blob: 60f0e28db31eea09b96ac8c40f30573ccba59a69 [file] [log] [blame]
Arne Jansena2de7332011-03-08 14:14:00 +01001/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
Arne Jansena2de7332011-03-08 14:14:00 +010019#include <linux/blkdev.h>
Jan Schmidt558540c2011-06-13 19:59:12 +020020#include <linux/ratelimit.h>
Arne Jansena2de7332011-03-08 14:14:00 +010021#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
Jan Schmidt0ef8e452011-06-13 20:04:15 +020025#include "transaction.h"
Jan Schmidt558540c2011-06-13 19:59:12 +020026#include "backref.h"
Jan Schmidt5da6fcb2011-08-04 18:11:04 +020027#include "extent_io.h"
Stefan Behrens21adbd52011-11-09 13:44:05 +010028#include "check-integrity.h"
Arne Jansena2de7332011-03-08 14:14:00 +010029
30/*
31 * This is only the first step towards a full-features scrub. It reads all
32 * extent and super block and verifies the checksums. In case a bad checksum
33 * is found or the extent cannot be read, good data will be written back if
34 * any can be found.
35 *
36 * Future enhancements:
Arne Jansena2de7332011-03-08 14:14:00 +010037 * - In case an unrepairable extent is encountered, track which files are
38 * affected and report them
Arne Jansena2de7332011-03-08 14:14:00 +010039 * - track and record media errors, throw out bad devices
Arne Jansena2de7332011-03-08 14:14:00 +010040 * - add a mode to also read unallocated space
Arne Jansena2de7332011-03-08 14:14:00 +010041 */
42
Stefan Behrensb5d67f62012-03-27 14:21:27 -040043struct scrub_block;
Arne Jansena2de7332011-03-08 14:14:00 +010044struct scrub_dev;
Arne Jansena2de7332011-03-08 14:14:00 +010045
46#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
47#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
Stefan Behrensb5d67f62012-03-27 14:21:27 -040048#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
Arne Jansena2de7332011-03-08 14:14:00 +010049
50struct scrub_page {
Stefan Behrensb5d67f62012-03-27 14:21:27 -040051 struct scrub_block *sblock;
52 struct page *page;
53 struct block_device *bdev;
Arne Jansena2de7332011-03-08 14:14:00 +010054 u64 flags; /* extent flags */
55 u64 generation;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040056 u64 logical;
57 u64 physical;
58 struct {
59 unsigned int mirror_num:8;
60 unsigned int have_csum:1;
61 unsigned int io_error:1;
62 };
Arne Jansena2de7332011-03-08 14:14:00 +010063 u8 csum[BTRFS_CSUM_SIZE];
64};
65
66struct scrub_bio {
67 int index;
68 struct scrub_dev *sdev;
69 struct bio *bio;
70 int err;
71 u64 logical;
72 u64 physical;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040073 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
74 int page_count;
Arne Jansena2de7332011-03-08 14:14:00 +010075 int next_free;
76 struct btrfs_work work;
77};
78
Stefan Behrensb5d67f62012-03-27 14:21:27 -040079struct scrub_block {
80 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 int page_count;
82 atomic_t outstanding_pages;
83 atomic_t ref_count; /* free mem on transition to zero */
84 struct scrub_dev *sdev;
85 struct {
86 unsigned int header_error:1;
87 unsigned int checksum_error:1;
88 unsigned int no_io_error_seen:1;
89 };
90};
91
Arne Jansena2de7332011-03-08 14:14:00 +010092struct scrub_dev {
93 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
94 struct btrfs_device *dev;
95 int first_free;
96 int curr;
97 atomic_t in_flight;
Jan Schmidt0ef8e452011-06-13 20:04:15 +020098 atomic_t fixup_cnt;
Arne Jansena2de7332011-03-08 14:14:00 +010099 spinlock_t list_lock;
100 wait_queue_head_t list_wait;
101 u16 csum_size;
102 struct list_head csum_list;
103 atomic_t cancel_req;
Arne Jansen86287642011-03-23 16:34:19 +0100104 int readonly;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400105 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106 u32 sectorsize;
107 u32 nodesize;
108 u32 leafsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100109 /*
110 * statistics
111 */
112 struct btrfs_scrub_progress stat;
113 spinlock_t stat_lock;
114};
115
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200116struct scrub_fixup_nodatasum {
117 struct scrub_dev *sdev;
118 u64 logical;
119 struct btrfs_root *root;
120 struct btrfs_work work;
121 int mirror_num;
122};
123
Jan Schmidt558540c2011-06-13 19:59:12 +0200124struct scrub_warning {
125 struct btrfs_path *path;
126 u64 extent_item_size;
127 char *scratch_buf;
128 char *msg_buf;
129 const char *errstr;
130 sector_t sector;
131 u64 logical;
132 struct btrfs_device *dev;
133 int msg_bufsize;
134 int scratch_bufsize;
135};
136
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400137
138static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140 struct btrfs_mapping_tree *map_tree,
141 u64 length, u64 logical,
142 struct scrub_block *sblock);
143static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144 struct scrub_block *sblock, int is_metadata,
145 int have_csum, u8 *csum, u64 generation,
146 u16 csum_size);
147static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148 struct scrub_block *sblock,
149 int is_metadata, int have_csum,
150 const u8 *csum, u64 generation,
151 u16 csum_size);
152static void scrub_complete_bio_end_io(struct bio *bio, int err);
153static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154 struct scrub_block *sblock_good,
155 int force_write);
156static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157 struct scrub_block *sblock_good,
158 int page_num, int force_write);
159static int scrub_checksum_data(struct scrub_block *sblock);
160static int scrub_checksum_tree_block(struct scrub_block *sblock);
161static int scrub_checksum_super(struct scrub_block *sblock);
162static void scrub_block_get(struct scrub_block *sblock);
163static void scrub_block_put(struct scrub_block *sblock);
164static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165 struct scrub_page *spage);
166static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167 u64 physical, u64 flags, u64 gen, int mirror_num,
168 u8 *csum, int force);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400169static void scrub_bio_end_io(struct bio *bio, int err);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400170static void scrub_bio_end_io_worker(struct btrfs_work *work);
171static void scrub_block_complete(struct scrub_block *sblock);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400172
173
Arne Jansena2de7332011-03-08 14:14:00 +0100174static void scrub_free_csums(struct scrub_dev *sdev)
175{
176 while (!list_empty(&sdev->csum_list)) {
177 struct btrfs_ordered_sum *sum;
178 sum = list_first_entry(&sdev->csum_list,
179 struct btrfs_ordered_sum, list);
180 list_del(&sum->list);
181 kfree(sum);
182 }
183}
184
185static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186{
187 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100188
189 if (!sdev)
190 return;
191
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400192 /* this can happen when scrub is cancelled */
193 if (sdev->curr != -1) {
194 struct scrub_bio *sbio = sdev->bios[sdev->curr];
195
196 for (i = 0; i < sbio->page_count; i++) {
197 BUG_ON(!sbio->pagev[i]);
198 BUG_ON(!sbio->pagev[i]->page);
199 scrub_block_put(sbio->pagev[i]->sblock);
200 }
201 bio_put(sbio->bio);
202 }
203
Arne Jansena2de7332011-03-08 14:14:00 +0100204 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205 struct scrub_bio *sbio = sdev->bios[i];
Arne Jansena2de7332011-03-08 14:14:00 +0100206
207 if (!sbio)
208 break;
Arne Jansena2de7332011-03-08 14:14:00 +0100209 kfree(sbio);
210 }
211
212 scrub_free_csums(sdev);
213 kfree(sdev);
214}
215
216static noinline_for_stack
217struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218{
219 struct scrub_dev *sdev;
220 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100221 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400222 int pages_per_bio;
Arne Jansena2de7332011-03-08 14:14:00 +0100223
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400224 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225 bio_get_nr_vecs(dev->bdev));
Arne Jansena2de7332011-03-08 14:14:00 +0100226 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227 if (!sdev)
228 goto nomem;
229 sdev->dev = dev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400230 sdev->pages_per_bio = pages_per_bio;
231 sdev->curr = -1;
Arne Jansena2de7332011-03-08 14:14:00 +0100232 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +0100233 struct scrub_bio *sbio;
234
235 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236 if (!sbio)
237 goto nomem;
238 sdev->bios[i] = sbio;
239
Arne Jansena2de7332011-03-08 14:14:00 +0100240 sbio->index = i;
241 sbio->sdev = sdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400242 sbio->page_count = 0;
243 sbio->work.func = scrub_bio_end_io_worker;
Arne Jansena2de7332011-03-08 14:14:00 +0100244
245 if (i != SCRUB_BIOS_PER_DEV-1)
246 sdev->bios[i]->next_free = i + 1;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200247 else
Arne Jansena2de7332011-03-08 14:14:00 +0100248 sdev->bios[i]->next_free = -1;
249 }
250 sdev->first_free = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400251 sdev->nodesize = dev->dev_root->nodesize;
252 sdev->leafsize = dev->dev_root->leafsize;
253 sdev->sectorsize = dev->dev_root->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100254 atomic_set(&sdev->in_flight, 0);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200255 atomic_set(&sdev->fixup_cnt, 0);
Arne Jansena2de7332011-03-08 14:14:00 +0100256 atomic_set(&sdev->cancel_req, 0);
David Sterba6c417612011-04-13 15:41:04 +0200257 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
Arne Jansena2de7332011-03-08 14:14:00 +0100258 INIT_LIST_HEAD(&sdev->csum_list);
259
260 spin_lock_init(&sdev->list_lock);
261 spin_lock_init(&sdev->stat_lock);
262 init_waitqueue_head(&sdev->list_wait);
263 return sdev;
264
265nomem:
266 scrub_free_dev(sdev);
267 return ERR_PTR(-ENOMEM);
268}
269
Jan Schmidt558540c2011-06-13 19:59:12 +0200270static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271{
272 u64 isize;
273 u32 nlink;
274 int ret;
275 int i;
276 struct extent_buffer *eb;
277 struct btrfs_inode_item *inode_item;
278 struct scrub_warning *swarn = ctx;
279 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280 struct inode_fs_paths *ipath = NULL;
281 struct btrfs_root *local_root;
282 struct btrfs_key root_key;
283
284 root_key.objectid = root;
285 root_key.type = BTRFS_ROOT_ITEM_KEY;
286 root_key.offset = (u64)-1;
287 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288 if (IS_ERR(local_root)) {
289 ret = PTR_ERR(local_root);
290 goto err;
291 }
292
293 ret = inode_item_info(inum, 0, local_root, swarn->path);
294 if (ret) {
295 btrfs_release_path(swarn->path);
296 goto err;
297 }
298
299 eb = swarn->path->nodes[0];
300 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301 struct btrfs_inode_item);
302 isize = btrfs_inode_size(eb, inode_item);
303 nlink = btrfs_inode_nlink(eb, inode_item);
304 btrfs_release_path(swarn->path);
305
306 ipath = init_ipath(4096, local_root, swarn->path);
Dan Carpenter26bdef52011-11-16 11:28:01 +0300307 if (IS_ERR(ipath)) {
308 ret = PTR_ERR(ipath);
309 ipath = NULL;
310 goto err;
311 }
Jan Schmidt558540c2011-06-13 19:59:12 +0200312 ret = paths_from_inode(inum, ipath);
313
314 if (ret < 0)
315 goto err;
316
317 /*
318 * we deliberately ignore the bit ipath might have been too small to
319 * hold all of the paths here
320 */
321 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
324 "length %llu, links %u (path: %s)\n", swarn->errstr,
325 swarn->logical, swarn->dev->name,
326 (unsigned long long)swarn->sector, root, inum, offset,
327 min(isize - offset, (u64)PAGE_SIZE), nlink,
Jeff Mahoney745c4d82011-11-20 07:31:57 -0500328 (char *)(unsigned long)ipath->fspath->val[i]);
Jan Schmidt558540c2011-06-13 19:59:12 +0200329
330 free_ipath(ipath);
331 return 0;
332
333err:
334 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336 "resolving failed with ret=%d\n", swarn->errstr,
337 swarn->logical, swarn->dev->name,
338 (unsigned long long)swarn->sector, root, inum, offset, ret);
339
340 free_ipath(ipath);
341 return 0;
342}
343
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400344static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
Jan Schmidt558540c2011-06-13 19:59:12 +0200345{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400346 struct btrfs_device *dev = sblock->sdev->dev;
Jan Schmidt558540c2011-06-13 19:59:12 +0200347 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348 struct btrfs_path *path;
349 struct btrfs_key found_key;
350 struct extent_buffer *eb;
351 struct btrfs_extent_item *ei;
352 struct scrub_warning swarn;
353 u32 item_size;
354 int ret;
355 u64 ref_root;
356 u8 ref_level;
357 unsigned long ptr = 0;
358 const int bufsize = 4096;
Jan Schmidt4692cf52011-12-02 14:56:41 +0100359 u64 extent_item_pos;
Jan Schmidt558540c2011-06-13 19:59:12 +0200360
361 path = btrfs_alloc_path();
362
363 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400365 BUG_ON(sblock->page_count < 1);
366 swarn.sector = (sblock->pagev[0].physical) >> 9;
367 swarn.logical = sblock->pagev[0].logical;
Jan Schmidt558540c2011-06-13 19:59:12 +0200368 swarn.errstr = errstr;
369 swarn.dev = dev;
370 swarn.msg_bufsize = bufsize;
371 swarn.scratch_bufsize = bufsize;
372
373 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374 goto out;
375
376 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377 if (ret < 0)
378 goto out;
379
Jan Schmidt4692cf52011-12-02 14:56:41 +0100380 extent_item_pos = swarn.logical - found_key.objectid;
Jan Schmidt558540c2011-06-13 19:59:12 +0200381 swarn.extent_item_size = found_key.offset;
382
383 eb = path->nodes[0];
384 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385 item_size = btrfs_item_size_nr(eb, path->slots[0]);
Jan Schmidt4692cf52011-12-02 14:56:41 +0100386 btrfs_release_path(path);
Jan Schmidt558540c2011-06-13 19:59:12 +0200387
388 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389 do {
390 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391 &ref_root, &ref_level);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400392 printk(KERN_WARNING
393 "btrfs: %s at logical %llu on dev %s, "
Jan Schmidt558540c2011-06-13 19:59:12 +0200394 "sector %llu: metadata %s (level %d) in tree "
395 "%llu\n", errstr, swarn.logical, dev->name,
396 (unsigned long long)swarn.sector,
397 ref_level ? "node" : "leaf",
398 ret < 0 ? -1 : ref_level,
399 ret < 0 ? -1 : ref_root);
400 } while (ret != 1);
401 } else {
402 swarn.path = path;
Jan Schmidt7a3ae2f2012-03-23 17:32:28 +0100403 iterate_extent_inodes(fs_info, found_key.objectid,
404 extent_item_pos, 1,
Jan Schmidt558540c2011-06-13 19:59:12 +0200405 scrub_print_warning_inode, &swarn);
406 }
407
408out:
409 btrfs_free_path(path);
410 kfree(swarn.scratch_buf);
411 kfree(swarn.msg_buf);
412}
413
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200414static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415{
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200416 struct page *page = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200417 unsigned long index;
418 struct scrub_fixup_nodatasum *fixup = ctx;
419 int ret;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200420 int corrected = 0;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200421 struct btrfs_key key;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200422 struct inode *inode = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200423 u64 end = offset + PAGE_SIZE - 1;
424 struct btrfs_root *local_root;
425
426 key.objectid = root;
427 key.type = BTRFS_ROOT_ITEM_KEY;
428 key.offset = (u64)-1;
429 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430 if (IS_ERR(local_root))
431 return PTR_ERR(local_root);
432
433 key.type = BTRFS_INODE_ITEM_KEY;
434 key.objectid = inum;
435 key.offset = 0;
436 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437 if (IS_ERR(inode))
438 return PTR_ERR(inode);
439
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200440 index = offset >> PAGE_CACHE_SHIFT;
441
442 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200443 if (!page) {
444 ret = -ENOMEM;
445 goto out;
446 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200447
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200448 if (PageUptodate(page)) {
449 struct btrfs_mapping_tree *map_tree;
450 if (PageDirty(page)) {
451 /*
452 * we need to write the data to the defect sector. the
453 * data that was in that sector is not in memory,
454 * because the page was modified. we must not write the
455 * modified page to that sector.
456 *
457 * TODO: what could be done here: wait for the delalloc
458 * runner to write out that page (might involve
459 * COW) and see whether the sector is still
460 * referenced afterwards.
461 *
462 * For the meantime, we'll treat this error
463 * incorrectable, although there is a chance that a
464 * later scrub will find the bad sector again and that
465 * there's no dirty page in memory, then.
466 */
467 ret = -EIO;
468 goto out;
469 }
470 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472 fixup->logical, page,
473 fixup->mirror_num);
474 unlock_page(page);
475 corrected = !ret;
476 } else {
477 /*
478 * we need to get good data first. the general readpage path
479 * will call repair_io_failure for us, we just have to make
480 * sure we read the bad mirror.
481 */
482 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483 EXTENT_DAMAGED, GFP_NOFS);
484 if (ret) {
485 /* set_extent_bits should give proper error */
486 WARN_ON(ret > 0);
487 if (ret > 0)
488 ret = -EFAULT;
489 goto out;
490 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200491
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200492 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493 btrfs_get_extent,
494 fixup->mirror_num);
495 wait_on_page_locked(page);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200496
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200497 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498 end, EXTENT_DAMAGED, 0, NULL);
499 if (!corrected)
500 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501 EXTENT_DAMAGED, GFP_NOFS);
502 }
503
504out:
505 if (page)
506 put_page(page);
507 if (inode)
508 iput(inode);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200509
510 if (ret < 0)
511 return ret;
512
513 if (ret == 0 && corrected) {
514 /*
515 * we only need to call readpage for one of the inodes belonging
516 * to this extent. so make iterate_extent_inodes stop
517 */
518 return 1;
519 }
520
521 return -EIO;
522}
523
524static void scrub_fixup_nodatasum(struct btrfs_work *work)
525{
526 int ret;
527 struct scrub_fixup_nodatasum *fixup;
528 struct scrub_dev *sdev;
529 struct btrfs_trans_handle *trans = NULL;
530 struct btrfs_fs_info *fs_info;
531 struct btrfs_path *path;
532 int uncorrectable = 0;
533
534 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535 sdev = fixup->sdev;
536 fs_info = fixup->root->fs_info;
537
538 path = btrfs_alloc_path();
539 if (!path) {
540 spin_lock(&sdev->stat_lock);
541 ++sdev->stat.malloc_errors;
542 spin_unlock(&sdev->stat_lock);
543 uncorrectable = 1;
544 goto out;
545 }
546
547 trans = btrfs_join_transaction(fixup->root);
548 if (IS_ERR(trans)) {
549 uncorrectable = 1;
550 goto out;
551 }
552
553 /*
554 * the idea is to trigger a regular read through the standard path. we
555 * read a page from the (failed) logical address by specifying the
556 * corresponding copynum of the failed sector. thus, that readpage is
557 * expected to fail.
558 * that is the point where on-the-fly error correction will kick in
559 * (once it's finished) and rewrite the failed sector if a good copy
560 * can be found.
561 */
562 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563 path, scrub_fixup_readpage,
564 fixup);
565 if (ret < 0) {
566 uncorrectable = 1;
567 goto out;
568 }
569 WARN_ON(ret != 1);
570
571 spin_lock(&sdev->stat_lock);
572 ++sdev->stat.corrected_errors;
573 spin_unlock(&sdev->stat_lock);
574
575out:
576 if (trans && !IS_ERR(trans))
577 btrfs_end_transaction(trans, fixup->root);
578 if (uncorrectable) {
579 spin_lock(&sdev->stat_lock);
580 ++sdev->stat.uncorrectable_errors;
581 spin_unlock(&sdev->stat_lock);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400582 printk_ratelimited(KERN_ERR
583 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584 (unsigned long long)fixup->logical, sdev->dev->name);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200585 }
586
587 btrfs_free_path(path);
588 kfree(fixup);
589
590 /* see caller why we're pretending to be paused in the scrub counters */
591 mutex_lock(&fs_info->scrub_lock);
592 atomic_dec(&fs_info->scrubs_running);
593 atomic_dec(&fs_info->scrubs_paused);
594 mutex_unlock(&fs_info->scrub_lock);
595 atomic_dec(&sdev->fixup_cnt);
596 wake_up(&fs_info->scrub_pause_wait);
597 wake_up(&sdev->list_wait);
598}
599
Arne Jansena2de7332011-03-08 14:14:00 +0100600/*
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400601 * scrub_handle_errored_block gets called when either verification of the
602 * pages failed or the bio failed to read, e.g. with EIO. In the latter
603 * case, this function handles all pages in the bio, even though only one
604 * may be bad.
605 * The goal of this function is to repair the errored block by using the
606 * contents of one of the mirrors.
Arne Jansena2de7332011-03-08 14:14:00 +0100607 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400608static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
Arne Jansena2de7332011-03-08 14:14:00 +0100609{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400610 struct scrub_dev *sdev = sblock_to_check->sdev;
611 struct btrfs_fs_info *fs_info;
Arne Jansena2de7332011-03-08 14:14:00 +0100612 u64 length;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400613 u64 logical;
614 u64 generation;
615 unsigned int failed_mirror_index;
616 unsigned int is_metadata;
617 unsigned int have_csum;
618 u8 *csum;
619 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620 struct scrub_block *sblock_bad;
Arne Jansena2de7332011-03-08 14:14:00 +0100621 int ret;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400622 int mirror_index;
623 int page_num;
624 int success;
625 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626 DEFAULT_RATELIMIT_BURST);
Arne Jansena2de7332011-03-08 14:14:00 +0100627
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400628 BUG_ON(sblock_to_check->page_count < 1);
629 fs_info = sdev->dev->dev_root->fs_info;
630 length = sblock_to_check->page_count * PAGE_SIZE;
631 logical = sblock_to_check->pagev[0].logical;
632 generation = sblock_to_check->pagev[0].generation;
633 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635 is_metadata = !(sblock_to_check->pagev[0].flags &
636 BTRFS_EXTENT_FLAG_DATA);
637 have_csum = sblock_to_check->pagev[0].have_csum;
638 csum = sblock_to_check->pagev[0].csum;
639
640 /*
641 * read all mirrors one after the other. This includes to
642 * re-read the extent or metadata block that failed (that was
643 * the cause that this fixup code is called) another time,
644 * page by page this time in order to know which pages
645 * caused I/O errors and which ones are good (for all mirrors).
646 * It is the goal to handle the situation when more than one
647 * mirror contains I/O errors, but the errors do not
648 * overlap, i.e. the data can be repaired by selecting the
649 * pages from those mirrors without I/O error on the
650 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651 * would be that mirror #1 has an I/O error on the first page,
652 * the second page is good, and mirror #2 has an I/O error on
653 * the second page, but the first page is good.
654 * Then the first page of the first mirror can be repaired by
655 * taking the first page of the second mirror, and the
656 * second page of the second mirror can be repaired by
657 * copying the contents of the 2nd page of the 1st mirror.
658 * One more note: if the pages of one mirror contain I/O
659 * errors, the checksum cannot be verified. In order to get
660 * the best data for repairing, the first attempt is to find
661 * a mirror without I/O errors and with a validated checksum.
662 * Only if this is not possible, the pages are picked from
663 * mirrors with I/O errors without considering the checksum.
664 * If the latter is the case, at the end, the checksum of the
665 * repaired area is verified in order to correctly maintain
666 * the statistics.
667 */
668
669 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670 sizeof(*sblocks_for_recheck),
671 GFP_NOFS);
672 if (!sblocks_for_recheck) {
673 spin_lock(&sdev->stat_lock);
674 sdev->stat.malloc_errors++;
675 sdev->stat.read_errors++;
676 sdev->stat.uncorrectable_errors++;
677 spin_unlock(&sdev->stat_lock);
678 goto out;
679 }
680
681 /* setup the context, map the logical blocks and alloc the pages */
682 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683 logical, sblocks_for_recheck);
684 if (ret) {
685 spin_lock(&sdev->stat_lock);
686 sdev->stat.read_errors++;
687 sdev->stat.uncorrectable_errors++;
688 spin_unlock(&sdev->stat_lock);
689 goto out;
690 }
691 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692 sblock_bad = sblocks_for_recheck + failed_mirror_index;
693
694 /* build and submit the bios for the failed mirror, check checksums */
695 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696 csum, generation, sdev->csum_size);
697 if (ret) {
698 spin_lock(&sdev->stat_lock);
699 sdev->stat.read_errors++;
700 sdev->stat.uncorrectable_errors++;
701 spin_unlock(&sdev->stat_lock);
702 goto out;
703 }
704
705 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706 sblock_bad->no_io_error_seen) {
707 /*
708 * the error disappeared after reading page by page, or
709 * the area was part of a huge bio and other parts of the
710 * bio caused I/O errors, or the block layer merged several
711 * read requests into one and the error is caused by a
712 * different bio (usually one of the two latter cases is
713 * the cause)
714 */
715 spin_lock(&sdev->stat_lock);
716 sdev->stat.unverified_errors++;
717 spin_unlock(&sdev->stat_lock);
718
719 goto out;
720 }
721
722 if (!sblock_bad->no_io_error_seen) {
723 spin_lock(&sdev->stat_lock);
724 sdev->stat.read_errors++;
725 spin_unlock(&sdev->stat_lock);
726 if (__ratelimit(&_rs))
727 scrub_print_warning("i/o error", sblock_to_check);
728 } else if (sblock_bad->checksum_error) {
729 spin_lock(&sdev->stat_lock);
730 sdev->stat.csum_errors++;
731 spin_unlock(&sdev->stat_lock);
732 if (__ratelimit(&_rs))
733 scrub_print_warning("checksum error", sblock_to_check);
734 } else if (sblock_bad->header_error) {
735 spin_lock(&sdev->stat_lock);
736 sdev->stat.verify_errors++;
737 spin_unlock(&sdev->stat_lock);
738 if (__ratelimit(&_rs))
739 scrub_print_warning("checksum/header error",
740 sblock_to_check);
741 }
742
743 if (sdev->readonly)
744 goto did_not_correct_error;
745
746 if (!is_metadata && !have_csum) {
747 struct scrub_fixup_nodatasum *fixup_nodatasum;
748
749 /*
750 * !is_metadata and !have_csum, this means that the data
751 * might not be COW'ed, that it might be modified
752 * concurrently. The general strategy to work on the
753 * commit root does not help in the case when COW is not
754 * used.
755 */
756 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757 if (!fixup_nodatasum)
758 goto did_not_correct_error;
759 fixup_nodatasum->sdev = sdev;
760 fixup_nodatasum->logical = logical;
761 fixup_nodatasum->root = fs_info->extent_root;
762 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
Arne Jansena2de7332011-03-08 14:14:00 +0100763 /*
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200764 * increment scrubs_running to prevent cancel requests from
765 * completing as long as a fixup worker is running. we must also
766 * increment scrubs_paused to prevent deadlocking on pause
767 * requests used for transactions commits (as the worker uses a
768 * transaction context). it is safe to regard the fixup worker
769 * as paused for all matters practical. effectively, we only
770 * avoid cancellation requests from completing.
Arne Jansena2de7332011-03-08 14:14:00 +0100771 */
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200772 mutex_lock(&fs_info->scrub_lock);
773 atomic_inc(&fs_info->scrubs_running);
774 atomic_inc(&fs_info->scrubs_paused);
775 mutex_unlock(&fs_info->scrub_lock);
776 atomic_inc(&sdev->fixup_cnt);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400777 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778 btrfs_queue_worker(&fs_info->scrub_workers,
779 &fixup_nodatasum->work);
Arne Jansena2de7332011-03-08 14:14:00 +0100780 goto out;
781 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400782
783 /*
784 * now build and submit the bios for the other mirrors, check
785 * checksums
786 */
787 for (mirror_index = 0;
788 mirror_index < BTRFS_MAX_MIRRORS &&
789 sblocks_for_recheck[mirror_index].page_count > 0;
790 mirror_index++) {
791 if (mirror_index == failed_mirror_index)
792 continue;
793
794 /* build and submit the bios, check checksums */
795 ret = scrub_recheck_block(fs_info,
796 sblocks_for_recheck + mirror_index,
797 is_metadata, have_csum, csum,
798 generation, sdev->csum_size);
799 if (ret)
800 goto did_not_correct_error;
801 }
802
803 /*
804 * first try to pick the mirror which is completely without I/O
805 * errors and also does not have a checksum error.
806 * If one is found, and if a checksum is present, the full block
807 * that is known to contain an error is rewritten. Afterwards
808 * the block is known to be corrected.
809 * If a mirror is found which is completely correct, and no
810 * checksum is present, only those pages are rewritten that had
811 * an I/O error in the block to be repaired, since it cannot be
812 * determined, which copy of the other pages is better (and it
813 * could happen otherwise that a correct page would be
814 * overwritten by a bad one).
815 */
816 for (mirror_index = 0;
817 mirror_index < BTRFS_MAX_MIRRORS &&
818 sblocks_for_recheck[mirror_index].page_count > 0;
819 mirror_index++) {
820 struct scrub_block *sblock_other = sblocks_for_recheck +
821 mirror_index;
822
823 if (!sblock_other->header_error &&
824 !sblock_other->checksum_error &&
825 sblock_other->no_io_error_seen) {
826 int force_write = is_metadata || have_csum;
827
828 ret = scrub_repair_block_from_good_copy(sblock_bad,
829 sblock_other,
830 force_write);
831 if (0 == ret)
832 goto corrected_error;
Arne Jansena2de7332011-03-08 14:14:00 +0100833 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400834 }
835
836 /*
837 * in case of I/O errors in the area that is supposed to be
838 * repaired, continue by picking good copies of those pages.
839 * Select the good pages from mirrors to rewrite bad pages from
840 * the area to fix. Afterwards verify the checksum of the block
841 * that is supposed to be repaired. This verification step is
842 * only done for the purpose of statistic counting and for the
843 * final scrub report, whether errors remain.
844 * A perfect algorithm could make use of the checksum and try
845 * all possible combinations of pages from the different mirrors
846 * until the checksum verification succeeds. For example, when
847 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848 * of mirror #2 is readable but the final checksum test fails,
849 * then the 2nd page of mirror #3 could be tried, whether now
850 * the final checksum succeedes. But this would be a rare
851 * exception and is therefore not implemented. At least it is
852 * avoided that the good copy is overwritten.
853 * A more useful improvement would be to pick the sectors
854 * without I/O error based on sector sizes (512 bytes on legacy
855 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856 * mirror could be repaired by taking 512 byte of a different
857 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858 * area are unreadable.
859 */
860
861 /* can only fix I/O errors from here on */
862 if (sblock_bad->no_io_error_seen)
863 goto did_not_correct_error;
864
865 success = 1;
866 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868
869 if (!page_bad->io_error)
870 continue;
871
872 for (mirror_index = 0;
873 mirror_index < BTRFS_MAX_MIRRORS &&
874 sblocks_for_recheck[mirror_index].page_count > 0;
875 mirror_index++) {
876 struct scrub_block *sblock_other = sblocks_for_recheck +
877 mirror_index;
878 struct scrub_page *page_other = sblock_other->pagev +
879 page_num;
880
881 if (!page_other->io_error) {
882 ret = scrub_repair_page_from_good_copy(
883 sblock_bad, sblock_other, page_num, 0);
884 if (0 == ret) {
885 page_bad->io_error = 0;
886 break; /* succeeded for this page */
887 }
Jan Schmidt13db62b2011-06-13 19:56:13 +0200888 }
889 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400890
891 if (page_bad->io_error) {
892 /* did not find a mirror to copy the page from */
893 success = 0;
894 }
895 }
896
897 if (success) {
898 if (is_metadata || have_csum) {
899 /*
900 * need to verify the checksum now that all
901 * sectors on disk are repaired (the write
902 * request for data to be repaired is on its way).
903 * Just be lazy and use scrub_recheck_block()
904 * which re-reads the data before the checksum
905 * is verified, but most likely the data comes out
906 * of the page cache.
907 */
908 ret = scrub_recheck_block(fs_info, sblock_bad,
909 is_metadata, have_csum, csum,
910 generation, sdev->csum_size);
911 if (!ret && !sblock_bad->header_error &&
912 !sblock_bad->checksum_error &&
913 sblock_bad->no_io_error_seen)
914 goto corrected_error;
915 else
916 goto did_not_correct_error;
917 } else {
918corrected_error:
919 spin_lock(&sdev->stat_lock);
920 sdev->stat.corrected_errors++;
921 spin_unlock(&sdev->stat_lock);
922 printk_ratelimited(KERN_ERR
923 "btrfs: fixed up error at logical %llu on dev %s\n",
924 (unsigned long long)logical, sdev->dev->name);
925 }
926 } else {
927did_not_correct_error:
928 spin_lock(&sdev->stat_lock);
929 sdev->stat.uncorrectable_errors++;
930 spin_unlock(&sdev->stat_lock);
931 printk_ratelimited(KERN_ERR
932 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933 (unsigned long long)logical, sdev->dev->name);
Arne Jansena2de7332011-03-08 14:14:00 +0100934 }
935
936out:
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400937 if (sblocks_for_recheck) {
938 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939 mirror_index++) {
940 struct scrub_block *sblock = sblocks_for_recheck +
941 mirror_index;
942 int page_index;
943
944 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945 page_index++)
946 if (sblock->pagev[page_index].page)
947 __free_page(
948 sblock->pagev[page_index].page);
949 }
950 kfree(sblocks_for_recheck);
951 }
952
953 return 0;
Arne Jansena2de7332011-03-08 14:14:00 +0100954}
955
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400956static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957 struct btrfs_mapping_tree *map_tree,
958 u64 length, u64 logical,
959 struct scrub_block *sblocks_for_recheck)
Arne Jansena2de7332011-03-08 14:14:00 +0100960{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400961 int page_index;
962 int mirror_index;
963 int ret;
964
965 /*
966 * note: the three members sdev, ref_count and outstanding_pages
967 * are not used (and not set) in the blocks that are used for
968 * the recheck procedure
969 */
970
971 page_index = 0;
972 while (length > 0) {
973 u64 sublen = min_t(u64, length, PAGE_SIZE);
974 u64 mapped_length = sublen;
975 struct btrfs_bio *bbio = NULL;
976
977 /*
978 * with a length of PAGE_SIZE, each returned stripe
979 * represents one mirror
980 */
981 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982 &bbio, 0);
983 if (ret || !bbio || mapped_length < sublen) {
984 kfree(bbio);
985 return -EIO;
986 }
987
988 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990 mirror_index++) {
991 struct scrub_block *sblock;
992 struct scrub_page *page;
993
994 if (mirror_index >= BTRFS_MAX_MIRRORS)
995 continue;
996
997 sblock = sblocks_for_recheck + mirror_index;
998 page = sblock->pagev + page_index;
999 page->logical = logical;
1000 page->physical = bbio->stripes[mirror_index].physical;
1001 page->bdev = bbio->stripes[mirror_index].dev->bdev;
1002 page->mirror_num = mirror_index + 1;
1003 page->page = alloc_page(GFP_NOFS);
1004 if (!page->page) {
1005 spin_lock(&sdev->stat_lock);
1006 sdev->stat.malloc_errors++;
1007 spin_unlock(&sdev->stat_lock);
1008 return -ENOMEM;
1009 }
1010 sblock->page_count++;
1011 }
1012 kfree(bbio);
1013 length -= sublen;
1014 logical += sublen;
1015 page_index++;
1016 }
1017
1018 return 0;
1019}
1020
1021/*
1022 * this function will check the on disk data for checksum errors, header
1023 * errors and read I/O errors. If any I/O errors happen, the exact pages
1024 * which are errored are marked as being bad. The goal is to enable scrub
1025 * to take those pages that are not errored from all the mirrors so that
1026 * the pages that are errored in the just handled mirror can be repaired.
1027 */
1028static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1029 struct scrub_block *sblock, int is_metadata,
1030 int have_csum, u8 *csum, u64 generation,
1031 u16 csum_size)
1032{
1033 int page_num;
1034
1035 sblock->no_io_error_seen = 1;
1036 sblock->header_error = 0;
1037 sblock->checksum_error = 0;
1038
1039 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1040 struct bio *bio;
1041 int ret;
1042 struct scrub_page *page = sblock->pagev + page_num;
1043 DECLARE_COMPLETION_ONSTACK(complete);
1044
1045 BUG_ON(!page->page);
1046 bio = bio_alloc(GFP_NOFS, 1);
Tsutomu Itohe627ee72012-04-12 16:03:56 -04001047 if (!bio)
1048 return -EIO;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001049 bio->bi_bdev = page->bdev;
1050 bio->bi_sector = page->physical >> 9;
1051 bio->bi_end_io = scrub_complete_bio_end_io;
1052 bio->bi_private = &complete;
1053
1054 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1055 if (PAGE_SIZE != ret) {
1056 bio_put(bio);
1057 return -EIO;
1058 }
1059 btrfsic_submit_bio(READ, bio);
1060
1061 /* this will also unplug the queue */
1062 wait_for_completion(&complete);
1063
1064 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1065 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1066 sblock->no_io_error_seen = 0;
1067 bio_put(bio);
1068 }
1069
1070 if (sblock->no_io_error_seen)
1071 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1072 have_csum, csum, generation,
1073 csum_size);
1074
1075 return 0;
1076}
1077
1078static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1079 struct scrub_block *sblock,
1080 int is_metadata, int have_csum,
1081 const u8 *csum, u64 generation,
1082 u16 csum_size)
1083{
1084 int page_num;
1085 u8 calculated_csum[BTRFS_CSUM_SIZE];
1086 u32 crc = ~(u32)0;
1087 struct btrfs_root *root = fs_info->extent_root;
1088 void *mapped_buffer;
1089
1090 BUG_ON(!sblock->pagev[0].page);
1091 if (is_metadata) {
1092 struct btrfs_header *h;
1093
1094 mapped_buffer = kmap_atomic(sblock->pagev[0].page, KM_USER0);
1095 h = (struct btrfs_header *)mapped_buffer;
1096
1097 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1098 generation != le64_to_cpu(h->generation) ||
1099 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1100 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1101 BTRFS_UUID_SIZE))
1102 sblock->header_error = 1;
1103 csum = h->csum;
1104 } else {
1105 if (!have_csum)
1106 return;
1107
1108 mapped_buffer = kmap_atomic(sblock->pagev[0].page, KM_USER0);
1109 }
1110
1111 for (page_num = 0;;) {
1112 if (page_num == 0 && is_metadata)
1113 crc = btrfs_csum_data(root,
1114 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1115 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1116 else
1117 crc = btrfs_csum_data(root, mapped_buffer, crc,
1118 PAGE_SIZE);
1119
1120 kunmap_atomic(mapped_buffer, KM_USER0);
1121 page_num++;
1122 if (page_num >= sblock->page_count)
1123 break;
1124 BUG_ON(!sblock->pagev[page_num].page);
1125
1126 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page,
1127 KM_USER0);
1128 }
1129
1130 btrfs_csum_final(crc, calculated_csum);
1131 if (memcmp(calculated_csum, csum, csum_size))
1132 sblock->checksum_error = 1;
1133}
1134
1135static void scrub_complete_bio_end_io(struct bio *bio, int err)
1136{
1137 complete((struct completion *)bio->bi_private);
1138}
1139
1140static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1141 struct scrub_block *sblock_good,
1142 int force_write)
1143{
1144 int page_num;
1145 int ret = 0;
1146
1147 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1148 int ret_sub;
1149
1150 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1151 sblock_good,
1152 page_num,
1153 force_write);
1154 if (ret_sub)
1155 ret = ret_sub;
1156 }
1157
1158 return ret;
1159}
1160
1161static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1162 struct scrub_block *sblock_good,
1163 int page_num, int force_write)
1164{
1165 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1166 struct scrub_page *page_good = sblock_good->pagev + page_num;
1167
1168 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1169 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1170 if (force_write || sblock_bad->header_error ||
1171 sblock_bad->checksum_error || page_bad->io_error) {
1172 struct bio *bio;
1173 int ret;
1174 DECLARE_COMPLETION_ONSTACK(complete);
1175
1176 bio = bio_alloc(GFP_NOFS, 1);
Tsutomu Itohe627ee72012-04-12 16:03:56 -04001177 if (!bio)
1178 return -EIO;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001179 bio->bi_bdev = page_bad->bdev;
1180 bio->bi_sector = page_bad->physical >> 9;
1181 bio->bi_end_io = scrub_complete_bio_end_io;
1182 bio->bi_private = &complete;
1183
1184 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1185 if (PAGE_SIZE != ret) {
1186 bio_put(bio);
1187 return -EIO;
1188 }
1189 btrfsic_submit_bio(WRITE, bio);
1190
1191 /* this will also unplug the queue */
1192 wait_for_completion(&complete);
1193 bio_put(bio);
1194 }
1195
1196 return 0;
1197}
1198
1199static void scrub_checksum(struct scrub_block *sblock)
1200{
1201 u64 flags;
1202 int ret;
1203
1204 BUG_ON(sblock->page_count < 1);
1205 flags = sblock->pagev[0].flags;
1206 ret = 0;
1207 if (flags & BTRFS_EXTENT_FLAG_DATA)
1208 ret = scrub_checksum_data(sblock);
1209 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1210 ret = scrub_checksum_tree_block(sblock);
1211 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1212 (void)scrub_checksum_super(sblock);
1213 else
1214 WARN_ON(1);
1215 if (ret)
1216 scrub_handle_errored_block(sblock);
1217}
1218
1219static int scrub_checksum_data(struct scrub_block *sblock)
1220{
1221 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001222 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001223 u8 *on_disk_csum;
1224 struct page *page;
1225 void *buffer;
Arne Jansena2de7332011-03-08 14:14:00 +01001226 u32 crc = ~(u32)0;
1227 int fail = 0;
1228 struct btrfs_root *root = sdev->dev->dev_root;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001229 u64 len;
1230 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001231
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001232 BUG_ON(sblock->page_count < 1);
1233 if (!sblock->pagev[0].have_csum)
Arne Jansena2de7332011-03-08 14:14:00 +01001234 return 0;
1235
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001236 on_disk_csum = sblock->pagev[0].csum;
1237 page = sblock->pagev[0].page;
1238 buffer = kmap_atomic(page, KM_USER0);
1239
1240 len = sdev->sectorsize;
1241 index = 0;
1242 for (;;) {
1243 u64 l = min_t(u64, len, PAGE_SIZE);
1244
1245 crc = btrfs_csum_data(root, buffer, crc, l);
1246 kunmap_atomic(buffer, KM_USER0);
1247 len -= l;
1248 if (len == 0)
1249 break;
1250 index++;
1251 BUG_ON(index >= sblock->page_count);
1252 BUG_ON(!sblock->pagev[index].page);
1253 page = sblock->pagev[index].page;
1254 buffer = kmap_atomic(page, KM_USER0);
1255 }
1256
Arne Jansena2de7332011-03-08 14:14:00 +01001257 btrfs_csum_final(crc, csum);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001258 if (memcmp(csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001259 fail = 1;
1260
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001261 if (fail) {
1262 spin_lock(&sdev->stat_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01001263 ++sdev->stat.csum_errors;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001264 spin_unlock(&sdev->stat_lock);
1265 }
Arne Jansena2de7332011-03-08 14:14:00 +01001266
1267 return fail;
1268}
1269
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001270static int scrub_checksum_tree_block(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001271{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001272 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001273 struct btrfs_header *h;
1274 struct btrfs_root *root = sdev->dev->dev_root;
1275 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001276 u8 calculated_csum[BTRFS_CSUM_SIZE];
1277 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1278 struct page *page;
1279 void *mapped_buffer;
1280 u64 mapped_size;
1281 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001282 u32 crc = ~(u32)0;
1283 int fail = 0;
1284 int crc_fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001285 u64 len;
1286 int index;
1287
1288 BUG_ON(sblock->page_count < 1);
1289 page = sblock->pagev[0].page;
1290 mapped_buffer = kmap_atomic(page, KM_USER0);
1291 h = (struct btrfs_header *)mapped_buffer;
1292 memcpy(on_disk_csum, h->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001293
1294 /*
1295 * we don't use the getter functions here, as we
1296 * a) don't have an extent buffer and
1297 * b) the page is already kmapped
1298 */
Arne Jansena2de7332011-03-08 14:14:00 +01001299
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001300 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001301 ++fail;
1302
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001303 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001304 ++fail;
1305
1306 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1307 ++fail;
1308
1309 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1310 BTRFS_UUID_SIZE))
1311 ++fail;
1312
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001313 BUG_ON(sdev->nodesize != sdev->leafsize);
1314 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1315 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1316 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1317 index = 0;
1318 for (;;) {
1319 u64 l = min_t(u64, len, mapped_size);
1320
1321 crc = btrfs_csum_data(root, p, crc, l);
1322 kunmap_atomic(mapped_buffer, KM_USER0);
1323 len -= l;
1324 if (len == 0)
1325 break;
1326 index++;
1327 BUG_ON(index >= sblock->page_count);
1328 BUG_ON(!sblock->pagev[index].page);
1329 page = sblock->pagev[index].page;
1330 mapped_buffer = kmap_atomic(page, KM_USER0);
1331 mapped_size = PAGE_SIZE;
1332 p = mapped_buffer;
1333 }
1334
1335 btrfs_csum_final(crc, calculated_csum);
1336 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001337 ++crc_fail;
1338
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001339 if (crc_fail || fail) {
1340 spin_lock(&sdev->stat_lock);
1341 if (crc_fail)
1342 ++sdev->stat.csum_errors;
1343 if (fail)
1344 ++sdev->stat.verify_errors;
1345 spin_unlock(&sdev->stat_lock);
1346 }
Arne Jansena2de7332011-03-08 14:14:00 +01001347
1348 return fail || crc_fail;
1349}
1350
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001351static int scrub_checksum_super(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001352{
1353 struct btrfs_super_block *s;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001354 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001355 struct btrfs_root *root = sdev->dev->dev_root;
1356 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001357 u8 calculated_csum[BTRFS_CSUM_SIZE];
1358 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1359 struct page *page;
1360 void *mapped_buffer;
1361 u64 mapped_size;
1362 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001363 u32 crc = ~(u32)0;
1364 int fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001365 u64 len;
1366 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001367
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001368 BUG_ON(sblock->page_count < 1);
1369 page = sblock->pagev[0].page;
1370 mapped_buffer = kmap_atomic(page, KM_USER0);
1371 s = (struct btrfs_super_block *)mapped_buffer;
1372 memcpy(on_disk_csum, s->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001373
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001374 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001375 ++fail;
1376
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001377 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001378 ++fail;
1379
1380 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1381 ++fail;
1382
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001383 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1384 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1385 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1386 index = 0;
1387 for (;;) {
1388 u64 l = min_t(u64, len, mapped_size);
1389
1390 crc = btrfs_csum_data(root, p, crc, l);
1391 kunmap_atomic(mapped_buffer, KM_USER0);
1392 len -= l;
1393 if (len == 0)
1394 break;
1395 index++;
1396 BUG_ON(index >= sblock->page_count);
1397 BUG_ON(!sblock->pagev[index].page);
1398 page = sblock->pagev[index].page;
1399 mapped_buffer = kmap_atomic(page, KM_USER0);
1400 mapped_size = PAGE_SIZE;
1401 p = mapped_buffer;
1402 }
1403
1404 btrfs_csum_final(crc, calculated_csum);
1405 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001406 ++fail;
1407
1408 if (fail) {
1409 /*
1410 * if we find an error in a super block, we just report it.
1411 * They will get written with the next transaction commit
1412 * anyway
1413 */
1414 spin_lock(&sdev->stat_lock);
1415 ++sdev->stat.super_errors;
1416 spin_unlock(&sdev->stat_lock);
1417 }
1418
1419 return fail;
1420}
1421
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001422static void scrub_block_get(struct scrub_block *sblock)
1423{
1424 atomic_inc(&sblock->ref_count);
1425}
1426
1427static void scrub_block_put(struct scrub_block *sblock)
1428{
1429 if (atomic_dec_and_test(&sblock->ref_count)) {
1430 int i;
1431
1432 for (i = 0; i < sblock->page_count; i++)
1433 if (sblock->pagev[i].page)
1434 __free_page(sblock->pagev[i].page);
1435 kfree(sblock);
1436 }
1437}
1438
Stefan Behrens1623ede2012-03-27 14:21:26 -04001439static void scrub_submit(struct scrub_dev *sdev)
Arne Jansena2de7332011-03-08 14:14:00 +01001440{
1441 struct scrub_bio *sbio;
1442
1443 if (sdev->curr == -1)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001444 return;
Arne Jansena2de7332011-03-08 14:14:00 +01001445
1446 sbio = sdev->bios[sdev->curr];
Arne Jansena2de7332011-03-08 14:14:00 +01001447 sdev->curr = -1;
1448 atomic_inc(&sdev->in_flight);
1449
Stefan Behrens21adbd52011-11-09 13:44:05 +01001450 btrfsic_submit_bio(READ, sbio->bio);
Arne Jansena2de7332011-03-08 14:14:00 +01001451}
1452
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001453static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1454 struct scrub_page *spage)
Arne Jansena2de7332011-03-08 14:14:00 +01001455{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001456 struct scrub_block *sblock = spage->sblock;
Arne Jansena2de7332011-03-08 14:14:00 +01001457 struct scrub_bio *sbio;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001458 int ret;
Arne Jansena2de7332011-03-08 14:14:00 +01001459
1460again:
1461 /*
1462 * grab a fresh bio or wait for one to become available
1463 */
1464 while (sdev->curr == -1) {
1465 spin_lock(&sdev->list_lock);
1466 sdev->curr = sdev->first_free;
1467 if (sdev->curr != -1) {
1468 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1469 sdev->bios[sdev->curr]->next_free = -1;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001470 sdev->bios[sdev->curr]->page_count = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01001471 spin_unlock(&sdev->list_lock);
1472 } else {
1473 spin_unlock(&sdev->list_lock);
1474 wait_event(sdev->list_wait, sdev->first_free != -1);
1475 }
1476 }
1477 sbio = sdev->bios[sdev->curr];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001478 if (sbio->page_count == 0) {
Arne Jansen69f4cb52011-11-11 08:17:10 -05001479 struct bio *bio;
1480
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001481 sbio->physical = spage->physical;
1482 sbio->logical = spage->logical;
1483 bio = sbio->bio;
1484 if (!bio) {
1485 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1486 if (!bio)
1487 return -ENOMEM;
1488 sbio->bio = bio;
1489 }
Arne Jansen69f4cb52011-11-11 08:17:10 -05001490
1491 bio->bi_private = sbio;
1492 bio->bi_end_io = scrub_bio_end_io;
1493 bio->bi_bdev = sdev->dev->bdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001494 bio->bi_sector = spage->physical >> 9;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001495 sbio->err = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001496 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1497 spage->physical ||
1498 sbio->logical + sbio->page_count * PAGE_SIZE !=
1499 spage->logical) {
Stefan Behrens1623ede2012-03-27 14:21:26 -04001500 scrub_submit(sdev);
Arne Jansen69f4cb52011-11-11 08:17:10 -05001501 goto again;
1502 }
1503
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001504 sbio->pagev[sbio->page_count] = spage;
1505 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1506 if (ret != PAGE_SIZE) {
1507 if (sbio->page_count < 1) {
1508 bio_put(sbio->bio);
1509 sbio->bio = NULL;
1510 return -EIO;
1511 }
1512 scrub_submit(sdev);
1513 goto again;
Arne Jansena2de7332011-03-08 14:14:00 +01001514 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001515
1516 scrub_block_get(sblock); /* one for the added page */
1517 atomic_inc(&sblock->outstanding_pages);
1518 sbio->page_count++;
1519 if (sbio->page_count == sdev->pages_per_bio)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001520 scrub_submit(sdev);
Arne Jansena2de7332011-03-08 14:14:00 +01001521
1522 return 0;
1523}
1524
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001525static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1526 u64 physical, u64 flags, u64 gen, int mirror_num,
1527 u8 *csum, int force)
1528{
1529 struct scrub_block *sblock;
1530 int index;
1531
1532 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1533 if (!sblock) {
1534 spin_lock(&sdev->stat_lock);
1535 sdev->stat.malloc_errors++;
1536 spin_unlock(&sdev->stat_lock);
1537 return -ENOMEM;
1538 }
1539
1540 /* one ref inside this function, plus one for each page later on */
1541 atomic_set(&sblock->ref_count, 1);
1542 sblock->sdev = sdev;
1543 sblock->no_io_error_seen = 1;
1544
1545 for (index = 0; len > 0; index++) {
1546 struct scrub_page *spage = sblock->pagev + index;
1547 u64 l = min_t(u64, len, PAGE_SIZE);
1548
1549 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1550 spage->page = alloc_page(GFP_NOFS);
1551 if (!spage->page) {
1552 spin_lock(&sdev->stat_lock);
1553 sdev->stat.malloc_errors++;
1554 spin_unlock(&sdev->stat_lock);
1555 while (index > 0) {
1556 index--;
1557 __free_page(sblock->pagev[index].page);
1558 }
1559 kfree(sblock);
1560 return -ENOMEM;
1561 }
1562 spage->sblock = sblock;
1563 spage->bdev = sdev->dev->bdev;
1564 spage->flags = flags;
1565 spage->generation = gen;
1566 spage->logical = logical;
1567 spage->physical = physical;
1568 spage->mirror_num = mirror_num;
1569 if (csum) {
1570 spage->have_csum = 1;
1571 memcpy(spage->csum, csum, sdev->csum_size);
1572 } else {
1573 spage->have_csum = 0;
1574 }
1575 sblock->page_count++;
1576 len -= l;
1577 logical += l;
1578 physical += l;
1579 }
1580
1581 BUG_ON(sblock->page_count == 0);
1582 for (index = 0; index < sblock->page_count; index++) {
1583 struct scrub_page *spage = sblock->pagev + index;
1584 int ret;
1585
1586 ret = scrub_add_page_to_bio(sdev, spage);
1587 if (ret) {
1588 scrub_block_put(sblock);
1589 return ret;
1590 }
1591 }
1592
1593 if (force)
1594 scrub_submit(sdev);
1595
1596 /* last one frees, either here or in bio completion for last page */
1597 scrub_block_put(sblock);
1598 return 0;
1599}
1600
1601static void scrub_bio_end_io(struct bio *bio, int err)
1602{
1603 struct scrub_bio *sbio = bio->bi_private;
1604 struct scrub_dev *sdev = sbio->sdev;
1605 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1606
1607 sbio->err = err;
1608 sbio->bio = bio;
1609
1610 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1611}
1612
1613static void scrub_bio_end_io_worker(struct btrfs_work *work)
1614{
1615 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1616 struct scrub_dev *sdev = sbio->sdev;
1617 int i;
1618
1619 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1620 if (sbio->err) {
1621 for (i = 0; i < sbio->page_count; i++) {
1622 struct scrub_page *spage = sbio->pagev[i];
1623
1624 spage->io_error = 1;
1625 spage->sblock->no_io_error_seen = 0;
1626 }
1627 }
1628
1629 /* now complete the scrub_block items that have all pages completed */
1630 for (i = 0; i < sbio->page_count; i++) {
1631 struct scrub_page *spage = sbio->pagev[i];
1632 struct scrub_block *sblock = spage->sblock;
1633
1634 if (atomic_dec_and_test(&sblock->outstanding_pages))
1635 scrub_block_complete(sblock);
1636 scrub_block_put(sblock);
1637 }
1638
1639 if (sbio->err) {
1640 /* what is this good for??? */
1641 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1642 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1643 sbio->bio->bi_phys_segments = 0;
1644 sbio->bio->bi_idx = 0;
1645
1646 for (i = 0; i < sbio->page_count; i++) {
1647 struct bio_vec *bi;
1648 bi = &sbio->bio->bi_io_vec[i];
1649 bi->bv_offset = 0;
1650 bi->bv_len = PAGE_SIZE;
1651 }
1652 }
1653
1654 bio_put(sbio->bio);
1655 sbio->bio = NULL;
1656 spin_lock(&sdev->list_lock);
1657 sbio->next_free = sdev->first_free;
1658 sdev->first_free = sbio->index;
1659 spin_unlock(&sdev->list_lock);
1660 atomic_dec(&sdev->in_flight);
1661 wake_up(&sdev->list_wait);
1662}
1663
1664static void scrub_block_complete(struct scrub_block *sblock)
1665{
1666 if (!sblock->no_io_error_seen)
1667 scrub_handle_errored_block(sblock);
1668 else
1669 scrub_checksum(sblock);
1670}
1671
Arne Jansena2de7332011-03-08 14:14:00 +01001672static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1673 u8 *csum)
1674{
1675 struct btrfs_ordered_sum *sum = NULL;
1676 int ret = 0;
1677 unsigned long i;
1678 unsigned long num_sectors;
Arne Jansena2de7332011-03-08 14:14:00 +01001679
1680 while (!list_empty(&sdev->csum_list)) {
1681 sum = list_first_entry(&sdev->csum_list,
1682 struct btrfs_ordered_sum, list);
1683 if (sum->bytenr > logical)
1684 return 0;
1685 if (sum->bytenr + sum->len > logical)
1686 break;
1687
1688 ++sdev->stat.csum_discards;
1689 list_del(&sum->list);
1690 kfree(sum);
1691 sum = NULL;
1692 }
1693 if (!sum)
1694 return 0;
1695
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001696 num_sectors = sum->len / sdev->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +01001697 for (i = 0; i < num_sectors; ++i) {
1698 if (sum->sums[i].bytenr == logical) {
1699 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1700 ret = 1;
1701 break;
1702 }
1703 }
1704 if (ret && i == num_sectors - 1) {
1705 list_del(&sum->list);
1706 kfree(sum);
1707 }
1708 return ret;
1709}
1710
1711/* scrub extent tries to collect up to 64 kB for each bio */
1712static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001713 u64 physical, u64 flags, u64 gen, int mirror_num)
Arne Jansena2de7332011-03-08 14:14:00 +01001714{
1715 int ret;
1716 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001717 u32 blocksize;
1718
1719 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1720 blocksize = sdev->sectorsize;
1721 spin_lock(&sdev->stat_lock);
1722 sdev->stat.data_extents_scrubbed++;
1723 sdev->stat.data_bytes_scrubbed += len;
1724 spin_unlock(&sdev->stat_lock);
1725 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1726 BUG_ON(sdev->nodesize != sdev->leafsize);
1727 blocksize = sdev->nodesize;
1728 spin_lock(&sdev->stat_lock);
1729 sdev->stat.tree_extents_scrubbed++;
1730 sdev->stat.tree_bytes_scrubbed += len;
1731 spin_unlock(&sdev->stat_lock);
1732 } else {
1733 blocksize = sdev->sectorsize;
1734 BUG_ON(1);
1735 }
Arne Jansena2de7332011-03-08 14:14:00 +01001736
1737 while (len) {
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001738 u64 l = min_t(u64, len, blocksize);
Arne Jansena2de7332011-03-08 14:14:00 +01001739 int have_csum = 0;
1740
1741 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1742 /* push csums to sbio */
1743 have_csum = scrub_find_csum(sdev, logical, l, csum);
1744 if (have_csum == 0)
1745 ++sdev->stat.no_csum;
1746 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001747 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1748 mirror_num, have_csum ? csum : NULL, 0);
Arne Jansena2de7332011-03-08 14:14:00 +01001749 if (ret)
1750 return ret;
1751 len -= l;
1752 logical += l;
1753 physical += l;
1754 }
1755 return 0;
1756}
1757
1758static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1759 struct map_lookup *map, int num, u64 base, u64 length)
1760{
1761 struct btrfs_path *path;
1762 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1763 struct btrfs_root *root = fs_info->extent_root;
1764 struct btrfs_root *csum_root = fs_info->csum_root;
1765 struct btrfs_extent_item *extent;
Arne Jansene7786c32011-05-28 20:58:38 +00001766 struct blk_plug plug;
Arne Jansena2de7332011-03-08 14:14:00 +01001767 u64 flags;
1768 int ret;
1769 int slot;
1770 int i;
1771 u64 nstripes;
Arne Jansena2de7332011-03-08 14:14:00 +01001772 struct extent_buffer *l;
1773 struct btrfs_key key;
1774 u64 physical;
1775 u64 logical;
1776 u64 generation;
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001777 int mirror_num;
Arne Jansen7a262852011-06-10 12:39:23 +02001778 struct reada_control *reada1;
1779 struct reada_control *reada2;
1780 struct btrfs_key key_start;
1781 struct btrfs_key key_end;
Arne Jansena2de7332011-03-08 14:14:00 +01001782
1783 u64 increment = map->stripe_len;
1784 u64 offset;
1785
1786 nstripes = length;
1787 offset = 0;
1788 do_div(nstripes, map->stripe_len);
1789 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1790 offset = map->stripe_len * num;
1791 increment = map->stripe_len * map->num_stripes;
Jan Schmidt193ea742011-06-13 19:56:54 +02001792 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001793 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1794 int factor = map->num_stripes / map->sub_stripes;
1795 offset = map->stripe_len * (num / map->sub_stripes);
1796 increment = map->stripe_len * factor;
Jan Schmidt193ea742011-06-13 19:56:54 +02001797 mirror_num = num % map->sub_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001798 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1799 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001800 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001801 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1802 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001803 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001804 } else {
1805 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001806 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001807 }
1808
1809 path = btrfs_alloc_path();
1810 if (!path)
1811 return -ENOMEM;
1812
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001813 /*
1814 * work on commit root. The related disk blocks are static as
1815 * long as COW is applied. This means, it is save to rewrite
1816 * them to repair disk errors without any race conditions
1817 */
Arne Jansena2de7332011-03-08 14:14:00 +01001818 path->search_commit_root = 1;
1819 path->skip_locking = 1;
1820
1821 /*
Arne Jansen7a262852011-06-10 12:39:23 +02001822 * trigger the readahead for extent tree csum tree and wait for
1823 * completion. During readahead, the scrub is officially paused
1824 * to not hold off transaction commits
Arne Jansena2de7332011-03-08 14:14:00 +01001825 */
1826 logical = base + offset;
Arne Jansena2de7332011-03-08 14:14:00 +01001827
Arne Jansen7a262852011-06-10 12:39:23 +02001828 wait_event(sdev->list_wait,
1829 atomic_read(&sdev->in_flight) == 0);
1830 atomic_inc(&fs_info->scrubs_paused);
1831 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001832
Arne Jansen7a262852011-06-10 12:39:23 +02001833 /* FIXME it might be better to start readahead at commit root */
1834 key_start.objectid = logical;
1835 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1836 key_start.offset = (u64)0;
1837 key_end.objectid = base + offset + nstripes * increment;
1838 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1839 key_end.offset = (u64)0;
1840 reada1 = btrfs_reada_add(root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001841
Arne Jansen7a262852011-06-10 12:39:23 +02001842 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1843 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1844 key_start.offset = logical;
1845 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1846 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1847 key_end.offset = base + offset + nstripes * increment;
1848 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001849
Arne Jansen7a262852011-06-10 12:39:23 +02001850 if (!IS_ERR(reada1))
1851 btrfs_reada_wait(reada1);
1852 if (!IS_ERR(reada2))
1853 btrfs_reada_wait(reada2);
Arne Jansena2de7332011-03-08 14:14:00 +01001854
Arne Jansen7a262852011-06-10 12:39:23 +02001855 mutex_lock(&fs_info->scrub_lock);
1856 while (atomic_read(&fs_info->scrub_pause_req)) {
1857 mutex_unlock(&fs_info->scrub_lock);
1858 wait_event(fs_info->scrub_pause_wait,
1859 atomic_read(&fs_info->scrub_pause_req) == 0);
1860 mutex_lock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01001861 }
Arne Jansen7a262852011-06-10 12:39:23 +02001862 atomic_dec(&fs_info->scrubs_paused);
1863 mutex_unlock(&fs_info->scrub_lock);
1864 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001865
1866 /*
1867 * collect all data csums for the stripe to avoid seeking during
1868 * the scrub. This might currently (crc32) end up to be about 1MB
1869 */
Arne Jansene7786c32011-05-28 20:58:38 +00001870 blk_start_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01001871
Arne Jansena2de7332011-03-08 14:14:00 +01001872 /*
1873 * now find all extents for each stripe and scrub them
1874 */
Arne Jansen7a262852011-06-10 12:39:23 +02001875 logical = base + offset;
1876 physical = map->stripes[num].physical;
Arne Jansena2de7332011-03-08 14:14:00 +01001877 ret = 0;
Arne Jansen7a262852011-06-10 12:39:23 +02001878 for (i = 0; i < nstripes; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +01001879 /*
1880 * canceled?
1881 */
1882 if (atomic_read(&fs_info->scrub_cancel_req) ||
1883 atomic_read(&sdev->cancel_req)) {
1884 ret = -ECANCELED;
1885 goto out;
1886 }
1887 /*
1888 * check to see if we have to pause
1889 */
1890 if (atomic_read(&fs_info->scrub_pause_req)) {
1891 /* push queued extents */
1892 scrub_submit(sdev);
1893 wait_event(sdev->list_wait,
1894 atomic_read(&sdev->in_flight) == 0);
1895 atomic_inc(&fs_info->scrubs_paused);
1896 wake_up(&fs_info->scrub_pause_wait);
1897 mutex_lock(&fs_info->scrub_lock);
1898 while (atomic_read(&fs_info->scrub_pause_req)) {
1899 mutex_unlock(&fs_info->scrub_lock);
1900 wait_event(fs_info->scrub_pause_wait,
1901 atomic_read(&fs_info->scrub_pause_req) == 0);
1902 mutex_lock(&fs_info->scrub_lock);
1903 }
1904 atomic_dec(&fs_info->scrubs_paused);
1905 mutex_unlock(&fs_info->scrub_lock);
1906 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001907 }
1908
Arne Jansen7a262852011-06-10 12:39:23 +02001909 ret = btrfs_lookup_csums_range(csum_root, logical,
1910 logical + map->stripe_len - 1,
1911 &sdev->csum_list, 1);
1912 if (ret)
1913 goto out;
1914
Arne Jansena2de7332011-03-08 14:14:00 +01001915 key.objectid = logical;
1916 key.type = BTRFS_EXTENT_ITEM_KEY;
1917 key.offset = (u64)0;
1918
1919 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1920 if (ret < 0)
1921 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001922 if (ret > 0) {
Arne Jansena2de7332011-03-08 14:14:00 +01001923 ret = btrfs_previous_item(root, path, 0,
1924 BTRFS_EXTENT_ITEM_KEY);
1925 if (ret < 0)
1926 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001927 if (ret > 0) {
1928 /* there's no smaller item, so stick with the
1929 * larger one */
1930 btrfs_release_path(path);
1931 ret = btrfs_search_slot(NULL, root, &key,
1932 path, 0, 0);
1933 if (ret < 0)
1934 goto out;
1935 }
Arne Jansena2de7332011-03-08 14:14:00 +01001936 }
1937
1938 while (1) {
1939 l = path->nodes[0];
1940 slot = path->slots[0];
1941 if (slot >= btrfs_header_nritems(l)) {
1942 ret = btrfs_next_leaf(root, path);
1943 if (ret == 0)
1944 continue;
1945 if (ret < 0)
1946 goto out;
1947
1948 break;
1949 }
1950 btrfs_item_key_to_cpu(l, &key, slot);
1951
1952 if (key.objectid + key.offset <= logical)
1953 goto next;
1954
1955 if (key.objectid >= logical + map->stripe_len)
1956 break;
1957
1958 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1959 goto next;
1960
1961 extent = btrfs_item_ptr(l, slot,
1962 struct btrfs_extent_item);
1963 flags = btrfs_extent_flags(l, extent);
1964 generation = btrfs_extent_generation(l, extent);
1965
1966 if (key.objectid < logical &&
1967 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1968 printk(KERN_ERR
1969 "btrfs scrub: tree block %llu spanning "
1970 "stripes, ignored. logical=%llu\n",
1971 (unsigned long long)key.objectid,
1972 (unsigned long long)logical);
1973 goto next;
1974 }
1975
1976 /*
1977 * trim extent to this stripe
1978 */
1979 if (key.objectid < logical) {
1980 key.offset -= logical - key.objectid;
1981 key.objectid = logical;
1982 }
1983 if (key.objectid + key.offset >
1984 logical + map->stripe_len) {
1985 key.offset = logical + map->stripe_len -
1986 key.objectid;
1987 }
1988
1989 ret = scrub_extent(sdev, key.objectid, key.offset,
1990 key.objectid - logical + physical,
1991 flags, generation, mirror_num);
1992 if (ret)
1993 goto out;
1994
1995next:
1996 path->slots[0]++;
1997 }
Chris Mason71267332011-05-23 06:30:52 -04001998 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01001999 logical += increment;
2000 physical += map->stripe_len;
2001 spin_lock(&sdev->stat_lock);
2002 sdev->stat.last_physical = physical;
2003 spin_unlock(&sdev->stat_lock);
2004 }
2005 /* push queued extents */
2006 scrub_submit(sdev);
2007
2008out:
Arne Jansene7786c32011-05-28 20:58:38 +00002009 blk_finish_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01002010 btrfs_free_path(path);
2011 return ret < 0 ? ret : 0;
2012}
2013
2014static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
Arne Jansen859acaf2012-02-09 15:09:02 +01002015 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2016 u64 dev_offset)
Arne Jansena2de7332011-03-08 14:14:00 +01002017{
2018 struct btrfs_mapping_tree *map_tree =
2019 &sdev->dev->dev_root->fs_info->mapping_tree;
2020 struct map_lookup *map;
2021 struct extent_map *em;
2022 int i;
2023 int ret = -EINVAL;
2024
2025 read_lock(&map_tree->map_tree.lock);
2026 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2027 read_unlock(&map_tree->map_tree.lock);
2028
2029 if (!em)
2030 return -EINVAL;
2031
2032 map = (struct map_lookup *)em->bdev;
2033 if (em->start != chunk_offset)
2034 goto out;
2035
2036 if (em->len < length)
2037 goto out;
2038
2039 for (i = 0; i < map->num_stripes; ++i) {
Arne Jansen859acaf2012-02-09 15:09:02 +01002040 if (map->stripes[i].dev == sdev->dev &&
2041 map->stripes[i].physical == dev_offset) {
Arne Jansena2de7332011-03-08 14:14:00 +01002042 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2043 if (ret)
2044 goto out;
2045 }
2046 }
2047out:
2048 free_extent_map(em);
2049
2050 return ret;
2051}
2052
2053static noinline_for_stack
2054int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2055{
2056 struct btrfs_dev_extent *dev_extent = NULL;
2057 struct btrfs_path *path;
2058 struct btrfs_root *root = sdev->dev->dev_root;
2059 struct btrfs_fs_info *fs_info = root->fs_info;
2060 u64 length;
2061 u64 chunk_tree;
2062 u64 chunk_objectid;
2063 u64 chunk_offset;
2064 int ret;
2065 int slot;
2066 struct extent_buffer *l;
2067 struct btrfs_key key;
2068 struct btrfs_key found_key;
2069 struct btrfs_block_group_cache *cache;
2070
2071 path = btrfs_alloc_path();
2072 if (!path)
2073 return -ENOMEM;
2074
2075 path->reada = 2;
2076 path->search_commit_root = 1;
2077 path->skip_locking = 1;
2078
2079 key.objectid = sdev->dev->devid;
2080 key.offset = 0ull;
2081 key.type = BTRFS_DEV_EXTENT_KEY;
2082
2083
2084 while (1) {
2085 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2086 if (ret < 0)
Arne Jansen8c510322011-06-03 10:09:26 +02002087 break;
2088 if (ret > 0) {
2089 if (path->slots[0] >=
2090 btrfs_header_nritems(path->nodes[0])) {
2091 ret = btrfs_next_leaf(root, path);
2092 if (ret)
2093 break;
2094 }
2095 }
Arne Jansena2de7332011-03-08 14:14:00 +01002096
2097 l = path->nodes[0];
2098 slot = path->slots[0];
2099
2100 btrfs_item_key_to_cpu(l, &found_key, slot);
2101
2102 if (found_key.objectid != sdev->dev->devid)
2103 break;
2104
Arne Jansen8c510322011-06-03 10:09:26 +02002105 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
Arne Jansena2de7332011-03-08 14:14:00 +01002106 break;
2107
2108 if (found_key.offset >= end)
2109 break;
2110
2111 if (found_key.offset < key.offset)
2112 break;
2113
2114 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2115 length = btrfs_dev_extent_length(l, dev_extent);
2116
2117 if (found_key.offset + length <= start) {
2118 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002119 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002120 continue;
2121 }
2122
2123 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2124 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2125 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2126
2127 /*
2128 * get a reference on the corresponding block group to prevent
2129 * the chunk from going away while we scrub it
2130 */
2131 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2132 if (!cache) {
2133 ret = -ENOENT;
Arne Jansen8c510322011-06-03 10:09:26 +02002134 break;
Arne Jansena2de7332011-03-08 14:14:00 +01002135 }
2136 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
Arne Jansen859acaf2012-02-09 15:09:02 +01002137 chunk_offset, length, found_key.offset);
Arne Jansena2de7332011-03-08 14:14:00 +01002138 btrfs_put_block_group(cache);
2139 if (ret)
2140 break;
2141
2142 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002143 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002144 }
2145
Arne Jansena2de7332011-03-08 14:14:00 +01002146 btrfs_free_path(path);
Arne Jansen8c510322011-06-03 10:09:26 +02002147
2148 /*
2149 * ret can still be 1 from search_slot or next_leaf,
2150 * that's not an error
2151 */
2152 return ret < 0 ? ret : 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002153}
2154
2155static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2156{
2157 int i;
2158 u64 bytenr;
2159 u64 gen;
2160 int ret;
2161 struct btrfs_device *device = sdev->dev;
2162 struct btrfs_root *root = device->dev_root;
2163
Jeff Mahoney79787ea2012-03-12 16:03:00 +01002164 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2165 return -EIO;
2166
Arne Jansena2de7332011-03-08 14:14:00 +01002167 gen = root->fs_info->last_trans_committed;
2168
2169 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2170 bytenr = btrfs_sb_offset(i);
Stefan Behrens1623ede2012-03-27 14:21:26 -04002171 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
Arne Jansena2de7332011-03-08 14:14:00 +01002172 break;
2173
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002174 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2175 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
Arne Jansena2de7332011-03-08 14:14:00 +01002176 if (ret)
2177 return ret;
2178 }
2179 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2180
2181 return 0;
2182}
2183
2184/*
2185 * get a reference count on fs_info->scrub_workers. start worker if necessary
2186 */
2187static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2188{
2189 struct btrfs_fs_info *fs_info = root->fs_info;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002190 int ret = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002191
2192 mutex_lock(&fs_info->scrub_lock);
Arne Jansen632dd772011-06-10 12:07:07 +02002193 if (fs_info->scrub_workers_refcnt == 0) {
2194 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2195 fs_info->thread_pool_size, &fs_info->generic_worker);
2196 fs_info->scrub_workers.idle_thresh = 4;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002197 ret = btrfs_start_workers(&fs_info->scrub_workers);
2198 if (ret)
2199 goto out;
Arne Jansen632dd772011-06-10 12:07:07 +02002200 }
Arne Jansena2de7332011-03-08 14:14:00 +01002201 ++fs_info->scrub_workers_refcnt;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002202out:
Arne Jansena2de7332011-03-08 14:14:00 +01002203 mutex_unlock(&fs_info->scrub_lock);
2204
Josef Bacik0dc3b842011-11-18 14:37:27 -05002205 return ret;
Arne Jansena2de7332011-03-08 14:14:00 +01002206}
2207
2208static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2209{
2210 struct btrfs_fs_info *fs_info = root->fs_info;
2211
2212 mutex_lock(&fs_info->scrub_lock);
2213 if (--fs_info->scrub_workers_refcnt == 0)
2214 btrfs_stop_workers(&fs_info->scrub_workers);
2215 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2216 mutex_unlock(&fs_info->scrub_lock);
2217}
2218
2219
2220int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
Arne Jansen86287642011-03-23 16:34:19 +01002221 struct btrfs_scrub_progress *progress, int readonly)
Arne Jansena2de7332011-03-08 14:14:00 +01002222{
2223 struct scrub_dev *sdev;
2224 struct btrfs_fs_info *fs_info = root->fs_info;
2225 int ret;
2226 struct btrfs_device *dev;
2227
David Sterba7841cb22011-05-31 18:07:27 +02002228 if (btrfs_fs_closing(root->fs_info))
Arne Jansena2de7332011-03-08 14:14:00 +01002229 return -EINVAL;
2230
2231 /*
2232 * check some assumptions
2233 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002234 if (root->nodesize != root->leafsize) {
2235 printk(KERN_ERR
2236 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2237 root->nodesize, root->leafsize);
2238 return -EINVAL;
2239 }
2240
2241 if (root->nodesize > BTRFS_STRIPE_LEN) {
2242 /*
2243 * in this case scrub is unable to calculate the checksum
2244 * the way scrub is implemented. Do not handle this
2245 * situation at all because it won't ever happen.
2246 */
2247 printk(KERN_ERR
2248 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2249 root->nodesize, BTRFS_STRIPE_LEN);
2250 return -EINVAL;
2251 }
2252
2253 if (root->sectorsize != PAGE_SIZE) {
2254 /* not supported for data w/o checksums */
2255 printk(KERN_ERR
2256 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2257 root->sectorsize, (unsigned long long)PAGE_SIZE);
Arne Jansena2de7332011-03-08 14:14:00 +01002258 return -EINVAL;
2259 }
2260
2261 ret = scrub_workers_get(root);
2262 if (ret)
2263 return ret;
2264
2265 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2266 dev = btrfs_find_device(root, devid, NULL, NULL);
2267 if (!dev || dev->missing) {
2268 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2269 scrub_workers_put(root);
2270 return -ENODEV;
2271 }
2272 mutex_lock(&fs_info->scrub_lock);
2273
2274 if (!dev->in_fs_metadata) {
2275 mutex_unlock(&fs_info->scrub_lock);
2276 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2277 scrub_workers_put(root);
2278 return -ENODEV;
2279 }
2280
2281 if (dev->scrub_device) {
2282 mutex_unlock(&fs_info->scrub_lock);
2283 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2284 scrub_workers_put(root);
2285 return -EINPROGRESS;
2286 }
2287 sdev = scrub_setup_dev(dev);
2288 if (IS_ERR(sdev)) {
2289 mutex_unlock(&fs_info->scrub_lock);
2290 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2291 scrub_workers_put(root);
2292 return PTR_ERR(sdev);
2293 }
Arne Jansen86287642011-03-23 16:34:19 +01002294 sdev->readonly = readonly;
Arne Jansena2de7332011-03-08 14:14:00 +01002295 dev->scrub_device = sdev;
2296
2297 atomic_inc(&fs_info->scrubs_running);
2298 mutex_unlock(&fs_info->scrub_lock);
2299 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2300
2301 down_read(&fs_info->scrub_super_lock);
2302 ret = scrub_supers(sdev);
2303 up_read(&fs_info->scrub_super_lock);
2304
2305 if (!ret)
2306 ret = scrub_enumerate_chunks(sdev, start, end);
2307
2308 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
Arne Jansena2de7332011-03-08 14:14:00 +01002309 atomic_dec(&fs_info->scrubs_running);
2310 wake_up(&fs_info->scrub_pause_wait);
2311
Jan Schmidt0ef8e452011-06-13 20:04:15 +02002312 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2313
Arne Jansena2de7332011-03-08 14:14:00 +01002314 if (progress)
2315 memcpy(progress, &sdev->stat, sizeof(*progress));
2316
2317 mutex_lock(&fs_info->scrub_lock);
2318 dev->scrub_device = NULL;
2319 mutex_unlock(&fs_info->scrub_lock);
2320
2321 scrub_free_dev(sdev);
2322 scrub_workers_put(root);
2323
2324 return ret;
2325}
2326
Jeff Mahoney143bede2012-03-01 14:56:26 +01002327void btrfs_scrub_pause(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002328{
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330
2331 mutex_lock(&fs_info->scrub_lock);
2332 atomic_inc(&fs_info->scrub_pause_req);
2333 while (atomic_read(&fs_info->scrubs_paused) !=
2334 atomic_read(&fs_info->scrubs_running)) {
2335 mutex_unlock(&fs_info->scrub_lock);
2336 wait_event(fs_info->scrub_pause_wait,
2337 atomic_read(&fs_info->scrubs_paused) ==
2338 atomic_read(&fs_info->scrubs_running));
2339 mutex_lock(&fs_info->scrub_lock);
2340 }
2341 mutex_unlock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002342}
2343
Jeff Mahoney143bede2012-03-01 14:56:26 +01002344void btrfs_scrub_continue(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002345{
2346 struct btrfs_fs_info *fs_info = root->fs_info;
2347
2348 atomic_dec(&fs_info->scrub_pause_req);
2349 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01002350}
2351
Jeff Mahoney143bede2012-03-01 14:56:26 +01002352void btrfs_scrub_pause_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002353{
2354 down_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002355}
2356
Jeff Mahoney143bede2012-03-01 14:56:26 +01002357void btrfs_scrub_continue_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002358{
2359 up_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002360}
2361
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002362int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
Arne Jansena2de7332011-03-08 14:14:00 +01002363{
Arne Jansena2de7332011-03-08 14:14:00 +01002364
2365 mutex_lock(&fs_info->scrub_lock);
2366 if (!atomic_read(&fs_info->scrubs_running)) {
2367 mutex_unlock(&fs_info->scrub_lock);
2368 return -ENOTCONN;
2369 }
2370
2371 atomic_inc(&fs_info->scrub_cancel_req);
2372 while (atomic_read(&fs_info->scrubs_running)) {
2373 mutex_unlock(&fs_info->scrub_lock);
2374 wait_event(fs_info->scrub_pause_wait,
2375 atomic_read(&fs_info->scrubs_running) == 0);
2376 mutex_lock(&fs_info->scrub_lock);
2377 }
2378 atomic_dec(&fs_info->scrub_cancel_req);
2379 mutex_unlock(&fs_info->scrub_lock);
2380
2381 return 0;
2382}
2383
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002384int btrfs_scrub_cancel(struct btrfs_root *root)
2385{
2386 return __btrfs_scrub_cancel(root->fs_info);
2387}
2388
Arne Jansena2de7332011-03-08 14:14:00 +01002389int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2390{
2391 struct btrfs_fs_info *fs_info = root->fs_info;
2392 struct scrub_dev *sdev;
2393
2394 mutex_lock(&fs_info->scrub_lock);
2395 sdev = dev->scrub_device;
2396 if (!sdev) {
2397 mutex_unlock(&fs_info->scrub_lock);
2398 return -ENOTCONN;
2399 }
2400 atomic_inc(&sdev->cancel_req);
2401 while (dev->scrub_device) {
2402 mutex_unlock(&fs_info->scrub_lock);
2403 wait_event(fs_info->scrub_pause_wait,
2404 dev->scrub_device == NULL);
2405 mutex_lock(&fs_info->scrub_lock);
2406 }
2407 mutex_unlock(&fs_info->scrub_lock);
2408
2409 return 0;
2410}
Stefan Behrens1623ede2012-03-27 14:21:26 -04002411
Arne Jansena2de7332011-03-08 14:14:00 +01002412int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2413{
2414 struct btrfs_fs_info *fs_info = root->fs_info;
2415 struct btrfs_device *dev;
2416 int ret;
2417
2418 /*
2419 * we have to hold the device_list_mutex here so the device
2420 * does not go away in cancel_dev. FIXME: find a better solution
2421 */
2422 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2423 dev = btrfs_find_device(root, devid, NULL, NULL);
2424 if (!dev) {
2425 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2426 return -ENODEV;
2427 }
2428 ret = btrfs_scrub_cancel_dev(root, dev);
2429 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2430
2431 return ret;
2432}
2433
2434int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2435 struct btrfs_scrub_progress *progress)
2436{
2437 struct btrfs_device *dev;
2438 struct scrub_dev *sdev = NULL;
2439
2440 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2441 dev = btrfs_find_device(root, devid, NULL, NULL);
2442 if (dev)
2443 sdev = dev->scrub_device;
2444 if (sdev)
2445 memcpy(progress, &sdev->stat, sizeof(*progress));
2446 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2447
2448 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2449}