Darrick J. Wong | e89c041 | 2017-03-28 14:56:37 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2017 Oracle. All Rights Reserved. |
| 3 | * |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version 2 |
| 9 | * of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it would be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | #include "xfs.h" |
| 21 | #include "xfs_fs.h" |
| 22 | #include "xfs_shared.h" |
| 23 | #include "xfs_format.h" |
| 24 | #include "xfs_log_format.h" |
| 25 | #include "xfs_trans_resv.h" |
| 26 | #include "xfs_sb.h" |
| 27 | #include "xfs_mount.h" |
| 28 | #include "xfs_defer.h" |
| 29 | #include "xfs_inode.h" |
| 30 | #include "xfs_trans.h" |
| 31 | #include "xfs_error.h" |
| 32 | #include "xfs_btree.h" |
| 33 | #include "xfs_rmap_btree.h" |
| 34 | #include "xfs_trace.h" |
| 35 | #include "xfs_log.h" |
| 36 | #include "xfs_rmap.h" |
| 37 | #include "xfs_alloc.h" |
| 38 | #include "xfs_bit.h" |
| 39 | #include <linux/fsmap.h> |
| 40 | #include "xfs_fsmap.h" |
| 41 | #include "xfs_refcount.h" |
| 42 | #include "xfs_refcount_btree.h" |
| 43 | |
| 44 | /* Convert an xfs_fsmap to an fsmap. */ |
| 45 | void |
| 46 | xfs_fsmap_from_internal( |
| 47 | struct fsmap *dest, |
| 48 | struct xfs_fsmap *src) |
| 49 | { |
| 50 | dest->fmr_device = src->fmr_device; |
| 51 | dest->fmr_flags = src->fmr_flags; |
| 52 | dest->fmr_physical = BBTOB(src->fmr_physical); |
| 53 | dest->fmr_owner = src->fmr_owner; |
| 54 | dest->fmr_offset = BBTOB(src->fmr_offset); |
| 55 | dest->fmr_length = BBTOB(src->fmr_length); |
| 56 | dest->fmr_reserved[0] = 0; |
| 57 | dest->fmr_reserved[1] = 0; |
| 58 | dest->fmr_reserved[2] = 0; |
| 59 | } |
| 60 | |
| 61 | /* Convert an fsmap to an xfs_fsmap. */ |
| 62 | void |
| 63 | xfs_fsmap_to_internal( |
| 64 | struct xfs_fsmap *dest, |
| 65 | struct fsmap *src) |
| 66 | { |
| 67 | dest->fmr_device = src->fmr_device; |
| 68 | dest->fmr_flags = src->fmr_flags; |
| 69 | dest->fmr_physical = BTOBBT(src->fmr_physical); |
| 70 | dest->fmr_owner = src->fmr_owner; |
| 71 | dest->fmr_offset = BTOBBT(src->fmr_offset); |
| 72 | dest->fmr_length = BTOBBT(src->fmr_length); |
| 73 | } |
| 74 | |
| 75 | /* Convert an fsmap owner into an rmapbt owner. */ |
| 76 | static int |
| 77 | xfs_fsmap_owner_to_rmap( |
| 78 | struct xfs_rmap_irec *dest, |
| 79 | struct xfs_fsmap *src) |
| 80 | { |
| 81 | if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { |
| 82 | dest->rm_owner = src->fmr_owner; |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | switch (src->fmr_owner) { |
| 87 | case 0: /* "lowest owner id possible" */ |
| 88 | case -1ULL: /* "highest owner id possible" */ |
| 89 | dest->rm_owner = 0; |
| 90 | break; |
| 91 | case XFS_FMR_OWN_FREE: |
| 92 | dest->rm_owner = XFS_RMAP_OWN_NULL; |
| 93 | break; |
| 94 | case XFS_FMR_OWN_UNKNOWN: |
| 95 | dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; |
| 96 | break; |
| 97 | case XFS_FMR_OWN_FS: |
| 98 | dest->rm_owner = XFS_RMAP_OWN_FS; |
| 99 | break; |
| 100 | case XFS_FMR_OWN_LOG: |
| 101 | dest->rm_owner = XFS_RMAP_OWN_LOG; |
| 102 | break; |
| 103 | case XFS_FMR_OWN_AG: |
| 104 | dest->rm_owner = XFS_RMAP_OWN_AG; |
| 105 | break; |
| 106 | case XFS_FMR_OWN_INOBT: |
| 107 | dest->rm_owner = XFS_RMAP_OWN_INOBT; |
| 108 | break; |
| 109 | case XFS_FMR_OWN_INODES: |
| 110 | dest->rm_owner = XFS_RMAP_OWN_INODES; |
| 111 | break; |
| 112 | case XFS_FMR_OWN_REFC: |
| 113 | dest->rm_owner = XFS_RMAP_OWN_REFC; |
| 114 | break; |
| 115 | case XFS_FMR_OWN_COW: |
| 116 | dest->rm_owner = XFS_RMAP_OWN_COW; |
| 117 | break; |
| 118 | case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ |
| 119 | /* fall through */ |
| 120 | default: |
| 121 | return -EINVAL; |
| 122 | } |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | /* Convert an rmapbt owner into an fsmap owner. */ |
| 127 | static int |
| 128 | xfs_fsmap_owner_from_rmap( |
| 129 | struct xfs_fsmap *dest, |
| 130 | struct xfs_rmap_irec *src) |
| 131 | { |
| 132 | dest->fmr_flags = 0; |
| 133 | if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { |
| 134 | dest->fmr_owner = src->rm_owner; |
| 135 | return 0; |
| 136 | } |
| 137 | dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; |
| 138 | |
| 139 | switch (src->rm_owner) { |
| 140 | case XFS_RMAP_OWN_FS: |
| 141 | dest->fmr_owner = XFS_FMR_OWN_FS; |
| 142 | break; |
| 143 | case XFS_RMAP_OWN_LOG: |
| 144 | dest->fmr_owner = XFS_FMR_OWN_LOG; |
| 145 | break; |
| 146 | case XFS_RMAP_OWN_AG: |
| 147 | dest->fmr_owner = XFS_FMR_OWN_AG; |
| 148 | break; |
| 149 | case XFS_RMAP_OWN_INOBT: |
| 150 | dest->fmr_owner = XFS_FMR_OWN_INOBT; |
| 151 | break; |
| 152 | case XFS_RMAP_OWN_INODES: |
| 153 | dest->fmr_owner = XFS_FMR_OWN_INODES; |
| 154 | break; |
| 155 | case XFS_RMAP_OWN_REFC: |
| 156 | dest->fmr_owner = XFS_FMR_OWN_REFC; |
| 157 | break; |
| 158 | case XFS_RMAP_OWN_COW: |
| 159 | dest->fmr_owner = XFS_FMR_OWN_COW; |
| 160 | break; |
| 161 | default: |
| 162 | return -EFSCORRUPTED; |
| 163 | } |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | /* getfsmap query state */ |
| 168 | struct xfs_getfsmap_info { |
| 169 | struct xfs_fsmap_head *head; |
| 170 | xfs_fsmap_format_t formatter; /* formatting fn */ |
| 171 | void *format_arg; /* format buffer */ |
| 172 | struct xfs_buf *agf_bp; /* AGF, for refcount queries */ |
| 173 | xfs_daddr_t next_daddr; /* next daddr we expect */ |
| 174 | u64 missing_owner; /* owner of holes */ |
| 175 | u32 dev; /* device id */ |
| 176 | xfs_agnumber_t agno; /* AG number, if applicable */ |
| 177 | struct xfs_rmap_irec low; /* low rmap key */ |
| 178 | struct xfs_rmap_irec high; /* high rmap key */ |
| 179 | bool last; /* last extent? */ |
| 180 | }; |
| 181 | |
| 182 | /* Associate a device with a getfsmap handler. */ |
| 183 | struct xfs_getfsmap_dev { |
| 184 | u32 dev; |
| 185 | int (*fn)(struct xfs_trans *tp, |
| 186 | struct xfs_fsmap *keys, |
| 187 | struct xfs_getfsmap_info *info); |
| 188 | }; |
| 189 | |
| 190 | /* Compare two getfsmap device handlers. */ |
| 191 | static int |
| 192 | xfs_getfsmap_dev_compare( |
| 193 | const void *p1, |
| 194 | const void *p2) |
| 195 | { |
| 196 | const struct xfs_getfsmap_dev *d1 = p1; |
| 197 | const struct xfs_getfsmap_dev *d2 = p2; |
| 198 | |
| 199 | return d1->dev - d2->dev; |
| 200 | } |
| 201 | |
| 202 | /* Decide if this mapping is shared. */ |
| 203 | STATIC int |
| 204 | xfs_getfsmap_is_shared( |
| 205 | struct xfs_trans *tp, |
| 206 | struct xfs_getfsmap_info *info, |
| 207 | struct xfs_rmap_irec *rec, |
| 208 | bool *stat) |
| 209 | { |
| 210 | struct xfs_mount *mp = tp->t_mountp; |
| 211 | struct xfs_btree_cur *cur; |
| 212 | xfs_agblock_t fbno; |
| 213 | xfs_extlen_t flen; |
| 214 | int error; |
| 215 | |
| 216 | *stat = false; |
| 217 | if (!xfs_sb_version_hasreflink(&mp->m_sb)) |
| 218 | return 0; |
| 219 | /* rt files will have agno set to NULLAGNUMBER */ |
| 220 | if (info->agno == NULLAGNUMBER) |
| 221 | return 0; |
| 222 | |
| 223 | /* Are there any shared blocks here? */ |
| 224 | flen = 0; |
| 225 | cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, |
| 226 | info->agno, NULL); |
| 227 | |
| 228 | error = xfs_refcount_find_shared(cur, rec->rm_startblock, |
| 229 | rec->rm_blockcount, &fbno, &flen, false); |
| 230 | |
| 231 | xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); |
| 232 | if (error) |
| 233 | return error; |
| 234 | |
| 235 | *stat = flen > 0; |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Format a reverse mapping for getfsmap, having translated rm_startblock |
| 241 | * into the appropriate daddr units. |
| 242 | */ |
| 243 | STATIC int |
| 244 | xfs_getfsmap_helper( |
| 245 | struct xfs_trans *tp, |
| 246 | struct xfs_getfsmap_info *info, |
| 247 | struct xfs_rmap_irec *rec, |
| 248 | xfs_daddr_t rec_daddr) |
| 249 | { |
| 250 | struct xfs_fsmap fmr; |
| 251 | struct xfs_mount *mp = tp->t_mountp; |
| 252 | bool shared; |
| 253 | int error; |
| 254 | |
| 255 | if (fatal_signal_pending(current)) |
| 256 | return -EINTR; |
| 257 | |
| 258 | /* |
| 259 | * Filter out records that start before our startpoint, if the |
| 260 | * caller requested that. |
| 261 | */ |
| 262 | if (xfs_rmap_compare(rec, &info->low) < 0) { |
| 263 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); |
| 264 | if (info->next_daddr < rec_daddr) |
| 265 | info->next_daddr = rec_daddr; |
| 266 | return XFS_BTREE_QUERY_RANGE_CONTINUE; |
| 267 | } |
| 268 | |
| 269 | /* Are we just counting mappings? */ |
| 270 | if (info->head->fmh_count == 0) { |
| 271 | if (rec_daddr > info->next_daddr) |
| 272 | info->head->fmh_entries++; |
| 273 | |
| 274 | if (info->last) |
| 275 | return XFS_BTREE_QUERY_RANGE_CONTINUE; |
| 276 | |
| 277 | info->head->fmh_entries++; |
| 278 | |
| 279 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); |
| 280 | if (info->next_daddr < rec_daddr) |
| 281 | info->next_daddr = rec_daddr; |
| 282 | return XFS_BTREE_QUERY_RANGE_CONTINUE; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * If the record starts past the last physical block we saw, |
| 287 | * then we've found a gap. Report the gap as being owned by |
| 288 | * whatever the caller specified is the missing owner. |
| 289 | */ |
| 290 | if (rec_daddr > info->next_daddr) { |
| 291 | if (info->head->fmh_entries >= info->head->fmh_count) |
| 292 | return XFS_BTREE_QUERY_RANGE_ABORT; |
| 293 | |
| 294 | fmr.fmr_device = info->dev; |
| 295 | fmr.fmr_physical = info->next_daddr; |
| 296 | fmr.fmr_owner = info->missing_owner; |
| 297 | fmr.fmr_offset = 0; |
| 298 | fmr.fmr_length = rec_daddr - info->next_daddr; |
| 299 | fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; |
| 300 | error = info->formatter(&fmr, info->format_arg); |
| 301 | if (error) |
| 302 | return error; |
| 303 | info->head->fmh_entries++; |
| 304 | } |
| 305 | |
| 306 | if (info->last) |
| 307 | goto out; |
| 308 | |
| 309 | /* Fill out the extent we found */ |
| 310 | if (info->head->fmh_entries >= info->head->fmh_count) |
| 311 | return XFS_BTREE_QUERY_RANGE_ABORT; |
| 312 | |
| 313 | trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec); |
| 314 | |
| 315 | fmr.fmr_device = info->dev; |
| 316 | fmr.fmr_physical = rec_daddr; |
| 317 | error = xfs_fsmap_owner_from_rmap(&fmr, rec); |
| 318 | if (error) |
| 319 | return error; |
| 320 | fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); |
| 321 | fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount); |
| 322 | if (rec->rm_flags & XFS_RMAP_UNWRITTEN) |
| 323 | fmr.fmr_flags |= FMR_OF_PREALLOC; |
| 324 | if (rec->rm_flags & XFS_RMAP_ATTR_FORK) |
| 325 | fmr.fmr_flags |= FMR_OF_ATTR_FORK; |
| 326 | if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) |
| 327 | fmr.fmr_flags |= FMR_OF_EXTENT_MAP; |
| 328 | if (fmr.fmr_flags == 0) { |
| 329 | error = xfs_getfsmap_is_shared(tp, info, rec, &shared); |
| 330 | if (error) |
| 331 | return error; |
| 332 | if (shared) |
| 333 | fmr.fmr_flags |= FMR_OF_SHARED; |
| 334 | } |
| 335 | error = info->formatter(&fmr, info->format_arg); |
| 336 | if (error) |
| 337 | return error; |
| 338 | info->head->fmh_entries++; |
| 339 | |
| 340 | out: |
| 341 | rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount); |
| 342 | if (info->next_daddr < rec_daddr) |
| 343 | info->next_daddr = rec_daddr; |
| 344 | return XFS_BTREE_QUERY_RANGE_CONTINUE; |
| 345 | } |
| 346 | |
| 347 | /* Transform a rmapbt irec into a fsmap */ |
| 348 | STATIC int |
| 349 | xfs_getfsmap_datadev_helper( |
| 350 | struct xfs_btree_cur *cur, |
| 351 | struct xfs_rmap_irec *rec, |
| 352 | void *priv) |
| 353 | { |
| 354 | struct xfs_mount *mp = cur->bc_mp; |
| 355 | struct xfs_getfsmap_info *info = priv; |
| 356 | xfs_fsblock_t fsb; |
| 357 | xfs_daddr_t rec_daddr; |
| 358 | |
| 359 | fsb = XFS_AGB_TO_FSB(mp, cur->bc_private.a.agno, rec->rm_startblock); |
| 360 | rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); |
| 361 | |
| 362 | return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr); |
| 363 | } |
| 364 | |
| 365 | /* Set rmap flags based on the getfsmap flags */ |
| 366 | static void |
| 367 | xfs_getfsmap_set_irec_flags( |
| 368 | struct xfs_rmap_irec *irec, |
| 369 | struct xfs_fsmap *fmr) |
| 370 | { |
| 371 | irec->rm_flags = 0; |
| 372 | if (fmr->fmr_flags & FMR_OF_ATTR_FORK) |
| 373 | irec->rm_flags |= XFS_RMAP_ATTR_FORK; |
| 374 | if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) |
| 375 | irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; |
| 376 | if (fmr->fmr_flags & FMR_OF_PREALLOC) |
| 377 | irec->rm_flags |= XFS_RMAP_UNWRITTEN; |
| 378 | } |
| 379 | |
| 380 | /* Execute a getfsmap query against the log device. */ |
| 381 | STATIC int |
| 382 | xfs_getfsmap_logdev( |
| 383 | struct xfs_trans *tp, |
| 384 | struct xfs_fsmap *keys, |
| 385 | struct xfs_getfsmap_info *info) |
| 386 | { |
| 387 | struct xfs_mount *mp = tp->t_mountp; |
| 388 | struct xfs_rmap_irec rmap; |
| 389 | int error; |
| 390 | |
| 391 | /* Set up search keys */ |
| 392 | info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical); |
| 393 | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); |
| 394 | error = xfs_fsmap_owner_to_rmap(&info->low, keys); |
| 395 | if (error) |
| 396 | return error; |
| 397 | info->low.rm_blockcount = 0; |
| 398 | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); |
| 399 | |
| 400 | error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1); |
| 401 | if (error) |
| 402 | return error; |
| 403 | info->high.rm_startblock = -1U; |
| 404 | info->high.rm_owner = ULLONG_MAX; |
| 405 | info->high.rm_offset = ULLONG_MAX; |
| 406 | info->high.rm_blockcount = 0; |
| 407 | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; |
| 408 | info->missing_owner = XFS_FMR_OWN_FREE; |
| 409 | |
| 410 | trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); |
| 411 | trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high); |
| 412 | |
| 413 | if (keys[0].fmr_physical > 0) |
| 414 | return 0; |
| 415 | |
| 416 | /* Fabricate an rmap entry for the external log device. */ |
| 417 | rmap.rm_startblock = 0; |
| 418 | rmap.rm_blockcount = mp->m_sb.sb_logblocks; |
| 419 | rmap.rm_owner = XFS_RMAP_OWN_LOG; |
| 420 | rmap.rm_offset = 0; |
| 421 | rmap.rm_flags = 0; |
| 422 | |
| 423 | return xfs_getfsmap_helper(tp, info, &rmap, 0); |
| 424 | } |
| 425 | |
| 426 | /* Execute a getfsmap query against the regular data device. */ |
| 427 | STATIC int |
| 428 | __xfs_getfsmap_datadev( |
| 429 | struct xfs_trans *tp, |
| 430 | struct xfs_fsmap *keys, |
| 431 | struct xfs_getfsmap_info *info, |
| 432 | int (*query_fn)(struct xfs_trans *, |
| 433 | struct xfs_getfsmap_info *, |
| 434 | struct xfs_btree_cur **, |
| 435 | void *), |
| 436 | void *priv) |
| 437 | { |
| 438 | struct xfs_mount *mp = tp->t_mountp; |
| 439 | struct xfs_btree_cur *bt_cur = NULL; |
| 440 | xfs_fsblock_t start_fsb; |
| 441 | xfs_fsblock_t end_fsb; |
| 442 | xfs_agnumber_t start_ag; |
| 443 | xfs_agnumber_t end_ag; |
| 444 | xfs_daddr_t eofs; |
| 445 | int error = 0; |
| 446 | |
| 447 | eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| 448 | if (keys[0].fmr_physical >= eofs) |
| 449 | return 0; |
| 450 | if (keys[1].fmr_physical >= eofs) |
| 451 | keys[1].fmr_physical = eofs - 1; |
| 452 | start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); |
| 453 | end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical); |
| 454 | |
| 455 | /* |
| 456 | * Convert the fsmap low/high keys to AG based keys. Initialize |
| 457 | * low to the fsmap low key and max out the high key to the end |
| 458 | * of the AG. |
| 459 | */ |
| 460 | info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); |
| 461 | info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); |
| 462 | error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); |
| 463 | if (error) |
| 464 | return error; |
| 465 | info->low.rm_blockcount = 0; |
| 466 | xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); |
| 467 | |
| 468 | info->high.rm_startblock = -1U; |
| 469 | info->high.rm_owner = ULLONG_MAX; |
| 470 | info->high.rm_offset = ULLONG_MAX; |
| 471 | info->high.rm_blockcount = 0; |
| 472 | info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; |
| 473 | |
| 474 | start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); |
| 475 | end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); |
| 476 | |
| 477 | /* Query each AG */ |
| 478 | for (info->agno = start_ag; info->agno <= end_ag; info->agno++) { |
| 479 | /* |
| 480 | * Set the AG high key from the fsmap high key if this |
| 481 | * is the last AG that we're querying. |
| 482 | */ |
| 483 | if (info->agno == end_ag) { |
| 484 | info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, |
| 485 | end_fsb); |
| 486 | info->high.rm_offset = XFS_BB_TO_FSBT(mp, |
| 487 | keys[1].fmr_offset); |
| 488 | error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); |
| 489 | if (error) |
| 490 | goto err; |
| 491 | xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); |
| 492 | } |
| 493 | |
| 494 | if (bt_cur) { |
| 495 | xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); |
| 496 | bt_cur = NULL; |
| 497 | xfs_trans_brelse(tp, info->agf_bp); |
| 498 | info->agf_bp = NULL; |
| 499 | } |
| 500 | |
| 501 | error = xfs_alloc_read_agf(mp, tp, info->agno, 0, |
| 502 | &info->agf_bp); |
| 503 | if (error) |
| 504 | goto err; |
| 505 | |
| 506 | trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low); |
| 507 | trace_xfs_fsmap_high_key(mp, info->dev, info->agno, |
| 508 | &info->high); |
| 509 | |
| 510 | error = query_fn(tp, info, &bt_cur, priv); |
| 511 | if (error) |
| 512 | goto err; |
| 513 | |
| 514 | /* |
| 515 | * Set the AG low key to the start of the AG prior to |
| 516 | * moving on to the next AG. |
| 517 | */ |
| 518 | if (info->agno == start_ag) { |
| 519 | info->low.rm_startblock = 0; |
| 520 | info->low.rm_owner = 0; |
| 521 | info->low.rm_offset = 0; |
| 522 | info->low.rm_flags = 0; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | /* Report any gap at the end of the AG */ |
| 527 | info->last = true; |
| 528 | error = query_fn(tp, info, &bt_cur, priv); |
| 529 | if (error) |
| 530 | goto err; |
| 531 | |
| 532 | err: |
| 533 | if (bt_cur) |
| 534 | xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : |
| 535 | XFS_BTREE_NOERROR); |
| 536 | if (info->agf_bp) { |
| 537 | xfs_trans_brelse(tp, info->agf_bp); |
| 538 | info->agf_bp = NULL; |
| 539 | } |
| 540 | |
| 541 | return error; |
| 542 | } |
| 543 | |
| 544 | /* Actually query the rmap btree. */ |
| 545 | STATIC int |
| 546 | xfs_getfsmap_datadev_rmapbt_query( |
| 547 | struct xfs_trans *tp, |
| 548 | struct xfs_getfsmap_info *info, |
| 549 | struct xfs_btree_cur **curpp, |
| 550 | void *priv) |
| 551 | { |
| 552 | /* Report any gap at the end of the last AG. */ |
| 553 | if (info->last) |
| 554 | return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); |
| 555 | |
| 556 | /* Allocate cursor for this AG and query_range it. */ |
| 557 | *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, |
| 558 | info->agno); |
| 559 | return xfs_rmap_query_range(*curpp, &info->low, &info->high, |
| 560 | xfs_getfsmap_datadev_helper, info); |
| 561 | } |
| 562 | |
| 563 | /* Execute a getfsmap query against the regular data device rmapbt. */ |
| 564 | STATIC int |
| 565 | xfs_getfsmap_datadev_rmapbt( |
| 566 | struct xfs_trans *tp, |
| 567 | struct xfs_fsmap *keys, |
| 568 | struct xfs_getfsmap_info *info) |
| 569 | { |
| 570 | info->missing_owner = XFS_FMR_OWN_FREE; |
| 571 | return __xfs_getfsmap_datadev(tp, keys, info, |
| 572 | xfs_getfsmap_datadev_rmapbt_query, NULL); |
| 573 | } |
| 574 | |
| 575 | /* Do we recognize the device? */ |
| 576 | STATIC bool |
| 577 | xfs_getfsmap_is_valid_device( |
| 578 | struct xfs_mount *mp, |
| 579 | struct xfs_fsmap *fm) |
| 580 | { |
| 581 | if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || |
| 582 | fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) |
| 583 | return true; |
| 584 | if (mp->m_logdev_targp && |
| 585 | fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) |
| 586 | return true; |
| 587 | return false; |
| 588 | } |
| 589 | |
| 590 | /* Ensure that the low key is less than the high key. */ |
| 591 | STATIC bool |
| 592 | xfs_getfsmap_check_keys( |
| 593 | struct xfs_fsmap *low_key, |
| 594 | struct xfs_fsmap *high_key) |
| 595 | { |
| 596 | if (low_key->fmr_device > high_key->fmr_device) |
| 597 | return false; |
| 598 | if (low_key->fmr_device < high_key->fmr_device) |
| 599 | return true; |
| 600 | |
| 601 | if (low_key->fmr_physical > high_key->fmr_physical) |
| 602 | return false; |
| 603 | if (low_key->fmr_physical < high_key->fmr_physical) |
| 604 | return true; |
| 605 | |
| 606 | if (low_key->fmr_owner > high_key->fmr_owner) |
| 607 | return false; |
| 608 | if (low_key->fmr_owner < high_key->fmr_owner) |
| 609 | return true; |
| 610 | |
| 611 | if (low_key->fmr_offset > high_key->fmr_offset) |
| 612 | return false; |
| 613 | if (low_key->fmr_offset < high_key->fmr_offset) |
| 614 | return true; |
| 615 | |
| 616 | return false; |
| 617 | } |
| 618 | |
| 619 | #define XFS_GETFSMAP_DEVS 2 |
| 620 | /* |
| 621 | * Get filesystem's extents as described in head, and format for |
| 622 | * output. Calls formatter to fill the user's buffer until all |
| 623 | * extents are mapped, until the passed-in head->fmh_count slots have |
| 624 | * been filled, or until the formatter short-circuits the loop, if it |
| 625 | * is tracking filled-in extents on its own. |
| 626 | * |
| 627 | * Key to Confusion |
| 628 | * ---------------- |
| 629 | * There are multiple levels of keys and counters at work here: |
| 630 | * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; |
| 631 | * these reflect fs-wide sector addrs. |
| 632 | * dkeys -- fmh_keys used to query each device; |
| 633 | * these are fmh_keys but w/ the low key |
| 634 | * bumped up by fmr_length. |
| 635 | * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this |
| 636 | * is how we detect gaps in the fsmap |
| 637 | records and report them. |
| 638 | * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from |
| 639 | * dkeys; used to query the metadata. |
| 640 | */ |
| 641 | int |
| 642 | xfs_getfsmap( |
| 643 | struct xfs_mount *mp, |
| 644 | struct xfs_fsmap_head *head, |
| 645 | xfs_fsmap_format_t formatter, |
| 646 | void *arg) |
| 647 | { |
| 648 | struct xfs_trans *tp = NULL; |
| 649 | struct xfs_fsmap dkeys[2]; /* per-dev keys */ |
| 650 | struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; |
| 651 | struct xfs_getfsmap_info info = {0}; |
| 652 | int i; |
| 653 | int error = 0; |
| 654 | |
| 655 | if (!xfs_sb_version_hasrmapbt(&mp->m_sb)) |
| 656 | return -EOPNOTSUPP; |
| 657 | if (head->fmh_iflags & ~FMH_IF_VALID) |
| 658 | return -EINVAL; |
| 659 | if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || |
| 660 | !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) |
| 661 | return -EINVAL; |
| 662 | |
| 663 | head->fmh_entries = 0; |
| 664 | |
| 665 | /* Set up our device handlers. */ |
| 666 | memset(handlers, 0, sizeof(handlers)); |
| 667 | handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); |
| 668 | handlers[0].fn = xfs_getfsmap_datadev_rmapbt; |
| 669 | if (mp->m_logdev_targp != mp->m_ddev_targp) { |
| 670 | handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); |
| 671 | handlers[1].fn = xfs_getfsmap_logdev; |
| 672 | } |
| 673 | |
| 674 | xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), |
| 675 | xfs_getfsmap_dev_compare); |
| 676 | |
| 677 | /* |
| 678 | * To continue where we left off, we allow userspace to use the |
| 679 | * last mapping from a previous call as the low key of the next. |
| 680 | * This is identified by a non-zero length in the low key. We |
| 681 | * have to increment the low key in this scenario to ensure we |
| 682 | * don't return the same mapping again, and instead return the |
| 683 | * very next mapping. |
| 684 | * |
| 685 | * If the low key mapping refers to file data, the same physical |
| 686 | * blocks could be mapped to several other files/offsets. |
| 687 | * According to rmapbt record ordering, the minimal next |
| 688 | * possible record for the block range is the next starting |
| 689 | * offset in the same inode. Therefore, bump the file offset to |
| 690 | * continue the search appropriately. For all other low key |
| 691 | * mapping types (attr blocks, metadata), bump the physical |
| 692 | * offset as there can be no other mapping for the same physical |
| 693 | * block range. |
| 694 | */ |
| 695 | dkeys[0] = head->fmh_keys[0]; |
| 696 | if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { |
| 697 | dkeys[0].fmr_physical += dkeys[0].fmr_length; |
| 698 | dkeys[0].fmr_owner = 0; |
| 699 | if (dkeys[0].fmr_offset) |
| 700 | return -EINVAL; |
| 701 | } else |
| 702 | dkeys[0].fmr_offset += dkeys[0].fmr_length; |
| 703 | dkeys[0].fmr_length = 0; |
| 704 | memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); |
| 705 | |
| 706 | if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1])) |
| 707 | return -EINVAL; |
| 708 | |
| 709 | info.next_daddr = head->fmh_keys[0].fmr_physical + |
| 710 | head->fmh_keys[0].fmr_length; |
| 711 | info.formatter = formatter; |
| 712 | info.format_arg = arg; |
| 713 | info.head = head; |
| 714 | |
| 715 | /* For each device we support... */ |
| 716 | for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { |
| 717 | /* Is this device within the range the user asked for? */ |
| 718 | if (!handlers[i].fn) |
| 719 | continue; |
| 720 | if (head->fmh_keys[0].fmr_device > handlers[i].dev) |
| 721 | continue; |
| 722 | if (head->fmh_keys[1].fmr_device < handlers[i].dev) |
| 723 | break; |
| 724 | |
| 725 | /* |
| 726 | * If this device number matches the high key, we have |
| 727 | * to pass the high key to the handler to limit the |
| 728 | * query results. If the device number exceeds the |
| 729 | * low key, zero out the low key so that we get |
| 730 | * everything from the beginning. |
| 731 | */ |
| 732 | if (handlers[i].dev == head->fmh_keys[1].fmr_device) |
| 733 | dkeys[1] = head->fmh_keys[1]; |
| 734 | if (handlers[i].dev > head->fmh_keys[0].fmr_device) |
| 735 | memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); |
| 736 | |
| 737 | error = xfs_trans_alloc_empty(mp, &tp); |
| 738 | if (error) |
| 739 | break; |
| 740 | |
| 741 | info.dev = handlers[i].dev; |
| 742 | info.last = false; |
| 743 | info.agno = NULLAGNUMBER; |
| 744 | error = handlers[i].fn(tp, dkeys, &info); |
| 745 | if (error) |
| 746 | break; |
| 747 | xfs_trans_cancel(tp); |
| 748 | tp = NULL; |
| 749 | info.next_daddr = 0; |
| 750 | } |
| 751 | |
| 752 | if (tp) |
| 753 | xfs_trans_cancel(tp); |
| 754 | head->fmh_oflags = FMH_OF_DEV_T; |
| 755 | return error; |
| 756 | } |