |
| 177 | A list of NUMA node descriptions |
| 178 | |
| 179 | struct { |
| 180 | uint32_t nr; |
| 181 | struct { |
| 182 | uint32_t nodenr; |
| 183 | uint64_t mem_total; |
| 184 | uint64_t mem_free; |
| 185 | struct perf_header_string cpus; |
| 186 | } nodes[nr]; /* Variable length records */ |
| 187 | }; |
| 188 | |
| 189 | HEADER_BRANCH_STACK = 15, |
| 190 | |
| 191 | Not implemented in perf. |
| 192 | |
| 193 | HEADER_PMU_MAPPINGS = 16, |
| 194 | |
| 195 | A list of PMU structures, defining the different PMUs supported by perf. |
| 196 | |
| 197 | struct { |
| 198 | uint32_t nr; |
| 199 | struct pmu { |
| 200 | uint32_t pmu_type; |
| 201 | struct perf_header_string pmu_name; |
| 202 | } [nr]; /* Variable length records */ |
| 203 | }; |
| 204 | |
| 205 | HEADER_GROUP_DESC = 17, |
| 206 | |
| 207 | Description of counter groups ({...} in perf syntax) |
| 208 | |
| 209 | struct { |
| 210 | uint32_t nr; |
| 211 | struct { |
| 212 | struct perf_header_string string; |
| 213 | uint32_t leader_idx; |
| 214 | uint32_t nr_members; |
| 215 | } [nr]; /* Variable length records */ |
| 216 | }; |
| 217 | |
| 218 | HEADER_AUXTRACE = 18, |
| 219 | |
| 220 | Define additional auxtrace areas in the perf.data. auxtrace is used to store |
| 221 | undecoded hardware tracing information, such as Intel Processor Trace data. |
| 222 | |
| 223 | /** |
| 224 | * struct auxtrace_index_entry - indexes a AUX area tracing event within a |
| 225 | * perf.data file. |
| 226 | * @file_offset: offset within the perf.data file |
| 227 | * @sz: size of the event |
| 228 | */ |
| 229 | struct auxtrace_index_entry { |
| 230 | u64 file_offset; |
| 231 | u64 sz; |
| 232 | }; |
| 233 | |
| 234 | #define PERF_AUXTRACE_INDEX_ENTRY_COUNT 256 |
| 235 | |
| 236 | /** |
| 237 | * struct auxtrace_index - index of AUX area tracing events within a perf.data |
| 238 | * file. |
| 239 | * @list: linking a number of arrays of entries |
| 240 | * @nr: number of entries |
| 241 | * @entries: array of entries |
| 242 | */ |
| 243 | struct auxtrace_index { |
| 244 | struct list_head list; |
| 245 | size_t nr; |
| 246 | struct auxtrace_index_entry entries[PERF_AUXTRACE_INDEX_ENTRY_COUNT]; |
| 247 | }; |
| 248 | |
Andi Kleen | 35c0a81 | 2017-11-09 06:55:24 -0800 | [diff] [blame] | 249 | HEADER_STAT = 19, |
| 250 | |
| 251 | This is merely a flag signifying that the data section contains data |
| 252 | recorded from perf stat record. |
| 253 | |
| 254 | HEADER_CACHE = 20, |
| 255 | |
| 256 | Description of the cache hierarchy. Based on the Linux sysfs format |
| 257 | in /sys/devices/system/cpu/cpu*/cache/ |
| 258 | |
| 259 | u32 version Currently always 1 |
| 260 | u32 number_of_cache_levels |
| 261 | |
| 262 | struct { |
| 263 | u32 level; |
| 264 | u32 line_size; |
| 265 | u32 sets; |
| 266 | u32 ways; |
| 267 | struct perf_header_string type; |
| 268 | struct perf_header_string size; |
| 269 | struct perf_header_string map; |
| 270 | }[number_of_cache_levels]; |
| 271 | |
Jin Yao | 6011518 | 2017-12-08 21:13:41 +0800 | [diff] [blame] | 272 | HEADER_SAMPLE_TIME = 21, |
| 273 | |
| 274 | Two uint64_t for the time of first sample and the time of last sample. |
| 275 | |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 276 | other bits are reserved and should ignored for now |
| 277 | HEADER_FEAT_BITS = 256, |
| 278 | |
| 279 | Attributes |
| 280 | |
| 281 | This is an array of perf_event_attrs, each attr_size bytes long, which defines |
| 282 | each event collected. See perf_event.h or the man page for a detailed |
| 283 | description. |
| 284 | |
| 285 | Data |
| 286 | |
| 287 | This section is the bulk of the file. It consist of a stream of perf_events |
| 288 | describing events. This matches the format generated by the kernel. |
| 289 | See perf_event.h or the manpage for a detailed description. |
| 290 | |
| 291 | Some notes on parsing: |
| 292 | |
| 293 | Ordering |
| 294 | |
| 295 | The events are not necessarily in time stamp order, as they can be |
| 296 | collected in parallel on different CPUs. If the events should be |
| 297 | processed in time order they need to be sorted first. It is possible |
| 298 | to only do a partial sort using the FINISHED_ROUND event header (see |
| 299 | below). perf record guarantees that there is no reordering over a |
| 300 | FINISHED_ROUND. |
| 301 | |
| 302 | ID vs IDENTIFIER |
| 303 | |
| 304 | When the event stream contains multiple events each event is identified |
| 305 | by an ID. This can be either through the PERF_SAMPLE_ID or the |
| 306 | PERF_SAMPLE_IDENTIFIER header. The PERF_SAMPLE_IDENTIFIER header is |
| 307 | at a fixed offset from the event header, which allows reliable |
Kim Phillips | 1291927 | 2017-05-03 13:13:50 +0100 | [diff] [blame] | 308 | parsing of the header. Relying on ID may be ambiguous. |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 309 | IDENTIFIER is only supported by newer Linux kernels. |
| 310 | |
| 311 | Perf record specific events: |
| 312 | |
| 313 | In addition to the kernel generated event types perf record adds its |
| 314 | own event types (in addition it also synthesizes some kernel events, |
| 315 | for example MMAP events) |
| 316 | |
| 317 | PERF_RECORD_USER_TYPE_START = 64, |
| 318 | PERF_RECORD_HEADER_ATTR = 64, |
| 319 | |
| 320 | struct attr_event { |
| 321 | struct perf_event_header header; |
| 322 | struct perf_event_attr attr; |
| 323 | uint64_t id[]; |
| 324 | }; |
| 325 | |
Kim Phillips | 1291927 | 2017-05-03 13:13:50 +0100 | [diff] [blame] | 326 | PERF_RECORD_HEADER_EVENT_TYPE = 65, /* deprecated */ |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 327 | |
| 328 | #define MAX_EVENT_NAME 64 |
| 329 | |
| 330 | struct perf_trace_event_type { |
| 331 | uint64_t event_id; |
| 332 | char name[MAX_EVENT_NAME]; |
| 333 | }; |
| 334 | |
| 335 | struct event_type_event { |
| 336 | struct perf_event_header header; |
| 337 | struct perf_trace_event_type event_type; |
| 338 | }; |
| 339 | |
| 340 | |
| 341 | PERF_RECORD_HEADER_TRACING_DATA = 66, |
| 342 | |
| 343 | Describe me |
| 344 | |
| 345 | struct tracing_data_event { |
| 346 | struct perf_event_header header; |
| 347 | uint32_t size; |
| 348 | }; |
| 349 | |
| 350 | PERF_RECORD_HEADER_BUILD_ID = 67, |
| 351 | |
| 352 | Define a ELF build ID for a referenced executable. |
| 353 | |
| 354 | struct build_id_event; /* See above */ |
| 355 | |
| 356 | PERF_RECORD_FINISHED_ROUND = 68, |
| 357 | |
| 358 | No event reordering over this header. No payload. |
| 359 | |
| 360 | PERF_RECORD_ID_INDEX = 69, |
| 361 | |
| 362 | Map event ids to CPUs and TIDs. |
| 363 | |
| 364 | struct id_index_entry { |
| 365 | uint64_t id; |
| 366 | uint64_t idx; |
| 367 | uint64_t cpu; |
| 368 | uint64_t tid; |
| 369 | }; |
| 370 | |
| 371 | struct id_index_event { |
| 372 | struct perf_event_header header; |
| 373 | uint64_t nr; |
| 374 | struct id_index_entry entries[nr]; |
| 375 | }; |
| 376 | |
| 377 | PERF_RECORD_AUXTRACE_INFO = 70, |
| 378 | |
| 379 | Auxtrace type specific information. Describe me |
| 380 | |
| 381 | struct auxtrace_info_event { |
| 382 | struct perf_event_header header; |
| 383 | uint32_t type; |
| 384 | uint32_t reserved__; /* For alignment */ |
| 385 | uint64_t priv[]; |
| 386 | }; |
| 387 | |
| 388 | PERF_RECORD_AUXTRACE = 71, |
| 389 | |
| 390 | Defines auxtrace data. Followed by the actual data. The contents of |
| 391 | the auxtrace data is dependent on the event and the CPU. For example |
| 392 | for Intel Processor Trace it contains Processor Trace data generated |
| 393 | by the CPU. |
| 394 | |
| 395 | struct auxtrace_event { |
| 396 | struct perf_event_header header; |
| 397 | uint64_t size; |
| 398 | uint64_t offset; |
| 399 | uint64_t reference; |
| 400 | uint32_t idx; |
| 401 | uint32_t tid; |
| 402 | uint32_t cpu; |
| 403 | uint32_t reserved__; /* For alignment */ |
| 404 | }; |
| 405 | |
| 406 | struct aux_event { |
| 407 | struct perf_event_header header; |
| 408 | uint64_t aux_offset; |
| 409 | uint64_t aux_size; |
| 410 | uint64_t flags; |
| 411 | }; |
| 412 | |
| 413 | PERF_RECORD_AUXTRACE_ERROR = 72, |
| 414 | |
| 415 | Describes an error in hardware tracing |
| 416 | |
| 417 | enum auxtrace_error_type { |
| 418 | PERF_AUXTRACE_ERROR_ITRACE = 1, |
| 419 | PERF_AUXTRACE_ERROR_MAX |
| 420 | }; |
| 421 | |
| 422 | #define MAX_AUXTRACE_ERROR_MSG 64 |
| 423 | |
| 424 | struct auxtrace_error_event { |
| 425 | struct perf_event_header header; |
| 426 | uint32_t type; |
| 427 | uint32_t code; |
| 428 | uint32_t cpu; |
| 429 | uint32_t pid; |
| 430 | uint32_t tid; |
| 431 | uint32_t reserved__; /* For alignment */ |
| 432 | uint64_t ip; |
| 433 | char msg[MAX_AUXTRACE_ERROR_MSG]; |
| 434 | }; |
| 435 | |
David Carrillo-Cisneros | e9def1b | 2017-07-17 21:25:48 -0700 | [diff] [blame] | 436 | PERF_RECORD_HEADER_FEATURE = 80, |
| 437 | |
| 438 | Describes a header feature. These are records used in pipe-mode that |
| 439 | contain information that otherwise would be in perf.data file's header. |
| 440 | |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 441 | Event types |
| 442 | |
| 443 | Define the event attributes with their IDs. |
| 444 | |
| 445 | An array bound by the perf_file_section size. |
| 446 | |
| 447 | struct { |
| 448 | struct perf_event_attr attr; /* Size defined by header.attr_size */ |
| 449 | struct perf_file_section ids; |
| 450 | } |
| 451 | |
| 452 | ids points to a array of uint64_t defining the ids for event attr attr. |
| 453 | |
David Carrillo-Cisneros | 6d13491 | 2017-04-10 13:14:28 -0700 | [diff] [blame] | 454 | Pipe-mode data |
| 455 | |
| 456 | Pipe-mode avoid seeks in the file by removing the perf_file_section and flags |
| 457 | from the struct perf_header. The trimmed header is: |
| 458 | |
| 459 | struct perf_pipe_file_header { |
| 460 | u64 magic; |
| 461 | u64 size; |
| 462 | }; |
| 463 | |
| 464 | The information about attrs, data, and event_types is instead in the |
David Carrillo-Cisneros | e9def1b | 2017-07-17 21:25:48 -0700 | [diff] [blame] | 465 | synthesized events PERF_RECORD_ATTR, PERF_RECORD_HEADER_TRACING_DATA, |
| 466 | PERF_RECORD_HEADER_EVENT_TYPE, and PERF_RECORD_HEADER_FEATURE |
| 467 | that are generated by perf record in pipe-mode. |
David Carrillo-Cisneros | 6d13491 | 2017-04-10 13:14:28 -0700 | [diff] [blame] | 468 | |
| 469 | |
Andi Kleen | d4897e1 | 2016-06-24 13:41:25 -0700 | [diff] [blame] | 470 | References: |
| 471 | |
| 472 | include/uapi/linux/perf_event.h |
| 473 | |
| 474 | This is the canonical description of the kernel generated perf_events |
| 475 | and the perf_event_attrs. |
| 476 | |
| 477 | perf_events manpage |
| 478 | |
| 479 | A manpage describing perf_event and perf_event_attr is here: |
| 480 | http://web.eece.maine.edu/~vweaver/projects/perf_events/programming.html |
| 481 | This tends to be slightly behind the kernel include, but has better |
| 482 | descriptions. An (typically older) version of the man page may be |
| 483 | included with the standard Linux man pages, available with "man |
| 484 | perf_events" |
| 485 | |
| 486 | pmu-tools |
| 487 | |
| 488 | https://github.com/andikleen/pmu-tools/tree/master/parser |
| 489 | |
| 490 | A definition of the perf.data format in python "construct" format is available |
| 491 | in pmu-tools parser. This allows to read perf.data from python and dump it. |
| 492 | |
| 493 | quipper |
| 494 | |
| 495 | The quipper C++ parser is available at |
Stephane Eranian | 2427b43 | 2018-03-07 23:59:45 -0800 | [diff] [blame] | 496 | http://github.com/google/perf_data_converter/tree/master/src/quipper |
Simon Que | 2acad19 | 2016-09-28 11:37:53 -0700 | [diff] [blame] | 497 | |