blob: f2e27ef8e1b3b05f86576005352886a4bc74ad4f [file] [log] [blame]
Linus Walleij2744e8a2011-05-02 20:50:54 +02001PINCTRL (PIN CONTROL) subsystem
2This document outlines the pin control subsystem in Linux
3
4This subsystem deals with:
5
6- Enumerating and naming controllable pins
7
8- Multiplexing of pins, pads, fingers (etc) see below for details
9
Linus Walleijae6b4d82011-10-19 18:14:33 +020010- Configuration of pins, pads, fingers (etc), such as software-controlled
11 biasing and driving mode specific pins, such as pull-up/down, open drain,
12 load capacitance etc.
Linus Walleij2744e8a2011-05-02 20:50:54 +020013
14Top-level interface
15===================
16
17Definition of PIN CONTROLLER:
18
19- A pin controller is a piece of hardware, usually a set of registers, that
20 can control PINs. It may be able to multiplex, bias, set load capacitance,
21 set drive strength etc for individual pins or groups of pins.
22
23Definition of PIN:
24
25- PINS are equal to pads, fingers, balls or whatever packaging input or
26 output line you want to control and these are denoted by unsigned integers
27 in the range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so
28 there may be several such number spaces in a system. This pin space may
29 be sparse - i.e. there may be gaps in the space with numbers where no
30 pin exists.
31
Linus Walleij336cdba02011-11-10 09:27:41 +010032When a PIN CONTROLLER is instantiated, it will register a descriptor to the
Linus Walleij2744e8a2011-05-02 20:50:54 +020033pin control framework, and this descriptor contains an array of pin descriptors
34describing the pins handled by this specific pin controller.
35
36Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
37
38 A B C D E F G H
39
40 8 o o o o o o o o
41
42 7 o o o o o o o o
43
44 6 o o o o o o o o
45
46 5 o o o o o o o o
47
48 4 o o o o o o o o
49
50 3 o o o o o o o o
51
52 2 o o o o o o o o
53
54 1 o o o o o o o o
55
56To register a pin controller and name all the pins on this package we can do
57this in our driver:
58
59#include <linux/pinctrl/pinctrl.h>
60
Linus Walleij336cdba02011-11-10 09:27:41 +010061const struct pinctrl_pin_desc foo_pins[] = {
62 PINCTRL_PIN(0, "A8"),
63 PINCTRL_PIN(1, "B8"),
64 PINCTRL_PIN(2, "C8"),
Linus Walleij2744e8a2011-05-02 20:50:54 +020065 ...
Linus Walleij336cdba02011-11-10 09:27:41 +010066 PINCTRL_PIN(61, "F1"),
67 PINCTRL_PIN(62, "G1"),
68 PINCTRL_PIN(63, "H1"),
Linus Walleij2744e8a2011-05-02 20:50:54 +020069};
70
71static struct pinctrl_desc foo_desc = {
72 .name = "foo",
73 .pins = foo_pins,
74 .npins = ARRAY_SIZE(foo_pins),
75 .maxpin = 63,
76 .owner = THIS_MODULE,
77};
78
79int __init foo_probe(void)
80{
81 struct pinctrl_dev *pctl;
82
83 pctl = pinctrl_register(&foo_desc, <PARENT>, NULL);
84 if (IS_ERR(pctl))
85 pr_err("could not register foo pin driver\n");
86}
87
Linus Walleijae6b4d82011-10-19 18:14:33 +020088To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and
89selected drivers, you need to select them from your machine's Kconfig entry,
90since these are so tightly integrated with the machines they are used on.
91See for example arch/arm/mach-u300/Kconfig for an example.
92
Linus Walleij2744e8a2011-05-02 20:50:54 +020093Pins usually have fancier names than this. You can find these in the dataheet
94for your chip. Notice that the core pinctrl.h file provides a fancy macro
95called PINCTRL_PIN() to create the struct entries. As you can see I enumerated
Linus Walleij336cdba02011-11-10 09:27:41 +010096the pins from 0 in the upper left corner to 63 in the lower right corner.
97This enumeration was arbitrarily chosen, in practice you need to think
Linus Walleij2744e8a2011-05-02 20:50:54 +020098through your numbering system so that it matches the layout of registers
99and such things in your driver, or the code may become complicated. You must
100also consider matching of offsets to the GPIO ranges that may be handled by
101the pin controller.
102
103For a padring with 467 pads, as opposed to actual pins, I used an enumeration
104like this, walking around the edge of the chip, which seems to be industry
105standard too (all these pads had names, too):
106
107
108 0 ..... 104
109 466 105
110 . .
111 . .
112 358 224
113 357 .... 225
114
115
116Pin groups
117==========
118
119Many controllers need to deal with groups of pins, so the pin controller
120subsystem has a mechanism for enumerating groups of pins and retrieving the
121actual enumerated pins that are part of a certain group.
122
123For example, say that we have a group of pins dealing with an SPI interface
124on { 0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins
125on { 24, 25 }.
126
127These two groups are presented to the pin control subsystem by implementing
128some generic pinctrl_ops like this:
129
130#include <linux/pinctrl/pinctrl.h>
131
132struct foo_group {
133 const char *name;
134 const unsigned int *pins;
135 const unsigned num_pins;
136};
137
Linus Walleij336cdba02011-11-10 09:27:41 +0100138static const unsigned int spi0_pins[] = { 0, 8, 16, 24 };
139static const unsigned int i2c0_pins[] = { 24, 25 };
Linus Walleij2744e8a2011-05-02 20:50:54 +0200140
141static const struct foo_group foo_groups[] = {
142 {
143 .name = "spi0_grp",
144 .pins = spi0_pins,
145 .num_pins = ARRAY_SIZE(spi0_pins),
146 },
147 {
148 .name = "i2c0_grp",
149 .pins = i2c0_pins,
150 .num_pins = ARRAY_SIZE(i2c0_pins),
151 },
152};
153
154
155static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
156{
157 if (selector >= ARRAY_SIZE(foo_groups))
158 return -EINVAL;
159 return 0;
160}
161
162static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
163 unsigned selector)
164{
165 return foo_groups[selector].name;
166}
167
168static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
169 unsigned ** const pins,
170 unsigned * const num_pins)
171{
172 *pins = (unsigned *) foo_groups[selector].pins;
173 *num_pins = foo_groups[selector].num_pins;
174 return 0;
175}
176
177static struct pinctrl_ops foo_pctrl_ops = {
178 .list_groups = foo_list_groups,
179 .get_group_name = foo_get_group_name,
180 .get_group_pins = foo_get_group_pins,
181};
182
183
184static struct pinctrl_desc foo_desc = {
185 ...
186 .pctlops = &foo_pctrl_ops,
187};
188
189The pin control subsystem will call the .list_groups() function repeatedly
190beginning on 0 until it returns non-zero to determine legal selectors, then
191it will call the other functions to retrieve the name and pins of the group.
192Maintaining the data structure of the groups is up to the driver, this is
193just a simple example - in practice you may need more entries in your group
194structure, for example specific register ranges associated with each group
195and so on.
196
197
Linus Walleijae6b4d82011-10-19 18:14:33 +0200198Pin configuration
199=================
200
201Pins can sometimes be software-configured in an various ways, mostly related
202to their electronic properties when used as inputs or outputs. For example you
203may be able to make an output pin high impedance, or "tristate" meaning it is
204effectively disconnected. You may be able to connect an input pin to VDD or GND
205using a certain resistor value - pull up and pull down - so that the pin has a
206stable value when nothing is driving the rail it is connected to, or when it's
207unconnected.
208
Stephen Warren1e2082b2012-03-02 13:05:48 -0700209Pin configuration can be programmed either using the explicit APIs described
210immediately below, or by adding configuration entries into the mapping table;
211see section "Board/machine configuration" below.
212
213For example, a platform may do the following to pull up a pin to VDD:
Linus Walleijae6b4d82011-10-19 18:14:33 +0200214
Linus Walleij28a8d142012-02-09 01:52:22 +0100215#include <linux/pinctrl/consumer.h>
216
Stephen Warren43699de2011-12-15 16:57:17 -0700217ret = pin_config_set("foo-dev", "FOO_GPIO_PIN", PLATFORM_X_PULL_UP);
Linus Walleijae6b4d82011-10-19 18:14:33 +0200218
Stephen Warren1e2082b2012-03-02 13:05:48 -0700219The format and meaning of the configuration parameter, PLATFORM_X_PULL_UP
220above, is entirely defined by the pin controller driver.
221
222The pin configuration driver implements callbacks for changing pin
223configuration in the pin controller ops like this:
Linus Walleijae6b4d82011-10-19 18:14:33 +0200224
225#include <linux/pinctrl/pinctrl.h>
226#include <linux/pinctrl/pinconf.h>
227#include "platform_x_pindefs.h"
228
Dong Aishenge6337c32011-12-20 17:51:59 +0800229static int foo_pin_config_get(struct pinctrl_dev *pctldev,
Linus Walleijae6b4d82011-10-19 18:14:33 +0200230 unsigned offset,
231 unsigned long *config)
232{
233 struct my_conftype conf;
234
235 ... Find setting for pin @ offset ...
236
237 *config = (unsigned long) conf;
238}
239
Dong Aishenge6337c32011-12-20 17:51:59 +0800240static int foo_pin_config_set(struct pinctrl_dev *pctldev,
Linus Walleijae6b4d82011-10-19 18:14:33 +0200241 unsigned offset,
242 unsigned long config)
243{
244 struct my_conftype *conf = (struct my_conftype *) config;
245
246 switch (conf) {
247 case PLATFORM_X_PULL_UP:
248 ...
249 }
250 }
251}
252
Dong Aishenge6337c32011-12-20 17:51:59 +0800253static int foo_pin_config_group_get (struct pinctrl_dev *pctldev,
Linus Walleijae6b4d82011-10-19 18:14:33 +0200254 unsigned selector,
255 unsigned long *config)
256{
257 ...
258}
259
Dong Aishenge6337c32011-12-20 17:51:59 +0800260static int foo_pin_config_group_set (struct pinctrl_dev *pctldev,
Linus Walleijae6b4d82011-10-19 18:14:33 +0200261 unsigned selector,
262 unsigned long config)
263{
264 ...
265}
266
267static struct pinconf_ops foo_pconf_ops = {
268 .pin_config_get = foo_pin_config_get,
269 .pin_config_set = foo_pin_config_set,
270 .pin_config_group_get = foo_pin_config_group_get,
271 .pin_config_group_set = foo_pin_config_group_set,
272};
273
274/* Pin config operations are handled by some pin controller */
275static struct pinctrl_desc foo_desc = {
276 ...
277 .confops = &foo_pconf_ops,
278};
279
280Since some controllers have special logic for handling entire groups of pins
281they can exploit the special whole-group pin control function. The
282pin_config_group_set() callback is allowed to return the error code -EAGAIN,
283for groups it does not want to handle, or if it just wants to do some
284group-level handling and then fall through to iterate over all pins, in which
285case each individual pin will be treated by separate pin_config_set() calls as
286well.
287
288
Linus Walleij2744e8a2011-05-02 20:50:54 +0200289Interaction with the GPIO subsystem
290===================================
291
292The GPIO drivers may want to perform operations of various types on the same
293physical pins that are also registered as pin controller pins.
294
295Since the pin controller subsystem have its pinspace local to the pin
296controller we need a mapping so that the pin control subsystem can figure out
297which pin controller handles control of a certain GPIO pin. Since a single
298pin controller may be muxing several GPIO ranges (typically SoCs that have
299one set of pins but internally several GPIO silicon blocks, each modeled as
300a struct gpio_chip) any number of GPIO ranges can be added to a pin controller
301instance like this:
302
303struct gpio_chip chip_a;
304struct gpio_chip chip_b;
305
306static struct pinctrl_gpio_range gpio_range_a = {
307 .name = "chip a",
308 .id = 0,
309 .base = 32,
Chanho Park3c739ad2011-11-11 18:47:58 +0900310 .pin_base = 32,
Linus Walleij2744e8a2011-05-02 20:50:54 +0200311 .npins = 16,
312 .gc = &chip_a;
313};
314
Chanho Park3c739ad2011-11-11 18:47:58 +0900315static struct pinctrl_gpio_range gpio_range_b = {
Linus Walleij2744e8a2011-05-02 20:50:54 +0200316 .name = "chip b",
317 .id = 0,
318 .base = 48,
Chanho Park3c739ad2011-11-11 18:47:58 +0900319 .pin_base = 64,
Linus Walleij2744e8a2011-05-02 20:50:54 +0200320 .npins = 8,
321 .gc = &chip_b;
322};
323
Linus Walleij2744e8a2011-05-02 20:50:54 +0200324{
325 struct pinctrl_dev *pctl;
326 ...
327 pinctrl_add_gpio_range(pctl, &gpio_range_a);
328 pinctrl_add_gpio_range(pctl, &gpio_range_b);
329}
330
331So this complex system has one pin controller handling two different
Chanho Park3c739ad2011-11-11 18:47:58 +0900332GPIO chips. "chip a" has 16 pins and "chip b" has 8 pins. The "chip a" and
333"chip b" have different .pin_base, which means a start pin number of the
334GPIO range.
Linus Walleij2744e8a2011-05-02 20:50:54 +0200335
Chanho Park3c739ad2011-11-11 18:47:58 +0900336The GPIO range of "chip a" starts from the GPIO base of 32 and actual
337pin range also starts from 32. However "chip b" has different starting
338offset for the GPIO range and pin range. The GPIO range of "chip b" starts
339from GPIO number 48, while the pin range of "chip b" starts from 64.
340
341We can convert a gpio number to actual pin number using this "pin_base".
342They are mapped in the global GPIO pin space at:
343
344chip a:
345 - GPIO range : [32 .. 47]
346 - pin range : [32 .. 47]
347chip b:
348 - GPIO range : [48 .. 55]
349 - pin range : [64 .. 71]
Linus Walleij2744e8a2011-05-02 20:50:54 +0200350
351When GPIO-specific functions in the pin control subsystem are called, these
Linus Walleij336cdba02011-11-10 09:27:41 +0100352ranges will be used to look up the appropriate pin controller by inspecting
Linus Walleij2744e8a2011-05-02 20:50:54 +0200353and matching the pin to the pin ranges across all controllers. When a
354pin controller handling the matching range is found, GPIO-specific functions
355will be called on that specific pin controller.
356
357For all functionalities dealing with pin biasing, pin muxing etc, the pin
358controller subsystem will subtract the range's .base offset from the passed
Chanho Park3c739ad2011-11-11 18:47:58 +0900359in gpio number, and add the ranges's .pin_base offset to retrive a pin number.
360After that, the subsystem passes it on to the pin control driver, so the driver
361will get an pin number into its handled number range. Further it is also passed
Linus Walleij2744e8a2011-05-02 20:50:54 +0200362the range ID value, so that the pin controller knows which range it should
363deal with.
364
Linus Walleij2744e8a2011-05-02 20:50:54 +0200365PINMUX interfaces
366=================
367
368These calls use the pinmux_* naming prefix. No other calls should use that
369prefix.
370
371
372What is pinmuxing?
373==================
374
375PINMUX, also known as padmux, ballmux, alternate functions or mission modes
376is a way for chip vendors producing some kind of electrical packages to use
377a certain physical pin (ball, pad, finger, etc) for multiple mutually exclusive
378functions, depending on the application. By "application" in this context
379we usually mean a way of soldering or wiring the package into an electronic
380system, even though the framework makes it possible to also change the function
381at runtime.
382
383Here is an example of a PGA (Pin Grid Array) chip seen from underneath:
384
385 A B C D E F G H
386 +---+
387 8 | o | o o o o o o o
388 | |
389 7 | o | o o o o o o o
390 | |
391 6 | o | o o o o o o o
392 +---+---+
393 5 | o | o | o o o o o o
394 +---+---+ +---+
395 4 o o o o o o | o | o
396 | |
397 3 o o o o o o | o | o
398 | |
399 2 o o o o o o | o | o
400 +-------+-------+-------+---+---+
401 1 | o o | o o | o o | o | o |
402 +-------+-------+-------+---+---+
403
404This is not tetris. The game to think of is chess. Not all PGA/BGA packages
405are chessboard-like, big ones have "holes" in some arrangement according to
406different design patterns, but we're using this as a simple example. Of the
407pins you see some will be taken by things like a few VCC and GND to feed power
408to the chip, and quite a few will be taken by large ports like an external
409memory interface. The remaining pins will often be subject to pin multiplexing.
410
411The example 8x8 PGA package above will have pin numbers 0 thru 63 assigned to
412its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using
413pinctrl_register_pins() and a suitable data set as shown earlier.
414
415In this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port
416(these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as
417some general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can
418be used as an I2C port (these are just two pins: SCL, SDA). Needless to say,
419we cannot use the SPI port and I2C port at the same time. However in the inside
420of the package the silicon performing the SPI logic can alternatively be routed
421out on pins { G4, G3, G2, G1 }.
422
423On the botton row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something
424special - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will
425consume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or
426{ A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI
427port on pins { G4, G3, G2, G1 } of course.
428
429This way the silicon blocks present inside the chip can be multiplexed "muxed"
430out on different pin ranges. Often contemporary SoC (systems on chip) will
431contain several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to
432different pins by pinmux settings.
433
434Since general-purpose I/O pins (GPIO) are typically always in shortage, it is
435common to be able to use almost any pin as a GPIO pin if it is not currently
436in use by some other I/O port.
437
438
439Pinmux conventions
440==================
441
442The purpose of the pinmux functionality in the pin controller subsystem is to
443abstract and provide pinmux settings to the devices you choose to instantiate
444in your machine configuration. It is inspired by the clk, GPIO and regulator
445subsystems, so devices will request their mux setting, but it's also possible
446to request a single pin for e.g. GPIO.
447
448Definitions:
449
450- FUNCTIONS can be switched in and out by a driver residing with the pin
451 control subsystem in the drivers/pinctrl/* directory of the kernel. The
452 pin control driver knows the possible functions. In the example above you can
453 identify three pinmux functions, one for spi, one for i2c and one for mmc.
454
455- FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array.
456 In this case the array could be something like: { spi0, i2c0, mmc0 }
457 for the three available functions.
458
459- FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain
460 function is *always* associated with a certain set of pin groups, could
461 be just a single one, but could also be many. In the example above the
462 function i2c is associated with the pins { A5, B5 }, enumerated as
463 { 24, 25 } in the controller pin space.
464
465 The Function spi is associated with pin groups { A8, A7, A6, A5 }
466 and { G4, G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and
467 { 38, 46, 54, 62 } respectively.
468
469 Group names must be unique per pin controller, no two groups on the same
470 controller may have the same name.
471
472- The combination of a FUNCTION and a PIN GROUP determine a certain function
473 for a certain set of pins. The knowledge of the functions and pin groups
474 and their machine-specific particulars are kept inside the pinmux driver,
475 from the outside only the enumerators are known, and the driver core can:
476
477 - Request the name of a function with a certain selector (>= 0)
478 - A list of groups associated with a certain function
479 - Request that a certain group in that list to be activated for a certain
480 function
481
482 As already described above, pin groups are in turn self-descriptive, so
483 the core will retrieve the actual pin range in a certain group from the
484 driver.
485
486- FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain
487 device by the board file, device tree or similar machine setup configuration
488 mechanism, similar to how regulators are connected to devices, usually by
489 name. Defining a pin controller, function and group thus uniquely identify
490 the set of pins to be used by a certain device. (If only one possible group
491 of pins is available for the function, no group name need to be supplied -
492 the core will simply select the first and only group available.)
493
494 In the example case we can define that this particular machine shall
495 use device spi0 with pinmux function fspi0 group gspi0 and i2c0 on function
496 fi2c0 group gi2c0, on the primary pin controller, we get mappings
497 like these:
498
499 {
500 {"map-spi0", spi0, pinctrl0, fspi0, gspi0},
501 {"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0}
502 }
503
Stephen Warren1681f5a2012-02-22 14:25:58 -0700504 Every map must be assigned a state name, pin controller, device and
505 function. The group is not compulsory - if it is omitted the first group
506 presented by the driver as applicable for the function will be selected,
507 which is useful for simple cases.
Linus Walleij2744e8a2011-05-02 20:50:54 +0200508
509 It is possible to map several groups to the same combination of device,
510 pin controller and function. This is for cases where a certain function on
511 a certain pin controller may use different sets of pins in different
512 configurations.
513
514- PINS for a certain FUNCTION using a certain PIN GROUP on a certain
515 PIN CONTROLLER are provided on a first-come first-serve basis, so if some
516 other device mux setting or GPIO pin request has already taken your physical
517 pin, you will be denied the use of it. To get (activate) a new setting, the
518 old one has to be put (deactivated) first.
519
520Sometimes the documentation and hardware registers will be oriented around
521pads (or "fingers") rather than pins - these are the soldering surfaces on the
522silicon inside the package, and may or may not match the actual number of
523pins/balls underneath the capsule. Pick some enumeration that makes sense to
524you. Define enumerators only for the pins you can control if that makes sense.
525
526Assumptions:
527
Linus Walleij336cdba02011-11-10 09:27:41 +0100528We assume that the number of possible function maps to pin groups is limited by
Linus Walleij2744e8a2011-05-02 20:50:54 +0200529the hardware. I.e. we assume that there is no system where any function can be
530mapped to any pin, like in a phone exchange. So the available pins groups for
531a certain function will be limited to a few choices (say up to eight or so),
532not hundreds or any amount of choices. This is the characteristic we have found
533by inspecting available pinmux hardware, and a necessary assumption since we
534expect pinmux drivers to present *all* possible function vs pin group mappings
535to the subsystem.
536
537
538Pinmux drivers
539==============
540
541The pinmux core takes care of preventing conflicts on pins and calling
542the pin controller driver to execute different settings.
543
544It is the responsibility of the pinmux driver to impose further restrictions
545(say for example infer electronic limitations due to load etc) to determine
546whether or not the requested function can actually be allowed, and in case it
547is possible to perform the requested mux setting, poke the hardware so that
548this happens.
549
550Pinmux drivers are required to supply a few callback functions, some are
551optional. Usually the enable() and disable() functions are implemented,
552writing values into some certain registers to activate a certain mux setting
553for a certain pin.
554
555A simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4
556into some register named MUX to select a certain function with a certain
557group of pins would work something like this:
558
559#include <linux/pinctrl/pinctrl.h>
560#include <linux/pinctrl/pinmux.h>
561
562struct foo_group {
563 const char *name;
564 const unsigned int *pins;
565 const unsigned num_pins;
566};
567
568static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 };
569static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 };
570static const unsigned i2c0_pins[] = { 24, 25 };
571static const unsigned mmc0_1_pins[] = { 56, 57 };
572static const unsigned mmc0_2_pins[] = { 58, 59 };
573static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 };
574
575static const struct foo_group foo_groups[] = {
576 {
577 .name = "spi0_0_grp",
578 .pins = spi0_0_pins,
579 .num_pins = ARRAY_SIZE(spi0_0_pins),
580 },
581 {
582 .name = "spi0_1_grp",
583 .pins = spi0_1_pins,
584 .num_pins = ARRAY_SIZE(spi0_1_pins),
585 },
586 {
587 .name = "i2c0_grp",
588 .pins = i2c0_pins,
589 .num_pins = ARRAY_SIZE(i2c0_pins),
590 },
591 {
592 .name = "mmc0_1_grp",
593 .pins = mmc0_1_pins,
594 .num_pins = ARRAY_SIZE(mmc0_1_pins),
595 },
596 {
597 .name = "mmc0_2_grp",
598 .pins = mmc0_2_pins,
599 .num_pins = ARRAY_SIZE(mmc0_2_pins),
600 },
601 {
602 .name = "mmc0_3_grp",
603 .pins = mmc0_3_pins,
604 .num_pins = ARRAY_SIZE(mmc0_3_pins),
605 },
606};
607
608
609static int foo_list_groups(struct pinctrl_dev *pctldev, unsigned selector)
610{
611 if (selector >= ARRAY_SIZE(foo_groups))
612 return -EINVAL;
613 return 0;
614}
615
616static const char *foo_get_group_name(struct pinctrl_dev *pctldev,
617 unsigned selector)
618{
619 return foo_groups[selector].name;
620}
621
622static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector,
623 unsigned ** const pins,
624 unsigned * const num_pins)
625{
626 *pins = (unsigned *) foo_groups[selector].pins;
627 *num_pins = foo_groups[selector].num_pins;
628 return 0;
629}
630
631static struct pinctrl_ops foo_pctrl_ops = {
632 .list_groups = foo_list_groups,
633 .get_group_name = foo_get_group_name,
634 .get_group_pins = foo_get_group_pins,
635};
636
637struct foo_pmx_func {
638 const char *name;
639 const char * const *groups;
640 const unsigned num_groups;
641};
642
Viresh Kumareb181c32012-03-29 11:03:27 +0530643static const char * const spi0_groups[] = { "spi0_0_grp", "spi0_1_grp" };
Linus Walleij2744e8a2011-05-02 20:50:54 +0200644static const char * const i2c0_groups[] = { "i2c0_grp" };
645static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp",
646 "mmc0_3_grp" };
647
648static const struct foo_pmx_func foo_functions[] = {
649 {
650 .name = "spi0",
651 .groups = spi0_groups,
652 .num_groups = ARRAY_SIZE(spi0_groups),
653 },
654 {
655 .name = "i2c0",
656 .groups = i2c0_groups,
657 .num_groups = ARRAY_SIZE(i2c0_groups),
658 },
659 {
660 .name = "mmc0",
661 .groups = mmc0_groups,
662 .num_groups = ARRAY_SIZE(mmc0_groups),
663 },
664};
665
666int foo_list_funcs(struct pinctrl_dev *pctldev, unsigned selector)
667{
668 if (selector >= ARRAY_SIZE(foo_functions))
669 return -EINVAL;
670 return 0;
671}
672
673const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector)
674{
Linus Walleij336cdba02011-11-10 09:27:41 +0100675 return foo_functions[selector].name;
Linus Walleij2744e8a2011-05-02 20:50:54 +0200676}
677
678static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector,
679 const char * const **groups,
680 unsigned * const num_groups)
681{
682 *groups = foo_functions[selector].groups;
683 *num_groups = foo_functions[selector].num_groups;
684 return 0;
685}
686
687int foo_enable(struct pinctrl_dev *pctldev, unsigned selector,
688 unsigned group)
689{
Linus Walleij336cdba02011-11-10 09:27:41 +0100690 u8 regbit = (1 << selector + group);
Linus Walleij2744e8a2011-05-02 20:50:54 +0200691
692 writeb((readb(MUX)|regbit), MUX)
693 return 0;
694}
695
Linus Walleij336cdba02011-11-10 09:27:41 +0100696void foo_disable(struct pinctrl_dev *pctldev, unsigned selector,
Linus Walleij2744e8a2011-05-02 20:50:54 +0200697 unsigned group)
698{
Linus Walleij336cdba02011-11-10 09:27:41 +0100699 u8 regbit = (1 << selector + group);
Linus Walleij2744e8a2011-05-02 20:50:54 +0200700
701 writeb((readb(MUX) & ~(regbit)), MUX)
702 return 0;
703}
704
705struct pinmux_ops foo_pmxops = {
706 .list_functions = foo_list_funcs,
707 .get_function_name = foo_get_fname,
708 .get_function_groups = foo_get_groups,
709 .enable = foo_enable,
710 .disable = foo_disable,
711};
712
713/* Pinmux operations are handled by some pin controller */
714static struct pinctrl_desc foo_desc = {
715 ...
716 .pctlops = &foo_pctrl_ops,
717 .pmxops = &foo_pmxops,
718};
719
720In the example activating muxing 0 and 1 at the same time setting bits
7210 and 1, uses one pin in common so they would collide.
722
723The beauty of the pinmux subsystem is that since it keeps track of all
724pins and who is using them, it will already have denied an impossible
725request like that, so the driver does not need to worry about such
726things - when it gets a selector passed in, the pinmux subsystem makes
727sure no other device or GPIO assignment is already using the selected
728pins. Thus bits 0 and 1 in the control register will never be set at the
729same time.
730
731All the above functions are mandatory to implement for a pinmux driver.
732
733
Linus Walleije93bcee2012-02-09 07:23:28 +0100734Pin control interaction with the GPIO subsystem
735===============================================
Linus Walleij2744e8a2011-05-02 20:50:54 +0200736
Linus Walleije93bcee2012-02-09 07:23:28 +0100737The public pinmux API contains two functions named pinctrl_request_gpio()
738and pinctrl_free_gpio(). These two functions shall *ONLY* be called from
Linus Walleij542e7042011-11-14 10:06:22 +0100739gpiolib-based drivers as part of their gpio_request() and
Linus Walleije93bcee2012-02-09 07:23:28 +0100740gpio_free() semantics. Likewise the pinctrl_gpio_direction_[input|output]
Linus Walleij542e7042011-11-14 10:06:22 +0100741shall only be called from within respective gpio_direction_[input|output]
742gpiolib implementation.
743
744NOTE that platforms and individual drivers shall *NOT* request GPIO pins to be
Linus Walleije93bcee2012-02-09 07:23:28 +0100745controlled e.g. muxed in. Instead, implement a proper gpiolib driver and have
746that driver request proper muxing and other control for its pins.
Linus Walleij542e7042011-11-14 10:06:22 +0100747
Linus Walleij2744e8a2011-05-02 20:50:54 +0200748The function list could become long, especially if you can convert every
749individual pin into a GPIO pin independent of any other pins, and then try
750the approach to define every pin as a function.
751
752In this case, the function array would become 64 entries for each GPIO
753setting and then the device functions.
754
Linus Walleije93bcee2012-02-09 07:23:28 +0100755For this reason there are two functions a pin control driver can implement
Linus Walleij542e7042011-11-14 10:06:22 +0100756to enable only GPIO on an individual pin: .gpio_request_enable() and
757.gpio_disable_free().
Linus Walleij2744e8a2011-05-02 20:50:54 +0200758
759This function will pass in the affected GPIO range identified by the pin
760controller core, so you know which GPIO pins are being affected by the request
761operation.
762
Linus Walleij542e7042011-11-14 10:06:22 +0100763If your driver needs to have an indication from the framework of whether the
764GPIO pin shall be used for input or output you can implement the
765.gpio_set_direction() function. As described this shall be called from the
766gpiolib driver and the affected GPIO range, pin offset and desired direction
767will be passed along to this function.
768
769Alternatively to using these special functions, it is fully allowed to use
Linus Walleije93bcee2012-02-09 07:23:28 +0100770named functions for each GPIO pin, the pinctrl_request_gpio() will attempt to
Linus Walleij542e7042011-11-14 10:06:22 +0100771obtain the function "gpioN" where "N" is the global GPIO pin number if no
772special GPIO-handler is registered.
Linus Walleij2744e8a2011-05-02 20:50:54 +0200773
774
Stephen Warren1e2082b2012-03-02 13:05:48 -0700775Board/machine configuration
Linus Walleij2744e8a2011-05-02 20:50:54 +0200776==================================
777
778Boards and machines define how a certain complete running system is put
779together, including how GPIOs and devices are muxed, how regulators are
780constrained and how the clock tree looks. Of course pinmux settings are also
781part of this.
782
Stephen Warren1e2082b2012-03-02 13:05:48 -0700783A pin controller configuration for a machine looks pretty much like a simple
784regulator configuration, so for the example array above we want to enable i2c
785and spi on the second function mapping:
Linus Walleij2744e8a2011-05-02 20:50:54 +0200786
787#include <linux/pinctrl/machine.h>
788
Linus Walleije93bcee2012-02-09 07:23:28 +0100789static const struct pinctrl_map __initdata mapping[] = {
Linus Walleij2744e8a2011-05-02 20:50:54 +0200790 {
Stephen Warren806d3142012-02-23 17:04:39 -0700791 .dev_name = "foo-spi.0",
Stephen Warren110e4ec2012-03-01 18:48:33 -0700792 .name = PINCTRL_STATE_DEFAULT,
Stephen Warren1e2082b2012-03-02 13:05:48 -0700793 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700794 .ctrl_dev_name = "pinctrl-foo",
Stephen Warren1e2082b2012-03-02 13:05:48 -0700795 .data.mux.function = "spi0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200796 },
797 {
Stephen Warren806d3142012-02-23 17:04:39 -0700798 .dev_name = "foo-i2c.0",
Stephen Warren110e4ec2012-03-01 18:48:33 -0700799 .name = PINCTRL_STATE_DEFAULT,
Stephen Warren1e2082b2012-03-02 13:05:48 -0700800 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700801 .ctrl_dev_name = "pinctrl-foo",
Stephen Warren1e2082b2012-03-02 13:05:48 -0700802 .data.mux.function = "i2c0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200803 },
804 {
Stephen Warren806d3142012-02-23 17:04:39 -0700805 .dev_name = "foo-mmc.0",
Stephen Warren110e4ec2012-03-01 18:48:33 -0700806 .name = PINCTRL_STATE_DEFAULT,
Stephen Warren1e2082b2012-03-02 13:05:48 -0700807 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700808 .ctrl_dev_name = "pinctrl-foo",
Stephen Warren1e2082b2012-03-02 13:05:48 -0700809 .data.mux.function = "mmc0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200810 },
811};
812
813The dev_name here matches to the unique device name that can be used to look
814up the device struct (just like with clockdev or regulators). The function name
815must match a function provided by the pinmux driver handling this pin range.
816
817As you can see we may have several pin controllers on the system and thus
818we need to specify which one of them that contain the functions we wish
Linus Walleij9dfac4f2012-02-01 18:02:47 +0100819to map.
Linus Walleij2744e8a2011-05-02 20:50:54 +0200820
821You register this pinmux mapping to the pinmux subsystem by simply:
822
Linus Walleije93bcee2012-02-09 07:23:28 +0100823 ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping));
Linus Walleij2744e8a2011-05-02 20:50:54 +0200824
825Since the above construct is pretty common there is a helper macro to make
Stephen Warren51cd24e2011-12-09 16:59:05 -0700826it even more compact which assumes you want to use pinctrl-foo and position
Linus Walleij2744e8a2011-05-02 20:50:54 +02008270 for mapping, for example:
828
Linus Walleije93bcee2012-02-09 07:23:28 +0100829static struct pinctrl_map __initdata mapping[] = {
Stephen Warren1e2082b2012-03-02 13:05:48 -0700830 PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT, "pinctrl-foo", NULL, "i2c0"),
831};
832
833The mapping table may also contain pin configuration entries. It's common for
834each pin/group to have a number of configuration entries that affect it, so
835the table entries for configuration reference an array of config parameters
836and values. An example using the convenience macros is shown below:
837
838static unsigned long i2c_grp_configs[] = {
839 FOO_PIN_DRIVEN,
840 FOO_PIN_PULLUP,
841};
842
843static unsigned long i2c_pin_configs[] = {
844 FOO_OPEN_COLLECTOR,
845 FOO_SLEW_RATE_SLOW,
846};
847
848static struct pinctrl_map __initdata mapping[] = {
849 PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", "i2c0"),
850 PIN_MAP_MUX_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", i2c_grp_configs),
851 PIN_MAP_MUX_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0scl", i2c_pin_configs),
852 PIN_MAP_MUX_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0sda", i2c_pin_configs),
853};
854
855Finally, some devices expect the mapping table to contain certain specific
856named states. When running on hardware that doesn't need any pin controller
857configuration, the mapping table must still contain those named states, in
858order to explicitly indicate that the states were provided and intended to
859be empty. Table entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining
860a named state without causing any pin controller to be programmed:
861
862static struct pinctrl_map __initdata mapping[] = {
863 PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT),
Linus Walleij2744e8a2011-05-02 20:50:54 +0200864};
865
866
867Complex mappings
868================
869
870As it is possible to map a function to different groups of pins an optional
871.group can be specified like this:
872
873...
874{
Stephen Warren806d3142012-02-23 17:04:39 -0700875 .dev_name = "foo-spi.0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200876 .name = "spi0-pos-A",
Stephen Warren1e2082b2012-03-02 13:05:48 -0700877 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700878 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200879 .function = "spi0",
880 .group = "spi0_0_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200881},
882{
Stephen Warren806d3142012-02-23 17:04:39 -0700883 .dev_name = "foo-spi.0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200884 .name = "spi0-pos-B",
Stephen Warren1e2082b2012-03-02 13:05:48 -0700885 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700886 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200887 .function = "spi0",
888 .group = "spi0_1_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200889},
890...
891
892This example mapping is used to switch between two positions for spi0 at
893runtime, as described further below under the heading "Runtime pinmuxing".
894
Stephen Warren6e5e9592012-03-02 13:05:47 -0700895Further it is possible for one named state to affect the muxing of several
896groups of pins, say for example in the mmc0 example above, where you can
Linus Walleij2744e8a2011-05-02 20:50:54 +0200897additively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all
898three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the
899case), we define a mapping like this:
900
901...
902{
Stephen Warren806d3142012-02-23 17:04:39 -0700903 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100904 .name = "2bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700905 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700906 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200907 .function = "mmc0",
Linus Walleij336cdba02011-11-10 09:27:41 +0100908 .group = "mmc0_1_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200909},
910{
Stephen Warren806d3142012-02-23 17:04:39 -0700911 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100912 .name = "4bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700913 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700914 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200915 .function = "mmc0",
916 .group = "mmc0_1_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200917},
918{
Stephen Warren806d3142012-02-23 17:04:39 -0700919 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100920 .name = "4bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700921 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700922 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200923 .function = "mmc0",
Linus Walleij336cdba02011-11-10 09:27:41 +0100924 .group = "mmc0_2_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200925},
926{
Stephen Warren806d3142012-02-23 17:04:39 -0700927 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100928 .name = "8bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700929 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700930 .ctrl_dev_name = "pinctrl-foo",
Stephen Warren6e5e9592012-03-02 13:05:47 -0700931 .function = "mmc0",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200932 .group = "mmc0_1_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200933},
934{
Stephen Warren806d3142012-02-23 17:04:39 -0700935 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100936 .name = "8bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700937 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700938 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200939 .function = "mmc0",
940 .group = "mmc0_2_grp",
Linus Walleij2744e8a2011-05-02 20:50:54 +0200941},
Linus Walleij336cdba02011-11-10 09:27:41 +0100942{
Stephen Warren806d3142012-02-23 17:04:39 -0700943 .dev_name = "foo-mmc.0",
Uwe Kleine-Königf54367f2012-01-19 22:35:05 +0100944 .name = "8bit"
Stephen Warren1e2082b2012-03-02 13:05:48 -0700945 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -0700946 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij336cdba02011-11-10 09:27:41 +0100947 .function = "mmc0",
948 .group = "mmc0_3_grp",
Linus Walleij336cdba02011-11-10 09:27:41 +0100949},
Linus Walleij2744e8a2011-05-02 20:50:54 +0200950...
951
952The result of grabbing this mapping from the device with something like
953this (see next paragraph):
954
Stephen Warren6e5e9592012-03-02 13:05:47 -0700955 p = pinctrl_get(dev);
956 s = pinctrl_lookup_state(p, "8bit");
957 ret = pinctrl_select_state(p, s);
958
959or more simply:
960
961 p = pinctrl_get_select(dev, "8bit");
Linus Walleij2744e8a2011-05-02 20:50:54 +0200962
963Will be that you activate all the three bottom records in the mapping at
Stephen Warren6e5e9592012-03-02 13:05:47 -0700964once. Since they share the same name, pin controller device, function and
Linus Walleij2744e8a2011-05-02 20:50:54 +0200965device, and since we allow multiple groups to match to a single device, they
966all get selected, and they all get enabled and disable simultaneously by the
967pinmux core.
968
969
970Pinmux requests from drivers
971============================
972
Linus Walleije93bcee2012-02-09 07:23:28 +0100973Generally it is discouraged to let individual drivers get and enable pin
974control. So if possible, handle the pin control in platform code or some other
975place where you have access to all the affected struct device * pointers. In
976some cases where a driver needs to e.g. switch between different mux mappings
977at runtime this is not possible.
Linus Walleij2744e8a2011-05-02 20:50:54 +0200978
Linus Walleije93bcee2012-02-09 07:23:28 +0100979A driver may request a certain control state to be activated, usually just the
980default state like this:
Linus Walleij2744e8a2011-05-02 20:50:54 +0200981
Linus Walleij28a8d142012-02-09 01:52:22 +0100982#include <linux/pinctrl/consumer.h>
Linus Walleij2744e8a2011-05-02 20:50:54 +0200983
984struct foo_state {
Linus Walleije93bcee2012-02-09 07:23:28 +0100985 struct pinctrl *p;
Stephen Warren6e5e9592012-03-02 13:05:47 -0700986 struct pinctrl_state *s;
Linus Walleij2744e8a2011-05-02 20:50:54 +0200987 ...
988};
989
990foo_probe()
991{
Stephen Warren6e5e9592012-03-02 13:05:47 -0700992 /* Allocate a state holder named "foo" etc */
993 struct foo_state *foo = ...;
Linus Walleij2744e8a2011-05-02 20:50:54 +0200994
Stephen Warren6e5e9592012-03-02 13:05:47 -0700995 foo->p = pinctrl_get(&device);
996 if (IS_ERR(foo->p)) {
997 /* FIXME: clean up "foo" here */
998 return PTR_ERR(foo->p);
999 }
Linus Walleij2744e8a2011-05-02 20:50:54 +02001000
Stephen Warren6e5e9592012-03-02 13:05:47 -07001001 foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT);
1002 if (IS_ERR(foo->s)) {
1003 pinctrl_put(foo->p);
1004 /* FIXME: clean up "foo" here */
1005 return PTR_ERR(s);
1006 }
1007
1008 ret = pinctrl_select_state(foo->s);
1009 if (ret < 0) {
1010 pinctrl_put(foo->p);
1011 /* FIXME: clean up "foo" here */
1012 return ret;
1013 }
Linus Walleij2744e8a2011-05-02 20:50:54 +02001014}
1015
1016foo_remove()
1017{
Linus Walleije93bcee2012-02-09 07:23:28 +01001018 pinctrl_put(state->p);
Linus Walleij2744e8a2011-05-02 20:50:54 +02001019}
1020
Stephen Warren6e5e9592012-03-02 13:05:47 -07001021This get/lookup/select/put sequence can just as well be handled by bus drivers
Linus Walleij2744e8a2011-05-02 20:50:54 +02001022if you don't want each and every driver to handle it and you know the
1023arrangement on your bus.
1024
Stephen Warren6e5e9592012-03-02 13:05:47 -07001025The semantics of the pinctrl APIs are:
Linus Walleij2744e8a2011-05-02 20:50:54 +02001026
Stephen Warren6e5e9592012-03-02 13:05:47 -07001027- pinctrl_get() is called in process context to obtain a handle to all pinctrl
1028 information for a given client device. It will allocate a struct from the
1029 kernel memory to hold the pinmux state. All mapping table parsing or similar
1030 slow operations take place within this API.
Linus Walleij2744e8a2011-05-02 20:50:54 +02001031
Stephen Warren6e5e9592012-03-02 13:05:47 -07001032- pinctrl_lookup_state() is called in process context to obtain a handle to a
1033 specific state for a the client device. This operation may be slow too.
Linus Walleij2744e8a2011-05-02 20:50:54 +02001034
Stephen Warren6e5e9592012-03-02 13:05:47 -07001035- pinctrl_select_state() programs pin controller hardware according to the
1036 definition of the state as given by the mapping table. In theory this is a
1037 fast-path operation, since it only involved blasting some register settings
1038 into hardware. However, note that some pin controllers may have their
1039 registers on a slow/IRQ-based bus, so client devices should not assume they
1040 can call pinctrl_select_state() from non-blocking contexts.
1041
1042- pinctrl_put() frees all information associated with a pinctrl handle.
Linus Walleij2744e8a2011-05-02 20:50:54 +02001043
Linus Walleije93bcee2012-02-09 07:23:28 +01001044Usually the pin control core handled the get/put pair and call out to the
1045device drivers bookkeeping operations, like checking available functions and
1046the associated pins, whereas the enable/disable pass on to the pin controller
Linus Walleij2744e8a2011-05-02 20:50:54 +02001047driver which takes care of activating and/or deactivating the mux setting by
1048quickly poking some registers.
1049
Linus Walleije93bcee2012-02-09 07:23:28 +01001050The pins are allocated for your device when you issue the pinctrl_get() call,
Linus Walleij2744e8a2011-05-02 20:50:54 +02001051after this you should be able to see this in the debugfs listing of all pins.
1052
1053
Linus Walleije93bcee2012-02-09 07:23:28 +01001054System pin control hogging
1055==========================
Linus Walleij2744e8a2011-05-02 20:50:54 +02001056
Stephen Warren1681f5a2012-02-22 14:25:58 -07001057Pin control map entries can be hogged by the core when the pin controller
Stephen Warren6e5e9592012-03-02 13:05:47 -07001058is registered. This means that the core will attempt to call pinctrl_get(),
1059lookup_state() and select_state() on it immediately after the pin control
1060device has been registered.
Linus Walleij2744e8a2011-05-02 20:50:54 +02001061
Stephen Warren6e5e9592012-03-02 13:05:47 -07001062This occurs for mapping table entries where the client device name is equal
1063to the pin controller device name, and the state name is PINCTRL_STATE_DEFAULT.
Linus Walleij2744e8a2011-05-02 20:50:54 +02001064
1065{
Stephen Warren806d3142012-02-23 17:04:39 -07001066 .dev_name = "pinctrl-foo",
Stephen Warren46919ae2012-03-01 18:48:32 -07001067 .name = PINCTRL_STATE_DEFAULT,
Stephen Warren1e2082b2012-03-02 13:05:48 -07001068 .type = PIN_MAP_TYPE_MUX_GROUP,
Stephen Warren51cd24e2011-12-09 16:59:05 -07001069 .ctrl_dev_name = "pinctrl-foo",
Linus Walleij2744e8a2011-05-02 20:50:54 +02001070 .function = "power_func",
Linus Walleij2744e8a2011-05-02 20:50:54 +02001071},
1072
1073Since it may be common to request the core to hog a few always-applicable
1074mux settings on the primary pin controller, there is a convenience macro for
1075this:
1076
Stephen Warren1e2082b2012-03-02 13:05:48 -07001077PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */, "power_func")
Linus Walleij2744e8a2011-05-02 20:50:54 +02001078
1079This gives the exact same result as the above construction.
1080
1081
1082Runtime pinmuxing
1083=================
1084
1085It is possible to mux a certain function in and out at runtime, say to move
1086an SPI port from one set of pins to another set of pins. Say for example for
1087spi0 in the example above, we expose two different groups of pins for the same
1088function, but with different named in the mapping as described under
Stephen Warren6e5e9592012-03-02 13:05:47 -07001089"Advanced mapping" above. So that for an SPI device, we have two states named
1090"pos-A" and "pos-B".
Linus Walleij2744e8a2011-05-02 20:50:54 +02001091
1092This snippet first muxes the function in the pins defined by group A, enables
1093it, disables and releases it, and muxes it in on the pins defined by group B:
1094
Linus Walleij28a8d142012-02-09 01:52:22 +01001095#include <linux/pinctrl/consumer.h>
1096
Linus Walleij2744e8a2011-05-02 20:50:54 +02001097foo_switch()
1098{
Linus Walleije93bcee2012-02-09 07:23:28 +01001099 struct pinctrl *p;
Stephen Warren6e5e9592012-03-02 13:05:47 -07001100 struct pinctrl_state *s1, *s2;
1101
1102 /* Setup */
1103 p = pinctrl_get(&device);
1104 if (IS_ERR(p))
1105 ...
1106
1107 s1 = pinctrl_lookup_state(foo->p, "pos-A");
1108 if (IS_ERR(s1))
1109 ...
1110
1111 s2 = pinctrl_lookup_state(foo->p, "pos-B");
1112 if (IS_ERR(s2))
1113 ...
Linus Walleij2744e8a2011-05-02 20:50:54 +02001114
1115 /* Enable on position A */
Stephen Warren6e5e9592012-03-02 13:05:47 -07001116 ret = pinctrl_select_state(s1);
1117 if (ret < 0)
1118 ...
Linus Walleij2744e8a2011-05-02 20:50:54 +02001119
Stephen Warren6e5e9592012-03-02 13:05:47 -07001120 ...
Linus Walleij2744e8a2011-05-02 20:50:54 +02001121
1122 /* Enable on position B */
Stephen Warren6e5e9592012-03-02 13:05:47 -07001123 ret = pinctrl_select_state(s2);
1124 if (ret < 0)
1125 ...
1126
Linus Walleij2744e8a2011-05-02 20:50:54 +02001127 ...
Stephen Warren6e5e9592012-03-02 13:05:47 -07001128
1129 pinctrl_put(p);
Linus Walleij2744e8a2011-05-02 20:50:54 +02001130}
1131
1132The above has to be done from process context.